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◀◦▶

You’re a refraction of the one light.
You’re a waveform of light.

You’re a fractal, a pattern that continuously changes.

— Frederick P. Lenz





S T R E S Z C Z E N I E

Istnieje wiele zastosowań biomedycznych, w których analiza obrazów interferen-
cyjnychmoże doprowadzić do lepszychmetod diagnostycznych. Obrazy tego typu
mogą być traktowane jako tekstury i stąd estymacja wymiaru fraktalnego  obrazu
w skali szarości jest szczególnie interesująca. Istnieje wiele podejść do obliczania wy-
miaru fraktalnego obrazu, w tym algorytm binarnego zliczania pudełek i jego róż-
nicowe rozszerzenia jak również liczne inne deskryptory obrazu wykorzystujące
fraktalność. Niemniej jednak obecnie istniejący zestaw estymatorów wymiaru
fraktalnego nie wyczerpuje możliwości opracowania innych typów estymato-
rów, które w konkretnych zastosowaniach przewyższałyby wcześniej stosowane
rozwiązania. Estymator wymiaru fraktalnego może być lepszy niż inne pod wzglę-
dem właściwości statystycznych takich jak wariancja lub dokładność określenia
wartości oczekiwanej, wydajność diagnostyki (o ile znajduje tego typu zastosowa-
nie) lub wydajność obliczeniowa. W zależności od oczekiwanego zastosowania,
jedną lub więcej spośród wspomnianych właściwości można przyjąć jako kryte-
rium oceny opracowanych metod estymacji oraz kryterium porównawcze mię-
dzy nimi. Niniejsza praca doktorska ma dwa główne cele. Pierwszym z nich
jest opracowanie estymatorów wymiaru fraktalnego  dla dwuwymiarowych obra-
zów w skali szarości, które spełniają następujące warunki: odpowiednią wydajność
obliczeń numerycznych, wysoki zakres dynamiki oraz zgodność z wymiarem
euklidesowym (topologicznym) dla zbiorów niebędących fraktalami (w sensie
samopodobieństwa). Drugim jest zastosowanie nowo zaprojektowanych estyma-
torów wymiaru fraktalnego  do zagadnienia interferometrycznego obrazowania
ludzkiego filmu łzowego. Celami cząstkowymi pracy są: badanie właściwości
estymatorów (opracowanie względem istniejących rozwiązań) oraz rozważenie
nowych podejść do estymacji wymiaru fraktalnego  , to jest probabilistycznych
w stosunku do nieprobabilistycznych. Rozważane są dwa nowe podejścia do es-
tymacji wymiaru fraktalnego  obrazów w skali szarości opartej na podejściu pu-
dełkowym , aby przezwyciężyć pewne ograniczenia standardowej metody pudeł-
kowej . Obejmują one estymatory wymiaru fraktalnego na podstawie ważonej
metody pudełkowej w skali szarości oraz probabilistycznej metody pudełkowej
w skali szarości opartej na prawdopodobieństwie zdefiniowanym w przestrzeni
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obrazu . Są one zestawione z algorytmami estymacji wymiaru fraktalnego wyko-
rzysującymi standardową binarną metodę pudełkową oraz probabilistyczną me-
todę pudełkową w skali szarości opartą na prawdopodobieństwie zdefiniowanym
w przestrzeni intensywności . Zarówno obrazy syntetyczne jak i interferogramy
pozyskane empirycznie zostały użyte do oceny proponowanych estymatorów
wymiaru fraktalnego , ze szczególnym naciskiem położonym na ich zdolności dia-
gnostyczne. W pierwszej kolejności obrazy syntetyczne obejmujące pełen zakres
wartości wymiaru fraktalnego zostały wykorzystane do walidacji proponowa-
nych estymatorów wymiaru fraktalnego . Następnie interferometryczne  obrazy
w skali szarości przedstawiające film łzowy osób zdrowych oraz pacjentów do-
tkniętych zespołem suchego oka zastosowano do oceny mocy dyskryminacyjnej
diagnostyki suchego oka opartej na wymiarze fraktalnym . Wykonane badania za-
kończone zostały uzyskaniem dwóch głównych wyników. Pierwszym jest rozwój
teorii dotyczącej dwóch nowych estymatorów wymiaru fraktalnego , które oka-
zały się lepsze od wcześniej rozważanych. Kolejny to opracowanie algorytmów
służących diagnostyce suchego oka na podstawie analizy wymiaru fraktalnego 

obrazów interferometrii metodą poprzecznego przesunięcia czoła fali pozyska-
nych in-vivo. Klasyfikacja obrazów z interferometru poprzecznego przesunię-
cia czoła fali oparta na wymiarze fraktalnym  porównana została z fourierow-
skim podejściem spektralnym, gdzie okazała się równie efektywna pod wzglę-
dem charakterystyk operacyjnych odbiorników jednakże znacznie wydajniejsza
obliczeniowo. Podsumowując – ogólnym celem pracy było zbadanie opartych
na fraktalności deskryptorów parametrów obrazu w odniesieniu do jakościowej
oceny jego struktury oraz – w przypadku sekwencji wideo – opisanie przebiegu
ich dynamicznych zmian. Wyniki obejmują nowe estymatory jakości danych
interferometrycznych. Niektóre z metod analizy obrazów opracowano poprzez sa-
modzielny projekt i implementację, np. algorytmu ważonej metody pudełkowej
w skali szarości , rekurencyjne podejście do decymacji próbek lub równoległa im-
plementacja metody Saupego przeskaluj-i-dodaj do generowania syntetycznych
fraktali przyspieszającej obliczenia dziesiątki tysięcy razy. U podstaw potrzeby
motywującej prowadzenie badań legły pragmatyczne przesłanki, jednak – pomija-
jąc wartość czysto użytkową – badania te również wniosły przyczynek do rozwoju
metodologii estymacji właściwości i cech fraktalnych. Praktyczne znaczenie ba-
dań deskryptorów obrazu opartych na fraktalności uzasadnia badania teoretyczne
oraz doświadczalne jako cechujące się techniczną przydatnością przy zastosowa-
niach w dziedzinach diagnostyki biomedycznej oraz przemysłowej. Przy opisie
całościowego znaczenia przeprowadzonych badań należy zauważyć, iż rozwój
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oraz poprawa działania zaproponowanych metod estymacji wymiaru fraktalnego 

warte są wkładu czasu oraz nakładu sił. W szczególności zaś wyniki przeprowa-
dzonych badań empirycznych wysunąć można jako wydatny przykład potwier-
dzający użyteczność wspomnianego rozszerzonego studium. Stąd też w pewnych
aplikacjach nowo zaproponowane deskryptory oparte na fraktalności zdolne dzia-
łać w skali szarości  okazały się lepsze od innych algorytmów wykorzystujących
wymiar fraktalny oraz porównywalne z technikami opartymi na metodach spek-
tralnych – jeśli nie lepsze od nich. Jednocześnie można zaimplementować temetody
w sposób pozwalający na zapewnienie podobnej lub lepszej wydajności oblicze-
niowej. Oba te aspekty stanowią silną podstawę do rozważenia przeprowadzenia
w przyszłości dodatkowych badań rozwijających wspomniane zagadnienia.





A B S T R A C T

There are many biomedical applications in which the analysis of interference
images can lead to better diagnostic methods. Such images can be treated as tex-
tures and for that fractal dimension estimation over grayscale image is of par-
ticular interest. There are different approaches to calculating fractal dimension 

of an image, including binary box-counting  algorithm and its differential ex-
tensions as well as the multitude of other fractal-based image descriptors. How-
ever, the currently existing set of fractal dimension estimators does not exhaust
the possibility of developing other types of estimators that would outperform
their predecessors in particular applications. An estimator of fractal dimension 

can be superior among others in terms of statistical properties such as variance
or bias, diagnostic performance (if used in such an application) or computational
efficiency. Depending on the desired application, one or more of the mentioned
characteristics may be chosen as a criterion for assessment of the developed es-
timation methods as well as comparison between them. There are two main
goals of this doctoral work. The first one is the construction of fractal dimen-
sion estimators for two-dimensional grayscale images that satisfy the following
conditions: sufficient numerical efficiency, high dynamic range, and consistency
with Euclidean (topological) dimension for non-fractal (in a self-similarity sense)
sets. The second one is the applicability of the newly designed fractal dimension  

estimators to the problem of interferometric imaging of tear film in human sub-
jects. The specific objectives of the work are: investigating properties of fractal
dimension estimators (research in terms of existing solutions) and considering
new approaches to fractal dimension estimation  , i.e., probabilistic vs non-proba-
bilistic. Two new approaches for box-counting -based fractal dimension estimation 

for gray-scale images are considered to overcome some limitations of standard
box-counting method. They include weighted grayscale box-counting  and proba-
bilistic grayscale box-counting based on image probability space  fractal dimension 

estimators. They are contrasted against the standard binary box-counting as well
as probabilistic grayscale box-counting based on intensity probability space fractal
dimension estimation algorithms. Both synthetic images as well as real interfero-
metric ones have been used to evaluate the proposed estimators of fractal dimen-
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sion , particularly in the view of their diagnostic ability. First, synthetic images
that cover a range of fractal dimension values have been used to validate the pro-
posed estimators of fractal dimension  . Second, gray-level interferometric  images
of tear film from normal and dry eye syndrome -affected subjects have been used
to assess the discriminative power of fractal-dimension -based diagnosis of dry
eye . There are two main outcomes of this study. The first one is the theoreti-
cal development of two new fractal dimension estimators that have been found
to be superior to the previously considered ones. The second one is the develop-
ment of algorithms for diagnosing dry eye based on fractal dimension analysis
of lateral shearing interferometry images acquired in-vivo. Fractal-dimension -
-based classification of lateral shearing interferometry images has been compared
to Fourier-based spectral approach and has shown equivalent performance in terms
of receiver operating characteristics , but much higher computational efficiency.
Concluding, the overall goal of the work has been to investigate fractal-based de-
scriptors of image parameters with respect to qualitative assessment of its structure
and – in case of video sequences – to describe the course of their dynamic changes.
The result consists of new estimators of interferogram data quality. Some of the im-
age analysis methods have been achieved with own design and implementation,
e.g., weighted box-counting algorithm for grayscale images  , the recursive down-
sampling approach or the parallelized implementation of Saupe’s rescale-and-add 

method for generating synthetic fractals  that has accelerated the computations tens
of thousands times. The need behind the conducted research has arisen under prag-
matic premises, however – apart from utilitarian circumstances – it also forms a cause
for development of estimation of fractal features. The practical significance of studies
on fractal-based image descriptors justifies the theoretical and experimental research
as exhibiting technical applicability in fields of biomedical and industrial diagnostics.
Summing up the significance of the study, it is to be noted that there is a worth in in-
vesting the time and effort in the development and enhancement of the proposed
fractal dimension estimation  methods. In particular, empirical results of this study
may be excerpted as a notable example provisioning the utility of such extended re-
search. Hence, in certain applications the newly proposed fractal -based descriptors
operating in grayscale have been found to be superior among other fractal -based
algorithms and comparable – if not better – with techniques based on spectral
methods. At the same time, they may be implemented to provide similar or better
computational efficiency. These two aspects are strong advocates behind additional
research studies on this matter in the future.
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Part I

I N T R O D U C T I O N

Cha p t e r 1 i s b a s e d mo s t l y on t h e l i t e r a t u r e r e v i ew . Howeve r , n ew conc e p -
t u a l i z a t i on o f t h e no t a t i on c onve n t i on i n c h a p t e r 1 c on t a i n s own con t r i -
b u t i on s , a s i t p r e p a r e s t h e g r ound f o r t h e p r o p o s e d a l g o r i t hm s t o b e i n -
t r o d uc e d . I t i s o f impo r t a n c e a l s o b e c a u s e i t a l l ow s t o d i s t i n g u i s h b e -
t we e n t wo no t a t i on s d e ve l o p e d t o s e r ve d i f f e r e n t ( t h e o r e t i c a l v s a p p l i c a -
t i v e ) p u r p o s e s .





1 F U N DA M E N TA L S O F F R A C TA L
D I M E N S I O N E S T I M AT I O N  

1.1 introductory literature review with the-
oretical background

1.1.1 General concept of fractal

A fractal description of natural objects has been introduced by Benoît B. Mandelbrot
who used self-similarity to explore morphological properties of common irregular
or fragmented shape patterns that tend to be very hard to parametrize in terms of Eu-
clidean geometry found in, e.g., clouds, mountains or tree bark [1 ]. An extensive
description of various aspects of fractal geometry and a wide overview of available
techniques has been presented by Kenneth John Falconer in numerous publications
including several important books [2 –4 ]. Additionally, fractal geometry and its re-
lation to measure theory and topology is a subject of the book by Gerald Arthur
Edgar that aims to bridge the gap between traditional books on topology and anal-
ysis and more specialized treatises on fractal geometry [5 ]. Furthermore, Michael
Fielding Barnsley and Hawley Rising have thoroughly described fractal-based de-
scriptors of images, theoretical and experimental methods for concept of fractal
dimension (FD) determination elaborated below as well as examples of fractal sets
and application of invariant fractal-based descriptor in data compression especially
for computer graphics usages [6 ].
There is multitude of synthetic summaries describing mathematical formalisms

regarding dimensionality of self-similar† objects. Among them there are some books
including the mentioned one by Mandelbrot [1 ] as well as shorter papers covering
the subject with broad overviews like the unified approach proposed by Witold
Kinsner [7 ].

† A self-similar object is exactly or approximately similar to a part of itself.

9
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1.1.2 Fractal geometry and dimension 

Fractal geometry arises for objects having self-similarity property as defined
by Mandelbrot. Thus, there is introduced a dimension measure that equals Eu-
clidean, i.e., topological, dimension of the set for sets being descriptions of ordinary
geometric shapes. E.g., FD  of (sets that describe) points is zero, for lines it equals
to one, for surfaces – two, volumes – three etc. However, for a set of a shape
representing the fractal geometry properties this measure exceeds its topological
dimension. Such a descriptor of the set is called a theoretical FD  and similarly
to Euclidean dimension describes this set in a non-unique manner, i.e., one can-
not reconstruct a fractal knowing only its FD  value.

Definition 1. Fractal dimension :
Fractals (and some ordinary geometrical objects) satisfy scaling rule:

Nϵ ∝ ϵ−D, (1-1)

where D denotes FD  of a specific set, Nϵ – the number (usually its minimal value)
of hypermanifolds (sometimes called rulers or boxes) of topological dimension
not smaller than D that are required to form a (usually disjoint) union covering
the whole reference set at a given ruler scaling factor ϵ. 2

Equation (1-1) from definition 1 can be rewritten as to allow (direct or based
on best fit of an linear regression) calculation of D:

D
.
= − logϵ Nϵ =

logNϵ

log ϵ−1
. (1-2)

In addition to the number of theoretically described approaches mentioned be-
low , there exists an abundance of ready to use applications of image analysis tools
offering FRACTAL DIMENSION estimation (FDE) modules [8 , 9 ].
When FDE  is to be utilized as a tool for classification applications, the often-advo-

cated paradigm formulated by Qian Huang, Jacob R. Lorch and Richard C. Dubes
in 1994 [10 ] and sometimes referred to in this context as the philosophy of Huang
or the spirit of Huang, shall be considered. This general approach to the possibilities
and applications of the measurements of FD  is also pointed out and formulated
in chapter 3 .
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1.2 description of designed box-counting  me-
thods and algorithms

1.2.1 Discrete signals and monochromatic binary images

There is a plethora of exact and approximate exemplifications of FD  concept
that in general do not have to be equivalent for all fractal sets, but should satisfy
some form of the scaling rule. Some of them alsomake use of power law relationship
between ruler/box and scale-dependent quantities that are comes around for fractal
sets. It is the casemostly for empirical estimators of FD  , butwhen this holds, FD  value
can be derived directly from linear regression of log–log plot as it is the exponent
of properly formulated power law functional relation.
One of the notable examples of FD  is the Hausdorff’s–Besicovitch’s dimension

(also known in shortened form as Hausdorff’s dimension or capacity dimension)
dimH( · ) that is calculable in rigorous terms only for some analytically described
sets and basically for naturally occurring fractals might be only approximated,
at least to some degree – in a somewhat heuristic manner [11 , 12 ].
Related to Hausdorff’s dimension, but simpler and practically much more ap-

plicable for wide class of scenes including natural images notions are, e.g., corre-
lation dimension ν, packing dimension dimP( · ) and box-counting (BC) dimension
dimbox( · ) also known as Minkowski–Bouligand dimension or Minkowski dimension.
All these measures give identical values for a typical nature-borne fractal sets,
but it is worth noticing that there are objects having all these dimensions inher-
ently different.

BC  dimension is employed for FDE  particularly common in engineering calcu-
lations as well as in natural sciences, i.e., applied to situations where photographs
of real objects or patterns are processed to qualitatively characterize their surface
or texture features [13 , 14 ]. In its basic variant it is usually implemented to operate
on one-dimensional vector or two-dimensional (2-D) binary matrix. One simple
definition states that if N(ϵ) is the number of boxes of side length ϵ required
to cover a set A, then BC  dimension of that set is defined as:

dimbox(A)
.
= lim

ϵ→0+

logN(ϵ)

log 1/ϵ . (1-3)
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Often, N(ϵ) is denoted in shortened form as:

N(ϵ)
.
= Nϵ. (1-4)

Limit superior or limit inferior may be taken into account if the above is not applica-
ble for some reason. These define the upper box dimension (also called entropy dimen-
sion,Kolmogorov’s dimension,Kolmogorov’s capacity, limit capacity) and lower box
dimension, respectively [2 , 15 ]. These terms exhibit a relation to Hausdorff’s dimen-
sion concept. Contradistinction between the methods pointed out above  is not cru-
cial for a fractal set that does not exhibit some very atypical traits and there-
fore it is at times neglected in descriptions considering their practical applications.
Another one similar measure of FD  is the aforementioned correlation dimension ν.

1.2.2 Grayscale images

Mandelbrot’s conception of a specific length–scale dependency that involves FD  

coefficient observed for, e.g., coastlines, has been later exploited by Shmuel Peleg
et al. [16 ]. Its applicability has been broadened to allow empirical FD  calculation
based not only on the length (for a curve) but also on the area (for a surface)
by covering it with the ϵ-blanket and determination of its volume. This method
tends to saturate slightly for surfaces with high fractal dimensionality  , i.e., close to 3,
and its computational complexity results in calculation times placing it in themiddle
of FDE  methods set described and compared by Nirupam Sarkar and Bidyut
B. Chaudhuri in [17 ], where they also proposed a new approach to this problem
called differential BOX-COUNTING (DBC) described below . The ϵ-blanket algorithm
needs many iterations for different scales – as many as 15 [17 ] to 50 [16 ] – to give
accurate result what effectively worsens its performance by a substantial factor.
Alex P. Pentland proposed a method for FDE  that utilizes fitting the image

into a fractional Brownian function (FBF) and calculating its Fourier’s power spec-
trum P(f) [18 ]. These two variables are related by the power function and FD  

estimate D for the image intensity surface could be derived from the exponent
of this relation. This method is very accurate, but it requires the image to be-
long to a class of intensity surfaces that can be modeled using the concept of FBF  

which is suitable for describing the features of real surfaces within limited range
of scales [19 ]. What is more, its computational complexity is very high as the algo-
rithm involves fast Fourier’s transformation (FFT) calculation [17 ] so its application
to, e.g., real-time video processing might cause difficulties due to significant
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overheads. Pentland also proposed a fractal surface model providing a surface de-
scriptor applicable to smoothness level assessment, i.e., a difference† between fractal 

and topological dimensions D − T
def
= r ∈ [0, 1] and a technique for three-dimen-

sional (3-D) shape estimation unifying shaded and textured surfaces [20 ].
Pentland, like the majority of mentioned authors of publications regarding FDE  ,

utilizes a compendium of 112 grayscale texture photographic images taken un-
der controlled lighting conditions by Phillip Brodatz and published in 1966 [21 ].
Brodatz textures are used as a common reference data set for testing and compar-
ing certain types of image processing algorithms despite their copyright status
prohibiting reproduction in publications [22 ].
Jean-Jacques Gagnepain and Claude Roques-Carmes proposed reticular cell count-

ing (RCC) [23 ] – a method for FDE  of statistically (approximately) self-similar ob-
jects that are often encountered when processing real images and textures. This ap-
proach utilizes counting space-intensity cells also called spicels that are boxes partition-
ing 3-D  grayscale image intensity space and containing at least one sampling unit
representing non-zero image intensity. These spicels are thus defined as countable
boxes. It can be shown that, if L is the size of the box corresponding to a specific box
scale and NL is the number of countable boxes for this spicel scale, then:

NL ∝ L−D, (1-5)

where D is FD  estimate that can be calculated as additive inverse of least squares 

linear fit slope of NL(L) log–log plot of different box scaling ratios. A notewor-
thy drawback of RCC  approach is that this method cannot accurately assess
high FDS  as such situations tend to result in high dispersion of samples in Oz

axis which in turn causes saturation at a value of about 2.5. On the other hand,
its computational complexity is similar to DBC  method [17 ] that makes the time
efficiency efficieny of the algorithm very high.

† This is denoted by r by the original author – not to be confusedwith the same symbol used for differ-
ent variables used by other autors and excerpted futher. Such usages of the same symbol for different
meaning are used occasionally in this literature review and have been exploited as a mean of not al-
tering the notation used in the original pubications. Therefore, if not stated otherwise, a particular
method described here and its notation need to be treated in separation from the other ones to avoid
notational conflicts. This is caused by the specific character of the literature review and does not ap-
ply to further chapters, e.g., a care has been taken to maintain the notation given in part II  consistent
with the further parts.
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Richard F. Voss [24 , 25 ] described the probability P(m,L) that there arem points
within a hypercube (or a hypersphere) of size L centered about an arbitrary point
in a set of points. It is normalized in a way that:

∀L.
N∑

m=1

P(m,L) = 1, (1-6)

where N is the number of possible points within the hypercube that in case
of 3-D  grayscale intensity surface might be a box analogous to that of RCC  method.
The number of these boxes needed to cover the whole set (image) can be expressed
probabilistically as:

NL(L) = M2

N∑
i=1

1

m
P(m,L) ∝

N∑
i=1

1

m
P(m,L). (1-7)

The combination of eqs. (1-5) and (1-7) allows an estimation of FD  by linear regres-
sion and mean squared error (MSE) giving a new method that might be briefly
referred to as probabilistic RETICULAR CELL COUNTING (PRCC) .
As RCC  and PRCC  method both suffer from the same limitation caused by exces-

sive image intensity variability for higher fractal dimensionality , James M. Keller,
Susan S. Chen and Richard M. Crownover [26 ] have introduced a modification
in Voss’ method that shifted the saturation level for FD  value of about 2.8 at the ex-
pense of mildly lengthened computation time [17 ]. This variant of cell counting 

approach can be described in short as improved PROBABILISTIC RETICULAR CELL

COUNTING (IPRCC) method. It enhances PRCC  by applying a linear interpo-
lation to approximate image intensity surface between central points of boxes
and their neighbors to create a new surface that is used in subsequent calculations
ofm on the basis of eq. (1-7) . This ensures better nonetheless still limited robustness
to discrepancies caused by the quantization effect occurring for irregular yet con-
tinuous functions, e.g., fractional Brownian motion (FBM) function [26 ] introduced
by Mandelbrot and John W. Van Ness in 1968 [27 ] and lately widely used for gen-
erating synthetic surfaces as benchmarks for FDE  algorithms [28 ]. Boundary effects
of this method as boxes scale decreases and number of nonempty (countable) boxes
saturates and become close to limiting value equal to total number of discrete points
in the image have been later also studied by IPRCC  authors. As a result, in [29 ]
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they present a proof for box size saturation lower bound LB and its dependency
on FD  :

LB =
Lmax

(M2)1/D
, (1-8)

where Lmax is the size of a box enclosing the entire fractal image.
Min Long and Fei Peng designed BC  method with adaptable box height also re-

ferred to as the integer ratio based BC  method [30 ]. They have shown that it has bet-
ter accuracy for images of arbitrary non-square size. Moreover, their method
allows the height of the box at the top of each image array grid block to be adapt-
able to the maximum and minimum intensity values of that block. This allows
some of the common existing BC  methods pitfalls to be avoided.
Another approach that has been demonstrated to combine accuracy close to Pent-

land’s FBF  -based spectral method with time efficiency even better than Gagne-
pain and Roques-Carmes’ RCC  algorithm is the abovementioned DBC  intro-
duced by Sarkar and Chaudhuri [17 ]. They suggested an intensity space par-
titioning of the image of size M × M that creates a 2-D  array of columns
of boxes with each column height equal to total number of gray levels denoted G.
The base of each column is a grid of size s × s image points with scaled-down
size s ∈ { 2, 3, . . . ,

⌊
M
2

⌋
}

def
= 2, M

2
giving scaling ratio r = s

M
. Numbers of boxes

having size of s × s × s ′ points within any column and any row are equal for s ′

satisfying
⌊
G
s ′

⌋
=
⌊
M
s

⌋
condition that ensures s ′ ≈ s

M
· G def

= r · G dependency.
Boxes in each column are enumerated in a way that bottom box has number one,
box above it – number two etc. For a grid of a column that have position (i, j)

on array when this column has a minimum and maximum intensity levels falling
into boxes k and l, respectively, its grid contribution to total number of counted
boxes is:

nr(i, j) = l− k+ 1. (1-9)

Figure 1.1 (inspired by [17 ]) illustrates eq. (1-9) for a case where:

nr(i, j) = 3− 1+ 1 = 3. (1-10)

Also, as the example in fig. 1.1 is illustrative and thus simplified to maintain clarity,
the image surface presented is smooth, as contrasted to applications exploiting real
digitally acquired images that present discrete representations of image surfaces.

DBC  method name originates in differential character of the procedure of deter-
mining the number of boxes withing a grid that are to be summed up. The math-
ematical core of this differential approach is expressed by eq. (1-9) and elaborated
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Box 1

Box 2

Box 3

Image intensity
surface

Image plane

Figure 1.1: Image box partitioning for 3-D  interpretation of a grayscale image used
for determination of the column’s grid contribution nr to the total number
of counted boxes by DBC  method (after [17 ]).

on in detail in [17 ]. Contributions from all grids in array gathered together give
total number of boxes for ratio r:

Nr =
∑
i,j

nr(i, j). (1-11)

This number might be calculated for different ratios (and thus for scaling sizes s).
According to Mandelbrot [1 ], for a self-similar set of FD  equal toD that constitutes
a distinctive union ofNr its own copies scaled down by ratio r, the following equal-
ity is satisfied:

Nr = r−D. (1-12)

Equation (1-12) implies that when least squares  linear fit of log(Nr) as a function
of log(r−1) is found, its slope is the estimate of D. This BC  approach is bet-
ter than RCC  , PRCC  and IPRCC  in a way that it approximates the ϵ-blanket
more accurately. The covering of image intensity surface in DBC  performs well
also for finer resolutions (i.e., smaller scaling ratios) even in case of roughly tex-
tured surfaces exhibiting quantization effect on their numerous irregularities [17 ].
Nonetheless, authors of the described method noticed that in its basic variant
it is prone to two limitations that might lower FD  estimate value with respect
to its anticipated value. The algorithm may fall short of expectations for some spe-
cific classes of the textures, i.e., smooth textures with FD  values like 2.15 whose in-
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tensity level variability range lays within single block number and periodical
textures that may even have high FD  close to 3, but that are periodical with spatial
period of variation causing a situation where biggest differences in image intensity
does not fall into single grid area over a vast fraction of the image array. In [17 ]
Sarkar and Chaudhuri also propose modifications offering a workaround to these
flaws: a random vertical (in 0z axis) column shifts to improve algorithm perfor-
mance on smooth surfaces and random horizontal column shifts (in 0x and 0y axes)
that increase its accuracy in terms of periodic patterns. The same authors utilized
modified DBC  algorithm for a study on FD  applications in texture classification
and segmentation [31 ] that included utilization of lacunarity and six FD  -based
features together with other means to improve feature extraction and a comparison
of the results with segmentation algorithms exploiting on other popular texture
features.
Stéphane Buczkowski et al. [32 ] proposed a modified BC  method mitigating

two important pitfalls of the general BC  approach, i.e., border effect caused by non-
-integer number of boxes along image border (resulting in border boxes smaller
than internal ones) and non-integer number of image pixels along box border (re-
sulting in non-integer values of some scale size values). Sarkar and Chaudhuri’s dif-
ferential variant of BC  methodology is especially susceptible to under-and overes-
timation of the number of boxes and has other disadvantages that have been ad-
dressed by Wen-Shiung Chen, Shang-Yuan Yuan and Chih-Ming Hsieh in [33 ]
who subsequently proposed two methods called shifting and scanning DBC  designed
to enhance the numerical determination accuracy of FD  values.
Jian Li, Qian Du and Caixin Sun proposed further modifications of Sarkar

and Chaudhuri’s method [28 ]. Their three changes address: smaller box height
r ′ selection through automatic adjustment based on image smoothness, more ac-
curate box number calculation based on intensity level range dz within column
instead of difference of two boxes numbers based directly on intensity z:

nr(i, j) =


⌈
l− k

r ′

⌉
for r ̸= k or

1 for r = k

. (1-13)

and image intensity surface partition removing gaps between spatially adjacent boxes
and thus assuring complete grids coverage of the image and reducing estimation
errors. The authors also compare a few variants of their improved DIFFERENTIAL

BOX-COUNTING (IDBC) method with the original DBC  method and other FDE  
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methods by the means of FD  estimates consistency, regression fit error comparison,
FD  variation range exploration and image categorization (classification) capabilities
for synthetic FBM  and real images including video frames with different levels
of degradation.
Jibitesh Mishra and Shubha Prasad Pradhan described various methods of FD  

calculation for grayscale images and present key computational problems involved
in DBC  method with some experiments and methods results comparison [34 ].
The article identified problem associated with box height selection in IDBC  me-
thod. The standard deviation (σ) and mean (µ) of each window of an image
are calculated in order to establish negligible height. FD  varies within a range
determined by IDBC  method for different values of a coefficient. For a grayscale
image with a = 3, its FD  is found to exceed 3 which limits the accuracy of IDBC  

method. Mishra and Pradhan proposed amodified approachwith alternate selection
of box height and calculation of box number but the theoretical and experimental
evaluation of this methodology is relatively narrow as compared to the aforemen-
tioned publications regarding DBC  improvements.
Ton Dieker described three exact and many approximate methods of FBM  

signals simulation as well as a set of parameter estimation and testing methods
for evaluation of the approximate ones in [35 ]. Markos Markou and Sameer Singh
described a method that might be applicable for such statistical evaluation called
novelty detection in [36 ]. It depends on the identification of data or signal unknown
for a machine learning system at the time of training set presentation. Work
of Markou and Singh is a survey of novelty detection using statistical approaches,
and that approach is especially but not exclusively relevant for classifiers utilizing
artificial neural networks [36 ]. Texture classification applications of FBM  dimension
estimation are further investigated in [37 ]. Additional applications of fractal-based
quantities to image segmentation and contour detection are described in works
of another authors, e.g., in [38 ] describing texture analysis operations on frac-
tal-coded image without the need to decompress it. A description of another
four synthesis methods for discrete FBM  and their analysis with applications to im-
age processing has been provided by Warren M. Krueger et al. in [39 ]. Dirk
P. Kroese and Zdravko I. Botev included generation of multidimensional FBMS  ,
e.g., fractional Brownian surface or field in [40 ] that overall is focused on the spatial
processes being both Gaussian and Markov. Their work also put an emphasis
on spatial point processes and their simulation. Also, problems of constructing
spatial processes from the Wiener process and Lévy processes as well as fields gen-
eration are concerned. For Brownian surfaces a Cholesky’s decomposition method
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might be applied as they are realizations of a Gaussian process with a nonstationary
covariance function. Better efficiency is assured by Michael L. Stein’s method [41 ].
In this methodology an auxiliary stationary Gaussian process is generated using
the approach called circulant embedding. This intermediate process is then altered
to deliver the nonstationary Gaussian process generating desired Brownian field .
Antonio Napolitano, Sara Ungania and Vittorio Cannata presented a review

of FDE  methods for applications in biomedical images [42 ] including BC  algo-
rithm for binary images, DBC  algorithm for grayscale images and hand and dividers
method for operating on the contours of image boundary structures and estimating
boundary FD  . Authors implemented these methods in MATLAB  R2010a and ap-
plied them to either well-known fractals or biomedical images and performed
comparative analysis of the resulting output data.
David da Silva et al. have exploited binary BOX-COUNTING (BBC) method

extended to 3-D  variant and using voxel-based boxes to perform FDE  on images
of artificial tree crowns of 3-D  synthetic plant foliage generated using, i.a., iterated
function system (I FS) [43 ].
The presented literature review does not exhaust the topic. Yet, it highlights

the most important and notable – in a view of the author – developments in fractal-
-based descriptors of grayscale images.

1.2.3 Color images

Themajority of widely used FDE  methods is defined for one-dimensional (1-D) sig-
nals or binary images and some of them extend to grayscale images. Mihai Ivanovici
and Noël Richard proposed an extension of existing probabilistic algorithm to color
images in [44 ]. They also proposed an extension of the existing probabilistic frac-
tal generation routine that produces color images with desired FD  . Their work
has been based on Voss’ RCC  algorithm [24 ] – for empirical FD  calculation –
– andmidpoint displacement algorithm described by Heinz-Otto Peitgen and Dietmar
Saupe in [45 ] – for generation of synthetic data for the purpose of validation,
cf. chapter 5 .
It can be noticed that the issue of estimating dimensionality and other fractal

features of images involving color components is much less covered in literature
as compared to their monochrome or grayscale counterparts. While this field
of study is not much of interest from the perspective of applications considered
in this thesis that focus on grayscale images, it should be noted that the prob-
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lem is still to be explored by the scientific community. It is worth mentioning
that some aspects of spatial multi-channel fractal analysis are of much higher com-
plexity than of the single-channel one that poses significant challenge for further re-
search and may require construction of new concepts and improved (e.g., pos-
sibly more noise-robust) subroutines that would also be applicable to assessment
of other classes of signals.

1.2.4 Applications of FDE  in biomedical research

FD  analysis and estimation is a matter of interest in biomedical research. This subject
finds its applications in diagnostic and detection tasks altogether, hence it is also uti-
lized as a diagnostic tool in biomedicine. The applications also include modeling,
identification of parameters and planning of experiments as dimensional analysis
is studied in general in relation to applications in identification of mathematical
models in physics, technology and related sciences [46 ]. Apart from dimensional
analysis and design of experiments, fractal studies remains in strong relation-
ship also with identification theory, algorithmics, numerical experimentation etc.
Therefore, in biomedical research, as well as in technology, physics or economy,
fractal-focused approach allows for an empirical – or data-driven – description
of processes [47 ]. Thus, it forms a vital diagnostic component that enhances an in-
terdisciplinary insight which may be necessary for analyzing complex problems
defined in research area encompassing more than one branch of the traditional
fields of science.
The issue of FD  analysis remains a subject of investigation in biomedicine,

e.g., querying the Google Scholar bibliographic database for a pair of terms “frac-
tal dimension ” and ‘biomedical’ has returned almost 30 thousands of scientific
works of scholarly literature at the time of the development of this thesis [48 ].
In particular, FDE  is investigated in context of ophthalmology. In particular,
there have been attempts to automate the estimation of tear film surface quality
(TFSQ) index to close the gap between the manual and automated tear film quality
assessment by means of the high-speed videokeratoscopy technology with applica-
tions in a clinical practice [49 ]. Of special interest, intensely investigated is the retinal
circulation within arterial and venous systems of retinal vasculature vessel pattern.
Within this matter, there have been numerous research publications regarding,
i.a., human bronchial tree with focus on embryological development [50 ], creat-
ing semi-automated methods for measurement of retinal vessels and ocular blood
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pressure [51 ], the role of fractal pattern formation in context of angiogenic factors
during the development of a human eye [52 ] as well as embryological and clinical
implications of fractal characteristics of branching patterns in retinal vessels [53 ].
Moreover, fractal dimensional analysis involving spectral-domain optical coher-
ence tomography angiography (OCTA) has been investigated in terms of its di-
agnostic ability for retinal vascular disease burden of diabetic retinopathy [54 ].
Another application of fractal analysis to OCTA  encompasses the development
of a fully automated method of quantification of vessel density and foveal avascu-
lar zone (FAZ) area using local FD  [55 ]. Furthermore, the reproducibility of FD  

has been used as one of parameters used in an attempt to compare seven different
OCTA  devices in examination of parafoveal microvascular anatomy of superficial
and deep capillary plexus in healthy volunteers [56 ]. Ophthalmologic research
has also included 3-D  visualization and fractal analysis of cell assortment of mosaic
patches in corneas of rat chimeras [57 ]. Also, a novel approach has been pro-
posed to utilize computational algorithms for fractal analysis of surfaces together
with atomic force microscopy (AFM) imagery and to investigate the ultrastructural
details of the surface of Bowman’s membrane of the human cornea using surface
structure data analysis – this has revealed fractal structure in the surface of Bow-
man’s membrane at the nanometer scale [58 ]. In other branches of ophthalmologic
research, retinal microgliosis is one of aspects of an extensive study which has ex-
ploited fractal analysis based on, i.a., BC  , to determine that overall microglial
morphology increases with ramification of the cells [59 ]. This study has also raised
the topic of multifractal analysis and lacunarity for identifying intermediate mi-
croglial morphology forms or states. Other analysis has focused on patch clamp
recordings of the corneal endothelium to show that the kinetics of its ion channels
exhibit fractal characteristics [60 ]. One important conclusion has been that fractal-
-based model is more consistent with the experimental data and better in describing
conformational dynamics of proteins than models utilizing discrete Markov’s states
that have often been used in former studies. The applications of fractal analysis
to ophthalmology also include pathology, e.g., vascular pathology in retinal vessels
has been examined using FD  in terms of increased neovascularization near the optic
disc that has formed a possible criterion for classifying patients for panretinal laser
treatment [61 ].





2 A I M S A N D O B J E C T I V E S

The main goals of this thesis are:

(1) construction of fractal dimension (FD) estimators for two-dimensional grayscale
images that would satisfy the following conditions:

(1a) numerical efficiency;
(1b) high dynamic range;
(1c) consistency with Euclidean (topological) dimension for non-fractal

(in a self-similarity sense) sets;

(2) applicability of the newly designed FD  estimators to the problem of interfer-
ometric imaging of tear film in human subjects.

The objectives of the work are:

(1) investigating FD  estimators properties (research in terms of existing solutions);
(2) considering new approaches to FRACTAL DIMENSION estimation (FDE) :

(2a) probabilistic;
(2b) non-probabilistic.

23





Part II

M E T H O D O LO GY A N D T H E O R E T I C A L
D E V E LO P M E N T S

The f o l l ow i ng p a r t c on t a i n s a n o r i g i n a l c on t r i b u t i on – a d e s c r i p t i on
o f t h e n ew a l g o r i t hm s t o c a l c u l a t e f r a c t a l d im en s i on .





3 B O X - C O U N T I N G  I N F R A C TA L
D I M E N S I O N E S T I M AT I O N  

3.1 background

A group of methods for fractal dimension (FD) calculation involves numerous
variants of the set partitioning (usually grid-based) approach called the box-counting
(BC) method. It is connected to a more general concept called Hausdorff’s FD  ,
but because of its relative simplicity, it is often preferredover the latter in applications
related to numerical data analysis. Still, being a fairly abstract paradigm itself,
it offers a vast multitude of realizations by different variants, conventions and sub-
-methods. Accordingly, it is sometimes perceived as an universal concept providing
the feasibility and comprehensiveness.
There are different approaches to calculating FD  of an image, including binary

BOX-COUNTING (BBC) and its differential extensions, including the differential
BOX-COUNTING (DBC) algorithm [17 , 31 ], as well as the multitude of other image
fractal descriptors [23 , 24 , 26 , 28 , 29 , 32 , 33 , 63 –67 ]. However, despite the need
for developing a unified approach [7 ], there is a continuing interest in developing
new estimators of FD  and othermeasures of pixel organization within an image [68 ,
69 ]. For gray-scale images, the classical BBC  FD  estimator requires a pre-process-
ing step of transforming the image into binary values, where the result depends
on the used threshold [70 , 71 ]. This requirement limits the generality of BBC  

method to a specifically pre-processed class of input images.
The aim of this thesis has been to develop methods that overcome the limita-

tion of BBC  , but also, following the philosophy of Huang, Lorch and Dubes [10 ]
that have the ability of high discriminative power in application in which interfe-
rometry is used to non-invasively assess the kinetics of human tear film [72 –74 ].

FD  obtained by BC  method is called box-counting dimension. It is sometimes
also referred to asMinkowski–Bouliganddimension, although this namemay be am-
biguous, as it is considered by some authors as belonging to a separate FD  family
that is based on the study of the influence area created by shape dilations using
a disc of a varying radius r [75 ]). The dimension may be formally defined using

This chapter is based on author’s coäuthored paper submitted to IEEE  Access [62 ].
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the limit of box size approaching zero (q.v. definition 2  ), but in practical applications
it is hardly ever calculated directly from this definition. Conversely, it is of common
pragmatic usage to use not the dimension value in the formal sense, but rather
its estimate based on the linear regression. The measures calculated and discussed
in applied and technical sciences, e.g., in digital images processing, tend to be es-
timated by linear regression from a finite set of data points where each of them
corresponds to a separate box partitioning of a different scale. Mathematical for-
mulations regarding this matter are demonstrated, i.a., by eq. (3-5a) .

3.1.1 Mathematical description

Equation (3-1) within definition 2  describes BC  FD  as arising from the logarithmic
relationship between the numberof boxes covering the examinedobject and the size
of the box. It is worth acknowledgment that the boxes used are typically square-
-shaped what is also the assumption of further considerations discussed in this work.

Definition 2. BC  -based FD  :
D is box-counting fractal dimension of a set A when the following limits exist:

D
.
= dimbox(A) = lim

ϵ→0+
− logϵ Nϵ = lim

ϵ→0+

logNϵ

log 1
ϵ

, (3-1)

where the set is covered entirely by boxes of the size ϵ andNϵ is theminimal number
of boxes required to provide the coverage. 2

3.1.2 Numerical estimation

In practical applications, FD  obtained by box-counting is often estimated nu-
merically from digital image representation of the object by estimating the slope
of the linear regression line calculated for the log–log scale relationship betweenNϵ

and ϵ−1. Data points used for regression are calculated for at least few different ϵ val-
ues within the suitable range. Specifically, the box sizes are not to be greater
than the examined object itself and not to be smaller than the image discretiza-
tion unit. Often, there would be boundary effects induced by discrete nature
of the finite numerical approximation of a theoretical set into image matrix. To mit-
igate them, some cut-off on both ends of ϵ range might be applied. E.g., for an im-
age of size 128 px× 128 px the smallest box size considered might be 4 px× 4 px
or 8 px× 8 px and the biggest 64 px× 64 px.
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It may be denoted in matrix form as:

logNϵ1

logNϵ2

...
logNϵk

...
logNϵn


=



log ϵ−1
1 1

log ϵ−1
2 1

...
...

log ϵ−1
k 1

...
...

log ϵ−1
n 1


[
D

C

]
, (3-2)

where n ∈ N>0 is the total number of box sizes, i.e., the number of data points
to perform linear regression on, C is some constant and D is BC  dimension value
that is to be estimated for the object.
Equation (3-2) can be written in a more compact form:

X = HP, (3-3)

where:

X
.
=


logNϵ1

logNϵ2

...
logNϵn

 , (3-4a)

H
.
=


log ϵ−1

1 1

log ϵ−1
2 1

...
...

log ϵ−1
n 1

 (3-4b)

and:

P
.
=

[
D

C

]
. (3-4c)

Now, P may be estimated as P̂ by applying Moore–Penrose pseudoinverse
on H matrix in eq. (3-3) :

P̂ = (HTH)−1HTX (3-5a)

and D may be estimated as D̂, i.e., the first entry of P̂:

P̂
.
=

[
D̂

Ĉ

]
. (3-5b)
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The main problem in all box-counting-based algorithms involves develop-
ing the suitable method for determining Nϵk

.
= Nk for a given ϵk box size

(k = 1, 2, . . . , n). Thus, as a requirement to describe this relation, a function defin-
ing Nk is to be given in a form that may be realized in algorithm implementation.

Remark regarding Nϵ definition

Usually, ϵ value is interpreted as the size of the box set (e.g., the side length of a hy-
percube) such that, as in definition 2  , ϵ → 0+. Conversely, in case of numerical
estimation of BC  -based FD  , box is usually interpreted as a rectangle or – specifically
and typically – a square. Then, the box – when subpixel boxes are not conside-
red – could only be as small as a single pixel. Thus, when box size is expressed
as an absolute value being its side length in pixels – as opposed to a relative variant
based on the ratio of side lengths of the box and the image – it cannot converge
to zero. To distinguish between theoretical set-based box which can be infinites-
imally small and its digital image-based finite counterpart, the size of the former
is further denoted by ϵ (as in the above considerations), whereas the size of the latter
is expressed as ε.

3.2 considered methods for nε calculation

Remark regarding the convention and notation

In theoretical descriptions FDS  are usually defined for sets that frequently are infi-
nite. In such cases, the boxes used for BC  dimension estimation are their subsets
that may be defined as, e.g., hyperballs or hypercubes. Also, the patterns used to dis-
tribute boxes over the object in order to gather data (sometimes called scanning plans)
may vary as, e.g., both non-overlapping fixed grid scans and overlapping sliding
boxes are used in different versions of BC  algorithm. As algorithms described be-
low  are designed to be applied to two-dimensional (2-D) images, the following
convention is used – if not explicitly stated otherwise – to provide possibly compact
and easier to implement notation:

(1) the object is represented by its 2-D  image matrix consisting of square pixels
having values in {0, 1} in case of binary images or in [0, 1] for grayscale images;
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(2) the sizes of the images and objects within them, e.g., boxes, are expressed
in pixels (px) and the name or symbol of this unit are omitted through-
out the work to increase clarity of the formulas;

(3) the image is a square matrix of dimensions l× l being a non-negative integer
powers of two, i.e., l .

= 2m (m ∈ N0), where m is the image side length
binary exponent;

(4) the box having (absolute, i.e., pixel-based) dimensions ε × ε is a square
submatrix of the image matrix. Note that a geometrical object is defined
in an E-D space [45 ] and in our case, E = 2 as we interpret 3-rd parameter
of the image, i.e., its intensity,not as a dimension but the incidence probability.
Note also that in this work the box size is changed in steps enumerated by k

(starting from k = 0) and in each step its value is fixed for the whole image:
thus, it would be denoted as εk, but for the purpose of notation simplicity,
this is simplified to unindexed symbol ε; nevertheless, ε value still explicitly
depends on k, q.v. item (5) , until it is stated otherwise;

(5) ε can take its value from the following set:

ε ∈ {20, 21, . . . , 2k, . . . , 2m}

and for k-th division of the box grid, its square boxes have their sides
of lengths ε

.
= 2k (k ∈ {0, 1, . . . ,m}), including the 0-th step for a sin-

gle box encompassing a single pixel; note that due to the reasons described
in section 3.1.2 , a few smallest as well as a few greatest elements might be omit-
ted, e.g., k ∈ {3, 4, . . . ,m − 1} may be chosen as the range of the box grid
divisions;

(6) box pattern is a fixed non-overlapping grid constructed by the iterative box
merging in such way that for any division forming a new step, every new box
is constituting by four boxes of previous stage that are placed in its quarters
(until further merging is impossible due to image size or a cut-off thresh-
old is reached) with 0-th stage’s box size (that would be denoted as ε0

in the less compact notation) being equal to one pixel. Thus, for a square
image that is considered in this thesis, the 1-st stage’s box size (correspond-
ingly, ε1) is 2 px× 2 px, whereas the last stage (k = m) involves a single box
encompassing the whole image;

(7) because in this thesis there is no need to address the individual pixels
or boxes by both width and height of their location and for a specified,
k-th division stage, boxes within the image can be unambiguously addressed
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as well as pixels within boxes (or also within the image), if not stated oth-
erwise, the continuous enumeration (of pixels within the box or boxes
within the image) is used, with left-to-right and top-to-bottom conven-
tion starting from the top left entries of box matrix or elements of box grid
(while other assignment might be chosen as well as long as it will be unam-
biguous and complete); e.g., for i ⩽ l

ε

.
= 2m

2k = 2m−k and j ⩽ ε
.
= 2k, xi,j,k

denotes value of j-th pixel from the left in the top row of i-th box from the left
in the top box row of the image for k-th stage of image box grid division.

By definition, Nε is derived from the image A as a function of the size ε

of the box within the grid, i.e., Nε
.
= f(A, ε) and for k-th box grid division

involving ε = εk this may be denoted as Nk
.
= Nεk

. Nonetheless, different
methods require separate definitions of f function.

3.2.1 Basic convention of symbolic notation

The following symbols – also illustrated in fig. 3.1 – will be used:

(1) for primary (formal) notation:

• A — digital image interpreted as a matrix of size l × l containing
the numerical representation (finite approximation) of the object to be
examined terms of BC  dimension estimation:

– l, L .
= l2 — dimensions (size) of image A: height equal to width

and the total number of pixels, respectively;

• Bi,k (i = 1, 2, . . . , ck)— i-th box having the size ε .
= 2k within the box

grid of the imagematrixA, i.e., a submatrix ofA of size ε×ε constructed
by iterative merging of matrix quarters described above :

– ck
.
= ( l

ε
)2 = ( l

2k )
2 = (2

m

2k )
2 = 22(m−k) — total number of ε-size

boxes required to constitute grid coverage of the image A; this in-
cludes boxes that do not include any non-zero pixel, i.e., the parts
of image grid partitioning that do not overlay the object area
and in turn are not counted into Nε value; thus, 0 ⩽ Nε ⩽ ck;

• xi,j,k (i = 1, 2, . . . , ck = 22(m−k), j = 1, 2, . . . , ε2 = 22k) — j-th pixel
within i-th box (Bi,k) of the grid of ε-sized boxes for k-th box grid
division – being the j-th entry in the vectorized box matrix vec(Bi,k):

(xi,1,k, xi,2,k, . . . , xi,j,k, . . . , xi,ε2,k)
T .
= vec(Bi,k) ∈ [0, 1]ε·ε, (3-6)
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where vec( · ) denotes the matrix vectorization operator (used according
to the left-to-right and top-to-bottom – or other – order convention,
as it is mentioned above );

(2) for equivalent downsampling-based notation†:

• Ak — digital image obtained from A by downsampling (with initial matrix
A0

.
= A) – a matrix of size lk×lk in which, for a specific ε value, one pixel rep-

resents the value obtained from one ε-sized box fromAmatrix of the primary
notation that is to be counted into Nk during BC  procedure:

– lk, Lk
.
= l2k

.
= ck — dimensions (size) of image Ak: height equal

to width and total number of pixels (i.e., of corresponding ε-sized box
grid elements in A), respectively;

• xi,k (i = 1, 2, . . . , Lk) — i-th pixel of Ak (for k-th box grid division); image
A needs to be downsampled in such a way that the value of xi,k pixel of Ak

would be the same as the contribution of the corresponding i-th ε-sized box
(Bi,k) of A to Nk.

† Useful for implementation of the recursive image downsampling procedure that increases the com-
putational efficiency of BBC  algorithm and some of weighted grayscale BOX-COUNTING (W-
-GBC) algorithm variants, cf. section 3.2.4 .
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4,4,14,3,1

4,2,14,1,1

3,4,13,3,1

3,2,13,1,1

2,4,12,3,1

2,2,12,1,1

1,4,11,3,1

1,2,11,1,1

Figure 3.1: Notation used to enumerate the boxes and pixels within them for the sec-
ond possible image A box partitioning (i.e., k = 1) of m + 1 = 3 possi-
ble box partitions (k ∈ {0, 1, 2}). The total number of boxes within grid
is ck

.
= 22(m−k) = 22·(2−1) = 4 and the total number of pixels within the im-

age is L .
= l2 = 42 = 16.

3.2.2 Binary images

Basic box-counting algorithm can be applied only to binary images as it regards
only the presence of the object (or lack of it) within a given box and does not con-
sider its intensity (orweight, probability, etc.). Therefore,only a binary information
is needed and the grayscale data may be exploited only during the pre-process-
ing stage (by setting global or local binarization threshold), but otherwise must
be discarded before applying the algorithm.

(Classical) binary box-counting 

This is a basic BC  algorithm that involves grid partitioning of the image. Counted
are these box grid elements that include non-zero pixels. They are boxes overlaying
object area, i.e., these enclosing at least one pixel of the value of one (that be-
fore the local or global binarisation procedure had value greater than or equal
to some threshold value t ∈ (0, 1]). The input image needs to be already binarized
and background pixels are assumed to have zero value contrary to foreground object
pixels having the value of one. Particularly, when the image is already of the afore-
mentioned zero–one class, t = 1 might be chosen for the binarisation procedure
preceding the application of eqs. (3-7) and (3-29) given below . On the other side,
in case of the grayscale images extension and when the binarisation procedure
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is considered to be the part of the algorithm, the infinite amount of possibilities
of threshold t choice forms a family of BBC  dimensions having its members being
determined by the threshold kind (local or global) and value.

edge binary box-counting  Images often undergo pre-processing proce-
dure before being subject to the actual image processing algorithm. If two routines
of image analysis differ only in subroutines invoked during the pre-processing
stage, they are technically the same algorithm despite the fact that both their out-
puts and efficiency in accomplishing their task of interest could differ dramatically.
Thus, from the practical point of view they may be classified as two separate ap-
proaches or rather two variants of the same basic technique. If one of them involves
only the necessary pre-processing procedure, e.g., common for the whole branch
of such algorithm, and the second includes also an extra preparing step of numerical
manipulations on the input data, the latter may be practically described as a vari-
ation derived from the reference method, but still belonging to very same type
of methods. This is a matter of nomenclatural convention and depends on the cri-
teria chosen to distinct separate algorithms. Nevertheless, when a pre-processing
may significantly alter the input, but at the same time it is suspected that omitting
it may render the whole method inutile, it is justified to test both the basic as the de-
rived variant. Then, some form of naming and classification needs to be chosen
to maintain comprehensibility. This is the case for edge BINARY BOX-COUNTING

(EBBC) . It is technically BBC  technique of FRACTAL DIMENSION estimation (FDE) 

that is calculated by the original binary algorithm, but it operates on the binarymap
of edges detected in the original input image instead of processing the (binarised)
input data itself. It has been introduced and used along with BBC  due to the char-
acter of BBC  approach in context of the specific character of the data used druing
the research. BC  mesures the dimensionality of the geometric structures and shapes
present in the input data. They may include forms resembling, i.a., flat surfaces
as well as fine thin lines, and in typical cases, the variations in the structure of the for-
mer would cause the result to oscillate about the value of two, while for the latter
the value of reference is expected to be closer to one. In this spirit, lateral shearing
interferometry (LSI) data and its inherently anisotropic nature of fringes in a vari-
ety of stripe- of band-like forms, has been the motivation behind the introduction
of EBBC  . As BBC  is restricted to binary images, a typical case of interferometric
image of the class involved in this research, is binarised to a set of separate long
objects having the width of over a dozen of pixels, cf., e.g., fig. 7.4  . The use-
ful information about the surface kinetics may be encoded not only in the area
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of these objects, but also in the subtle spatial and temporal changes of their borders.
Therefore, it might be of use to focus not on 2-D  variations in the binary fringe pat-
tern, but only on one-dimensional (1-D) wrinkles that appear on the very borders
of the fringes. Restricting to one featured direction may be consistent with the lat-
eral and unidirectional form of the acquired images. The simplest way to achieve
it is to extract or detect the edges of the image to be processed, and feed the ob-
tained map of edges into the proper algorithm. Whether the straightforward
or the edge-based approach would yield better result in terms of data classifica-
tion, is a question that has no clear a priori answer before relevant experiments
are conducted. This is caused mostly due to the obscure, dispersed (or even some-
times dissipated) and thus volatile nature of the exact feature of the interferograms
that contains the most useful information, as simple phase-based approach often fails
for heavily disrupted images, eg, of tear film on the contact lenses. Consequently,
it has been decided to investigate both the basic procedure and the one involving
additional pre-processing step of edge detection. In this work, the former is referred
to simply to as BBC  , while the latter – as EBBC  .

primary notation This convention is suitable for formal theoretical purposes
and applies to both BBC  approach to FDE  and EBBC  fractal-based descriptor
of fractal features in the image:

Nk(A)
.
=

ck∑
i=1

any(Bi,k), (3-7)

where matrix operator any( · ) returns zero for a null matrix and one otherwise,
i.e., when matrix contains at least one non-zero entry. Specifically, if matrix A

represents an image where background pixels have zero value, any(A) would re-
turn one if and only if the image contains at least one object pixel.

3.2.3 Grayscale images

Developing a method that utilizes the grayscale in its core and not only dur-
ing the pre-processing stage may be beneficial. Such approach may extract
more useful information from the image that otherwise would be permanently lost
due to binarization. This additional information may be useful at further stages,
e.g., for improving an image classifier constructed upon the estimated FD  values.
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One of the popular approaches to estimating FD  from grayscale images is the DBC  

algorithm of Sarkar and Chaudhuri [17 , 31 ].

Probabilistic grayscale box-counting 

This variant arises upon the image interpretation stating that its intensity represents
the local irradiance (or, more specifically, charge-coupled device (CCD) -photoac-
tive flux†) of the light-wave. This quantity directly corresponds to the incidence
probability of a photon path and imaging unit (pixel) area of the image plane.
Such probabilistic approach may be further extended to the utilization of prob-
ability-based image descriptors, e.g., information (Shannon’s) entropy [76 , 77 ],
which is elaborated below .

primary notation This convention for description of probabilistic approach
to grayscale BOX-COUNTING (GBC) method, further referred to in an abbreviated
manner as P-GBC  , is mostly suitable for formal theoretical purposes:

Nk(A)
.
=

ck∑
i=1

Hr(Bi,k) (r ∈ R>0), (3-8)

where Hr(Bi,k) denotes image entropy of the i-th εk-sized box employing base-r
logarithm and Hr( · )

.
= Hr, img.( · ) (resulting in Nk ∈ [0, 2ck logr ε]). Alterna-

tively, Hr( · )
.
= Hr, int.( · ) (resulting inNk ∈ [0, ck logrU]), depending on the prob-

ability calculation space defining the internal sub-variant of the algorithm: image-
-based- or intensity-based, respectively.

image-probability-space-based entropy Regarding the case of proba-
bilistic GRAYSCALE BOX-COUNTING (P-GBC) method variant, the image probability
space is utilized in which the probability is directly proportional to pixel values.
Thence, the name of this variant is abbreviated as P-GBC-IMG  . Here, image en-

† CCD  -photoactive flux may be interpreted as the measure of the light power that is converted
to brightness signal by the image sensor after the process of electrical charge generation and transfer.
This power is almost always lower than the total light power physically absorbed by the sensor
due to its specific spectral sensitivity described by the curve of the relative detection efficiency.
This effect is responsible for decreasing the wavelenght-related brightness of the acquired image.
In that sense, CCD  -photoactive flux is CCD  ’s analogue of the luminous flux (also called luminous
or visible power). The latter is used toweight the received radiant fluxwavelength-dependend power
components to adjust them to light sensitivity of the average (or – more precisely – standardized)
human eye. This sensitivity also varies in relation to the wavelength. SI  system defines separate
unit for the luminous flux – the lumen (lm) – but not for CCD  -photoactive flux. Nevertheless,
both may be equivalently expressed in the units of power, e.g. watts (W), as their values describe
the amount of light power converted to (percieved or acquired) visual signal.
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tropy and photon–pixel incidence probability definitions are described by eq. (3-9) .
Providing that ∀j ∈ 1, ε2. pimg.(xi,j,k) ̸= 0 †:

Hr, img.(Bi,k)
.
=

ε2∑
j=1

pimg.(xi,j,k) logr

1

pimg.(xi,j,k)
∈ [0, 2 logr ε] (r ∈ R>0),

(3-9a)

where typically r = 2 (or, e.g., r = e, r = 10 etc.) and pimg.( · ) is local (box-wise)
photon–pixel incidence probability:

pimg.(xi,j,k)
.
=

xi,j,k∑ε2

t=1 xi,t,k
∈ [0, 1]. (3-9b)

intensity-probability-space-based entropy In case of probability cal-
culated in intensity probability space, a variant of P-GBC  abbreviated as P-GBC-INT  ,
the probability is proportional to the numerousness of given range of pixel values.
Thus, quantities defined in eq. (3-9) are to be exchanged to these stated by eq. (3-10) ,
i.e., image entropy and histogram bin fitting probability. Analogously to eq. (3-9a) ,
providing that ∀u ∈ 1,U. pint.(bu, i, k) ̸= 0:

Hr, int.(Bi,k)
.
=

U∑
u=1

pint.(bu, i, k) logr

1

pint.(bu, i, k)
∈ [0, logrU] (r ∈ R>0),

(3-10a)

where bu (u ∈ {1, 2, . . . , U}, U ∈ N>0) is u-th bin (interval) of image histogram
out of overallU intervals uniformly distributed in image intensity probability space,
while pint.( · , · , · ) is local (box-wise) histogram bin probability:

pint.(bu, i, k)
.
=

∑ε2

t=1 1{x:x∈bu }(xi,t,k)

ε2
∈ [0, 1]. (3-10b)

Weighted grayscale box-counting 

This variant utilizes variousmanners of averaging (including a special case of themax-
imum-based average) of the pixel intensity values in a given box. The averaged
box intensity value constitutes its weight being counted as contribution of this box

† Alternatively to this provision – for the purpose of definitions of image entropy presented in this the-
sis – omission of any addends containing logarithms of such probabilities (or their inverses)
could be applied to the summation within these definitions. This may be achieved in actual imple-
mentation by, e.g., substituting zero in place of log p · ( · ) and log 1

p · ( · ) in cases where p · ( · ) = 0.
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to the cumulative Nε value. Such approach originates in the statement that the sig-
nificance of a box encompassing a part of the objectmay depend greatly on themost
intense entry within that box. This value may be obtained using max( · ) operator
that is a special case of the generalized mean (also called power or Hölder mean)
operator defined in eq. (3-12a) . Furthermore, conclusion may be drawn that the def-
inition of this category of BC  -based FD  estimators may be generalized to utilize
other power mean cases in its sub-variants.

primary notation This convention is suitable for formal theoretical purposes:

Nk
.
=

ck∑
i=1

µp(Bi,k) ∈ [0, ck] (p ∈ R∪{±∞}), (3-11)

where µp(Bi,k) denotes the Hölder mean with exponent p of the i-th ε-sized box:

µp(Bi,k)
.
=



lim
p→−∞mp(Bi,k) = min

j=1,2,...,ε2
{xi,j,k} if p = −∞

mp(Bi,k) =

 1

ε2

ε2∑
j=1

xpi,j,k

 1
p

if p ∈ R̸=0

lim
p→0

mp(Bi,k) =

 ε2∏
j=1

xi,j,k

 1

ε2

if p = 0

lim
p→+∞mp(Bi,k) = max

j=1,2,...,ε2
{xi,j,k} if p = +∞

∈ [0, 1],

(3-12a)
and:

mp(Bi,k)
.
=

 1

ε2

ε2∑
j=1

xpi,j,k

 1
p

if p ∈ R̸=0 . (3-12b)

where – in a typical case – the choice for pmay be such that p = +∞ (when general-
izedmean returns maximum intensity value within box) – this variant has been cho-
sen to be used throughout the experiments as it tended to yield, in the majority
of cases, the best results during the preliminary research. Note that for binary im-
ages,W-GBC  reduces to BBC  in case of p = +∞. Alternatively, pmight be chosen
as p = 2 (quadratic mean related to energy-like image intensity distribution param-
eters), p = 3 (cubic mean related to asymmetry-like image intensity distribution
parameters) or other – possibly non-integer – values.



40 box-counting in fractal dimension estimation

3.2.4 Downsampling-based definitions

The downsampling-based notation convention is suitable for practical implemen-
tation of the algorithms as its application may improve computational com-
plexity by reducing the number of arithmetical operations to be performed
for some of them. This may be achieved by performing calculations for subse-
quent steps k of box sizes (ε .

= εk) not by directly processing the input image A,
but rather by exploiting the data already obtained in previous steps. Then, the main
analyzed object is an image Ak−1 (A0

.
= A) that for k ⩾ 2 counts 22(k−1) times

fewer pixels to process than the original image matrixA and thus may be analyzed
in adequately shorter time. Such approach is called recursive downsampling technique
and is further elaborated on below .
For all BC  variants:

Nk(Ak)
.
=

Lk∑
i=1

xi,k
.
=

Lk∑
i=1

g(Bi,k)
.
= Nk(A), (3-13)

where Lk
.
= l2k

.
= ck is number of pixels xi,k

.
= g(Bi,k) within the imageAk equal

to the number of boxes Bi,k within the image A and g( · ) is (box-wise) down-
sampling function operating on boxes Bi,k of image A to generate downsampled
image Ak. When the recursive downsampling variant, described below  , is to be
applied, g( · ) operates on boxes of Ak−1 instead of boxes of A.

Importance

The motivation for downsampling-based definitions has been the search for a com-
pact design of themathematical apparatus used, in a sense that it shall not incorporate
the details of the downsampling procedure itself, as that would substantially com-
plicate the formal notation. On the other hand, the equivalent definitions based
on downsampling process are useful from a practical point of view, as it is demon-
strated below .

Recursive downsampling technique

notation The image matrix division into boxes might be started from the sin-
gle-pixel boxes which are then recursively merged into major (larger) boxes fur-
ther on, as it is described in section 3.2.1  . If that is the case, sometimes Ak+1

image matrix can be calculated by downsampling not only directly from A,
but also from Ak, depending on the properties of internal downsampling function.
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Lemma α. Unambiguous boxes to sub-boxes mapping:
If for a k-th step that is feasible (k ∈ N0, 1 ⩽ k ⩽ m ∈ N0) the quarters merging
method (described above ) applies:

Bi,k
.
=

[
Bi1(i),k−1 Bi3(i),k−1

Bi2(i),k−1 Bi4(i),k−1

]
, (3-14)

then the set of sub-boxes indices from step k:

{ i1(i), i2(i), i3(i), i4(i) : i = 1, 2, . . . , ck },

where i1(i), i2(i), i3(i) and i4(i) denote indices of four sub-boxes of box Bi,k,
exhibits one-to-one correspondence to the set of basic boxes for step k− 1:

{ i : i = 1, 2, . . . , bk−1 }

and both sets may be partitioned into unique families of their four-element sub-
sets of which each family bijectively corresponds to the set of all boxes Bi,k

from k-th step. 2

PROOF:
By definition, every box Bi,k of the image A to be used in step k is a square
matrix that might be fully reconstructed from its four non-overlapping sub-ma-
trices (that also are square). Moreover, these sub-boxes constitute the basic boxes
for the previous step (k − 1). As the sub-boxes set from current step and matri-
ces set from previous step are not multisets and are the same set, every element
of the former corresponds unambiguously to an element in the latter and likewise
are their indices.

Furthermore, continuous enumeration of boxes within grid fixed upon image
using left-to-right and top-to-bottom convention possesses useful property. Specif-
ically, it may be shown that explicit formula exists for k-th step to transform indices
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of four sub-boxes of Bi,k (i = 1, 2, . . . , ck) into indices of their box counterparts
from k− 1-th step:

ind
k−1

(i1(i)) = 4lk((i− 1)÷ lk) + 2(i− ((i− 1)÷ lk)lk) − 1 =

= 2m−k+1((i− 1)÷ 2m−k) + 2i+ 1

ind
k−1

(i2(i)) = ind
k−1

(i1(i)) + 1 =

= 2m−k+1((i− 1)÷ 2m−k) + 2i

ind
k−1

(i3(i)) = ind
k−1

(i1(i)) + lk−1 =

= 2m−k+1((i− 1)÷ 2m−k + 1) + 2i− 1

ind
k−1

(i4(i)) = ind
k−1

(i3(i)) + 1 =

= 2m−k+1((i− 1)÷ 2m−k + 1) + 2i

, (3-15)

where ind
k−1

( · ) denotes index of a box from previous (k − 1)-th step which box

corresponds to a sub-box in current k-th step and ÷ denotes integer division
operator.

Theorem 1. Downsampling and recursive idempotence:
The necessary and sufficient condition for the recursive downsampling to be em-
ployed is the image downsampling function g( · ) having the property of being re-
cursively idempotent, in the sense that for four squarematricesBis,k (s ∈ {1, 2, 3, 4})

of identical size:

g(

[
Bi1,k Bi2,k

Bi3,k Bi4,k

]
) ≡ g(

[
g(Bi1,k) g(Bi3,k)

g(Bi2,k) g(Bi4,k)

]
). (3-16)

PROOF:
For a feasible step k ⩾ 1, there is, by definition, q.v. eq. (3-13) :

Nk
.
=

Lk∑
i=1

xi,k,

xi,k
.
= g(Bi,k).

(3-17)

Using quarters merging method there is:

g(Bi,k) = g(

[
Bi1(i),k−1 Bi3(i),k−1

Bi2(i),k−1 Bi4(i),k−1

]
). (3-18)
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The assumption of recursive idempotence of downsampling function g( · ) im-
plies that:

g(

[
Bi1(i),k−1 Bi3(i),k−1

Bi2(i),k−1 Bi4(i),k−1

]
) ≡ g(

[
g(Bi1(i),k−1) g(Bi3(i),k−1)

g(Bi2(i),k−1) g(Bi4(i),k−1)

]
). (3-19)

By definition again:

g(

[
g(Bi1(i),k−1) g(Bi3(i),k−1)

g(Bi2(i),k−1) g(Bi4(i),k−1)

]
) ≡ g(

[
xi1(i),k−1 xi3(i),k−1

xi2(i),k−1 xi4(i),k−1

]
), (3-20)

where x · ,k−1 belongs toAk−1, i.e., the matrix downsampled in previous (k−1)-th
step.
From eqs. (3-17) to (3-20) :

xi,k = g(

[
xi1(i),k−1 xi3(i),k−1

xi2(i),k−1 xi4(i),k−1

]
). (3-21)

Lemma α implies that i1(i), i2(i), i3(i) and i4(i) depend only on i, k and m.
For a given input imageA, its side length binary exponentm is fixed. Additionally,
only FDE  procedures that utilize single downsampling function g( · ) are considered.
Therefore, for a given image and specific FDE  method, any entry xi,k of downsampled
matrix Ak can be derived only on the basis of the elements of Ak−1 and current
iteration number k. In this context, also kmaybe considered as redundant, because it
can be inferred directly from Ak−1 side length lk and m, as lk−1

.
= 2m−k+1.

Thus,matrixAk can be reconstructed in such a recursivewaybased solely uponAk−1:

Ak = h(Ak−1), (3-22)

where h( · ) is some matrix function.
The number of boxes counted in kth step can be calculated directly from down-

sampled image matrix Ak, q.v. eq. (3-17) . This matrix can be calculated in a re-
cursive manner, i.e., by exploiting the result (Ak−1) of the previous step alone:
without referring to the input image A, q.v. eq. (3-22) , if and only if the down-
sampling function is recursively idempotent, q.v. eq. (3-19) . Therefore, recursive
idempotence of the downsampling function is the necessary and sufficient condition
for utilization of the recursive downsampling technique.
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Example 1. Recursive downsampling function:
This may be illustrated by the simple example of g .

= max:

max(
[
Bi1,k Bi2,k

Bi3,k Bi4,k

]
) ≡ max(

[
max(Bi1,k) max(Bi3,k)

max(Bi2,k) max(Bi4,k)

]
). (3-23)

2

In a case of downsampling procedure exploiting the recursive idempotence
property, the total number of arithmetic operations to be performed is significantly
decreased and thus are the processor load and computation time. The main cause
behind it are the very few operations needed for the final steps with larger k

values (as k gets closer to m for subsequent downsampling operations) effect-
ing in few, yet large, boxes and low resolution downsampled images. Similarly,
the amount of memory needed for processing is lower in final stages, nevertheless
this does not improve the global memory complexity of the algorithm which is pre-
dominantly determined by the first stage as it involves the largest image matrices.
Function any( · ), q.v. eqs. (3-7) and (3-29) , together with power mean func-

tion µp( · ), q.v. eqs. (3-12a) and (3-32) , for p ∈ {−∞, 0, 1,+∞} both exhibit
the recursive idempotence. Conversely, entropy function Hr( · ), q.v. eqs. (3-9a) ,
(3-10a) and (3-31) , does not posses this attribute. Thus, image downscaling rou-
tine might be performed in an efficient recursive manner for BBC  algorithm
and for four types of W-GBC  algorithm, i.e., minimum-and maximum-based,
along with these involving geometric and arithmetic means.
Figure 3.2 presents an illustrative instance of recursive downsampling technique

for 8 px× 8 px image with 2 px× 2 px and 4 px× 4 px boxes. Here, this technique
allows for reduction of matrix elements number to be processed bymax( · ) operator
of W-GBC  algorithm from 128 to 80, i.e., by 37.5%. The general matter of com-
putational overhead reduction in recursive downsampling is further evaluated
in the paragraph below .

processing overhead reduction in recursive downsampling As-
suming a complete review of the image matrix during Nk calculation and no cut-
-offs of extreme k values, the total number n1(m) of matrix entries to be iterated
through without recursive downsampling technique is the number of entries
in input image matrix: L .

= l2 = 22m times the number of iterations: m + 1

(as k is iterated from 0 to m):

n1(m) = 22m(m+ 1) = 4m(m+ 1); (3-24a)
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Figure 3.2: An illustrative case of image processing in W-GBC  algorithm us-
ing max( · ) operator without (upper part) and with (lower part) re-
cursive downsampling technique applied for an image with side
length l

.
= 2m

.
= 23 = 8 and with two box grid side lengths presented:

ε
.
= 2k1

.
= 21 = 2 (odd rows) and ε

.
= 2k2

.
= 22 = 4 (even rows). Note

that ‘copy’ may be implemented here as a reference (in fact the actual original
object may be used) to further reduce memory overhead
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alternatively, in terms of input image side length l
.
= l(m)

.
= 2m:

n1(l) = l2(log2 l+ 1). (3-24b)

Conversely, the number n2(m) of entries in analogous situation, but with re-
curisve downsampling applied, is reduced in a way that the first step (k = 0)
is the same (i.e., full input image matrix is used), but in each of the following
steps matrix is downsampled that quarters the number of its entries with respect
to a previous step: Lk

.
= l2k = 22(m−k). Thence:

n2(m) =

m∑
k=0

22(m−k) =

(m+1)−1∑
k=0

4m(
1

4
)k = 4m

1− (1
4
)m+1

1− 1
4

=
4m+1 − 1

3
; (3-25a)

or, equivalently, in terms of l:

n2(l) =
4l2 − 1

3
. (3-25b)

From eq. (3-24) and eq. (3-25) the ratio nr(m) of the former to the latter,
i.e., relative computational gain provided by employing recursive downsampling
extension, is:

nr(m)
.
=

n1(m)

n2(m)
= 4m(m+ 1) · 3

4m+1 − 1
=

m+ 1

4+ 4−m
; (3-26a)

and – as above – in terms of l:

nr(l) =
log2 l+ 1

4+ l−2
. (3-26b)

It may be shown that limm→+∞ nr(m)
m

= 1
4
and limm→+∞(nr(m) − 1

4
m) = 1

4
.

Therefore, the ratio function has a right-hand-side oblique asymptotenra(m) given
by:

nra(m) =
m+ 1

4
; (3-27a)

or in terms of l:

nra(l) =
log2 l+ 1

4
. (3-27b)

Equations (3-26) and (3-27) demonstrate that the computational advantage
of applying recursive downsampling increases with input image size. That in-
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crease is linear with respect to binary exponent m of input image side length
and thus is logarithmic with respect to the image side length l

.
= 2m.

Figure 3.3 depicts plots of n1(l) and n2(l) in log–log scale for m = 0, 1, . . . , 7.
Note that onlyn2(l) has an (oblique) asymptote in log–log plot due to fact thatn1(l)

grows too fast.
An important observation regarding fig. 3.3 may be drawn by analyzing the num-

bers of matrix elements being processed without vs with recursive downsampling
technique. Specifically, the relative profit pr( · ) (expressed as ratio of number
of elements spared by applying the technique to number of elements processed
without it applied) asymptotically – i.e., as image side length grows to infinity –
– reaches pra( · ) · 100% = 100%:

pra(m)
.
= lim

m→+∞pr(m)
.
= lim

m→+∞
n1(m) − n2(m)

n1(m)
=

= lim
m→+∞(1−

n2(m)

n1(m)
) = 1− lim

m→+∞
n2(m)

n1(m)

.
=

.
= 1− lim

m→+∞
1

nr(m)

(3-26a )
= 1− lim

m→+∞
4+ 4−m

m+ 1
= 1− 0 = 1;

(3-28a)

or in terms of l:

pra(l)
.
= lim

l→+∞pr(l)
.
= lim

l→+∞
n1(l) − n2(l)

n1(l)
=

= lim
l→+∞(1−

n2(l)

n1(l)
) = 1− lim

l→+∞
n2(l)

n1(l)

.
=

.
= 1− lim

l→+∞
1

nr(l)

(3-26b )
= 1− lim

l→+∞
4+ l−2

log2 l+ 1
= 1− 0 = 1.

(3-28b)

Moreover, as it is mentioned above  , the primary notation is more formally com-
plete and also more compact. Notwithstanding, their downsampling-based coun-
terparts tend to be easily implemented. For example, due to fact that the first parts
of eq. (3-13) remains identical for BBC  as well as P-GBC  and W-GBC  variant
there is no need to substitute the main box-counting routine. Hence, such im-
plementation of FD  estimator would be readily to switch between different BC  

sub-methods (i.e., use conditional choice of the procedure assessing the contribu-
tion of the box to Nk) as it would be possible to achieve it by only exchanging
the internal downsampling methods, q.v. eqs. (3-29) to (3-32) .
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Figure 3.3: The numbers of matrix entries to be reviewed by max-based W-GBC  algo-
rithm implementations – without – n1(l) –and with –n2(l) –the recursive
downsampling technique applied – as a function of the side length l of the input
image A.

Binary box-counting 

For binary images, number Nk of boxes that are counted as covering the object
is calculated using the following downsampling function:

gBBC  

( · ) .
= any( · ). (3-29)

The downsampled imagematrixAk is obtained fromA orAk−1 (in case of recur-
sive downsampling for k > 0). This is performed in such a way that any of the pixels
xi,k of Ak contains a value equal to the contribution of the corresponding box
Bi,k of A to Nk.
In case of binary images with a zero value for the background and the value

of one for the object, operator any( · )may be equivalently substituted by itsmax( · )
counterpart.

edge binary box-counting  This is technically a directly-derived variation
of BBC  that diverges from it only with respect to the pre-processing stage. For de-
tails and motivation behind its introduction, refer to section 3.2.2  . Hence, the down-
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sampling function of EBBC  fractal-based descriptor of the images is of no difference
with the one of BBC  stated in eq. (3-29) :

gEBBC  

( · ) .
= gBBC  

( · ) .
= any( · ). (3-30)

Probabilistic grayscale box-counting 

For the probabilistic variant of the method utilizing grayscale image data, num-
berNk of boxes that are counted as covering the object is calculated in an identical
procedure as in the case of BBC  :

gP-GBC  

( · ) .
= Hr( · ). (3-31)

Weighted grayscale box-counting 

For the weighted variant of the method utilizing grayscale images, number Nk

of boxes that are counted as covering the object is calculated analogically:

gW-GBC  

( · ) .
= µp( · ). (3-32)

Particularly, in the case of W-GBC  algorithm with appropriate side length sizes
of the image and the boxes, eqs. (3-13) and (3-32) can be efficaciously implemented
by keeping the image matrix form during the calculations. This can be performed
over the whole image matrix without division into individual blocks representing
single boxes. Let p ∈ R̸=0 and the image be of size l×l,where l = εlk (ε, lk ∈ N>0).
Then, Ak may be derived from A as follows:

Ak =
(
CkA

◦pCT
k

)◦ 1
p , (3-33a)

where Ak has dimensions lk × lk while Ck has dimensions lk × εlk = lk × 2klk

whereas A◦p has dimensions εlk × εlk = 2klk × 2klk and CT
k has dimensions

εlk × lk = 2klk × lk; also, ( · )◦p denotes p-th Hadamard (also known as Schur
or entrywise) power whereas:

Ck
.
= (ci,j,ε)lk×εlk , (3-33b)
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where:

ci,j,ε
.
=


1

ε
for j = ε(i− 1) + n (n = 1, 2, . . . , ε) or

0 otherwise

(i = 1, 2, . . . , lk j = 1, 2, . . . , εlk);

(3-33c)

while – because ε .
= 2k – this notation may be simplified to:

Ck
.
= (ci,j,k)lk×εlk , (3-33d)

where:

ci,j,k
.
=

{
2−k for j = 2k(i− 1) + n (n = 1, 2, . . . , 2k) or

0 otherwise

(i = 1, 2, . . . , lk j = 1, 2, . . . , 2klk),

(3-33e)

noting that both these conventions of defining Ck elements are equivalrnt:

ci,j,ε
.
= ci,j,k (3-33f )

and thus this equvalence is valid also for the definition of the whole matrix Ck:

Ck
.
= (ci,j,ε)lk×εlk

.
= (ci,j,k)lk×εlk . (3-33g)

Implementation

Listing C.1 contains the most important excerpts from MATLAB’s source code imple-
menting BC  function for FDE  procedure. Listing D.1 presents result of P-GBC-IMG  

algorithm implementation validation using illustrative input data of an imagematrix
having 4 px× 4 px size. MATLAB’s script input code for this procedure is presented
by listing C.2 .

3.3 results

A set of 12 synthetic test images has been used as depicted by fig. 3.4 for experiments
involving FRACTAL DIMENSION estimation using image-probability-space-based 

vs intensity-probability-space-based vs weighted vs differential box-counting ap-
proaches. Except for Sierpinski’s triangles, all of the images, i.e., figs. 3.4a to 3.4i ,
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are of size 250 px× 250 px; while for Sierpinski’s triangles, i.e., figs. 3.4j  to 3.4l ,
the size is 3535 px× 3535 px.
Figure 3.4b and fig. 3.4c contain single foreground pixels directly at their left

and right edges. Their purpose is auxiliary. It may be shown that adding an empty
frame around an image that is subject to FDE  by BC  results in introducing
a negative offset in the significant part of its Nε(ε) characteristic. At the same
time it should not change the slope of the characteristic whose value is to be deter-
mines an the estimate of FD  , but then the linear regression that is to be performed
need to be unconstrained in terms of intersecting the origin of the coordinate
system. Nevertheless, when plotting characteristics of a few images on a single
graph, it is not desired to have large vertical shifts between them, as it hinders
the possibility of visually evaluating and comparing them. Therefore, a mechanism
of removing the empty borders and rescaling the image to square proportions
has been implemented in some implementations of the FDE  procedure to possi-
bly reduce the offsets and facilitate the visual validation of the results. This works
well for most cases of the typical images except for these having extremely small size
in at least one of the dimensions. E.g., a signle pixelwould be extracted by this mech-
anism and rescaled to form a full square, and thus its dimension estimate could
grow from a value slightly above zero to two. The same would happen for a section
with an orientation close to horizontal or vertical. As a simpleway to prevent this dis-
ruption of the results, the addition of the image-stretching pixels has been chosen.
This prevents the abovementioned problem when at the same time has negligible
influence on the estimated dimension value. Namely, in the considered range
of scales, objects being significantly larger than single pixel would have a positive
dimension that would dominate the result (as an union of a figure with two sin-
gle points has the same dimension as the figure). Alternatively, the object it-
self would be of near-zero dimension – and such tiny or almost completely empty
objects are effectively rendered as very small collections of pixels – so it would be-
long to the same dimensional class as the image-stretching pixels (as an union
of a few single points with two additional points has still a dimension of a sin-
gle point). In either case, such stretching shall not have any significant impact
on the result that has been verified experimentally. Not always has the implemen-
tation with the described frame reduction been employed during the research,
nevertheless, to maintain consistency, the two images resembling the vertical sec-
tions (in fig. 3.4b having width of 1 px and in fig. 3.4c – of 3 px that thins to 1 px
in the bottom end) always have had the stretching pixels added.
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Sierpinski’s triangle has been visualised in three versions of which two approx-
imations, i.e., binary, q.v. fig. 3.4i , as well as grayscale – generated by down-
scaling a binary image of a much larger resolution to obtain the result shown
in fig. 3.4j  – are expected to have their FDS  estimated by a value close to the self-
-similarity dimension – or to Hausdorff’s dimension, that in this case has identical
value – of the original theoretical Sierpinski’s set. This reference value is equal
to log(3)/ log(2) = log2(3) ≈ 1.5850. On the contrary, complementary sets
for both cases, of which the grayscale complement, q.v. fig. 3.4k ), has been utilized
during research, are expected to have FDS  of two. It is so due to the fact that the com-
plement of Sierpinski’s set contains a dense background composed of solid triangles
that have the topological dimension of two and thus dominate the box count-
ing result of such image. Note that for such complement two largest triangles
of the foreground triangular components together occupy half of the whole image
surface. Therefore, as surface is a 2-D  measure and topological dimension of a poly-
gon is equal to its FD  , it is clearly visible that over 50% of the image data of fig. 3.4k 

represents a structure having FD  of two.
Following experiments on the simulated interference data, the real data consist-

ing of 686 gray-level interferometric  images – originally of size 720 px× 576 px
from which square central parts of size 512 px× 512 px have been extracted as in-
puts – of human tear film acquired in an in-vivomanner have been added to the test
set. Included have been 479 interferograms of healthy subjects along with 207 af-
fected with dry eye syndrome (DES) . Three illustrative cases are depicted in fig. 3.6 .
Refer also to figs. 7.2  and 7.3 in section 7.1.1 that extend this illustration to facilitate
extended description of LSI  imagery setup and methodological grounds of analysis
scheme for the acquired interferometric data.
High statistically significant correlation has been found between BBC  and W-

-GBC  : Pearson’s ρ = 0.998, p < 0.001. Similarly high correlation coefficient
has been obtained between BBC  and PROBABILISTIC GRAYSCALE BOX-COUNT-

ING based on image probability space (P-GBC-IMG) : ρ = 0.993, p < 0.001.
It has not been the case between BBC  and PROBABILISTIC GRAYSCALE BOX-COUNT-

ING based on intensity probability space (P-GBC-INT) : ρ = 0.365, p < 0.001 –
– cf. fig. 3.5 and fig. 3.7 where black, blue and red marks denote data from synthetic,
normal and DES  subjects, respectively. Also, a good agreement between BBC  

and other estimators, for both synthetic and real images, has been achieved
only for W-GBC  .
The discriminative powers of FD  estimators have been also evaluated. For this pur-

pose, the results of each considered FD  estimator for the images from healthy sub-
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jects have been contrasted against their corresponding FD  estimators for the images
from DES  group. Receiver operating characteristic (ROC) curves have been evalu-
ated using kernel density estimators and areas under the curves (AUCS) have been es-
timated. Figure 3.8 shows the results for BBC  – AUC  of 63.8% – and W-GBC  –
– AUC  of 69.7% – the two FD  estimators that achieved the highest discrimi-
nating power. For P-GBC-IMG  , P-GBC-INT  and DBC  the discriminating powers
have not been satisfactory, achieving AUCS  of 51.3%, 53.4% and 51.2%, respectively.
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(a) img1 (b) img2 (c) img3

(d) img4 (e) img5 (f ) img6

(g) img7 (h) img8 (i) img9

(j) img10
Sierpinski’s triangle: binary

(k) img11
Sierpinski’s triangle: grayscale

(l) img12
Sierpinski’s triangle: grayscale
complement of (k) 

Figure 3.4: The set of 12 synthetic images used synthetic images used for testing fractal
dimension estimation algorithms. Blue frames imposed around each subfig-
ure’s borders illustrate images’ edges and are not part of actual image data
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Figure 3.5: Comparison of FD  estimates of 12 synthetic images presented in fig. 3.4  

calculated using differentmethods: FD  P-GBC-IMG  

, FD  P-GBC-INT  

, FD  W-GBC  

and FD  DBC  

with FD  BBC  

(a) Good quality (b) Moderate quality (c) Poor quality

Figure 3.6: Three illustrative real images of human tear film acquired in an in vivo fashion
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(a) Synthetic and real images

(b) Synthetic and real images – enlargement of the clusters of real data FD  estimates

Figure 3.7: Comparison of FD  estimates from fig. 3.5 with superimposed results for real
images (blue and redmarks for healthy and DES  -affected subjects, respectively)
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(a) BBC  (b) W-GBC  

(c) P-GBC-IMG  (d) P-GBC-INT  (e) DBC  

Figure 3.8: ROC  curves for different BC  -based algorithms – discriminative powers for dis-
tinguishing DES  -affected from healthy individuals using LSI  images
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3.4 partial conclusions

The mathematical notation used in primary definitions is more compact in a sense
that it does not involve the downsampling process that would substantially compli-
cate the formal notation. However, by using proper downsampling implementation
exploiting the recursive idempotence property, when possible, a substantial drop
in computational complexity might be achieved.Thus, the recursive downsampling
technique and theorem 1 relating to it may be indicated as an important innovation
to the methodology of BC  calculation. Additionally, a simple example of downsam-
pling function g having the property of recursive idempotence (and thus applicable
to theorem 1 ) is presented in example 1 and an instance of a practical benefit achieved
by applying recursive downsampling technique to image processing is illustrated
in fig. 3.2 .
Points of coordinates (2.00, 0.00) depicted in figs. 3.5 and 3.7a occurs for sets

representing monochromatic images of squares, i.e., image data from figs. 3.4g 

to 3.4i (the same applies to fig. 7.16a ). This is caused by inconsistency of P-

-GBC-INT  with other BC  -based algorithms. Specifically, for image-probability-
-space-based algorithms a solid square of any non-background value is treated
as an object of FD  that is estimated to a value close to its Euclidean dimension, i.e., 2.
On the contrary, for intensity-probability-space-based P-GBC-INT  , such object
is represented as a uniform surface, i.e., it is flat, and such lack of variability
in the reference space determines its FD  estimate to be 0.
The study shows that entropy based on intensity fails to adequately represent FD  

for the set of real interference images. The proposed W-GBC  FD  estimator achieves
superior performance to that of BBC  estimator with respect to differentiating
interferometry images of tear film of normal subjects from DES  -affected ones.
Also, W-GBC  FD  estimator overcomes the requirement for setting a particu-
lar threshold level during the pre-processing step. These developments indicate
that the choice of a FD  estimator may need to be tailored to a particular application,
peculiarly when computational efficiency of an estimator is of interest or the dif-
ficulty in setting the threshold level for BC  -based FD  estimator is encountered.
Examples of such situations include image analysis cases when the variability
of the background intensity is high or the contrast level between the foreground
and the background is low.
It is worth noting that off-the-shelf techniques, each having its advantages

and limitations, for estimating FD  of an image may not always provide satisfac-
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tory results when FD  -based classification is considered. Hence, each application
involving certain class of images need to be carefully considered.





4 G LO B A L C O U N T E R PA R T S
O F P - G B C - I M G  A N D P - G B C - I N T  

4.1 motivation

There are several other approaches to fractal dimension estimation (FDE) that con-
sider globalmeasures. In this short chapter the literature review gap is filled to cover
the global variant of probabilistic grayscale box-counting (P-GBC) approach.
The global approach to P-GBC  is utilized in the concept of generalized dimen-
sions to address an issue that a single number, i.e., fractal dimension (FD) estimate,
is sometimes not a complete descriptor of a set. E.g., this is the case in mod-
eling of dynamical systems and other usually at least incompletely self-similar
objects [76 , 77 ]. This approach might be formulated in terms of Hausdorff’s or box-
-counting (BC) dimensions, from which the latter is also called capacity dimension
and is more of a practical use [76 ] and complementwith the notation used in this the-
sis. There are infinitely many generalized FDS  denoted Dq and they are differenti-
ated by their numbers – with q being assigned to q-th generalized dimension – as well
as – for chosen cases – also by their names [78 ]. E.g., first generalized dimension
is called information dimension [76 ] and its definition include mathematical opera-
tion identical to calculating of information (Shannon’s) entropy [77 ]. As P-GBC  

in both probability spaces, i.e., spatial and intensity ones, is also based on in-
formation entropy, it is worth noting that its global variants P-GBC-IMG-GLB  

and P-GBC-INT-GLB  are instances of the aforementioned information dimension.
It is referred to in literature [76 , 77 ] what makes it common enough to be of im-
portance justifying its mentioning in this thesis, despite the fact that the work
is based mostly on the local approach to P-GBC  which is more loosely related to gen-
eralized dimensions. Also, their concepcion – and thus the global approach to P-

-GBC  – is also related to the concept ofmultifractality [77 ] used inmultifractal analysis
that constitutes a broader term than fractal analysis regarded in this thesis.

61
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4.2 calculating p-gbc-img-glb  and p-gbc-int-
-glb  

Global variant of P-GBC  approach, further referred to in an abbreviated manner
by both of its variations,namely P-GBC-IMG-GLB  and P-GBC-INT-GLB  , is described
using primary notation as:

Nk,glb.(A)
.
= Hr,glb.(A, k)

.
=

ck∑
i=1

p · (Bi,k) logr

1

p · (Bi,k)
(r ∈ R>0), (4-1a)

i.e., box-wise image entropy calculated for k-th box division. The above expression  

may be expressed also by using global downsampling-based convention:

Nk,glb.(Ak)
.
= hr,glb.(Ak)

.
=

ck∑
i=1

xi,k logr

1

xi,k
(r ∈ R>0), (4-1b)

where – by analogy to eq. (3-13) :

xi,k
.
= g(Bi,k) (4-1c)

and – by combining eqs. (4-1a) and (4-1c) :

g(Bi,k)
.
= p · (Bi,k). (4-1d)

In this formulation, hr,glb.(Ak)
.
= Hr,glb.(A, k) denotes image global entropy cal-

culated using k-th downsampled image employing base-r logarithm. Probabil-
ity space of these functions may be of two kinds. It may be defined as spatial:
Hr,glb.( · , · )

.
= Hr,glb., img.( · , · ) ∈ [0, 2 logr ε], whereas it may be also intensity:

Hr,glb.( · , · )
.
= Hr,glb., int.( · , · ) ∈ [0, logrU] – depending on the choice of the in-

ternal probability calculation sub-variant: spatial-probability-space- or intensity-
-probability-space-based, respectively. Hr,glb., img.( · , · ) and Hr,glb., int.( · , · ) utilize
cumulative probabilities of boxes pimg.(Bi,k) and probability pint.(Bi,k), respectively.

4.3 spatial-probability-space-based global en-
tropy

In case of global P-GBC  method variant based on probability defined in spatial (im-
age) probability space, its name is abbreviated as P-GBC-IMG-GLB  . Then, cumulative
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(i.e., box-range-summarized) and pixel-range global (i.e., calculated with respect
to the matrix of the whole image) photon–pixel incidence probabilities definitions
are described by eq. (4-2) :

pimg.(Bi,k)
.
=

ε2∑
j=1

pimg.,glb.(xi,j,k) ∈ [0, ε2], (4-2a)

pimg.,glb.(xi,j,k)
.
=

xi,j,k∑ck

s=1

∑ε2

t=1 xs,t,k
∈ [0, 1]. (4-2b)

4.4 intensity-probability-space-based global
entropy

In case of probability calculated in intensity probability space, a variant of global
P-GBC  abbreviated as P-GBC-INT-GLB  , cumulative probabilities of boxes and –
– what is important – global box-context pixel-range histogram bin probabilities
are stated by eq. (4-3) :

pint.(Bi,k)
.
=

U∑
u=1

pint. glb.(bu, i, k) ∈ [0, S], (4-3a)

pint. glb.(bu, i, k)
.
=

∑ck

s=1

∑ε2

t=1 1{x:x∈bu∧∃y in Bi,k.y∈bu }(xs,t,k)

ckε2
∈ [0, 1] (4-3b)

or – equivalently:

pint. glb.(bu, i, k)
.
=

∑ck

s=1

∑ε2

t=1 1{x:x∈bu∩bi,k })(xs,t,k)

ckε2
∈ [0, 1], (4-3c)

where bi,k constitutes a union of all histogram bins that are represented in boxBi,k:

bi,k
.
=
⋃

{bu : u ∈ 1,U∧ ∃x in Bi,k. x ∈ bu }. (4-3d)
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Here, the probability pint. glb.(bu, · , · ) of histogram bin bu is global (image-wise)
but expressed in box context. This means that it is by definition fixed to be zero
for any histogram bin that has no representatives within the considered box
Bi,k. Similarly as for local variant of probability, this value is zero even in cases
where the bin in question does possess pixel exemplification(s) in other boxes
of the image (and thus has non-zero probability in context of these boxes). Con-
trary to local probability, though, for all bins represented within the box at least
once, this variant has global (image-wise) scope. Therefrom, in such cases its value
is equal to a typical case of global (image-wise) probability. This typical probability,
in turn, in a more explanatory (while slightly redundant) manner with respect
to such contextual distinction would be termed global image-context. Conclud-
ing, global box-context probability from eq. (4-3c) might be characterized as be-
ing equal to local probability for bins that do not occur in given box while otherwise
being equal to global probability. The former – in this usage – is always zero as prob-
ability of an impossible event is zero by definition and in a given box occurence
of a pixel from bin that has no pixels in that box is – also by definition – an impos-
sible event. Therefore, full definition of local probability– althought simple – need
not to be recounted here, whereas it is defined above in eq. (3-10b) . The lat-
ter of mentioned probabilities, namely the purely global one, is, contradistically,
defined without any reference to box number i. This definition is presented
in eq. (4-3e) above .
Purely global, i.e., specified in the image-context, probability of the histogram

bin bu is defined as:

pint.,glb., pure(bu)
.
=

∑ck

s=1

∑ε2

t=1 1{x:x∈bu }(xs,t,k)

ckε2
∈ [0, 1]. (4-3e)

4.4.1 Remarks on contexts of global probability in the intensity probability
space

Note that:

0 ⩽ 1{x:x∈bu∧∃y in Bi,k.y∈bu }( · ) ⩽ 1{x:x∈bu }( · ) ⩽ 1. (4-4a)
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Due to eq. (4-4a) , eq. (3-10b) means that probability of u-th bin in box context
always, i.e., ∀u ∈ 1,U. ∀k ∈ 0,m.∀i ∈ 0, ck, equals at most its probability in purely
global context:

0 ⩽ pint.,glb.(bu, i, k) ⩽ pint.,glb., pure(bu) ⩽ 1. (4-4b)

Specifically, box-context global probabilitypint.,glb.(bu, i, k) of u-th histogram binbu

equals purely global probability pint.,glb., pure if and only if there is a pixel y

within box Bi,k that falls into the scope of this histogram bin; otherwise it is equal
to zero:

pint.,glb.(bu, i, k) =

{
pint.,glb., pure(bu) ∃y in Bi,k. y ∈ bu or

0 otherwise
. (4-4c)

4.4.2 Remarks on the unusability of purely global probability in the inten-
sity probability space

Note that probability pint.,glb.(bu, i, k) is not purely global, as calculation of cumu-
lative box probability as such, i.e., without box context:

pint., pure(Bi,k)
.
=

U∑
u=1

pint.,glb., pure(bu), (4-5a)

would always yield the result equal to one as demonstrated by theorem 2 .

Theorem 2. The unusability of purely global probability in the intensity
probability space:
The purely global probability in the intensity probability space is practically
unusable by being identically equal to one:

pint., pure(Bi,k) ≡ 1. (4-5b)

PROOF:
Reminding the definition of purely global probability pint.(bu) from eq. (4-3e) renders:

pint.,glb., pure(bu)
.
=

∑ck

s=1

∑ε2

t=1 1{x:x∈bu }(xs,t,k)

ckε2
. (4-5c)
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This leads to:

pint., pure(Bi,k)
.
=

U∑
u=1

∑ck

s=1

∑ε2

t=1 1{x:x∈bu }(xs,t,k)

ckε2
=

=

∑ck

s=1

∑ε2

t=1

∑U
u=1 1{x:x∈bu }(xs,t,k)

ckε2
=

=
1

ckε2

ck∑
s=1

ε2∑
t=1

1
{x:x∈

⋃U
u=1 bu }

(xs,t,k) ≡

≡ 1

ckε2

ck∑
s=1

ε2∑
t=1

1 =
ckε

2

ckε2
≡ 1.

(4-5d)

This means that the purely global probability in the intensity probability space
is identically equal to one and thus practically unusable.

4.4.3 Remarks on nature of box-context global probability in the intensity
probability space

It is important to note the fact that box-context global probability is just a technical
concept. It has been coined to assure the usability of P-GBC-INT-GLB  algorithm
as it would be rendered unusable if using purely global probability as it is demon-
strated in eq. (4-5d) . Moreover, it is named ‘probability’ due to the obvious con-
nection of its concept to other probabilities. Nonetheless, in is not a usually ac-
cepted probabilitymeasure per se, as it violates the second Kolmogorov’s axiom stat-
ing that probability is normalized to one (unitarity) [79 , 80 ]. Namely, one elemen-
tary event from sample space must occur. Therefore, probability of any of them oc-
curring is by axiom equal to one. This is not the case for box-context global
probability in the intensity probability space as demonstrated by lemma β  .

Lemma β. Violation of the second Kolmogorov’s axiom by box-context
global quasi-probability:
A function termed under the conventionalized (for the sake of simplicity) name
of “box-context global probability” violates the second Kolmogorov’s axiom.

PROOF:
Suppose that in k-th (k = 0) box division of the image there are c0 = 4 boxes,
with each of them containing ε2

.
= (2k)2 = 1, i.e., single, pixel. Furthermore,

suppose that there are U = 4 histogram bins in total, of which the first bin (u = 1)
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is represented by the first three (i = 1, 2, 3) of four pixels in total, and the sec-
ond bin (u = 2) is represented in the last box (i = 4). Then, the probability
of u-th (u = 1) bin occurring in context of this box is:

pint. glb.(b1, 1, 0)
.
=

∑4
s=1

∑1
t=1 1{x:x∈b1∧∃y in B1,0.y∈b1 }(xs,t,0)

4 · 1
=

=

∑4
s=1 1{x:x∈b1∧∃y in x1,1,0.y∈b1 }(xs,1,0)

4
=

=

∑4
s=1 1{x:x∈b1∧x1,1,0∈b1 }(x1,1,0)

4
=

=
1+ 1+ 1+ 0

4
=

3

4
;

(4-6a)

because for u = 2, 3, 4:

∄y in B1,0. y ∈ bu ⇐⇒ x1,1,0 /∈ bu, (4-6b)

for other bins the probability is zero:

pint. glb.(b2, 1, 0) = pint. glb.(b3, 1, 0) = pint. glb.(b4, 1, 0) = 0. (4-6c)

Therefore for event that happen by axiom surely:

1
def
= pint. glb.(Ω, 1, 0)

.
= pint. glb.(

4⋃
u=1

bu, 1, 0)
.
=

.
=

4∑
u=1

pint. glb.(bu, 1, 0)
.
=

3

4
̸= 1,

(4-6d)

which forms a contradiction.

Corollary 1 shows that lemma β  implies that quasi-probability pint. glb.( · , · , · )
is not Kolmogorov’s probability.

Corollary 1. Violation of the second Kolmogorov’s axiom by box-context
global quasi-probability measure:
The contradicition from the proof of lemma β  means that the function termed box-
-context global probability is in fact a quasi-probability, or a probability-like function,
but not a probability in Kolmogorov’s sense. 2

Nevertheless, theorem 3 demonstrates that the issue exhibited in corollary 1 

may be mitigated by exploiting the normalization procedure that enables the uni-
tarity property to be provided to pint. glb.( · , · , · ) quasi-probability.
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Theorem 3. Possibility of box-context global quasi-probability normaliza-
tion:
Shall it be necessary to regain unitarity by box-context global quasi-probability,
i.e., to have value of the certain event fixed at one, it is possible to overcome
the limitation from corollary 1 by normalization.
PROOF:
Global quasi-probability function can be modified to regain unitarity by normal-
ization performed the following manner:

p̃int. glb.(bu, i, k)
.
=

pint. glb.(bu, i, k)∑U
u=1 pint. glb.(bu, i, k)

. (4-6e)

This assures that p̃int. glb.(bu, i, k)( · ) can technically be termed a probability in Kol-
mogorov’s sense, as it satisfies all the mathematical necessities for being such a mea-
sure.

Equation (4-6e) demonstrates that box-context global quasi-probability defined
in the intensity probability space may be in general– and in a relatively simple
manner – converted to Kolmogorov’s probability. Thus, in effort to maintain
the clarity of the text while the same terms are often recalled repeatedly, this thesis
often involves references to pint. glb.( · , · , · ) as to ‘probability’ rather than ‘quasi-
-probability’ or a similar technically precise term. This simplification may introduce
a minor naming imprecision, therefore it is harnessed only through the justification
provided by theorem 3 together with the explanation provided by this paragraph.

4.5 remarks on the unusability of local prob-
abilities for global variants of proba-
bilistic grayscale box-counting  

4.5.1 Unusability of pimg., loc.( · )

It should be noted that probability pimg.( · ) would be named in a fully descriptive
manner as pimg.,glb.( · ), nevertheless the shorter notation is chosen as this thesis
does not utilize possible local counterpart of this cumulative probability which un-
der convetion used throughout this thesis would be defined by the term pimg., loc.( · ).
Moreover, such probability would be trivial and unusable as shown by theorem 4 .
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Theorem 4. The unusability of pimg., loc.( · ):
The probability pimg., loc.( · ) is practically unusable by being identically equal to one:

pimg., loc.(Bi,k) ≡ 1. (4-7a)

PROOF:
By definition:

pimg., loc.(Bi,k)
.
=

ε2∑
j=1

pimg.(xi,j,k). (4-7b)

Further, basing on eq. (3-9b) defining pimg.(xi,j,k):

pimg., loc.(Bi,k)
.
=

ε2∑
j=1

xi,j,k∑ε2

t=1 xi,t,k
=

∑ε2

j=1 xi,j,k∑ε2

t=1 xi,t,k
≡ 1. (4-7c)

This means that the probability pimg., loc.( · ) is identically equal to one and thus prac-
tically unusable.

4.5.2 Usability of pimg.( · )

This is not the case for pimg.( · )
.
= pimg.,glb.( · ), because not necessarily all pho-

tons coincide with pixels of a single box. That is, global probabilities of pixels
within a single box not necessarily sum up to one and their sum might be smaller
as shown by theorem 5 .

Theorem 5. The usability of pimg.( · )
.
= pimg.,glb.( · ):

The probability pimg.( · )
.
= pimg.,glb.( · ) is practically usable in the sense of not being

identically equal to one:

pimg.(Bi,k)
.
= pimg.,glb.(Bi,k) ̸≡ 1. (4-8a)

PROOF:
For k-th (k ∈ 0,m) box division and i-th (i ∈ 0, ck) box · , basing on eq. (4-2b) 

and the possibility of existence of a case (or cases) of xs,t,k > 0 (s ̸= i), the following
is true:

1 ̸≡
∑ε2

j=1 xi,j,k∑ck

s=1

∑ε2

t=1 xs,t,k
⩽

∑ε2

j=1 xi,j,k∑ε2

t=1 xi,t,k
≡ 1. (4-8b)
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Therefore, eq. (4-7c) from the proof of theorem 4 fails for global probability
in the image probability space pimg.,glb.( · ):

pimg.(Bi,k)
.
= pimg.,glb.(Bi,k) ̸≡ 1. (4-8c)

The above proves the usability of pimg.( · ).

4.5.3 Unusability of pint., loc.( · )

Similarly, pint.( · ) would be named in a more specific manner as pint.,glb.( · ),
whereas no instance of pint., loc.( · ) is used in this thesis. Therefore, the shortened no-
tation is chosen again. Furthermore, this probability pint., loc.( · ) would be trivial
and unusable as shown by theorem 6 .

Theorem 6. The unusability of pint., loc.( · ):
The probability pint., loc.( · ) is practically unusable by being identically equal to one:

pint., loc.(Bi,k) ≡ 1. (4-9a)

PROOF:
By definition:

pint., loc.(Bi,k)
.
=

U∑
u=1

pint.(bu, i, k)
.
=

.
=

U∑
u=1

∑ε2

t=1 1{x:x∈bu }(xi,t,k)

ε2
=

=

∑ε2

t=1

∑U
u=1 1{x:x∈bu }(xi,t,k)

ε2
=

=

∑ε2

t=1 1{x:x∈
⋃U

u=1 bu }
(xi,t,k)

ε2
≡

∑ε2

t=1 1

ε2
≡ 1.

(4-9b)

This means that the probability pint., loc.( · ) is identically equal to one and thus prac-
tically unusable.

4.5.4 Usability of pint.( · )

This is not the case for pint.( · )
.
= pint.,glb.( · ), because not necessarily all bins

of the histogram are represented in each box as shown by theorem 7 .
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Theorem 7. The usability of pint.( · )
.
= pint.,glb.( · ):

The probability pint.( · )
.
= pint.,glb.( · ) is practically usable in the sense of not be-

ing identically equal to one:

pint.(Bi,k)
.
= pint.,glb.(Bi,k) ̸≡ 1. (4-10a)

PROOF:
As long as box context is considered – for u-th (u ∈ 0,U) histogram bin bu,
k-th (k ∈ 0,m) box division and i-th (i ∈ 0, ck) box · :

x ∈ bu ∧ ∃y in Bi,k. y ∈ bu =⇒ x ∈ bu. (4-10b)

Equation (4-10b) means that in eq. (4-3c) may exist a case (or cases) of xs,t,k
def
= x

in which the following is true:

¬ (x ∈ bu ∧ ∃y in Bi,k. y ∈ bu)∧ x ∈ bu. (4-10c)

Equivalently:

∀y in Bi,k. y /∈ bu ∧ x ∈ bu. (4-10d)

Respectively:

∀y in Bi,k. y /∈ bu. (4-10e)

Such case(s) can possibly exist. Therefore, the following inequality may be stated
as a conclusion drawn from eqs. (4-10c) to (4-10e) whose most clear illustration
is possibly eq. (4-10c) :

1{x:x∈bu∧∃y in Bi,k.y∈bu }(xs,t,k) ⩽ 1{x:x∈bu }(xs,t,k). (4-10f )

Thus:
ε2∑
t=1

1{x:x∈bu∧∃y in Bi,k.y∈bu }(xs,t,k) ⩽
ε2∑
t=1

1{x:x∈bu }(xs,t,k) ≡ 1. (4-10g)

Equivalently to eqs. (4-10c) to (4-10g) , yet using simpler notation from eq. (4-3c) 

in place of the one from eq. (4-3b) , existence of a case (or cases) is possible
where

(⋃U
u=1 bu

)
∩ bi,k = bi,k ⊆

⋃U
u=1 bu is a proper subset of

⋃U
u=1 bu, i.e.:

(
U⋃

u=1

bu

)
∩ bi,k = bi,k ⫋

U⋃
u=1

bu. (4-11a)
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Therefrom:

1 ̸≡ 1
{x:x∈(

⋃U
u=1 bu)∩bi,k }

(xs,t,k) ⩽
U∑

u=1

1{x:x∈bu }(xi,t,k) ≡ 1; (4-11b)

Therefore, basing on eq. (4-10g) or on eq. (4-11b) , eq. (4-5d) from theorem 2 –
– as well as eq. (4-9b) from theorem 6 – fails for box-context global probability
in the intensity probability space pint.,glb.( · ):

pint.(Bi,k)
.
= pint.,glb.(Bi,k) ̸≡ 1. (4-12)

The above  eq. (4-12)  proves the usability of pint.( · ).

4.6 chapter summary

The considered global P-GBC  variants are contrasted against their local counterparts
in fig. 4.1 in both spatial as well as intensity probability spaces.
The performance of the global definitions presented above has been assessed

in terms of FDE  of a grayscale image, q.v. fig. 7.17 . It has been found to be inferior
when comparing the results of the algorithms utilizing the global definitions
with their local-definitions-based counterparts. Therefore, this branch of methods
has not been pursued further.

remarks on the abbreviations of the names of methods Taking
into account the abovementioned superiority of observed results of the local vari-
ants of the P-GBC  , they are more extensively described and more often recalled
in this thesis than their global counterparts. On this account as well as for the sake
of notational clearness, PROBABILISTIC GRAYSCALE BOX-COUNTING based on im-
age probability space: locally calculated variant (P-GBC-IMG-LOC) and PROBABILIS-

TIC GRAYSCALE BOX-COUNTING based on intensity probability space: locally cal-
culated variant (P-GBC-INT-LOC) are further often referred to as just PROBABILIS-
TIC GRAYSCALE BOX-COUNTING based on image probability space (P-GBC-IMG) 

and PROBABILISTIC GRAYSCALE BOX-COUNTING based on intensity probability
space (P-GBC-INT) , respectively. When it does not clearly follows from the con-
text whether the short term would refer to a whole sub-class of P-GBC  -derived
methods or just one of its local instances, its proper denotatum is stated explic-
itly. E.g., in the following sentence: “P-GBC-IMG  family of algorithms encompasses
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local photon-pixel probabilities:

p(xi,j,k)
.
=

xi,j,k∑ε2

t=1 xi,t,k

in eq. (3-9b) 

box-wise (information) entropies
over pixel probabilities:

Hr(Bi,k)
.
=

ε2∑
j=1

p(xi,j,k) logr

1

p(xi,j,k)

in eq. (3-9a) 

image-wise cumulative entropy:

Nk(A)
.
=

ck∑
i=1

Hr(Bi,k)

in eq. (3-8) 

local histogram bin probabilities:

p(bu, i, k)
.
=

∑ε2

t=1 1{x:x∈bu }(xi,t,k)

ε2

in eq. (3-10b) 

box-wise (information) entropies
over pixel probabilities:

Hr(Bi,k)
.
=

U∑
u=1

p(bu, i, k) logr

1

p(bu, i, k)

in eq. (3-10a) 

image-wise cumulative entropy:

Nk(A)
.
=

ck∑
i=1

Hr(Bi,k)

in eq. (3-8) 

box-context global histogram bin probabilities:

p(bu, i, k)
.
=

ck∑
s=1

ε2∑
t=1

1{x:x∈bu∩bi,k }(xs,t,k)

ckε2

in eq. (4-3c) 

box-wise cumulative probabilities:

p(Bi,k)
.
=

U∑
u=1

p(bu, i, k)

in eq. (4-3a) 

image-wise (information) entropy
over box probabilities:

Nk(A)
.
=

ck∑
i=1

p(Bi,k) logr

1

p(Bi,k)

in eq. (4-1a) 

global photon-pixel probabilities:

p(xi,j,k)
.
=

xi,j,k∑ck

s=1

∑ε2

t=1 xs,t,k

in eq. (4-2b) 

box-wise cumulative probabilities:

p(Bi,k)
.
=

ε2∑
j=1

p(xi,j,k)

in eq. (4-2a) 

image-wise (information) entropy
over box probabilities:

Nk(A)
.
=

ck∑
i=1

p(Bi,k) logr

1

p(Bi,k)

in eq. (4-1a) 
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Figure 4.1: Flowchart comparison of P-GBC-IMG-GLB  , P-GBC-INT-GLB  , P-GBC-IMG-
-LOC  and P-GBC-INT-LOC  



74 global counterparts of p-gbc-img and p-gbc-int

P-GBC-IMG-LOC  and P-GBC-IMG-GLB  ” it is clarified that the shortest abbrevia-
tion pertains to a category of methods. Complementarily, this phrase: “P-GBC-

-IMG  method have performed better than P-GBC-IMG-GLB  ” refers to a comparison
of two individual algorithms thus implicitly implying that the opposite context
is assumed for the connoted name.



Part III

OT H E R A S P E C T S O F T H E W O R K R E L AT E D
TO F R A C TA L D I M E N S I O N E S T I M AT I O N  

The f o l l ow i ng p a r t c on t a i n s own con t r i b u t i on – a d e s c r i p t i on o f t h e a l g o -
r i t hm i c t o o l s u s e d t o s y n t h e s i z e t h e a r t i f i c i a l i n p u t d a t a u s e d f o r v a l i d a -
t i on o f t h e d e ve l o p e d a l g o r i t hm s a n d t h e i r imp l emen t a t i on s . Impo r t a n t l y ,
t h e d e ve l o pmen t s d e s c r i b e d i n c h a p t e r s 5 a n d 6 h ave s e r ve d a s we l l t o f a -
c i l i t a t e s e l e c t i v e a n d p r e c i s e m an i p u l a t i on s o f v a r i o u s p a r ame t e r s o f f r a c -
t a l - o r f r i n g e - l i k e i n p u t s . Th i s h a s e n a b l e d t h e nume r i c a l i n - s i l i c o r e s e a r c h
t o b e c onduc t e d w i t h f o c u s i n g i t on p r o p e r t i e s o f t h e i nve s t i g a t e d me t h o d s
o f FDE i n r e l a t i on t o c h a r a c t e r i s t i c s o f t h e i n p u t d a t a a n d t h e i r c h a ng e s .
Th e i n t r o d uc t i on o f t h e s y n t h e t i c i n p u t d a t a h a s e n a b l e d t h e r e s e a r c h
t o b e c onduc t e d i n a much mo r e c on t r o l l e d manne r t h a n i n c a s e o f r e s t r i c t -
i n g i t t o b e b a s e d s o l e l y on t h e p h y s i c a l l y a c q u i r e d im ag e s .





5 I N P U T DATA S Y N T H E S I S U S I N G
R A N D O M F R A C TA L F U N C T I O N S  

5.1 planar random fractal functions  based
on rescale-and-add  method

Artificial data exhibiting fractal features that in particular may be parametrized
in terms of fractal dimension (FD) and lacunarity – a measure quantifying hetero-
geneity and overall gappiness or rotational invariance of fractals [82 ] – have been gen-
erated using rescale-and-add (RAA) method developed by Dietmar Saupe in 1989
and described in detail in [81 ]. This method allows for point or global evalua-
tion of multi-variable random fractal functions (RFFS) and has been proven as supe-
rior to some of its popular counterparts in terms of parametrization possibilities
(as it offers two fractal-related parameters and allows for imposing spatial local-
ity on both of these parameters in a simple manner), capability for parallelization
and – in many cases – computational complexity. The actual algorithm used for ran-
dom fractal data generation is author’s own implementation of two-dimensional
(2-D) exemplification of an abstract n-D concept of RAA  approach. The ob-
tained data are in the form of 8-bit grayscale PNG  images (with no transparency)
of size 512 px× 512 px that corresponds with the format of the spatially cropped lat-
eral shearing interferometry (LSI) frames used for FRACTAL DIMENSION estimation
(FDE) algorithms comparison on real data. Artificially generated images allow
for performing analogous comparison on synthetic data using the full spectrum
of FD  values from one to twowith arbitrarily fine steps. Such comparison has higher
plausibility in the axis of reference FD  values, i.e., the abscissæ, as they are not es-
timated by binary box-counting (BBC) algorithm or in any other way. Contrar-
ily, they are given as exact input to the procedure synthesizing artificial fractals
that are subsequently feed into estimating algorithms that are to be compared.
This provides i.a., additional validation for FDE  algorithms and their implementa-
tions.

Mathematical content of this chapter is partly based on [81 ].

77



78 input data synthesis using random fractal functions

Definition 3. Two-dimensional random fractal function via rescale-and-add me-
thod:
Let S2 : R2 → R be a real function that has values at integer lattice points of R2 de-
fined by Gaussian random variables of zero mean and the same variance at all points.
Further, let S2(x, y) be a smooth interpolation from the data at the integer lattice
points. Then, the function Ṽ2 : R2 → R defined by:

Ṽ2(x, y)
.
=

∞∑
k=k0

1

rkH
S2(r

kx, rky), (5-1)

with r > 1 determining lacunarity, 0 ⩽ H ⩽ 1 and k0 ⩽ 0, is a random fractal function 

whose graph has fractal dimension equal to D̃:

D̃ = 2+ 1−H = 3−H. (5-2)
2

In practical applications, limits of the summation in eq. (5-1) within defini-
tion 3 have to be finite and defined in a way to credibly and effectively approx-
imate V2( · , · ). Also, D̃ mentioned in definition 3 is based upon an interpreta-
tion of FD  characterized by three-dimensional (3-D) spatio-intense image space.
Thus, D̃ can vary from two to three. However, in this thesis another interpretation
is used, where FD  is calculated over images embedded in 2-D  space that have purely
spatial coördinates and intensity being regarded separately in different manner;
intuitively, intensity values may be understood here as a kind of weight. Thus, FD  

regarded further and denoted asD has to be reduced by one relatively to D̃ in order
to be consistent with the rest of the work:

D
.
= D̃− 1 = 2−H. (5-3)

Regarding the considerations above and algorithmic remarks given in litera-
ture [81 ], the actual implementation has been based on the following: when 2-D  syn-
thetic grayscale image of size 512 px× 512 px depicting RFF  is to be generated us-
ing the RAA  methodwith FD  given byD ∈ [0, 2] and lacunarity determined by fac-
tor r > 1, it may be approximated by:

V2(x, y)
.
=

k1+k1m∑
k=k0−k0m

1

rkH
S2(r

kx, rky), (5-4a)
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where:

r ∈ set
√
2, 2, 4 (5-4b)

is the lacunarity parameter used in this thesis as well as in [81 ];

H
.
= 2−D ∈ [0, 1] (5-4c)

may be interpreted as Hölder exponent in a squared version of Hölder condition;

k0
.
= −

log2 L

log2 r
(5-4d)

is the left-side end of summation range asserting that the dominant (lowest) spatial
frequencies rk0

/2π of the auxiliary function S2( · , · ) are smaller than the inverse
of largest scale L of objects in the image:

L
.
= 512 (5-4e)

is the largest scale of objects in the image corresponding to 512 px× 512 px image
side lengths;

k0m
.
= 2 (5-4f )

is the left-side margin for summation range enhancing the lowest frequencies
condition;

k1
.
=

log2 2/∆

log2 r
(5-4g)

is the right-side end of summation range asserting that the highest frequencies
rk1

/2π of the auxiliary function S2( · , · ) are smaller than the Nyqyist limit imposed
by the sampling distance (spatial resolution) ∆:

∆
.
= 1 (5-4h)

is the sampling distance corresponding to 1 px spatial resolution);

k1m
.
= 8 (5-4i)
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is the left-side margin for summation range asserting that a few additional summa-
tion terms of frequencies above the upper limit are not clamped, as for small val-
ues of H they tend to have amplitudes 1

rkH
of the auxiliary function S2( · , · )

large enough to be considered non-negligible when intending to achieve æsthet-
ically pleasing results – as this aspect is emphasized in [81 ], k1m is set to a value
noticeably higher than k0m in the developed implementation;

S2(x, y)
.
= sx · sy · V(⌊x+ 1⌋, ⌊y+ 1⌋) +

+ (1− sx) · sy · V(⌊x⌋, ⌊y+ 1⌋) +

+ sx · (1− sy) · V(⌊x+ 1⌋, ⌊y⌋) +

+ (1− sx) · (1− sy) · V(⌊x⌋, ⌊y⌋)

(5-4j)

is the auxiliary, differentiable, interpolating function, ⌊x⌋, ⌊y⌋ are integer parts of x
and y, respectively, and:{

sx
.
= {x}

2
(3− 2{x})

sy
.
= {y}

2
(3− 2{y})

, (5-4k)

where: {
{x}

.
= x− ⌊x⌋

{y}
.
= y− ⌊y⌋

(5-4l)

are the non-negative fractional parts of x and y, respectively;

V(k, l)
.
= t(k−1 mod N)+1,(l−1 mod N)+1 (5-4m)

is a function simulating infinite 2-D  array of random numbers attached to lattice
points with integer coördinates (k, l). V( · , · ) is calculated using a finite table ofN2

random numbers, where (N,N) is the spatial period of S2( · , · ) and N is usually
equal to 50 or 100 [81 ] – in the developed implementation N

.
= 100. This table

stores the elements of matrix T :

T
.
= (ti,j)N×N, (5-4n)

with ti,j(i, j ∈ 1,N) being random variates (or realizations of independent and iden-
tically distributed random variables) of normal random variable T with zero mean:

T ∼ N(0, σ2) (5-4o)
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which in the developed implementation has the standard normal distribution:

T ∼ N(0, 1). (5-4p)

In particular, for L .
= 512 = 29 and∆ .

= 1, and for the most homogeneous fractal,
i.e., of lowest lacunarity, among exemplifications considered in [81 ] – with lacu-
narity parameter r .

=
√
2 = 2

1
2 :

k0 − k0m
.
= −

log2 L

log2 r
− 2

.
= −

log2 2
9

log2 2
1
2

− 2 = −
9 log2 2
1
2

log2 2
− 2 =

= −18− 2 = −20,
(5-5a)

k1 + k1m
.
=

log2 2/∆

log2 r
+ 8

.
=

log2 2/1

log2 2
1
2

+ 8 =
log2 2
1
2

log2 2
+ 8 =

= 2+ 8 = 10,
(5-5b)

therefore in that case there are (k1+k1m)− (k0−k0m)+ 1
.
= 10−(−20)+ 1 = 31

summands in eq. (5-4a) .
The implementation developed in MATLAB  numerical computing integrated de-

velopment environment (IDE) allows for parallelized computations. In the investi-
gated cases of 2-D  RFFS  images of size 512 px× 512 px, such parallelization vastly im-
proves calculation speed and thus reduces average image synthesis time. The loop-
-based variant has primarily been timed to execute for about 20 000 s, i.e., com-
putations have lasted more than five and a half hours. When the parallelization
has been programatically facilitated, this time has been reduced to about 0.6367 s,
i.e., computations have been completed in just over half a second. The achieved
change in computational efficiency has reached four to five orders of magnitude.
The mentioned improvement in computational load has been accomplished by de-
signing the algorithm to perform some critical operations in a matrix-wise manner
in 2-D  . These modifications have allowed for the usage of MATLAB’s built-in ar-
ray optimizations. Functionally, when calling the implemented random fractal
images synthesis function declared as function V_2 = raa2(x, y, varargin),
q.v. listing C.4  , this parallelized mode is invoked when the coördinates of the point
in which RFF  is to be calculated are entered not as single numbers x and y rep-
resenting indices x and y, respectively, but rather as index ranges. Particularly,
to compute the whole Lpx × Lpx image as single matrix, x and y coördinates
are to be given as vectors of index values of interests, preferably sorted increasingly.
E.g., column and row vectors may be used, respectively, i.e., x .

= [ 1 2 · · · L ]T

and y
.
= [ 1 2 · · · L ].
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Figure 5.1 presents illustrative synthetic fractal images depicting approximations
of RFFS  generated using the RAA  method proposed by Saupe [81 ], as presented
in definition 3 and by implementation based on eq. (5-4) . FD  values used for re-
search range from one to two in steps of 0.05, of which one fifth have been chosen
to be visualised in fig. 5.1  , where the step of presented FD  values is thus equal to 0.25.
Similarly, three levels of lacunarity [82 ] have been used for experiments,with values
of lacunarity parameter r being as suggested in the original research by Saupe [81 ],
i.e., equal to

√
2, two and four. Visual effect that the influence of all of these three r val-

ues has on the resulting fractal-approximating images is also presented in a col-
umn-wise manner in fig. 5.1 .
Figure 5.2  depicts FD  estimates compared for synthetic data of Saupe’s RAA  al-

gorithm for evaluating multi-variable RFFS  computed using four algorithms: prob-
abilistic grayscale box-counting based on image probability space (P-GBC-IMG) ,
probabilistic grayscale box-counting based on intensity probability space (P-GBC-

-INT) , weighted grayscale box-counting (W-GBC) and differential box-counting
(DBC) algortihms. As stated above , FD  values used for this experiment range
from one to two in steps of 0.05, forming three color-marked families of plots
that correspond to three values of lacunarity parameter r (

√
2, two and four) used.

These altogether comprise twelve plots presented in the figure.
Figure 5.3 shows plots extending fig. 5.2 by presenting two another variants

of cut-off applied on extreme data points during linear regression stage of common
box-counting (BC) procedure for all grayscale BOX-COUNTING (GBC) -based algo-
rithms. The default BC  cut-offs have been set to zero in application to Saupe’s RAA  -
-based random fractals – this is presented by fig. 5.2 . In the original algorithm
desing, the numbers of elements to be cut off on both sides have been non-zero.
These numbers have been reduced in the descripted case, as it has led to an increase
in correlation with Saupe’sD as well as due to the fact that with the original number
of cut-off points equal to three and one for lower and upper cut-off, respectively,
P-GBC-INT  estimates have been declining for Saupe’s D values above about 1.65.
The original cut-off values have been optimized for simple synthetic images and real
(LSI  -based) data regarding boundary effects as well as computational complexity,
q.v. chapter 8 . This rendered to be sub-optimal for Saupe’s RAA  RFF  -based images
by causing the aforementioned ambiguity for P-GBC-INT  , as for these cut-off
thresholds FD  P-GBC-INT  

(D) function has not been injective. Consequently, a re-
duction in cut-off thresholds has mitigated this issue for probabilistic GRAYSCALE

BOX-COUNTING (P-GBC) -based algorithms. Nevertheless, at the same time it in-
troduced a problem of a similar kind for W-GBC  algorithm. This is noticeable
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when comparing fig. 5.3b  to fig. 5.2  where its indication is an increase in correlation
coefficient ρ for both P-GBC  -based algorithms as well as a decrease for W-GBC  

algorithm. The latter change is especially profound for the highest used lacunarity
parameter r value of four. This altogether suggests that the optimal values of param-
eters for a BC  -based algorithm are strongly dependent by both the input image class
and size as well as on the chosen method variant itself. Moreover, for the purpose
of assessing the overall applicability of methods, it is worth noting that for the ma-
jority of possible values of cut-off thresholds (of which only a small part is pre-
sented in fig. 5.3 , but many more have been investigated), the values of estimators
may significantly change. However, their general dynamics remains relatively
unchanged. Thus, a conclusion may be drawn that cut-offs applied during linear re-
gression at BC  stage are of vital importance for the fine tuning of the performance
of the algorithm on a specific class of input data, nevertheless they are not criti-
cal for some more general conclusions about its properties. E.g., many different
cut-offs may be chosen to conclusively determine if a given GBC  -based algorithm
is applicable for classification tasks as well as if sensitivity and variability charac-
teristics of its outputs are consistent with analogous results obtained for other FD  

estimators.
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(a) D = 1.00, r =
√
2

(b) D = 1.25, r =
√
2

(c) D = 1.50, r =
√
2

(d) D = 1.75, r =
√
2

(e) D = 2.00, r =
√
2

(f ) D = 1.00, r = 2

(g) D = 1.25, r = 2

(h) D = 1.50, r = 2

(i) D = 1.75, r = 2

(j) D = 2.00, r = 2

(k) D = 1.00, r = 4

(l) D = 1.25, r = 4

(m) D = 1.50, r = 4

(n) D = 1.75, r = 4

(o) D = 2.00, r = 4

Figure 5.1: Illustrative grayscale visualizations of two-variable RFFS  of size 512 px× 512 px
generated using author’s implementation of the rescale-and-add method [81 ]
with FD  D varying row-wise in quarter steps from one to two and lacunarity
parameter r varying column-wise in range {

√
2, 2, 4 }
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Figure 5.2: Comparison of FD  estimates for synthetic data of Saupe’s RAA  algo-
rithm for evaluating multi-variable RFFS  computed using FD  P-GBC-IMG  

,
FD  P-GBC-INT  

, FD  W-GBC  

and FD  DBC  

estimators without cut-off of ex-
treme points in GBC  -based algorithms during linear regression of Nε(ε) data
performed by core BC  procedure. There are three families of plots indicated
by black, blue and red markers, corresponding to lacunarity parameter r set
to

√
2, two and four, respectively. Plotted values are normalized by adaptive

linear rescaling of ordinates to match their minima and maxima with abscissæ
and to assert positive direction of output variation
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(a) First and last BC  regression data points cut-off

(b) Two first and two last BC  regression data points cut-off

Figure 5.3: An extension to fig. 5.2 showing two other cut-off variants of extrema in GBC  -
-based algorithms during linear regression of Nε(ε) data. The adaptive rescal-
ing of plots and the meaning of colors are identical to these of fig. 5.2 
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5.2 another approaches to synthesis of frac-
tal images of a variable dimension

A common and simple approach to providing synthetic fractal for the input data
set is to utilize Gaussian noise. Sometimes it is a zero-mean noise with varying
standard deviation that is added to a surface at a constant gray level having the mid-
dle value of the intensity range of the used image type and with clipping ap-
plied at the intensity range limits [17 , pp. 3 (117) – 4 (118)]. FD  of images gener-
ated in such way increases with the variation of the noise. In 3-D  interpretation
of the images, it varies from exactly two to asymptotically three. Nevertheless,
this method is also charged with serious drawbacks, e.g., the dependence of FD  

on the standard deviation is strongly non-linear, q.v. [17 , fig. 3]. Moreover, the up-
per value is never actually reached and the lower one does not have a universally
clear meaning of the images. E.g., for 2-D  interpretation such a constant surface
of a half-background and half-foreground level may be interpreted as having in-
termediate value of FD  – equal to one. This would be the case for some weighted
approaches related to W-GBC  . When examined with other implementations
it may be interpreted as a completely flat object that due to lack of variation
of intensity has FD  value of zero. This would be the case for DBC  -or P-GBC-

-INT  -based algorithms. Finally, such an object that has the size of the whole image
and is of a constantly non-background value, due to its planar nature or 2-D  shape
may be interpreted as having FD  value of two or close to two. This would be the case
for some methods operating in image probability space and related to P-GBC-IMG  .
Moreover, Gaussian solution in its simplest variant does not allow for controlling
other parameters of the produced images, e.g., lacunarity. Therefore, for ad-
vanced applications it may be more suitable to exploit more elaborated solutions
for synthesis of fractal images. These may include or relate to randomization of de-
terministic fractals, percolations, Brownian motion, Gaussian randomness, mean
square displacement and random midpoint displacement, sometimes also referred
to as Peitgen’s approach [11 ], although it has been introduced earlier by Alain
Fournier, Donald S. Fussell, and Loren C. Carpenter [83 ]. Relatively recently, Peit-
gen’s approach has also been extended to generation of color fractal images [44 ],
q.v. section 1.2.3 . Notwithstanding, none of these approaches is completely free
of imperfections in comparison with Saupe’s concept. Also in use are methods
that involve Mandelbrot’s-Weierstrass’ functions or Perlin’s turbulence functions.
A composite approach to combine advantages of both methods into a single one
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which would also alleviate their shortcomings and limitations has led to formulation
of one of most robust techniques available. This research has been conducted by Di-
etmar Saupe and has resulted in introduction of RAA  method published in 1989 [81 ].
Apart from purely fractal-oriented research, this approach is to date also heavily
exploited in texturing and modeling, especially in tasks related to terrain surface
simulations [84 , 85 ], but also for generation of cloud textures [86 ] etc.



6 A R T I F I C I A L F R I N G E PAT T E R N
S I M U L AT I O N

A method for generating artificial images of fringe patterns has been developed
and the synthesized data has been used for validation and test purposes, e.g., simula-
tion of interferograms and their phase disruptions. Artificially constructed data sim-
ulating interference images acquired in conditions entailing the presence of fringe
phase disruptions in the patterns have been used for assesing fractal dimension esti-
mation (FDE) reliablity as well as algorithms validation and parameters fine-tuning.
Illustrative visualizations of such artificial interferometric data – in this case affected
by sinusoidal disruption of fringe pattern phase – are presented for comparison
in fig. 6.2 .

6.1 generating synthetic images

6.1.1 Fringe pattern synthesis for space-wise analysis

To enable validation and additional experiments at various stages of the processing,
a method for generating artificial interferograms has been designed and imple-
mented. Synthetic images might be generated with a given frequency (preferably
mimicking the typical of lateral shearing interferometry (LSI) , that in this case
usually oscillates around one seventh of the Nyquist’s frequency), orientation, phase
disturbance level (sinusoidal or Gaussian), resolution and dimensions. An illustrative
result is depicted by fig. 6.1 , where artificially generated simulation depicts a central
Gaussian phase distortion.
An auxiliary research has been conducted for one of tear film surface quality

(TFSQ) estimators (FD  BBC  

) and its variability in terms of the frequency changes.
Also, sinusoidal phase disturbance level has been investigated.

89
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Figure 6.1: Artificially generated image of interferometry pattern – a simulation of human
pre-corneal tear film LSI  imagery

6.1.2 Fringe pattern synthesis for supplementary spatial-frequency-wise
research

A synthetic interference pattern has been rendered. Its frequency and degree
of structural disruption have been subject to alterations during the measurements
using the following parameters:

(1) fringe pattern orientation (expressed as the direction of the instantaneous
phase variability): π/2;

(2) image space coördinates range: [−1, 1] in both horizontal and vertical axis;
(3) image resolution: 128 px× 128 px – a value chosen to be the same as size

of the subframe utilized by the algorithm calculating TFSQ  descriptor values
for the real data;

(4) fringe spatial frequency range (in the variability direction): [0, fN] linearly dis-
tributed into a 100-element vector, where fN = fs

2
is the Nyquist’s frequency

being half of the sampling frequency for the image of a given resolution
within a given range of coördinates;

(5) the degree of a fringe structure disruptions – expressed as the amplitudes
(in radians) of the sinusoidal phase noise with a wavelength equal to 1 – used
for generation of a graphs family to be plotted included: 0, 4, 15, 110, 275, 500
and 10 000 with the first four classified later in terms of convergence as being
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from low to moderate and last two being large distortions with one interme-
diate value;

(6) orientation deviation used for each fringe pattern to average fractal dimen-
sion (FD) estimator values and thus mitigate numerical effects introducing
additional variance or bias into the estimation due to, e.g., moiré-like phe-
nomena (that has been observed to occur and have strong influence on graphs
generatedwithout averaging): −5° to 5° in equal 0.5° steps (resulting in 21mea-
surements per one data point).

The exact way of the patterns generation involved some additional trigonometri-
cal calculations. To check their form please refer to listing listing C.3 which include
key lines of code utilized by the procedure along with the comments explaining
their significance. In the key fragments of the lsiting a supplementary algorithm
to generate synthetic interferogram image with or without sinusoidal fringes phase
disruptions is presented. The code also serves for the purpose of testing the depen-
dency between fringes frequency and the esitmate of FD  of the pattern as well
as the degree of disturbance and FD  .
In four groups containing eight illustrative images in fig. 6.2 , there are fringe pat-

terns depicted that involve sinusoidal phase modulations to simulate interferogram
disruptions. There are both grayscale and binarised versions (different FD  estima-
tors make use of either monochrome or grayscale inputs) of data with: zero, slight,
moderate and big perturbations, i.e., disturbances having phase shift amplitudes
of, respectively, 0, 4, 15 and 500. The described images represent fringe patterns
having spatial frequency of fN

7
, that for the image coördinates range and resolution

being considered corresponds to single fringe spatial wavelength equal to about
14.3 px. This value has been chosen due to its compatibility with fringe structures
typically occurring within records of real data acquired in an in-vivo fashion.
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(a) Undisrupted:
Aφ = 0

(b) Visible disturbance:
Aφ = 4

(c) Medium disturbance:
Aφ = 15

(d) Severe disturbance:
Aφ = 500

(e) No disruption:
Aφ = 0 (binarised)

(f ) Visible disturbance:
Aφ = 4 (binarised)

(g) Medium distur-
bance: Aφ = 15
(binarised)

(h) Severe disturbance:
Aφ = 500 (bina-
rised)

Figure 6.2: Illustrative simulated image of fringes with different levels of sinusoidal phase
disruption – in grayscale (upper row) and after binarisation (bottom row).
Spatial frequency of fringes is fixed (with the value of roughly one seventh
of the Nyquist’s frequency). Phase disruption level increases from left (ideal un-
interrupted case) to right (significantly disturbed fringe pattern). Aφ denotes
the amplitude of the phase disturbance (in radians)



Part IV

P R A C T I C A L A S P E C T S O F F R A C TA L D I M E N S I O N
E S T I M AT I O N  F O R G R AY S C A L E I M A G E S

The f o l l ow i ng p a r t c on t a i n s o r i g i n a l c on t r i b u t i on – i t p r e s e n t s t h e r e s u l t s
o f t h e c on duc t e d r e s e a r c h .





7 M AT E R I A L S

7.1 lateral shearing interferometry  imagery∗

Interferometric images have been exploited in numerous scientific and industrial
applications. Among them, surface roughness examination and defect detection
in thin layers, such as human tear film surface quality (TFSQ) assessment, constitutes
a matter of continuously growing interest. Namely, in biomedical research studies
it increases its prevalence due to significance in non-invasive diagnostic methods
and accuracy [87 , 88 ].
In recent years, efforts have been undertaken to perform thorough interferomet-

ric image feature analysis by classical morphological image processing or by switch-
ing to frequential spectrum prior to performing the actual data analysis. Similarly,
attempts have been made to interpret interferograms as patterns, e.g., via gray-
-level co-occurrence matrix (GLCM) -based texture analysis [89 ], and to determine
their statistical parameters to qualitatively or quantitatively assess the useful informa-
tion contained within the image data [72 , 90 ]. There have been performed research
works regarding only one of these approaches, e.g., frequency-spectrum-wise anal-
ysis [73 , 91 , 92 ] or statistical texture analysis [93 ]. Also in some cases both of them
have been compared [94 ] in terms of efficacy or robustness for interferograms [95 ]
and, in general, medical imaging data [96 , 97 ]. To date, however, the utilization
of fractal dimension estimation (FDE) to lateral shearing interferometry (LSI) im-
age analysis and classification has neither been employed with practical applications
in empirical manner, nor systematically studied theoretically, even though it tends
to be widely tested approach in related medical fields [38 , 98 ] and other applications
demanding three-dimensional (3-D) shape features estimation of shaded or tex-
tured surfaces [20 ]. The aim of this thesis has been to perform such a fractal feature
analysis and to preliminarily evaluate its applicability, benefits over concurrent
methods that can be achieved with their utilization to this field and, finally, to iden-
tify potential pitfalls. These may occur when practical employment of the method
would be considered, especially in context of data gathered in an in-vivo manner,

∗ This section is based on author’s paper published in Applied Optics [74 ].
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Figure 7.1: The hardware setup of LSI  imaging system

while images are acquired under conditions of restricted control and may be subject
to considerable disturbances.
The section structure is structured as follows: section 7.1.1 presents the research

methodology, section 7.1.2 is focused on the results and their statistical analysis
while section 7.1.3 describes the conclusions and future recommendations.

7.1.1 Research methodology

Experimental setup

Experimental data have been collected by in-vivo means using the interfero-
metric device with lateral shearing configuration. The most important hard-
ware parts of LSI  apparatus, cf. fig. 7.1 , include: a He-Ne laser as the light
source, mirrors reflecting the beam, a collimator to expand beam to the desired
width of approximately 30mm [99 ], a beam splitter (8/92) directing the beam
towards the eye, a lens focalizing the beam on the cornea and a optical wedge dis-
tributing the light into two near-parallel beams (after reflection on the pre-corneal
tear film) and a charge-coupled device (CCD) video camera.

lateral shearing interferometry  data acquisition Data acquired
with LSI  apparatus have been gathered for two groups of human subjects: 69 healthy
patients and 41 diagnosed as suffering from dry eye syndrome (DES) . Measurements
have been performed under suppressed blinking condition (SBC) , i.e., the examined
subjects have been instructed to blink a few times and focus their sight on the appa-
ratus fixation target before measurements start. Subsequently, they have been asked
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to hold their eyes open for as long as possible, but for no longer than 30 s (maxi-
mum recording period for LSI  sequences) [73 , 91 ].
Used for the research have been 110 uncompressed audio video interleave (AVI) 

files, recorded in the resolution of 704 px× 576 px at 25 fps.
Twelve chosen instances of still LSI  images – extracted from AVI  sequences

– that have been recorded by the measurement unit are shown in figs. 7.2  and 7.3 .
Subjects that have been examined to obtain the LSI  data have also been assessed
for DES  using standard clinical measures independently of the interferometric
imaging. In a typical case of the resulting set of interferograms, after the stabilization
period of the tear film, the fringes’ disturbance is noticeably smaller for a healthy
patient (e.g., fig. 7.3c ) than for a dry eye syndrome  -affected one (e.g., fig. 7.2b ).
Also, the interblink time necessary for a complete deterioration of the tear film
tends to be significantly shorter for DES  patients class, e.g., 13.44 s in fig. 7.3f 

(where tear film condition has been so poor that it has forced the patient to blink
and the recording has been terminated shortly after) vs 29.80 s in fig. 7.2f  where tear
film has not been substanitally deteriorated even though the maximum recording
time has been reached, as recordings have been manually stopped after about 30 s,
cf. section 7.1.1 and [73 ].
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(a) 0.25 s (b) 6.25 s (c) 12.25 s

(d) 18.25 s (e) 24.25 s (f ) 29.80 s

Figure 7.2: LSI  – typical images for healthy human pre-corneal tear film shown
with recording time after blink

(a) 0.25 s (b) 3.25 s (c) 6.25 s

(d) 9.25 s (e) 11.92 s (f ) 13.44 s

Figure 7.3: LSI  – typical images for DES  -affected human pre-corneal tear film shown
with recording time after blink
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Procedures employed for TFSQ  indices assessment

Main research consisted of an automated procedure. Firstly, the determination
of one spectral and four fractal TFSQ  descriptor time vectors (with pre-process-
ing, background filtration, and spatial averaging) has been performed on the in-
terferogram sequences. This has been followed by simple or bisegmental lin-
ear regression and statistical analysis with extraction of 10 global (in the tempo-
ral division) features of tear film kinetics , which include three derived after lin-
ear regression and seven after bisegmental linear (for details see section 7.1.2 

and table 7.1  ). During next stage, the statistical tests for the abovementioned 

features as well as for the regression residuals (from which additional two fea-
tures have been extracted, giving a total of twelve features per measurement)
have been performed. Afterwards, the statistical distributions of these parameters
amid sequences have been derivedwithin each of the two groups of patients: healthy
and DES  -affected. This has been done using kernel density estimation (KDE) using
Epanechnikov’s kernel as it is the most efficient, i.e., optimal in terms of the low-
est possible asymptotic mean integrated squared error (AMISE) [100 ]. Finally, re-
ceiver operating characteristic (ROC) curves and areas under the curves (AUCS) 

have been calculated in order to compare visually and quantitatively the classifiers
constructed using different TFSQ  descriptors and statistical parameters of kinetics 

time series.
All of the descriptors have been calculated over the twenty 128 px× 128 px

subframes (the original images are 704 px× 576 px). If contrast of a subframe
has been detected to be too low (i.e., frame has been too dark), the frame
has been rejected during the pre-processing stage, after the initial vignette re-
duction and other detrending and filtering operations. Similarly, each of the re-
maining subframes is investigated in terms of its 0-th and 1-st spatial spectral
maxima and the depth of the valley between them – if it is too shallow (the image
is too blurred), such a subframe is also rejected. This rejection procedure is unified
for each TFSQ  descriptor to ensure the maximum likeness of the experiment condi-
tions and is performedwith respect to the raw input image, i.e., that has not been sub-
ject to pre-processing, to provide firm restrictiveness of the removal. Correspond-
ingly, the averaging of the subframes’ results to frame’s result is done in identical
way for all sequences – the calculated values are: median, mean, and standard de-
viation. For the further analysis, the median has been chosen as the most robust,
but the other ones have also been stored (in conjunction with each descriptor’s cal-
culation time per individual frame) to allow further analysis.
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thresholding in interfreometric data pre-processing Data pre-
-processing is an issue of particularly vital importance especially in case of LSI  based
interferograms analyzed by methods operating on binary images in conjunctions
with edge detection. In such cases, the boundaries – or contours – of the inter-
ferometric fringes need to be determined accurately in possibly the largest part
of the input image. Then, the binarisation is the critical point of the pre-processing
stage, as it destroys much of the data contained in the image. The goal is to re-
tain as much of the useful data as possible in the structure of the monochromatic
output while allowing the superfluous or redundant information to be taken out
with the removal of the grayscale quantization levels.

In the simplest case, the binarisation threshold may be constant for the whole im-
age and arbitrarily set to some value, e.g., half of the maximum image intensity.
Using an algorithm to optimize the threshold value is considered a better ap-
proach and to exploit Nobuyuki Otsu’s method [101 , 102 ] is a popular solution
with a large spectrum of implementations [103 ]. It is based on the minimization
of the intra-class intensity variance that in a binary case is equivalent to the maxi-
mization of the inter-class variance [101 ].
A more advanced approach involves adaptive thresholding – a form of thresholding

that takes spatial variations in illumination into account [104 ]. Locally adaptive im-
age threshold may be calculated using pixel-based local first-order image statistic [105 ].
It can be also fine-tuned by changing sensitivity of determining which pixels belong
to foreground and which to background, e.g., sometimes classifying more pixels
as foregroundmay be desired, even though it canmisclassify part of the background
pixels. Another parameter of this method is the neighborhood size used in computing
local statistics, typically a positive odd integer. As a rule of thumb, a size of ap-
proximately one eight of the image size is chosen as first approximation for giving
satisfactory results, e.g., in MATLAB’s built-in adaptthresh function it is computed
by default for image matrix I as 2*floor(size(I)/16)+1) [105 ]. First order local
statistics are used to compute local threshold value for a given pixel, i.e., a thresh-
olding level calculated in regard to the neighborhood of this pixel. One example
of such statistics is the local mean intensity, also referred to as Bradley’s method [104 ].
Also, the local median may be applied, though it is regarded as relatively slow
in execution and thus it is recommended to use this operator with smaller neigh-
borhood sizes [105 ]. Another commonnly used statistic is the Gaussian weighted
mean in the neighborhood. The most appropriate statistic may be chosen experi-
mentally or theoretically, e.g., if the distribution of the image data is known
and may be proven to fit well with one of known operators according to the crite-
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rion of interest. Further improvement in the results yielded by adaptive thresholding
may be achieved by experimentation with various neighborhood sized to chose
the optimal one for the investigated class of images. Adaptive change of the neigh-
borhood size is also possible, but due to its complexity in terms of introducing
internal layer of adaptability and therefore addition of a number of extra parameters
to be optimized, it is of scarce use as its benefits rarely outweigh the computational
and methodological overhead introduced by this method. A simpler and much eas-
ier from practical point of view approach may be to involve a neighborhood
that is anisotropic, i.e., based on non" one square operator matrix. In applica-
tions like LSI  -based images it may be particularly useful, as the intrinsic form
of the data is characterized by a high level of anisotropy. E.g., it may be better
to obtain the threshold by averaging the image along the interferometric pat-
tern rather than perpendicularly to it and across many fringes. In the latter case,
the lightness variability introduced by the fringe pattern itself could overshadow
the more subtle (or low-frequency) intensity changes of the background level.
Nevertheless, such fine-tuned optimization of the input data is of secondary im-
portance in the task of comparing different FDE  algorithms, as the data should
be cleared enough to be of suitable input form for all of them, but not necessar-
ily perfectly optimized. This would be of interest when a chosen fractal-based
method is accepted for practical deployment, e.g., and prepared for industrial
application – but such initial data optimization is not specific for fractal-based
analysis. Therefore, the pre-processing stage has been investigated in terms of op-
timization to achieve a procedure that removes most of the unwanted background
variations in a typical case, yet does not strongly alter or modifies the images
by excessive processing. Moreover, efforts have been made to apply the same pre-
-processing routine for all of the studied algorithms, so that the found differences
would not have been introduced by other factors than the properties of the investi-
gated methods.
Figure 7.4  presents the influence of the thresolding procedure on the binarisation

results for illustrative LSI  data. This directly applies to algorithms requiring binari-
sation, but not only to them, as it is described below . Comparison between fig. 7.4a  

and fig. 7.4c shows the advantage which adaptive thresholding has over Otsu’s-
-based constant approach in terms of revealing fringe pattern in the regions of image
that have uneven brightness level. This is further confirmed by comparison be-
tween fig. 7.4b and fig. 7.4d that shows increase in the total length of detected edges
in favor of adaptivemethod. This can be quantitatively assessed by counting the non-
-zero elements of both binary edge images that is a simple estimation of total length
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of the detected edges. Also, it may be noticed that as new edges have been detected
when introducing adaptive thresholding, virtually no loss in detection of edges
found with Otsu’s approach may be noticed. Such analysis comparing the amount
of detected edges and any potential losses for some regions has been the basis
for optimization procedure that allowed for setting the actual pre-processing pa-
rameters used for further research. Particularly, reducing the neighborhood size
about twice when compared to default value of MATLAB’s adaptive thresholding,
i.e., to about one sixteenth of the image size, has been found to further improve edge
detection efficiency. This may be observedwhen further visual inspection of fig. 7.4 

is done, i.e., comparisons between fig. 7.4c and fig. 7.4e and between fig. 7.4c 

and fig. 7.4f .
Figure 7.5 shows that, as it is mentioned above , the benefits of adaptive thresh-

olding are available not only for methods requiring binary input. Instead of us-
ing the detected threshold as the decision level for binarisation, it may be used
as reference value for background removal procedure. In some cased a subtraction
of the adaptively estimated background level (with correction applied by, e.g., intro-
ducing a proper constant positive offset of resulting values) may mitigate the irreg-
ularities in the illumination of the scene. Comparison may be made by performing
grayscale edge detection on the outputs and labeling the pixels in the following
manner: first class for non-edges, second for the ones detected by both approaches,
third for the ones detected only by the first approach and fourth for these de-
tected only vy the second approach. Numbers of pixels within the second category
may be counted to reveal the degree of the consistency between both results.
The numbers of pixels within the third and fourth categorymay be counted to show
their differential advantages. A visual insight may be accomplished by visualizing
the results with a binary image of common edges on backgroundwith two contrast-
ing colors imposed to mark edges detected only by single-approach. This allows
evaluating of the results of the adaptive thresholding and background removal
to be performed both quantitatively –basing on the values of the counted pixels –
– and qualitatively – basing on visualizations similar to the one presented in fig. 7.5 .
Such analysis has been performed on LSI  data to validate and refine the pre-pro-
cessing parameters obtained during the binary-based analysis illustrated by fig. 7.4 .
When the edge detection is of particular interest, results of two or more approaches
may be combined in a single map of edges – this could be suitable for pre-pro-
cessing of binary methods like, e.g., edge binary box-counting (EBBC) approach,
but not directly applicable for the grayscale ones. Therefore, such multi-approach
pre-processing variants have not been employed in the described research.
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(a) Constant threshold calculated using
Otsu’s method

(b) Edges detected in (a) 

(c) Adaptive threshold calculated using MAT-
LAB  ’s adaptthresh function with default pa-
rameters

(d) Edges detected in (c) 

(e) Adaptive threshold with neighborhood
about twice smaller than in (c) 

(f ) Edges detected in (e) 

Figure 7.4: Comparison of binarisation results for different thresholds and neighborhoods
(for clarity of presentation, values of the gray pixels – including the black
and white ones – are visualized in inverted intensity)
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(a) Whole frame

(b) Enlargement of a part of the frame (one sixteenth of the original image by surface)

Figure 7.5: An illustrative comparison of edge detection in grayscale on LSI  image – with-
out vs with adaptive background removal (grayscale inversion has been applied
as in fig. 7.4 ). Image data has been acquired for tear film surface of DES  -affected
patient. Pixels detected as belonging to edges in both images are rendered
in black, while these detected only in original and only in pre-processed
image – in blue and red, respectively
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spectral descriptor: −M2 Descriptor −M2 is additive inverse of spatial-
-average localized-weighted estimate of the first harmonic [94 ]. It belongs to a fam-
ily of frequency-spectrum-based descriptors build upon the morphological analysis
of the first-order carrier region of fast Fourier’s transformation (FFT) of an inter-
ferogram. In the used form, the lesser the image periodicity (and thus the more de-
teriorated the tear film surface), the lower below zero would be the value of −M2.

fractal dimension estimation  For completeness and ease of readibility
of this part of the thesis, some theoretical aspects, described in detail in part II ,
are reiterated here. The following fractal-based TFSQ  measures have been incor-
porated into the research.

(1) FD  BBC  

: binary box-counting (BBC) – performed on the subframe image
binarized using the adaptive threshold with optimized parameters. Opti-
mization is similar to adaptive background removal during pre-processing
and has been manually tuned for the best edge detection in a general case (giv-
ing possibly biggest total length of detected edges with acceptably low noise
influence).

(2) FD  EBBC  

: EBBC  – an application of box-counting (BC) method of FDE  

on image edges detected using Laplacian of Gaussian (LOG) method that –
– for this class of images – has been identified to be more sensitive and robust
than Sobel and less preferring closed loops than Canny operator. Edge detec-
tion is performed on an image binarized using the samemethod as for FD  BBC  

algorithm.
(3) FD  W-GBC  

: author’s implementation and concept of weighted grayscale BOX-

-COUNTING (W-GBC) algorithm utilizing information about the image be-
fore. It utilizes a specifically designed effective matrix algorithm for weighting
box values during rescaling with halving the image size based on p-norms,
q.v. eq. (7-1) :

∥x∥p
.
= (

n∑
i=1

|xi|
p
)

1
p

. (7-1)

Namely, 1-norm, 2-norm and ∞-norm might be used using the precon-
figured function parameters with the latter one being chosen as the default
due to giving more accurate result despite lacking the advantage of efficiency.
In practical implementations ∞-norm is based on the maximum operator,
as in eq. (7-2) :

∥x∥∞ .
= max

i
|xi|. (7-2)
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The algorithm utilizes block processing to optimize computational demand
of searching for the maxima, but nonetheless it is still over an order of mag-
nitude slower than the matrix variant.
The presented results (apart from figs. 7.6 and 7.6A ) have been gathered
for slightly different (faster and less accurate) scaling method utilizing MAT-

LAB’s imresize function.
To maintain simplicity, when no other acgbc variants are considered than W-

-GBC  , FD  W-GBC  

is sometimes denoted as just FD  GBC  

. It applies to cases
whenW-GBC  has been used as the sole representative of the family of grayscale
BOX-COUNTING (GBC) -based methods, as in previous research its results
have been assessed as the most promising. This consideration does not pertain
to other grayscale  -based methods whose abbreviations used in this thesis
does not contain the ‘GBC  ’ core, e.g., differential BOX-COUNTING (DBC) .
For this purpose, these are classified as belonging to separate families of me-
thods due to fundamental algorithmic differences between them and the nar-
row-sense GBC  -based class.

(4) FD  DBC  

: author’s implementation of N. Sarkar and B. B. Chaudhuri’s DBC  

algorithm [17 ]. It uses information about image intensity as the third di-
mension (works in grayscale location-intensity space). This is the basic ver-
sion of the algorithm without further numerical optimizations proposed
by the original [31 ] and other [28 ] authors. That is probably one of the rea-
sons of its poor empirical efficacy, as this class of methods might require
specific randomization to maintain their sensitivity in presence of periodic
patterns (frequent in LSI  images) or small intensity variation.

Synthetic interferometric data analysis

space-wise analysis Thorough analysis of the output data of the synthesized
fringe patterns has been performed in a mostly automated manner.
Figure 7.6 depicts the initial, but crucial stage of the image processing: subframe

selection, TFSQ  estimates calculation and averaging. Here, smaller numbers im-
posed below TFSQ  estimator values describe empirically determined calculation
times that are auxiliary information. A synthetically generated frame that includes
centrally placed Gaussian phase disturbance is used as input data in frames (a) 

to (e) . Spectral descriptor −M2 is presented for frames (e) to (h) showing examples
of different tear film classes (including simulated and real ones). There, contact lens
frame (h) depicts tear film deterioration even worse than in case of DES  -affected
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(a) FD  EBBC  

, synthetic frame (b) FD  BBC  

, synthetic frame

(c) FD  W-GBC  

, synthetic frame (d) FD  DBC  

, synthetic frame

Figure 7.6: Interferogram frames visualization with subframe division and TFSQ  esti-
mates. For a synthetic frame, fractal-based descriptors (a) to (d) are used
with spectral reference (e) . Illustrative spectral descriptor values are presented
for synthetic (e) as well as in-vivo frames (f) to (h) 

eye (g) where, in turn, tear film is more degenerated than on the surface of a healthy
cornea (f) .
The obtained simulation-based results are presented in fig. 7.7  . The purpose

of this examination has been to assert that a basic fractal dimension (FD) estimator
is able to measure slight frequency changes (that occur locally around tear film
break-ups) and to determine the noise-like phase disturbance threshold that ren-
ders these measurements useless. Note that FD  values for the fringes which have
disruptions above the noticeable level are of low variability. Moreover, these val-



108 materials

(e) −M2, synthetic frame (f ) −M2, healthy eye

(g) −M2, DES  -affected eye (h) −M2, contact lens

Figure 7.6A: Interferogram frames visualization with subframe division and TFSQ  esti-
mates. For a synthetic frame, fractal-based descriptors (a) to (d) are used
with spectral reference (e) . Illustrative spectral descriptor values are presented
for synthetic (e) as well as in-vivo frames (f) to (h) (cont.)
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ues converge to the noise level. This is especially visible in the enlarged part,
i.e., in fig. 7.7b . Concluding, a reliable FDE  -based TFSQ  descriptor should react
to changes in the structure of the tear film that are revealed by local fringe anomalies.
Nonetheless, it ought not to overreact, i.e., it is supposed to interpret high dis-
turbances (or even moderate ones occuring in the upper part of the frequency
spectrum) as being indiscriminate against the randomnoise. As stated in section 6.1.1 ,
the typical LSI  of a tear film has dominating dominating fringes’ frequency around
one seventh of its Nyquist’s threshold. Therefore, a major part of the image vari-
ability is expected to take place in the lower part of the frequency spectrum,
at least until the interferometric image is not degenerated by extreme distur-
bances in examined tear film surface topography. These may introduce patterns
that have much wider bandwidths and unpredictable peaks of their frequential
components that cause the influence of the initial pattern frequency to be too faint
to be plausibly detectable as also shown in fig. 7.7a .

supplementary spatial-frequency-wise research Algorithm devel-
oped to visualize the dependency between spatial frequency of the interference
fringes together with the amount of phase disruption in their periodic pattern
returns a family of plots also storing the figure into a graphics file. In the produced
picture one can distinguish two types of convergence (cf. fig. 7.7 ). They are interde-
pendent with two classes of structural fringe disruptions described in the following
text.

(1) The first class, within which the introduced pattern disturbance is of slight
to moderate degree that do not prevent FD  estimator of the image to converge
to the value noticeably higher than a characteristic threshold with increasing
frequency. This stabilization level has been determined empirically to be
the expected FD  estimator value for a binary noise with the probability
of taking value of 1 with probability p = 1

2
. That makes this class of im-

ages distinguishable from noise even for very high frequency with a level
of disruption that visually might appear to be close to quasi-random signal.
This sub-group of plots includes:

(1a) complete lack of disruption – an ideal case (sinusoidal phase disturbance
amplitude equals to 0);

(1b) noticeable disruption (sinusoidal phase disturbance amplitude equal to 4);
(1c) moderate disruption (sinusoidal phase disturbance amplitude equal to 15);
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(a) All investigated cases

(b) Enlargement of the ordinates (vertical) axis around the random noise FD  BBC  

level asymptote

Figure 7.7: Supplementary simulative experiment results – FD  BBC  

estimates for different
fringe frequencies (from zero to Nyquist) at different disruption levels



7.1 lateral shearing interferometry imagery 111

(1d) significant disruption (sinusoidal phase disturbance amplitude equal
to 110).

(2) The second class, for which the disorder grade is sufficiently high to make
FD  estimator of their pattern converge from below to the aforementioned 

noise level. Plotted values of vectors tend not to exceed this noise threshold
by more than a relatively small (due to intense averaging) estimator variance
margin. This class includes:

(2a) strong disruption (sinusoidal phase disturbance amplitude equal to 500);
(2b) extremely strong disruption (sinusoidal phase disturbance amplitude

equal to 10 000).

In the axes there is also an additional plot for a big disruption of intermediate conver-
gence not belonging completely to any of the two groups mentioned above . Its si-
nusoidal phase disturbance amplitude has been set to the value of 275 that places it
in-between of these two, otherwise well-separated, classes.
Moreover, to increase the readability of the plot, the referential FD  value

corresponding to the random binary signal with 50% probability of success
in Bernoulli’s trial of each data point has been indicated with thick dashed black
line.

Real data analysis – software implementation

The input video file represents a time series and thus while internal TFSQ  estima-
tion algorithms calculate their output values, they operate on individual images
and on not the whole sequence at once as in the fig. 7.8 depicting the data flow
in numerical procedures. The first step of data analysis is reading of AVI  video file
containing LSI  sequence. Then, detection and rejection of blinks as well as blur
areas or whole frames (by discarding subframes of insufficient contrast) is per-
formed. The next data processing stage involves the calculation of time series
with TFSQ  indices including four fractal-based for investigation and one spec-
tral-based for reference. Following this, adaptive linear/bisegmental linear fitting
is applied. Finally, statistical analysis providing 10 parameters regarding regression
trends and the distributions of the residual vectors is performed.
Additionally, as blink periods are detected before the pre-processing stage, blink-

classified frames are discarded as well as frames containing more than 6 subframes
(out of 20 subframes in total) rejected due to blur. Thus, a set of images from AVI  

file to be further analyzed might be much incomplete and the total amount of time
needed to process two apparently comparable videos may substantially vary.
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AVI

BLINK

DETECTION

FD
EBBC2 FD

BBC
FD

GBC
FD

DBC

SET OF STATISTICAL 

PARAMETERS

offsetsslopes

means intersect.

residuals: µ, σ

LINEAR FITTING (SIMPLE/BISEGMENTAL)

Figure 7.8: The automated data processing flowchart for the main algorithm. Major steps
include: (1) reading AVI  file, (2) blink and detection/rejection, (3) indices
calculation, (4) adaptive simple/bisegmental linear fitting and (5) statistical
analysis providing 10 parameters regarding regression trends and distributions
of residues
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Methods for statistical analysis

The battery of various statistical tests is used during the analysis process. Initially,
log-likelihood-ratio test is performed to determine whether linear regression
would remove significant amount of useful information regarding dynamic changes
of TFSQ  time series. Besides, the outliers’ removal procedure by means of modified
(iterative-recursive) Thompson’s τmethod is employed. After applying the suitable
regression model, the descriptive statistics are calculated, with the supplemental role
of one-sample Kolmogorov–Smirnov’s test for normality (that might be replaced,
e.g., by Jarque–Bera’s test) to confirm the adequacy of the simple or bisegmental
linear model. Table 7.1 presents includes the set of the 10 statistics calculated to find
the descriptor used for classification along with two additional parameters derived
from regression residues.

Computational aspects

Numerical computations have been performed in MathWorks MATLAB  9.0 R2016a
up to 9.7 R2019b Prerelease environment on a 64-bit MS  Windows 10 PC  

with the hardware configuration encompassing the following components: Intel
Core i7-4910MQ CPU  at 2.90GHz, 32.0GB RAM  (dual-channel DDR3  SDRAM  

at 798MHz) and SSD  mass memory (1TB Samsung 850 EVO).

7.1.2 Results and analysis

The obtained TFSQ  time vectors have been subject to intermediate processing,
i.e., initial 0.5 s margin excluding it completely from regression (due to frequent
and large instabilities of the tear film during early buildup) and final 0.5 s mar-
gin excluding it from bisegmental linear regression intersection point searching,
but not from the regression itself (due to excessive risk of overfitting bisegmental
linear trend to a few data points if the rest of the vector is flat enough). Two exam-
ples (healthy eye and DES  ) of visualization of this approach and its results are shown
by fig. 7.9 .
The final stage, after performing regressions, statistical tests, and KDE  of the ex-

tracted TFSQ  features, encompasses ROC  curve and its AUC  value calculation –
– the closest the value would be to 100%, the better the classifier build upon specific
TFSQ  descriptor and its time vector regression feature (50% represents a random
guess and0% – the anti-perfect classifier). The results can be presented in a way easy
to graphically interpret and cases of some relatively plausible classifiers is depicted
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(a) Normal subjects

(b) DES  subjects

Figure 7.9: TFSQ  index time series estimation using different approaches – illustrative
cases where spectral- and fractal-based procedures for descriptor estimation
performed similarly well returning consistent results – a typical situation
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Linear: mean

(a) Best of all cases – mean value of linear regression: 82.4%

Bisegmental linear, I: mean

(b) Best of bisegmental linear cases – mean value of the 1-st section of bisegmental linear regres-
sion: 77.3%

Figure 7.10: Illustrative ROC  curves – two of overall best cases with highest AUC  value
for the whole set of descriptors (−M2 and all FDS  )

in fig. 7.10 . Plotted graphs represent classifiers constructed upon five different TFSQ  

estimators by using their mean value from the linear regression as a discriminant
feature.

AUC  percentages calculated for all 10 parameters derived after regression to-
gether with two parameters of residuals are shown in table 7.1 . The best classifier
in terms of AUC  would be created of −M2’s linear regression means (82.4%),
but the equivalent of FD  BBC  

(78.6%) is probably not significantly worse, specifi-
cally if one takes into consideration its other ascendancies described below .
One-sample Kolmogorov–Smirnov’s test (with the null hypothesis that the data

comes from a standard normal distribution) has been used to assess the normality
of the regression residuals. This has been motivated by the need for confirmation
of the data homoscedasticity that is required to recognize the linear regression ap-
proach as an appropriate method of parameter estimation. The results are presented
in table 7.2 .
The information that the majority of TFSQ  time vectors (for which the null hy-

potheses have not been rejected) might be treated as having the same kind of the dis-
tribution of the residual lead to a question whether parameters of their distribu-
tion, namely mean value and variance, carry any useful information that might
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Table 7.1: AUC  values of ROC  curves for considered DES  detectors: 10 statistics of TFSQ  

time distribution together with two parameters of the distribution of TFSQ  

residuals; 100% corresponds to the ideal classifier, 0% to random guess

Regression Time
vector

parameter

Area under the curve / %

TYPE SEG-
MENT −M2 FD  EBBC  

FD  BBC  

FD  W-GBC  

FD  DBC  

AVERAGE
OF FDS  

simple
linear whole

slope 67.4 51.9 59.5 46.9 65.5 56.0
offset 62.1 65.2 67.1 66.7 53.8 63.2
mean 82.4 67.5 78.6 65.1 50.0 65.3

biseg-
mental
linear

1st
slope 54.6 42.8 54.1 58.7 46.9 50.6
offset 68.8 53.8 55.7 52.9 46.5 52.2
mean 77.3 68.2 73.8 69.5 51.8 65.8

2nd
slope 62.7 57.8 58.4 46.7 55.8 54.7
offset 53.1 60.3 61.3 54.0 54.9 57.6
mean 79.8 62.1 76.6 66.4 48.2 63.3

whole tbreakpoint 59.1 60.3 63.8 52.5 50.7 56.8

resid-
uals* whole

mean 57.4 52.8 51.2 53.0 59.6 54.2

variance 75.1 73.3 70.5 72.9 52.9 67.4

* Derived from either simple or bisegmental linear fit (depending on the result
of log-likelihood-ratio test).
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Table 7.2: Fractions of one-sample Kolmogorov–Smirnov’s descriptor distribution nor-
mality tests passed (p < 0.05) after outliers filtration within two groups of pa-
tients: control (69 subjects / 345 tests) and positively diagnosed for DES  by experts
(41 subjects / 205 tests)

TFSQ  

descriptor
Fraction of passed tests / %
CONTROL DES  

−M2 91.3 87.8
FD  EBBC  

92.8 97.6
FD  BBC  

52.2 87.8
FD  W-GBC  

94.2 92.7
FD  DBC  

72.5 82.9

average 80.6 89.8

be exploited to compare or classify patient groups in terms of different TFSQ  

descriptors. To investigate this matter further, these two residual-based properties
have been added to test set of statistical parameters.
Before applying the normality test, the data has been filtered out of outliers.

This removal has been performed using the modified (iterative-recursive) Thomp-
son’s τ method. Out of 550 measurements conducted in total, the worst case
has been 18.1% of outliers, and average has been 4.5% with the best cases contain-
ing no detected outliers.
Wilcoxon’s rank sum (Mann–Whitney’s U) non-parametric test has been used

due to relatively small sample size, q.v. table 7.3 . Little sample constitutes a draw-
back in case of normality test that is required before applying a stronger paramet-
ric Student’s t-test (as this test assumes of the distribution). Nevertheless, t-test
has been performed to endorse theWilcoxson’s results, as they have been fully accor-
dant, i.e., both tests have exhibited null hypothesis rejection occurring for exactly
the same instances. For almost all instances of TFSQ  descriptors the variance of resid-
uals would serve as discriminant between healthy eye and DES  , albeit in case of DBC  

algorithm the better choice would be sequence TFSQ  mean value of the residuals.
To perform the assessment of the diagnostic ability of a binary classifier sys-

tem constructed upon the discussed parameters of residuals variation, a set of ROC  

curves has been constructed for them. For each characteristic curve in this set, AUC  

(the concordance statistic) and Youden’s J statistic (informedness) have been deter-
mined. For more information about these summary statistics refer to appendix B .
ROC  curves together with the calculated statistics are presented in fig. 7.11 .
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Table 7.3: Wilcoxon’s rank sum tests p-values for mean and variance values of distribu-
tions of simple or bisegmental linear regression residues. Highlighted (bold)
are tests passed with respect to p < 0.05 criterion (i.e., whose null hypothesis
about equal distribution medians for µ̂res. or σ̂2

res. within both subject groups
has been rejected)

TFSQ  

descriptor

p-values for distribution
parameters

µ̂res. σ̂2
res.

−M2 0.143 < 0.001
FD  EBBC  

0.447 < 0.001
FD  BBC  

0.422 < 0.001
FD  W-GBC  

0.711 < 0.001
FD  DBC  

0.029 0.422

(a) −M2

(b) FD  EBBC  

(c) FD  BBC  

(d) FD  W-GBC  

(e) FD  DBC  

Figure 7.11: ROC  curves for classifiers based on statistical parameters of simple or biseg-
mental linear regression residues of various BC  -based FDE  algorithms
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Table 7.4: Computational efficiency analysis – statistical parameters of empirically obtained
global execution times per LSI  video sequence: the mean and the coefficient
of variation estimates. Highlighted are the procedures evaluated as the fastest
(bold) and the slowest (italicized)

TFSQ  

descriptor
Statistical parameter
µ̂ / s ĉV / %

−M2 38.3 50.4
FD  EBBC  

44.6 50.0
FD  BBC  

28.0 49.8
FD  W-GBC  

43.6 50.3
FD  DBC  

123.7 50.4

Computational efficiency

lateral shearing interferometry  data The last and additional stage
of the main research has been to assess empirical computational demand of im-
plemented algorithms. Results of CPU  time measurements are shown in table 7.4 

which presents averaged calculation times per AVI  sequence of lateral shearing
interferograms for five algorithms as well as variability coefficients of these val-
ues within algorithm classes. BBC  algorithm proved to be the simplest, in terms
of implementation, and thus the fastest one among the considered set of algorithms.
The results of other estimates, including the spectral one (−M2, q.v. section 7.1.1  ),
are similar, with the exception of DBC  which computations have been substantially
slower.

synthetic fractals Table 7.5 depicts CPU  computation times measured
for three classes of synthetic fractal images generated using Dietmar Saupe’s rescale-
-and-add (RAA) method (as depicted in fig. 5.1 ) of size 512 × 512 px. Time mea-
surements have been averaged over D values ranging from one to two in steps
of 0.05, i.e., the same D vector as used in figs. 5.2 and 5.3 .
Figure 7.12 presents CPU  computation times measured for RAA  -based frac-

tal images as well as for Gaussian noise images. Depicted in semi-logarithmic
scale are the lowest computation times among a number of iterations equal
to 1000 for images of side length L equal to 32 px, 316 iterations for L of 64 px,
and 100 for all images of L larger than 64 px. In the right-hand-side end of the fig-
ure, about k = 15.6 to 15.7, it may be noticed that W-GBC  in its basic variant
WEIGHTED GRAYSCALE BOX-COUNTING based on max operator (W-GBC-MAX) 

overruns computational speed of DBC  . Worth noting is that DBC  algorithm
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Table 7.5: Averaged (overD) computation timesmeasured for three classes of Saupe’s RAA  -
-based synthetic fractals – square images of side length L equal to 512 px –with dif-
ferent values of lacunarity parameter r. Calculations performed in MATLAB  

environment

Lacunarity
parameter r

Mean computation times / s

BBC  P-GBC-IMG  P-GBC-INT  W-GBC  DBC  

√
2 1.76 3.63 25.98 1.85 0.17
2 2.14 4.35 32.39 2.18 0.20
4 2.15 4.31 32.43 2.18 0.18

average 2.02 4.09 30.27 2.07 0.18

is referenced to in the literature as ‘efficient’ and ‘fast’ [17 ]. W-GBC-MAX  utilizes
max operator which is a special case of generalized mean with infinite expo-
nent p = +∞. Such special case has been implemented in MATLAB  environment us-
ing blockproc function, and other cases with finite exponents can be implemented
in a more efficient way using two multiplications of image matrix by an auxiliary
matrix. E.g., if input image is I there may be defined a matrix A such that AIAT

gives the desired results. The actual implementation of this technique is presented
in listing C.1 (line 349 ). What is more, generalized means with infinite exponents,
i.e., min and max operators, may be approximated with this approach by using
arbitrarily large, yet still finite, substitutes. An example of such efficient imple-
mentation being significantly faster than both DBC  and W-GBC-MAX  especially
for smaller images is shown in the figure as WEIGHTED GRAYSCALE BOX-COUNT-

ING based on avg operator (W-GBC-AVG) . It utilizes a case of generalized mean
with exponent p = 1, i.e., arithmetic mean, but as long as the exponent is finite,
it may be set to virtually any value without a significant impact on computa-
tional overhead of the procedure. Therefore, a fine approximation of W-GBC-MAX  

may be implemented using this improved efficiency approach to achieve computa-
tion times about two orders of magnitude faster than DBC  for image side lengths L
up to at least 2048 px.
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Figure 7.12: Calculation times for Saupe’s RAA  -based fractal images together with Gaus-
sian noise images – minimal computation times among a number of iterations
equal to 1000 for image side length L equal to 32 px, 316 iterations for 64 px,
and 100 iterations afterwards (ordinates in logarithmic scale)

7.1.3 Coherence analysis

Additional implementation of coherence analysis procedure – frequential simi-
larity

A preliminary research has been performed to demonstrate that coherence anal-
ysis constitutes a suitable tool to assess the resemblance between two time series
of TFSQ  descriptors in terms of frequency spectrum components. To determine
whether their vectors undergo variations in a correlated manner and evaluate
quantitatively the degree to which this similarity holds, one can exploit coherence
analysis.
The algorithm utilized for generation of the examples presented in fig. 7.13 

firstly interpolates any signal to be analyzed. This is done by applying piecewise
cubic Hermite interpolating polynomials that complement the data lacking some el-
ements or intervals of TFSQ  vectors, as they have been generated only for frames
that have met all the criteria described in 7.1.1 . Specifically, motion-blurred frames
have been selected and rejected; also, after frame segmentation, low contrast sub-
frames have been dismissed. Then, linear detrending is performed on both signals
to be compared to remove offsets and constant first order variability. Thus, cyclic
features are exposed. Subsequently, magnitude-squared spectral coherence coefficient
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Figure 7.13: TFSQ  index time series estimation using different approaches – an illustrative
case of a normal (i.e., DES  -free) subject where spectral-based procedure
for descriptor estimation performed better than its fractal-based counterparts.
Plot data of −M2, FD  EBBC  

and FD  BBC  

has been used as input for analysis
depicted in fig. 7.14 

function Cxy(f) is estimated numerically by using MATLAB’s mscohere tool. Dur-
ing that process, Philip D. Welch’s averaged modified periodogram method [106 ]
is employed with signal being split into eight segments with 50% overlapping
andHammingwindow of one-segment length. Finally, the script plots dependency
between spectral coherence and signal frequency as a figure. One reference signal
is to be chosen in advance (namely, usually it would be M2-based spectral descrip-
tor used as a benchmark for fractal-based ones) and two other TFSQ  measures
to be comparedwith it. Both signals are comparedwith the referential one. Two co-
herence plots are graphed into the figure to show how these two signals differ
from the reference in respect of their frequential spectra. A sample graph of spectral
coherence analysis is provided in fig. 7.14  . As the degree of similarity between signals,
as perceived by the observer, is only a rough approximation of the real amount
of information that both of them share, such coherence is often used as an objective
measure of the correspondence between time series. The illustrative coherence
analysis in fig. 7.14 encompasses two pairs of TFSQ  estimate vectors from fig. 7.13 :
−M2(t) with FD  EBBC  

(t) and −M2(t) with FD  BBC  

(t). It supports the conclu-
sion that the later pair is more closely connected. This, in turn, is consistent
with an observation that in a typical case the more visually similar two signals are,
the more coherent they tend to be (within at least a significant part of their spectra).
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Figure 7.14: An example of coherence analysis plot for −M2 with FD  EBBC  

and FD  BBC  

(based on data from fig. 7.14 )

Partial conclusions and future recommendations

The conducted research togetherwith the analysis of the results have led to threemain con-
clusions:

(1) the application of FDE  to interferometric image analysis is relevant;
(2) the differences present in FD  definitions [1 , 6 , 7 ] has significant impact on dif-

ferentiative abilities of and classification methods utilizing FDE  algorithms
based on different definitions or different estimators of the same quantity;

(3) there is at least one empirical FD  -based TFSQ  parameter (FD  BBC  

) provid-
ing classification power comparable to the reference frequency-spectrum-
-based algorithm (, q.v. section 7.1.1 ) whereas maintaining at least two aspects
of prevalence over its frequency-spectrum-based counterpart:

(3a) shorter time of calculations that indicates better computational efficiency
(as in case of FD  BBC  

, nonetheless this does not hold true for other ex-
amined algorithms, q.v. table 7.4 );

(3b) possibly much stronger robustness to aperiodicity and thus disruption-
-proofness caused by the independence of FD  -based TFSQ  estimation
of the possibility and accuracy of the spatial carrier frequency deter-
mination, whereas this constraint strongly limits the applicability area
of the spectral algorithm class.

It is unlikely to experimentally explore all available FDS  by systematically investi-
gating their estimators. Nonetheless, a set of the ones chosen during the following
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study has been proposed. There might also exists a new BC  FD  estimator well-
-suited for this particular application that could be designed basing on the theoretical
analysis as well as numerical experiments.

future recommendations The future work may encompass:

(1) to propose set criteria which could be employed for the specific image pro-
cessing application as currently there are no such widely-established stan-
dards known;

(2) to define clear conditions for deciding which FD  estimate is best in terms
of some image processing aspects; this possibly would be difficult to accom-
plish due to multicriterial estimator choice with possibly mutually exclusive
optimization scenario, e.g., when minimum-variance unbiased estimator
(MVUE) would not exist:

(2a) Alternatively, adopt a simpler yet perhaps promising approach of ex-
tensive experimental comparison of carefully selected FD  estimates
and their utility in desired applications.

7.2 usc-sipi  imagery∗

Figure 7.15 depicts six illustrative USC-SIPI  test textures. USC-SIPI database
contains various textural images together with high altitude aerial photogra-
phies, miscellaneous generic imagery, e.g., animal and vehicle pictures, as well
as some short image sequences. Of them, images containing textures has been
of interes for the described research. The said database has been developed
as a collection of digitized images at the Signal and Image Processing Institute
of the University of Southern California . Since its initial distribution in 1977
it has been expanded a few times and, as it has been shared for usage in research
purposes for many decades, now it is a popular test set serving for experimental
purposes. Due to the described circumstances, this database constitutes an use-
ful texture data source for benchmarks involving analysis of the image process-
ing algorithms. Prior to the usage of USC-SIPI  textures collection as an input
to FDE  algorithms, 25 texture images of size 1024 px× 1024 px from the database
have been downscaled to match 512 px× 512 px size of the remaining 39 texture
images. Subsequently, all 64 texture images of size 512 px× 512 px have been con-

∗ This section is partially based on author’s coäuthored paper submitted to IEEE  Access [62 ].
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(a) Brodatz - Bark (D12) (b) Brodatz - Brick wall
(D94)

(c) Brodatz - Brick wall
(D94 H.E.)

histogram equalized
version of (b) 

(d) Tile roof (e) USC texture mosaic #2
(info)

gray-level texture
map with regions
of four different sizes

(f ) USC texture mosaic #3
(info)

gray-level texture map
with non-horizontal
and non-vertical texture
boundaries

Figure 7.15: Illustrative images from the set of 64 textures from USC-SIPI  database
of 155 test images in 8-bit grayscale [107 ]

verted to grayscale and saved as image files of lossless portable network graphics
(PNG) format to be read by image MATLAB  environment and further processed.
Figure 7.16 depicts a comparison of results of FDE  performed using various

algorithms: probabilistic GRAYSCALE BOX-COUNTING based on image probabil-
ity space (P-GBC-IMG) , probabilistic GRAYSCALE BOX-COUNTING based on in-
tensity probability space (P-GBC-INT) , W-GBC  , DBC  and BBC  . Estimation
has been done for the set of 12 simple synthetic images, q.v. fig. 3.4  in section 3.2.4 ,
that are not to be confused with synthetic fractal images that are furhter elaborated
on in section 7.1.2 , cf. fig. 5.1  , as well as for USC-SIPI  8-bit grayscale test textural
image data [107 ].
A distinction may be made between two approaches to FRACTAL DIMEN-

SION estimation  that exploit FD  P-GBC-IMG  

descriptor to distinguish them clearly.
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(a) Synthetic images and USC-SIPI  textures

(b) Synthetic images and USC-SIPI  textures – enlargement of the clusters of USC-SIPI  data FD  es-
timates

Figure 7.16: Comparison of FD  estimates calculated using different methods:
FD  P-GBC-IMG  

, FD  P-GBC-INT  

, FD  W-GBC  

and FD  DBC  

with FD  BBC  

for 12 synthetic images presented in fig. 3.4 and 64 USC-SIPI  textures
(8-bit grayscale test images) [107 ] presented with examples in fig. 7.15 
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Figure 7.17: Comparison of FD  estimates calculated using FD  P-GBC-IMG  

and FD  P-GBC-IMG-GLB  

estimators for 12 synthetic images presented
in fig. 3.4 and 64 USC-SIPI  textures [107 ] presented with examples
in fig. 7.15 

Namely, such discrimination can be useful to discriminate P-GBC-IMG  and proba-
bilistic GRAYSCALE BOX-COUNTING based on image probability space: globally cal-
culated variant (P-GBC-IMG-GLB) 

† methods. Figure 7.17 depicts the result of com-
parison between them for synthetic and USC-SIPI  data. It should be noted that FDE  

algorithm performance might be strongly dependent on the kind of the input im-
agery data, as P-GBC-IMG  variant has been rather consistent with the classical
BBC  approach for the synthetic data while producing result being practically
uncorrelated with the output of the referential BBC  algorithm for USC-SIPI  tex-
tures. Conversely, P-GBC-IMG-GLB  variant of the method has not performed well
for both classes of images.
In conclusion, it must be emphasized, that the class of the images being under in-

vestigation is of substantial importance for the course of FDE  and its results. Neverthe-
less, when comparing figs. 3.5 , 3.7 , 5.2 , 5.3 , 7.16 and 7.17 , a findingmay be also drawn
that regards only the classes of images that do not comprise data of purely artifi-
cial origin. Such restriction excludes both the simple and Saupe’s synthetic classes.

† For the definition of P-GBC-IMG-GLB  – as well as probabilistic GRAYSCALE BOX-COUNTING
based on intensity probability space: globally calculated variant (P-GBC-INT-GLB) – see chapter 4 .
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They are illustrated by fig. 3.4 and fig. 5.1 , respectively. That is to say, for such subset
of input data not all dependencies might rely on the peculiar structure of the im-
ages. In particular, vast uncorrelated regions of clusters containing data points
for DBC  and – at least to some degree – P-GBC-INT  FD  estimators are not limited
to just one type of images. Conversely, they rather tend to extend to the consider-
able majority of the investigated non-synthetic input data.



8 A U X I L I A R Y R E S E A R C H
O N B O X - C O U N T I N G  

Figures 8.1 and 8.2 present visualisations of FDE  procedure. Note that due to miti-
gation of boundary effects by applying cut-off on extremities within box sizes se-
quence in fig. 8.1 , the smallest box included into fractal dimension estimation (FDE) 

is at least of size 2 px× 2 px or larger such that the considered numbers of boxes
do not exceed (210−1)2 = 5122 = 262144 (due to the possibly very long time re-
quired to complete max operations on all boxes performed by MATLAB’s blockproc

functions when maximum-based variant of resize function is used for image
downsampling). Similarly, the largest considered box size is a square of the side
length being one eight of the input image side length so the minimal considered
number of boxes is (22+1)2 = 64.
Figure 8.2 shows how omitting the aforementioned cut-off stage would affect

linear regression in FDE  algorithm and its result for input images from fig. 8.1 .
Particularly, in fig. 8.2b there are clearly visible deviations from straight line
near extremes. These deviations does not occur in fig. 8.2a and fig. 8.2c , never-
theless, when setting a general use cut-off thresholds, it must be bear in mind
that sacryfying some of the non-deviated extreme data points in such cases might
pay off by reducing bias in deviation-affected ones. Thus, the thresholds in devel-
oped implementation have been chosen as a trade-off between retaining a reason-
able amount of data used for linear regression and having the regression possibly
unaffected by undesired boundary effects.
Figure 8.3 regards the effect of initial scaling (e.g., that might be applied by re-

sizing during the pre-processing stage) of the input image on FDE  process im-
plemented utilizing weighted grayscale box-counting (W-GBC) . The plots show
how interpolation of the input data might affect the output fractal dimension
(FD) estimate suggesting that there is a lower limit for the initial image size.
This limit – in the mentioned cases – is about (500 to 1000) px. For smaller images,
the value become noticeably biased. This in turn introduces a degree of unreliabil-
ity into the result. In fig. 8.3a the border of this bias is sharp (just above the scale
of 2) while in fig. 8.3c  FD  estimates lower rather gradually as the input im-
age gets smaller. The bias observed when analyzing images that in this context
might be considered too small is negative until they become much smaller. Fi-

129
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(a) A thin straight section (img1 shown in fig. 3.4a )

(b) A thick straight section with thinning lower ending surrounded by two single points on left
and right image borders (img3 shown in fig. 3.4c )

(c) Sierpinski’s triangle in grayscale (img11 shown in fig. 3.4k :)

Figure 8.1: Illustrative FDE  calculations visualized for individual synthetic images usingW-
-GBC  (note that the box sizes of extreme values have been cut off )
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(a) A thin straight section (img1 shown in fig. 3.4a )

(b) A thick straight section with thinning lower ending surrounded by two single points on left
and right image borders (img3 shown in fig. 3.4c )

(c) Sierpinski’s triangle in grayscale (img11 shown in fig. 3.4k )

Figure 8.2: Illustrative FDE  calculations visualized for individual synthetic images us-
ing W-GBC  (note that in contrast to fig. 8.1  the cut-off of box sizes sequence
has not been applied for demonstrative purposes)
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nally, for fig. 8.3a and fig. 8.3c as the image reach the side length of about (20
to 25) px the bias becomes positive. The observed absolute bias of FD  estimates
has been varying and reached values exceeding 0.4. Clearly, such level of uncer-
tainty would be a non-negligible issue in many of the practical applications of FDE  .
Therefore, in a scenario when the large input image to be analyzed is to be di-
vided into sub-frames, a care must be taken to ensure that their sizing is sufficient,
e.g., by employing an initial upsampling if necessary.
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(a) A thin straight section (img1 shown in fig. 3.4a )

(b) A thick straight section with thinning lower ending surrounded by two single points on left
and right image borders (img3 shown in fig. 3.4c )

(c) Sierpinski’s triangle in grayscale (img11 shown in fig. 3.4k )

Figure 8.3: Illustrative analysis of the input image scale (size) influence on FDE  using W-
-GBC  for images from fig. 8.1 



134 auxiliary research on box-counting

8.1 interesting cases

8.1.1 The interpretation of the results of fractal dimension estimation 

Figure 8.4 presents FD  a comparison of estimates for FD  P-GBC-IMG-GLB  

and FD  BBC  

estimators calculated for the set of 12 synthetic images useful for interpreting,
assessing and validating the results of the estimation of more complex images
of unknown or not well-defined (in terms of self-similarity) FD  . The images
used as synthetic input data are illustrated in fig. 3.4 . To facilitate the visibility
of the overlaying (img8 and img9) or nearly overlaying (img10 and img11) data
points, odd-numbered images are marked with (diagonal) crosses and also labeled
to the right of their markers while the even-numbered ones are marked with plus
signs and labeled to the left of their markers.
The relation between P-GBC-IMG-GLB  and BBC  FD  estimates is presented

in two versions, namely fig. 8.4a and fig. 8.4b . A circumstance that has been re-
sponsible for the most prominent differences between these two implementations
is the optimization of two important aspects of computation that has been reiterated
multiple times. The first factor regards the fine-tuning of the parameters of box-
-counting (BC) downsampling function, q.v. section 3.2.4 . The second one pertains
to the optimization of the cut-off thresholds applied during the linear regression
stage, q.v. section 3.1.2 and chapter 5  . By comparing these two plots it may be no-
ticed that the two mentioned factors play a vital – and sometimes even critical – role
in achieving the results that are plausible in terms of reliability assured by overall co-
herence with the outputs of a standard method practiced in the field of interest,
which in this case is binary BOX-COUNTING (BBC) algorithm.
To facilitate the presentation of the results, in fig. 8.4b , presenting an early

implementation of FDE  algorithm, axis of ordinates has been cropped to range [0, 1],
as no data point within this plot has an ordinate falling in range [1, 2].
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(a) The final implementation

(b) An early implementation, ordinates axis cropped to range [0, 1]

Figure 8.4: P-GBC-IMG-GLB  and BBC  FD  estimates compared for synthetic data





Part V

S U M M A R Y

The f o l l ow i ng p a r t d i s c u s s e s t h e r e s u l t s o b t a i n e d i t t h e wo r k , s umma r i z e s
t h em , a n d p r e s e n t s t h e d r awn c onc l u s i on s .





9 C O M PA R I S O N O F T H E M E T H O D S

9.1 features of the methods

An illustrative comparison of the features – including useful properties and limi-
tations – provided by different numerical fractal dimension estimation (FDE) me-
thods utilizing box-counting (BC) is presented in table 9.1 . Note that in some cases
the distinction between the full and partial support of a feature by a method is –
– at least to some degree – heuristic. Nevertheless, diverging the level of the support
into two classes may give the reader a better insight into the relative performance
of two methods in cases where more than one of them supported a given property.

MATHEMATICAL ACCURACY in relation to the concept of generalized dimensions
is described in chapter 4 .
CONSISTENCY WITH ANALYTICAL DIMENSIONALITY MEASURES touches

the subject of self-similarity fractal dimension  and Euclidean dimension likewise.
They may be calculated theoretically for purely fractal (self-similar) sets and geo-
metrical figures, respectively. It is thematter of discussion in chapter 1  and the results
may be seen in fig. 3.5 within section 3.2.4 .

ROBUSTNESS relates to the subject of the simulation of artificial fringe patterns
with a significant amount of noise. It is discussed in chapter 6  , cf. figs. 6.1  and 6.2 

and the results of this supplementary research is shown in figs. 7.6 and 7.6A 

together with fig. 7.7 in section 7.1.1 and figs. 8.1 to 8.3 in chapter 8 .
EFFICIENCY is elaborated on in section 7.1.2 , cf. tables 7.4  and 7.5 , in section 7.1.2 ,

cf. fig. 7.12 , and also – for older and not fully optimized implementations – in figs. 7.6 

and 7.6A in section 7.1.1 .
PARALELLISM is a subject raised in section 3.2.4 and in section 7.1.2 , q.v. fig. 7.12 .

It applies mostly to weighted grayscale BOX-COUNTING (W-GBC) and – interme-
diately – to binary BOX-COUNTING (BBC) which may be implemented as a special
case of W-GBC  . Also applies to author’s implementation for generating synthetic
Saupe’s fractals, nevertheless this is a input generation method that has not been in-
vestigated in reverse as a potential fractal dimension (FD) estimator .
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APPLICABILITY TO SYNTHETIC IMAGES regards the simple synthetic im-
ages presented in fig. 3.4 within section 3.2.4  . The applicability to these images
may be concluded on by referring, i.a., to fig. 3.5 in section 3.2.4  and fig. 8.4 

in section 8.1.1 .
APPLICABILITY TO TO ARTIFICIAL FRACTALS constitutes a property focused

on synthetic fractal data that is generated using Saupe’s rescale-and-add (RAA) -
-based random fractal functions (RFFS) . Examples are presented in fig. 5.1 in chapter 5  

and the matter of efficiency is studied in the same section in figs. 5.2 and 5.3 .
APPLICABILITY TO USC-SIPI  TEXTURES pertains to a class of images that is il-

lustratively presented by fig. 7.15 within section 7.1.3 and is further commented on
in the same section , cf. figs. 7.16 and 7.17 .
APPLICABILITY TO LSI  VIDEO SEQUENCES regards the class of the im-

ages acquired in a in-vivo manner whose illustrative cases are shown in fig. 3.6 

and also in figs. 7.2  and 7.3 . An extended description of the methodological aspects
is available in section 7.1.1 , while performance of the methods in relation to interfer-
ometric data is described in section 3.2.4 , q.v. figs. 3.7 and 3.8 and in section 7.1.2 ,
q.v. tables 7.1 to 7.3 and fig. 7.11 .
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Table 9.1: Comparison of interferogram image descriptors exploiting box-counting -based
fractal dimension estimation discussed in this work

Box-counting methods

BINARY  

GRAYSCALE  

Probabilistic Weighted 

BBC  P-GBC-IMG  P-GBC-INT  W-GBC  

Fe
at
ur
es

MATHEMATICAL
ACCURACY

✓ ★* ★* ✕ / —

CONSISTENCY
WITH ANALYTICAL
DIMENSIONS

✓ ✓ ✕ ✓

ROBUSTNESS
ON ARTIFICIAL
AND REAL DATA

✕† ★ / — ✕ / — ★

EFFICIENCY ✓‡ ★ ✕ ★

PARALELLISM ✓‡ ✕ ✕ ✓

APPLICABILITY
TO SYNTHETIC
IMAGES

✓§ ★ ✕ ✓

APPLICABILITY
TO ARTIFICIAL
FRACTALS

✓§ ✓ ✓¶ ★∥

APPLICABILITY
TO USC-SIPI  

TEXTURES
★§ ★ ★ ✓

APPLICABILITY
TO LSI  VIDEO
SEQUENCES

★§ ✕ ✕ ★

[ ✓ ] — full support.
[ ★ ] — partial support.
[ ✕ ] — no support.
[— ] — no data (lack of information).

* Fully mathematically accurate are P-GBC-IMG-GLB  and P-GBC-INT-GLB  .
† Better results have been obtained for EBBC  .
‡ As a special case of W-GBC  .
§ Application of binary methods to grayscale (or multichannel) data is limited.
¶ Hindered by substantial computational overhead.
∥ Gives implausible results only for lacunarity coefficient r = 4.





D I S C U S S I O N
A N D C O N C L U S I O N S
Several fractal-based image descriptors have been developed and investigated to-
gether with the other ones known in the literature and implemented by the au-
thor, sometimes with adding significant improvements to computational efficiency.
As a mean of conducting reliable research, apart from obtaining real interferometric
data, a method to automatically generate artificial interferograms has been devel-
oped as well as one of the best-rated methods in literature to generate artificial
fractals [81 ] has been implemented and computationally improved.
One of the main goals of the work has been to construct fractal dimension

(FD) estimators for two-dimensional grayscale images. They have been exten-
sively studied and optimized in terms of numerical efficiency, high dynamic range
of inputs as well as their consistency with self-similarity and Euclidean (topo-
logical) dimensions where they have been known. The second importand aim
has regarded the applicability to classification tasks as a foundation to proposing
novel diagnostic methods with application to a biomedical exploitations focused
on dry eye syndrome (DES) detection or the assessment of the risk of this disease
or possibly contact lens biocompatibility evaluation.
Some objectives have been postulated and taken into action to reach the postu-

latedgoals. Properties and limitation of the FD  estimators in question have been stud-
ied theoretically and experimantally in the context of the available literature research
coverage. A multi-criterial classification of the developed and existing methods
has been established in terms of the form of the input data, e.g., grayscale vs bi-
nary, interpretation of the mathematical apparatus involved, e.g., probabilistic
vs non-probabilistic, as well as technical properties regarding the image processing
procedures applied, e.g., image-probability-space-based vs intensity-probability-
-space-based, local vs global etc.

Of the approaches studied for box-counting -based FRACTAL DIMENSION es-
timation  there are two that have been observed to overcome some limitations
of standard box-counting method. Namely, these fractal dimension  estimators
are weighted grayscale box-counting  and probabilistic grayscale box-counting
based on image probability space  , of which the former is a novel contribution.
Also an innovative addition is provided by the less efficient thus mathematically
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accurate probabilistic grayscale box-counting based on intensity probability space
(P-GBC-INT) . These methods have been compared with the common binary
box-counting approach with functions as a de facto benchmark for FRACTAL DI-

MENSION estimation (FDE) . Other existing methods like differential box-counting
(DBC) have been also included in the comparison.
Input data utilized during the study covers a wide range of images. The com-

pleteness of the empirical part of the doctoral work has been instituted by the means
of starting with the simple synthetic figures for validation, continuing the research
through the standard USC-SIPI  textures and artificially disturbed synthesized
interferograms and performing the final computations on the synthetic fractals
generated using complex numerical tools as well as on the real data acquired
with lateral shearing interferometry (LSI) technique on human subjects in-vivo.
One important result of the study is the development of new fractal dimension 

estimators that in some cases have been found to perform better than the known
solutions. Another significant outcome is the improvements made in the field
of methodology available for diagnosing DES  . A theoretical apparatus has been de-
veloped to comprehensively describe the proposed mathematical and numerical so-
lutions. Moreover, numerous comparisons to alternative methods (not only the frac-
tal-based ones) in terms of efficiency, robustness, accuracy, applicability and numer-
ical demand have been performed and their results provided after careful statistical
analysis. New knowledge has been presented in the form of tables, plots, coherent
ordering of terminology and classification of the methods, novel methodological
approaches (including programmatic implementations of algorithms), practical
comments and research conclusions. It has been show that the utility of the frac-
tal-based methods for the investigated application could be no worse – and some-
times better – when compared with the existing solutions. The applicability po-
tential that has been uncovered of legitimizes the statement that this field of study
is of importance to some areas of industrial implementations and is a promising
subject of further research, performed both in theoretical and practical directions.
Future research may encompass the computational optimization and fine-tuning

of the numerous parameters of the developed methods to tailor them to particular
practical applications in order to make their performance comparable to the cur-
rently applied solutions. Some theoretical work is also to be done, e.g., to fully cover
the issue of resolving the mathematical formulations of some descriptors in ques-
tion in order to ascertain whether they constitute measures of dimensionality 

in terms of the measure theory. Also, theoretical reducability and consistency
linking the multitudinous empirical FDE  -related descriptors and the self-similarity
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dimension or other well-established measures of FD  poses a task worth an extended
analysis. Performing it would be a substantial scientific work that requires pro-
found theoretical background and both mathematical and informatic experience,
nevertheless it could be beneficial in terms of removing some flaws of the currently
applied methods, finding better solutions to overcome their limitations (including
completely new methods) as well as organizing, ordering and codifying the con-
stantly expanding body of knowledge in this subject. Thus, the investigated area
of study remains an open field for future studies.
One crucial inference that has been brought by this research is how important

is the precise tailoring of the parameters of the method conjoined with the opti-
mization of the pre-processing stage when a practical application of a fractal-based
classifier is of interest.
The title of this work is “Diagnostic methods based on the analysis of interfer-

ence images”. Its general meaning is rather broad and covers a vast field of study
covering numerous diagnostic solutions that are applied to extract the useful infor-
mation from the interferometric data in various branches of science and technology,
e.g., medicine, geography, industrial diagnostics, material fatigue detection, astron-
omy etc. The reason behind selecting such general term has been that at the time
of the postulation of the subject the research performed for this thesis was at the pre-
liminary stage. Conforming to the spirit of Huang [10 ] application of FD  -based
measures to classification tasks remains a delicate task. Namely, the matter of bring-
ing together the mathematical accuracy of such descriptors with their practical
utility might face a mutually exclusive criteria and thus is a matter of compromise
that may be hard to settle for a particular combination of input data and chosen
method. There is a multi-faceted spectrum of available fractal-based descriptors –
–many of them still remaining novel and thus not investigated extensively like the in-
tensity-and entropy-based grayscale variants  . Moreover, there are many sub-fami-
lies and branches of the basic methods caused by many parameters that are to be set
to obtain a fractal descriptors, especially operating in grayscale or on amulti-channel
images. Together with the numerousness of the available interferometric imag-
ing techniques, this makes it virtually impossible to determine which FD  -related
descriptors and image acquisition techniques combination would be promising
enough to be chosen for the final investigative study. The fractal-based methods
have been chosen to overcome the limitations of the previously researched spectral
techniques. It was initially intended to focus on the multifractality until the diver-
sity and complexity of the still unexplored aspects of the regular fractal methods
have driven the research to different track than predicted at the beginning. The gen-
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erality of the chosen topic thus reflects the degree of uncertainty that inherently
accompanies the research on fractal dimensionality . One of the biggest challenges
and aims of such research is to possibly reduce its degree by revealing new infor-
mation during the performed study and adding it to the body of this topic’s knowl-
edge afterwards.



D I S S E M I N AT I O N
O F T H E R E S U LT S
The results obtainedduring the research conducted to complete the goals of thework
described in this thesis have been disseminated as the successive progress has been oc-
curring. Some of the initial results of the preliminary research have been assessed
and compared in context of enhancing and extending the achievements of the previ-
ous research conducted by the author. It has been focused on applications of phase-
-based algorithms and morphological image analysis to extraction of the useful
information from similar classes of images to those of interest in this work [108 ,
109 ]. Subsequently, as the body of the work has been expanding along with the the-
oretical and numerical apparatus, further publications have regarded their mat-
ter more in terms of comparing it with existing solutions of image diagnostics
with the use of fractal dimension estimation (FDE) .
Published works and the articles submitted for publication that regard the re-

search described in this thesis are listed in the two sections below . They encompass
journal and conference papers, respectively.

journal papers

Serial articles published in scientific journals and periodicals include the following
positions:

(1) P. D. SZYPERSKI and D. R. ISKANDER, “New approaches to fractal dimension
estimation with application to gray-scale images”, IEEE  Access, Sep. 8, 2019,
submitted [62 ];

(2) P. D. SZYPERSKI, “Comparative study on fractal analysis of interferometry
images with application to tear film surface quality assessment”,Applied Optics,
vol. 57, no. 16, pp. 4491–4498, Jun. 1, 2018 [74 ].
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conference papers

Papers published in proceedings of scientific conferences as well as talks and poster
presentations associated with post-conference publications include the following
positions:

(1) P. D. SZYPERSKI and D. R. ISKANDER, “A novel phase-based approach to tear
film surface quality assessment using lateral shearing interferometry ”, in Pro-
ceedings of Computer Information Systems and Industrial Management, 14th IFIP
TC 8 International Conference, CISIM 2015, (Warsaw, Poland, Sep. 24–26, 2015),
K. SAEED and W. HOMENDA, Eds., ser. Lecture Notes in Computer Science,
vol. 9939, Cham, Switzerland, Heidelberg, Germany, New York, NY, USA,
Dordrecht, the Netherlands, London, UK: Springer International Publishing,
Oct. 30, 2015, pp. 435–447 [92 ];

(2) P. D. SZYPERSKI and D. H. SZCZęSNA-ISKANDER, “Exploiting the phase
domain of lateral shearing interferometry in measurements of tear film sur-
face quality  ”, in Proceedings of VPOptics 2014, 7th European Meeting coinciding
with the 1st World Meeting in Visual and Physiological Optics 2014, (Wrocław,
Poland,Aug. 25–27,2014), D. R. ISKANDER and H. KASPRZAK,Eds., illustrator
M. JASKULSKI, World Meeting in Visual and Physiological Optics, Wrocław,
Poland: Oficyna Wydawnicza Politechniki Wrocławskiej / Printing House
of Wrocław University of Technology, Jun. 20, 2014, pp. 345–348 [108 ];

(3) P. D. SZYPERSKI, New algorithms for image analysis in non-invasive examination
methods of corneal and contact lens tear film surface, poster presented atOpenRead-
ings 2014: 57th Scientific Conference for Young Students of Physics and Nat-
ural Sciences, Vilnius, Lithuania, Mar. 21, 2014 [110 ];

(4) P. D. SZYPERSKI, Nowe algorytmy analizy obrazów dla nieinwazyjnych metod
badania filmu łzowego na oku i soczewkach kontaktowych [New algorithms for im-
age analysis in non-invasive examination methods of corneal and contact lens tear
film surface], Polish, poster presented at IV Ogólnopolska Konferencja Stu-
dencka Nowoczesne Metody Doświadczalne Fizyki, Chemii i Inżynierii 2013
[4th National Student Conference Modern Experimental Methods in Physics,
Chemistry and Engineering 2013], Lublin, Poland / Lublin,Nov. 24, 2013 [111 ].
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Appendix

(I)





A S E G M E N T E D
L I N E A R R E G R E S S I O N

Segmented regression, sometimes also referred to as piecewise regression, broken-stick
regression or segmental regression, is an approach to regression analysis. It is based
on partitioning of the independent variable into intervals and fitting a separate line
segment to each of such formed segments [112 ].

a.1 bisegmental linear regression

The system developed during this work for fractal dimension estimation (FDE) based
on least squares  linear regression slope utilizes an implementation of bisegmental lin-
ear regression – a special case of segmented linear regression. It is used for regression
analysis of data that have a form similar to the one depicted in fig. A.1 . Such seg-
mented relations have been observed for some sequences of lateral shearing interfe-
rometry (LSI) images. In general, similar forms of characteristics of data also some-
times occur in analysis of dynamic changes in textural features as well as in other es-
timation-related tasks.
A log-likelihood-ratio test of whether a simple (unisegmental) linear fit is sig-

nificantly worse than its bisegmental counterpart in terms of the goodness of fit
as measured by coefficient of determination R2. This test is based on Samuel
Stanley Wilks’ theorem that regards the matter of conditions under which the dis-
tribution of the doubled logarithm of the likelihood ratio converges to χ2 distri-
bution [113 ]. In tests performed during the research conducted for the purpose
of this work, the null hypothesis has been that restricting to simple linear regres-
sion would not result in a fit whose goodness would have likelihood differing
significantly from the likelihood of the goodness of fit provided by the biseg-
mental model. In detail, under the null hypothesis, both likelihoods should not
differ by more than sampling error [114 ]. The significance level ((critical p-value))
used in the described work has been set to α = 0.01. When the obtained p-
-value has been larger than or equal to α, the null hypothesis has been rejected,
i.e., the model has been assumed to be characterized by the bisegmental form.

III



IV segmented linear regression

The common approach in the case of bisegmental linear regression is to utilize
an unconstrained approach, but the one used in the work is conditional to prevent
discontinuities. Illustrative realizations of unconstrained vs constrained variants
of bisegmental linear regression have been contrasted with simple (unisegmental)
linear regression and are presented in graphical form in fig. A.1  . Both simple
and bisegmental types of linear regression have operated on the same continuous
bisegmental data with breakpoint at x = 10 (about one third of the range of the in-
put variable). Data have been randomized with Gaussian noise prior to applying
regression analysis. Standard deviation used for randomization of the right-hand-
-side segment has been larger than the used for left-hand-side one. The ratio
of these standard deviations is proportional to the ratio of the lengths of their re-
spective data range. That is, in the presented example, the right-hand-side data
range is twice as long as its left-hand-side counterpart. Thus, it has been random-
izedwithGaussian noise of twice as large dispersionwhen compared to the standard
deviation applied to the randomization of the other one.
Note that sample Pearson’s correlation coefficient r2x,y is slightly higher for the un-

constrained bisegmental model shown in fig. A.1a  than for the constrained model
presented in fig. A.1b . This difference in favor of unconstrained models can some-
times be of much greater extent, as the fitting ability of statistical regression models
grows with their generality. Another simple graphical example of segmental lin-
ear regression with some description regarding a practical application to scientific
data analysis is available in [115 ].
For the research problem considered in this work, the trisegmental variant of seg-

mented linear regression has been considered as a possible extension of the gen-
erality of the bisegmental type of regression. One reason behind this has been
that constrained multisegmental linear regression has been applied with success
as an analytical tool in related researches. The number of considered linear segments
has been at least four, with an additional conclusion that for some cases of tear
film surface kinetics assessment even up to five linear segments may pose a choice
that is well-justified by the form of the experimental data [91 ]. This encourages
the utilization of multisegmental linear regression with more than two segments.
Nevertheless, for the majority of cases, it has rendered to be too demanding
in terms of computational load when comparing them to potential benefits. Espe-
cially, the multisegmental approach to linear regression has not been strongly jus-
tified by the resultant FDE  data form to be applied in the conducted numerical
experiments. The computational demand of a variant of segmented linear regres-
sion with a given number of segments may be estimated by counting the total
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number of complete regressions procedures required to be performed to chose
the variant providing the best fit. Typically, the considered placings of the break-
points in terms of the abscissæ are restricted to locations of the points in the data set.
Then, this number is dependent on the number of the segments k and the num-
ber of the data points n being subject to the regression. Thus, it may be de-
noted as N(n, k). The simplest way to obtain the value of N(n, k) is to notice
that, as the segment may be fitted reasonably fitted to at least two separate points,
two extremal data points are to be excluded from the set of localizations of potential
brakpoints. Thus, there are n− 2 candidate values for abscissæ of the breakpoints.
Within them, k segments are to be placed, and to divide input range into k neighbor-
ing sub-ranges, k−1 breakpoints are required. The order in which the breakpoints
are sorted is unimportant, as the segments are forced to be sorted in one distin-
guished order imposed by the natural non-decreasing sequence of the inputs
of the estimated functional relation. Consequently, combination of k − 1 loca-
tions taken from n − 2 possible ones determine a single regression procedure.
Therefore, the total number of regressions is equal to the number of these k − 1-
-combinations of n− 2-element set:

N(n, k) =

(
n− 2

k− 1

)
. (A-1)

To obtain the optimal combination, each k-segmental linear regression of n data
points requires N(n, k) computations of the segmented linear regression algo-
rithm, as stated by eq. (A-1) . This means that the function of time complexity
of such a regression optimization belongs to O(nk) set:

N(n, k) ∈ O(nk). (A-2)

The substantial consequence of the type of computational time complexity formu-
lated in eq. (A-2) is that the execution time of an algorithmfitting the breakup points
for the multisegmental linear regression grows exponentially with the number
of the segments to be fitted. The applicable aspect of this relation is that the choice
of four or five segments instead of one or two in many cases results, e.g., in practical
resignation from the near instantaneous or real-time computation for the min-
utes-lasting slowdown. For larger data sets that take many second to compute
even in the simple linear regression variant the usage of trisegmental or more com-
plex regression type may result in time overhead of multiple hours or days. There-
fore, introducing multisegmental form when even the rough estimate of locations
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of the breakpoints is unknown constitutes a decision that needs to bemadewith care
if the profit of gaining potentially better fit outweighs the cost of the required
additional processing time and computational power.
Listing C.5 demonstrates the core loop and fundamental calculations of the biseg-

mental linear regression implementation utilized within the research described
in this work. Some additional parts of this function as well as the contents
of its subroutines are excluded as they are based on conceptual and implemen-
tational solutions not developed by the author. Permission to utilize the mentioned
portions of supplementary code for the purpose of the described numerical ex-
periments has been granted, but it may not extend to the publication of the code
itself. Additionally, the detailed descriptions of non-original technical contributions
would be of minor interest in context of the purpose of this thesis.
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(a) Unconstrained variant

(b) Constrained variant – used in the described research

Figure A.1: Illustrative plots of simple and segmental linear regression – a statistical tool uti-
lized in this work for determination (numerical estimation) of FD  of grayscale
images.





B R E C E I V E R O P E R AT I N G
C H A R A C T E R I S T I C  

Receiver operating characteristic (ROC) is a fundamental property of a detector
or a classifier that describes the probability of detection PD – also named sensitivity
or true positives rate (TPR) – in terms of probability of false alarmPFA – also termed –
– 1− specificity or false positives rate (FPR) . ROC  is often presented in a graphical
form of a plot, i.e., as a curve.
Histogram-based approach is the most popular due to its mathematical simplicity

as well as availability in majority of software statistical data analysis environments.
It results in ROC  curve in a form of a monotonic non-decreasing step function.
A number of parameters may be derived from ROC  curve, including area un-

der the curve (AUC) and Youden’s J.
AUC  , also termed A ′ [116 ] and the concordance statistic or – in short – c-statis-

tic [117 ], is calculated by integrating ROC  curve and is a number from [0, 1] range
describing the quality of the classifier evaluated by ROC  . It may be interpreted
as the probability that a classifier will rank a randomly chosen positive realization
higher than a randomly chosen realization that is negative (in case when ‘positive’
ranks higher than ‘negative’).
Youden’s J statistic is also termed Youden’s J index and DeltaP ′ and is in some con-

texts more or less closely related to statistical terms such as: informedness, in-
versed markedness, skew-insensitive quality function of novelty – also known
as weighted relative accuracy (WRACC) – together with INFOGAIN  , Gini’s coefficient
(index) etc. [118 , 119 ]. The index expresses an approach to describe a performance
of a dichotomous diagnostic test in a simple manner by expressing it with sin-
gle statistic. It is defined as [120 ]:

J
.
= sensitivity+ specificity− 1; (B-1a)

what may be equivalently expanded to:

J
.
=

TPR  

TPR  + FNR  

+
TNR  

TNR  + FPR  

− 1. (B-1b)

IX
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Values of Youden’s J index inclusively cover a range from zero to one [120 ].
The value reaches zero value when a diagnostic test gives the same proportion
of positive results for both investigated groups. In such case the test is of no use.
On the other hand, a value of one indicates that there are no false positives
or false negatives. This is a case for an ideal test. Youden’s J weights false posi-
tives and false negatives equally, therefore all tests resulting with the same value
of this statistic give the same total proportion of misclassified results.
Youden’s J statistic is frequently discussed in statistical context of assessing classi-

fiers by means of ROC  analysis [121 ]. While the index is defined for all points con-
stituting ROC  curve, its maximum value Jmax is of special interest, as it may be used
as a criterion for optimal cut-off determination for which the result of the test
is not only dichotomous but numeric. Jmax index is represented in plots in a visual
manner as the height above the chance line (the increasing diagonal of the axes
box). Its value is also equivalent of AUC  delimited by a single operating point.
While an individual value usually does not reveal as complete description of a test
as the full ROC  curve, this index is still useful in many applications. Particularly,
it may be interpreted as an estimate of the probability of making an informed
decision based on the classifier indication (with respect to a decision based on a ran-
dom guess) taking into account all predictions. In a general case of multino-
mial (multiclass) tests, such estimate of an informed decision probability is de-
fined under the name of informedness. In case of two classes these two measures,
namely Youden’s J and informedness, are equivalent [118 ].
As histogram-based approach results in step ROC  curve that has discontinuities,

the smoothness provided by kernel density estimation (KDE) may be preferred
over the discreteness of the histogram. Also, kernel density estimates converge
faster to the true underlying density for continuous random variables [122 ].
For a distribution with an unknown density f to be estimated and an univariate

independent and identically distributed sample (x1, x2, . . . , xn) drawn from that dis-
tribution, the kernel density estimator of f is:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi

h

)
, (B-2)

where K( · ) is kernel being a non-negative function and h > 0 is bandwidth
also termed smoothing parameter. Moreover,Kh(x)

.
= 1

h
K( x

h
) is referred to as scaled

kernel. In general, to prevent over-smoothing h is minimized as much as the data
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allows, but taking into consideration the bias–variance trade-off related to the issue
of bias-variance decomposition.
Epanechnikov’s kernel (alternatively termed a parabolic kernel) is defined as:

K(u) =
3

4
(1− u2), (B-3)

where |u| ⩽ 1.
In terms of lowest possible asymptotic mean integrated squared error (AMISE) ,

Epanechnikov’s kernel is often described as optimal [100 ] and thus – despite
some criticism [123 ] – remains a de facto standard [124 ] reference for comparing
kernel efficiency in KDE  . The eficciency of a kernel K(u) is defined as:√∫

u2K(u) du
∫
(K(u))2 du. (B-4)

Although Epanechnikov’s kernel is referred to as optimal, difference in efficiency
for some other kernels is small enough to neglect it in many practical applications.
Moreover, due to favorable mathematical attributes, theGaussian kernel (also known
as normal kernel) exploiting the normal density function is sometimes preferred.
It has the relative efficiency (with respect to Epanechnikov kernel) of about 95.1%
and is defined as:

K(u) =
1√
2π

e−
1
2u

2

, (B-5)

where u ∈ R.
Plots depicting both Epanechnikov’s andGaussian kernels are presented in fig. B.1 .
Kernel estimation may cause the values to exceed the range of possible measures.
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Figure B.1: Plot showing imposed graphs of Gaussian and Epanechnikov’s kernels used
for KDE  of PDFS  

b.1 implementation of calculation and anal-
ysis of rocs  

b.1.1 ROCs calculation

Authors’ implementation of ROC  curves generator utilizes Epanechnikov’s kernel.
Estimation is done in the range of gathered data. To overcome the clipping

of estimates laying outside this interval, the resulting probability density function
(PDF) is normalized to assure its integral being equal to one.
Bandwidth is determined as the optimal for estimating normal densities us-

ing the normal distribution approximation also referred to as Gaussian approximation
or Silverman’s (1986) [124 ] rule-of-thumb for bandwidth estimator. Normal basis
functions are used to approximate univariate data, and the underlying density being
estimated is assumed to be Gaussian. Thus, according to the aforementioned rule,
the choice for bandwidth h minimizing mean integrated squared error (MISE) ,
i.e., the optimal one [124 , 125 ], is:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5, (B-6)

where σ̂ is the standard deviation of a sample.
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Probabilities estimated for ROCS  are plotted as points while the continuous curve
estimation for visualization purposes is plotted as an estimation based on best fit
of a polynomial of fourth degree.

b.1.2 ROCs analysis

As a mean of ROC  curves analysis, their AUCS  have been calculated and displayed.
Calculations have been performed with the exploitation of trapezoidal numerical
integration. Moreover, also implemented has been calculation and visualisation
of Jmax values, i.e., maxima of Youden’s J indices for ROCS  .

b.1.3 Examples

Figure B.2  shows examples of different cases of classes’ discernibility illustrated
by the estimates of PDFS  of their fractal-based tear film surface quality (TFSQ) 

descriptors for lateral shearing interferometry (LSI) data of healthy vs dry eye
syndrome (DES) -affected patients investigated in this thesis.
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Figure B.2: Illustrative cases of PDFS  of fractal-based TFSQ  descriptors for two classes
of patients: unaffected and affected by DES  – plotted with blue and red lines,
respectively – depicting different levels of discernibility between both groups
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c.1 fractal dimension estimation  

Listing C.1: Box-counting method implementation (chosen parts) (0e3.1a. DBC 

vs W-GBC computation times in regard to input image

scale - validation and comparison for synthetic fractals

and Gaussian noise/src/+fractal/+FD /BC .m)

1 function FDE = BC( img_in, varargin )
2 % BC - Fractal dimension estimation by box-counting.
3 % Basic algorithm.
4 %
5 % https://en.wikipedia.org/wiki/Box_counting
6 %
7 % Example:
8 % FDE = BC(imread('rice.png'));
9 %
10 % Version: 20.07.2019 (Piotr Szyperski).

X

16 if nVarargs >= 1 && (ischar(varargin{1}) ||
isstring(varargin{1})) % first optional argument: 'grayscale'
(default; synonymous to 'grayscale-p' or 'grayscale-p-image'),
'grayscale-p-intensity', 'grayscale-w' or 'binary'

17 alg_mode = char(varargin{1}); % choose box-counting variant:
P-GBC, W-GBC or BBC

18 else
19 alg_mode = 'grayscale';%'binary'; % default value
20 end

X

31 if strcmpi(alg_mode, 'grayscale-w') % consider fourth optional
argument (W-GBC algorithm's resize type) only in case of W-GBC
algorithm

XV
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32 if nVarargs >= 4 && (ischar(varargin{4}) ||
isstring(varargin{4})) % fourth optional argument:
'maximum', 'average' or 'square'

33 w_gbc_alg_submode = char(varargin{4}); % choose W-GBC
algorithm's resize type (algorithm submode): maximum-,
average- or square-based

34 else
35 w_gbc_alg_submode = 'maximum';%'average'; % default value
36 end
37 end

X

46 if isa(img_in, 'double') % for image classes other than double
precision

47 img_uncropped = img_in;
48 else
49 img_uncropped = im2double(img_in);%im2double(img_in); %

convert image to double precision
50 end

X

52 if ~ismatrix(img_uncropped) % for RGB color images
53 img_uncropped = rgb2gray(img_uncropped); % convert RGB color

image to grayscale
54 end

X

56 [img, ri, rj] = crop(img_uncropped);

X

Initializations of vectors for box sizes εi and numbers of counted boxes Ni

58 % Image size:
59 s(1) = size(img, 1);
60 s(2) = size(img, 2);
61 %n_min = 2 + 1;
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62 n_min = 0; % 28.03.2019: left cut-off reduced by three to fit
algorithm better to Saupe’s rescale-and-add-based random
fractals, as with original cut-off ("n_max = n_gmax - 1;")
P-GBC-int are declining for Saupe’s D values above about 1.65
causing ambiguity ({FD}_{P-GBC-int}(D) is not an injective
function)

63 n_gmax = min(nextpow2(mean(s)), 10); % exponent of next greater
than image size power of 2 (limited to 10 due to slow
blockproc in maximum-based resize type)

64 %n_max = n_gmax - 1;
65 n_max = n_gmax; % 28.03.2019: right cut-off reduced by one to fit

algorithm better to Saupe’s rescale-and-add-based random
fractals, as with original cut-off ("n_max = n_gmax - 1;")
P-GBC-int are declining for Saupe’s D values above about 1.65
causing ambiguity ({FD}_{P-GBC-int}(D) is not an injective
function)

66 n_vec = (n_min:n_max)';
67 n_n = numel(n_vec);
68 N = zeros(n_n, 1);

70 l_gmax = 2^n_gmax;
71 img = im2double(imresize(im2uint8(img), [l_gmax l_gmax],

'bilinear'));

73 img = normalize(img);

75 if strcmpi(alg_mode, 'differential')
76 if ~isa(img, 'uint8')
77 img = im2uint8(mat2gray(img));
78 end

80 FDE = fractal.FD.dbc(img);
81 else
82 % Thresholding using Otsu's method:
83 if strcmpi(alg_mode, 'binary')
84 img = imbinarize(img); % image binarisation
85 end

X

Proper internal box-counting procedure

87 %% Box-counting
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89 for i = 1:n_n % for all power of 2 box grid divisions from 2^2

* 2^2 = 4*4 %n = n_min:n_max: n - binary exponent of
resized image side length

90 n = n_vec(i);
91 if vis
92 fprintf([' Box size %*d of %*d ('...
93 'n = log' char(8322) char(1013) char(8315) char(185)

' = %*d, '...
94 char(1013) ' = 2' char(8315) char(8319) ' = %-*.4g,

'...
95 char(949) ' = ' char(1013) char(183) 'l' char([55349

56560 8344 8336 8339]) ' = %*d, '...
96 'l = 2' char(8319) ' = %*d'...
97 ').\n'], ...
98 [1+floor(log10(n_n)) i], [1+floor(log10(n_n)) n_n],

...
99 [1+floor(log10(n_max)) n], ...
100 [strlength(sprintf('%.4g', 2^-n_max)) 2^-n], ...
101 [strlength(sprintf('%d', 2^(n_gmax-n_min)))

2^(n_gmax-n)], ...
102 [strlength(sprintf('%d', 2^n_max)) 2^n])
103 end
104 if strcmpi(alg_mode, 'grayscale-w')
105 img_r = resize(img, n, alg_mode, w_gbc_alg_submode);
106 else
107 img_r = resize(img, n, alg_mode);%resize(img, n,

alg_mode);%resize(img, n, 'maximum');%resize(img,
n);%resize(img, n, 'average');%resize(img, n,
'square'); % resize (i.e., scale) the image

108 end
109 N(i) = sum(img_r(:)); % minimal number of boxes
110 end

X

Final fractal dimension estimation implementation

117 log2_inv_epsilon = n_vec;
118 log2_N = log2(N);

120 % Linear regression:
121 FDE_reg_par_vec = [log2_inv_epsilon(~isinf(log2_N))

ones(sum(~isinf(log2_N)), 1)]\log2_N(~isinf(log2_N));
122 FDE = FDE_reg_par_vec(1);
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] ] ]

Further calculations: for visualization purposes, debugging, performance
measurements etc.

126 % Logarithm base conversion for plotting purposes:
127 log_inv_epsilon = log10(2)*log2_inv_epsilon;
128 log_N = log10(2)*log2_N;

] ] ]

Image resizing algorithm: internal auxiliary procedure of box-counting 

307 function img_scaled = resize(img_in, n, varargin)

309 %% Optional arguments

311 nVarargs = length(varargin);%nargin-1

313 if nVarargs >= 1 && (ischar(varargin{1}) ||
isstring(varargin{1})) % first optional argument: 'grayscale'
(default; synonymous to 'grayscale-p' or 'grayscale-p-image'),
'grayscale-p-intensity', 'grayscale-w' or 'binary'

314 alg_mode = char(varargin{1}); % choose box-counting variant:
P-GBC, W-GBC or BBC

315 else
316 alg_mode = 'grayscale';%'binary';
317 end
318 if strcmpi(alg_mode, 'grayscale-w') % consider second optional

argument (W-GBC algorithm's resize type) only in case of W-GBC
algorithm

319 if nVarargs >= 2 && (ischar(varargin{2}) ||
isstring(varargin{2})) % second optional argument:
'maximum', 'average' or 'square'

320 w_gbc_alg_submode = char(varargin{2}); % choose W-GBC
algorithm's resize type (algorithm submode): maximum-,
average- or square-based

321 else
322 w_gbc_alg_submode = 'maximum';%'average'; % default value
323 end
324 end

326 %% Resize algorithm

328 l_0 = size(img_in, 1); % input (original) image side length
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329 l = 2^n; % resized image side length
330 s = l_0/l; % image resizing (scaling) factor
331 %s2 = s^2; % squared image resizing (scaling) factor

333 if strcmpi(alg_mode, 'grayscale') || strcmpi(alg_mode,
'grayscale-p') || strcmpi(alg_mode, 'grayscale-p-image') ||
strcmpi(alg_mode, 'grayscale-p-intensity')

334 if strcmpi(alg_mode, 'grayscale') || strcmpi(alg_mode,
'grayscale-p') || strcmpi(alg_mode, 'grayscale-p-image')

335 resize_fun = @(block_struct) ent(block_struct.data(:)); %
image domain

336 elseif strcmpi(alg_mode, 'grayscale-p-intensity')
337 resize_fun = @(block_struct) entropy(block_struct.data(:));

% intensity domain
338 end
339 img_scaled = blockproc(img_in, [s s],

resize_fun);%blockproc(img_in_neg, [s s], resize_fun);
340 elseif strcmpi(alg_mode, 'grayscale-w')
341 if strcmpi(w_gbc_alg_submode, 'maximum')
342 resize_fun = @(block_struct)

max(block_struct.data(:));%max(block_struct.data(:)) *
nnz(block_struct.data) / s2;

343 img_scaled = blockproc(img_in, [s s], resize_fun);
344 else
345 a = repelem(eye(l)/s, 1, s); % intermediate scaling matrix
346 if strcmpi(w_gbc_alg_submode, 'average')
347 img_scaled = a*img_in*a';
348 elseif strcmpi(w_gbc_alg_submode, 'square')
349 img_scaled = sqrt(a*img_in.^2*a');
350 %elseif strcmpi(alg_mode, 'twenty')
351 % img_scaled = (a*img_in.^20*a').^(1/20);
352 else
353 errorStruct.message = sprintf('Error: unsupported W_GBC

resize type: ''%s''.\nImage resize type can be either
''maximum'', ''average'' or ''square''.',
w_gbc_alg_submode);

354 errorStruct.identifier =
'resize:unsupportedW_GBCResizeType';

355 error(errorStruct)
356 end
357 %{
358 resize_fun = @(block_struct) s2 /

max(nnz(block_struct.data), 1);
359 b = blockproc(img_in, [s s], resize_fun);
360 img_scaled = img_scaled.*b;
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361 %}
362 end
363 elseif strcmpi(alg_mode, 'binary')
364 resize_fun = @(block_struct) any(block_struct.data(:));
365 img_scaled = blockproc(img_in, [s s], resize_fun);
366 end

368 end

] ] ]

Image entropy calculation algorithm: internal auxiliary procedure of box-counting 

372 function ent = ent(img_in)

374 p = img_in/sum(img_in(:));
375 %ent = nansum(p(:).*log2(1./p(:)));%sum(p(:).*log2(1./p(:)));
376 ent = -nansum(p(:).*log2(p(:)));%-sum(p(:).*log2(p(:)));

378 end

c.2 p-gbc-img  algorithm implementation val-
idation

Listing C.2: P-GBC-IMG  validation on simple matrices (0c. P-GBC-img validation

on simple matrices/src/main.m)

1 %% Preface

3 clear;
4 clc;
5 %home;
6 close all hidden

8 %% Initialization

10 fprintf(['Program started.' newline])

12 %% Generate input image matrices
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14 input.generate_input_matrices

17 %% Box-counting

19 % Box-counting procedure parameters:

21 % first optional argument: 'grayscale-p' (synonymous to
'grayscale'

22 % and 'grayscale-p-image'), 'grayscale-p-intensity,' 'grayscale-w'
23 % or 'binary' (default):
24 % choose box-counting wariant: P-GBC, W-GBC or BBC
25 BC_alg_mode = 'grayscale-p';

27 % second optional argument: false (default value) or true:
28 % turn visualisation off or on
29 %vis = false;

31 % third optional argument (if second optional argument is
'true'): figure:

32 % number (handle)
33 % set figure number for visualization
34 %figureNumber = NaN;%1;

36 FDEs = cell(n,1); % FDEs vector - preallocation
37 imgs_p = cell(n,1); % vector of preprocessed images used by

box-counting algorithm - preallocation
38 imgss_r{i} = cell(n,1); % vector of validation vectors

(entropies) - preallocation
39 probss = cell(n,1); % probabilities vector - preallocation

41 for i = 1:n
42 img = imgs{i};
43 [ FDEs{i}, imgs_p{i}, imgss_r{i}, probss{i} ] =

system.BC.BC_validating(img, BC_alg_mode);
44 end

46 %% Results displaying

48 separator = char(ones(1, 50) * char(8212));
49 separator = ['\r\n' separator '\r\n\r\n'];

51 outrelfilename = fullfile('..', 'out', 'out.txt');
52 fileID = fopen(outrelfilename, 'w', 'n', 'UTF-8');%1;
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54 for i = 1:n
55 %img = imgs{i};
56 img_double = imgs_double{i};
57 FDE = FDEs{i};
58 img_p = imgs_p{i};
59 imgs_r = imgss_r{i};
60 probs = probss{i};

62 fprintf(fileID, ['Image %d of %d (%d' char(8201) char(215)
char(8201) '%d px), BC FDE = %.2f (note that there was no '
char(949) char(8345) ' sequence cut-offs applied):'
'\r\n\r\n'], i, n, size(img_double), FDE);

64 %disp(img_double)%disp(img)
65 output.display_mat(img_double, [], fileID);

67 fprintf(fileID, ['\r\n' 'Preprocessed ' char(8211) ' i.a.,
cropped ' char(8211) ' image used by (internal)
box-counting algorithm (%d' char(8201) char(215) char(8201)
'%d px):' '\r\n\r\n'], size(img_p));

69 %disp(img_p)
70 output.display_mat(img_p, [], fileID);

72 fprintf(fileID, ['\r\n' 'Resized sub-images:' '\r\n']);

74 nn = numel(imgs_r);
75 for j = 1:nn
76 jneg = nn-j+1;
77 l_0 = 2^(jneg-1);
78 l = 2^(j-1);

80 fprintf(fileID, ['\r\n' char(9) 'Sub-image %d of %d (grid
size: %d' char(8201) char(215) char(8201) '%d box; box
size: %d' char(8201) char(215) char(8201) '%d px) '
char(8211) '\r\n'...

81 char(9) char(8211) ' counted boxes numbers (i.e., box'
char(8217) ' entropies: N = -' char(931) char(7522)
char(8200) 'p' char(7522) char(8201) char(8901)
char(8201) 'log' char(8322) 'p' char(7522) ')'], j,
nn, l_0, l_0, l, l);

82 img_r = imgs_r{jneg};
83 img_r(img_r == 0) = 0; % convert negative zeros to zeros in

img_r for better displaying properties
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84 fprintf(fileID, [', ' char(931) 'N = %.2f:' '\r\n\r\n'],
sum(img_r(:)));

85 output.display_mat(img_r, char(9), fileID, 1);

87 fprintf(fileID, ['\r\n' char(9) char(9) 'Matrix of p'
char(7522) ' probability values (box size: %d'
char(8201) char(215) char(8201) '%d px):' '\r\n\r\n'],
l, l);

88 prob = probs{jneg};
89 %prob(prob == 0) = 0; % convert negative zeros to zeros in

prob for better displaying properties
90 output.display_mat(prob, [char(9) char(9)], fileID, l);

92 fprintf(fileID, ['\r\n' char(9) char(9) 'Matrix of log'
char(8322) 'p' char(7522) ' values (box size: %d'
char(8201) char(215) char(8201) '%d px):' '\r\n\r\n'],
l, l);

93 l2p = log2(prob);
94 l2p(l2p == 0) = 0; % convert negative zeros to zeros in l2p

for better displaying properties
95 output.display_mat(l2p, [char(9) char(9)], fileID, l);

97 fprintf(fileID, ['\r\n' char(9) char(9) 'Matrix of -p'
char(7522) char(8201) char(8901) char(8201) 'log'
char(8322) 'p' char(7522) ' values (box size: %d'
char(8201) char(215) char(8201) '%d px):' '\r\n\r\n'],
l, l);

98 mpl2p = -prob.*l2p;
99 mpl2p(mpl2p == 0) = 0; % convert negative zeros to zeros in

mpl2p for better displaying properties

101 output.display_mat(mpl2p, [char(9) char(9)], fileID, l);
102 end

104 if i<n, fprintf(fileID, separator); end
105 end

107 %% Closure

109 if fileID ~= 1 && fileID ~= 2
110 fclose(fileID);
111 end

113 % Display the contents of the saved output file:
114 fprintf(newline)
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115 fileID = fopen(outrelfilename, 'r', 'n', 'UTF-8');
116 tline = fgetl(fileID);
117 while ischar(tline)
118 fprintf(['%s' newline], tline);
119 tline = fgetl(fileID);
120 end
121 fclose(fileID);
122 fprintf(newline)

124 %% Epilogue

126 fprintf(['Program stopped.' newline])

c.3 simulation of fringe pattern with sinu-
soidal phase disturbance

Listing C.3: Generation of synthetic interferograms with sinusoidal phase disturbance
generation (fd_test/src/fd_test.m)

1 %#ok<*MSNU>

3 %% Set flags

5 calc_noise_fd = false;%true % turn noise fractal dimension
visualisation on or off (recalculate after image size change)

7 vis_f = true;%false; % turn exemplary fringes visualisation on or
off

8 vis = false;%true; % turn visualisation on or off

10 %% Set parameters

12 imsize = 128;%128 % image size

14 alph = pi/2; % pattern orientation

16 % Image coordinates:
17 coord_min = -1;
18 coord_max = 1;
19 coord_range = coord_max - coord_min;
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21 % (Sinusoidal) pattern frequency sweep:
22 n_f = 100; % number of frequency sweep steps

24 f_N = (imsize-1)/(2*coord_range);%imsize/2 % Nyquist condition
frequency

26 f_min = 0;
27 f_max = f_N;
28 f_step = (f_max-f_min)/(n_f-1);

30 % (Sinusoidal) phase distrubance amplitude sweep:
31 A_phi_vec = [0 4 15 110 275 500 10000];%[0 1 3 30 89 200

500];%2.5;%1; % phase disturbance amplitude
32 n_A_phi = numel(A_phi_vec); % number of phase disturbance angles

34 n_phi = 2; % number of phase disturbances per phase range

36 % Pattern orientation disturbance angle sweep:
37 deg = deg2rad(1);%pi/360;
38 alph_dist_vec = -5*deg : .5*deg : 5*deg;
39 n_alph = numel(alph_dist_vec);

41 %% Variables and vectors initialization

43 % Pattern frequency/pulsation sweep:
44 f_vec = f_min:f_step:f_max;
45 f_rel_vec = f_vec/f_max;
46 omega_vec = 2*pi*f_vec;

48 % Phase distrubance frequency/pulsation values:
49 f_phi = n_phi/coord_range;
50 omega_phi = 2*pi*f_phi;

52 fd = zeros(n_A_phi,n_f); % preallocation of fractal dimension
values

54 [X,Y] = meshgrid(linspace(coord_min, coord_max, imsize)); % image
coordinates rectangular grid

56 %% FD calculation

58 % Fringe patterns:

60 if vis
61 fig = figure(2); %#ok<UNRCH>
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62 clf(fig,'reset')
63 end

65 for i = 1:n_A_phi % for all phase distrubance frequencies
66 A_phi = A_phi_vec(i);
67 for j = 1:n_f % for all pattern frequencies
68 omega = omega_vec(j);
69 for k = 1:n_alph % for all pattern orientation disturbance

angles
70 alph_dist = alph_dist_vec(k);
71 alph_val = alph + alph_dist;
72 % Pattern orientation supplementary trigonometrical

values:
73 sa = sin(alph_val);
74 ca = cos(alph_val);
75 % Time and phase image coordinates rectangular grid

(i.e., X and Y corrected for pattern orientation)
76 T = X*ca + Y*sa;
77 P = X*sa - Y*ca;

79 Z = sin(omega*T +
A_phi*sin(omega_phi*P));%cos(0*X).*cos(k*Y)>0;

80 if vis
81 imshow(Z) %#ok<UNRCH>
82 axis xy
83 %maxfig(fig,1);
84 pause(0.04)%waitforbuttonpress
85 end
86 Zbin = Z > 0;
87 fd(i,j) = fd(i,j) + hausDim(Zbin);
88 %fd(i,j)
89 %waitforbuttonpress
90 end
91 fd(i,j) = fd(i,j) / n_alph; % averaging over all pattern

orientation disturbance angles
92 end
93 end

95 % Noise:

97 if calc_noise_fd
98 avf = 10000; %#ok<UNRCH>
99 fd_noise_temp = 0;
100 for i = 1:avf
101 fd_noise_temp = fd_noise_temp + hausDim(rand(imsize)>0.5);
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102 end
103 fd_noise = fd_noise_temp/avf;
104 else
105 fd_noise = 1.911104960872848; %#ok<UNRCH> %1.781345203620170;
106 end

108 %% Visualisation

110 font_big = 30;
111 font_medium = 24;
112 font_small = 18;

114 line_width_medium = 2;
115 line_width_small = 1.2;

117 n_types = 4;%n_phi/2;

119 n_colors = n_types;
120 colors = zeros(n_colors, 3);
121 gray_max = .85 * ones(1,3);
122 for i = 1:n_colors % for all phase distrubance frequencies
123 colors(i,:) = (i-1)/(n_colors-1) * gray_max;
124 end
125 col_num = @(num) mod(num-1,n_colors)+1;

127 linestyles = {'-';'--'};
128 n_linestyles = numel(linestyles);
129 linestyle_num = @(num) min(max(ceil(num/n_types), 1),

n_linestyles);

131 fig = figure(1);
132 clf(fig,'reset')

134 ax = gca;
135 %cla(ax,'reset')
136 set(gca,'XMinorTick','on','YMinorTick','on')
137 % set(gca, 'TickDir', 'both')

139 set(ax,'FontSize', font_small)

141 maxfig(fig,1);
142 hold on
143 %plt = plot(f_vec/f_max, fd, 'k', 'LineWidth', line_width);
144 for i = 1:n_A_phi % for all phase distrubance frequencies
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145 plot(f_rel_vec, fd(i,:), 'LineStyle',
linestyles{linestyle_num(i)}, 'Color',
colors(col_num(i),:), 'LineWidth', line_width_small)

146 end

148 lne = line([f_min/f_max f_max/f_max], [fd_noise fd_noise],
'LineStyle', '--', 'Color', 'k', 'LineWidth',
line_width_medium);%, 'AlignVertexCenters', 'on');

150 ax.YTick = sort([min(fd(:)) ax.YTick fd_noise max(fd(:))]);
151 %ax.YAxis.TickLabelFormat = '$%,.2f';
152 ax.YTickLabel = cellfun(@(x) num2str(x, '%.3f'),

num2cell(ax.YTick), 'UniformOutput', false);

154 axis tight

156 grid on
157 grid minor

159 xlabel('$f/f_{N}$', 'Interpreter', 'latex', 'FontSize', font_big)
160 ylabel('$$ \mathrm{FD}_\mathrm{binary} $$', 'Interpreter',

'latex', 'FontSize', font_big)

162 leg = {'~Fringes, no disr.'; ...
163 '~Fringes, slight disr.'; ...
164 '~Fringes, small disr.'; ...
165 '~Fringes, noticeable disr.'; ...
166 '~Fringes, large disr., intermediate convergence'; ...
167 '~Fringes, large disr., noise convergent'; ...
168 '~Fringes, large disr., extreme case'; ...
169 '~Noise, $p = \frac{1}{2}$'};
170 for i = 1:n_A_phi % for all phase distrubance frequencies
171 A_phi = A_phi_vec(i);
172 leg{i} = [leg{i} ': $A_\varphi = ' num2str(A_phi) '$'];
173 end
174 legend(leg, 'FontSize', font_medium, 'Location', 'best',

'Interpreter', 'latex')

176 style = hgexport('factorystyle');
177 style.Bounds = 'tight';
178 hgexport(fig, '-clipboard', style, 'applystyle', true);
179 drawnow;

181 %% Exporting figure
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183 savefig(fig, 'fd_test.fig', 'compact')
184 print('-dpng', '-r300', 'fd_test')

186 %% Visualise fringes

188 if vis_f
189 %fig = figure(2); %#ok<UNRCH>
190 %clf(fig,'reset')

192 % For 17.78 fringes/screen (~14 px fringe wavelength) pattern
frequency:

193 j = floor(n_f/7); %#ok<UNRCH>
194 omega = omega_vec(j);

196 wavelength = round(2*100/14); % approximate fringe wavelength
in pixels

197 wavelength_str = num2str(wavelength); % string containing
approximate fringe wavelength in pixels

199 filename_prefix = ['fd_test_' wavelength_str 'px_A'];
200 ext = '.png';

202 % For no pattern orientation disturbance (zero pattern
orientation disturbance angle):

203 alph_dist = 0;
204 alph_val = alph + alph_dist;

206 % Pattern orientation supplementary trigonometrical values:
207 sa = sin(alph_val);
208 ca = cos(alph_val);
209 % Time and phase image coordinates rectangular grid (i.e., X

and Y corrected for pattern orientation)
210 T = X*ca + Y*sa;
211 P = X*sa - Y*ca;

213 for i = 1:n_A_phi % for all phase distrubance amplitudes
214 A_phi = A_phi_vec(i);

216 Z = sin(omega*T +
A_phi*sin(omega_phi*P));%cos(0*X).*cos(k*Y)>0;

217 Zbin = Z > 0;

219 %imshow(Z)
220 %axis xy
221 %maxfig(fig,1);
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223 imwrite(Z, fullfile('Exemplary fringes', [filename_prefix
num2str(A_phi) ext]), 'ResolutionUnit', 'unknown',
'XResolution', 300, 'YResolution', 300)

224 imwrite(Zbin, fullfile('Exemplary fringes',
[filename_prefix num2str(A_phi) '_bin' ext]),
'ResolutionUnit', 'unknown', 'XResolution', 300,
'YResolution', 300)

226 %pause(2.50)
227 %waitforbuttonpress
228 end
229 end

c.4 generating fractal pattern using rescale-
-and-add  approach

Listing C.4: Generation of synthetic fractal images that approximate RFFS  based
on Saupe’s RAA  approach (0e3.1a. DBC vs W-GBC computation times

in regard to input image scale - validation and comparison for

synthetic fractals and Gaussian noise/src/+fractal/raa2.m)

1 function V_2 = raa2(x, y, varargin)
2 % RAA2 Rescale-and-add method in two dimensions.
3 % Based on:
4 % “Point Evaluation of Multi-Variable Random Fractals”, Dietmar

Saupe,
5 % Bremen, Germany, 1989.
6 %
7 % Example:
8 % RF = raa2(x, y);
9 % RF = raa2(x, y, D, r, L, Delta, N);
10 % RF = raa2([1:512].', 1:512, 1.5, sqrt(2), 512, 1, 100);
11 % RF = raa2(1:512, 1:512, 1.5, sqrt(2));
12 % RF = raa2([1:512].', 1:512, 1.5, sqrt(2), 512, 1, 100);
13 %
14 % Piotr Szyperski, 14.03.2019.

16 n = 2; % number of dimensions

18 %% Optional arguments
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20 nVarargs = length(varargin);

22 if nVarargs >= 1 && isnumeric(varargin{1}) % first optional
argument, fractal dimension D: 1 ⩽ D ⩽ 2 (default: 1.5)

23 D = varargin{1}; % choose fractal dimension D
24 else
25 D = 1.5; % default value
26 end
27 D_s = D+1;
28 H = n+1-D_s; % Holder’s exponent, 0 ⩽ H ⩽ 1.

30 if nVarargs >= 2 && isnumeric(varargin{2}) % second optional
argument, lacunarity parameter r: r > 1 (default: √2, often
used: √2, 2, 4)

31 r = varargin{2}; % choose lacunarity parameter r
32 else
33 r = sqrt(2); % default value
34 end

36 if nVarargs >= 3 && isnumeric(varargin{3}) % third optional
argument, the largest scale L of the objects: L > 0 (default:
512, often used: 1)

37 L = varargin{3}; % choose the largest scale L of the objects
38 else
39 L = max(numel(x),numel(y)); % default value
40 end

42 if nVarargs >= 4 && isnumeric(varargin{4}) % fourth optional
argument, sampling points distance Δ (i.e., resolution 1/N): Δ
> 0 (default: 1, often used: 1/1000)

43 Delta = varargin{4}; % choose sampling ponits distance Δ
(i.e., resolution 1/N)

44 else
45 Delta = 1; % default value
46 end

48 if nVarargs >= 5 && isnumeric(varargin{5}) % fifth optional
argument, number N of random numbers on an edge of a
n-dimensional hypercube of random numbers to be produced: N ⩾
1 (default: 100, often used: 100, 50)

49 N = varargin{5}; % choose number N of random numbers on an
edge of a n-dimensional hypercube of random numbers to be
produced

50 else
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51 N = 100; % default value
52 end

54 %% Parameters

56 k_0 = floor(-log2(L)/log2(r)); % -log(L)/log(r); for r=√2, L=512:
k_0=-18

57 k_max = ceil((1-log2(Delta))/log2(r)); % log(2/Delta)/log(r); for
r=√2, L=512: k_max=2

59 k_1 = k_0 - 2; % for r=√2, L=512: k_1=-20
60 k_2 = k_max + 8; % for r=√2, L=512: k_2=10

62 %% Rescale-and-add method

64 x = cv(x);
65 y = rv(y);
66 kk = cv(k_1:k_2);

68 n_x = numel(x);
69 n_y = numel(y);
70 n_k = k_2 - k_1 + 1;
71 %k = NaN(1, 1, n_k); % preallocation
72 %k = reshape(k_1:k_2, 1, 1, []);

74 rmkkH = r.^(-kk.*H);
75 rkk = r.^kk;

77 V_2 = zeros(n_x, n_y); % preallocation
78 for i = 1:n_k
79 rmkH = rmkkH(i);
80 rk = rkk(i);

82 V_2 = V_2 + rmkH .* S_2(rk.*x, rk.*y, N);
83 end

85 %% Debug

87 %Z1 = S_2(cv(1:.1:10),rv(1:.1:10)); surf(Z1) % test for S_2
continuity

88 %Z2 = S_2(cv(0:10:150),rv(0:10:150)); surf(Z2) % test for S_2
periodicity

90 end
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92 function S_2 = S_2(x, y, varargin)
93 % S_2 Piecewise bicubic interpolation.

95 %% Optional arguments

97 nVarargs = length(varargin);

99 if nVarargs >= 1 && isnumeric(varargin{1}) % first optional
argument, number N of random numbers on an edge of a
n-dimensional hypercube of random numbers to be produced: N ⩾
1 (default: 100, often used: 100, 50)

100 N = varargin{1}; % choose number N of random numbers on an
edge of a n-dimensional hypercube of random numbers to be
produced

101 else
102 N = 100; % default value
103 end

105 %% Initialization

107 i = @(x) floor(x);
108 d = @(x) x-i(x);
109 s = @(x) (d(x)).^2 .* (3 - 2*d(x));

111 %% Matrix variant

113 s_x = s(x);%s(rv(x));
114 s_y = s(y);%s(cv(y));
115 i_x = i(x);
116 i_y = i(y);

118 S_2 = ...
119 s_x * s_y .* V(i_x+1, i_y+1, N) + ...
120 (1-s_x) * s_y .* V(i_x, i_y+1, N) + ...
121 s_x * (1-s_y) .* V(i_x+1, i_y, N) + ...
122 (1-s_x) * (1-s_y) .* V(i_x, i_y, N);

124 %% Loops variant

126 %{
127 %Much slower than matrix variant.

129 n_x = numel(x);
130 n_y = numel(y);
131 S_2 = NaN(n_x, n_y); % preallocation
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133 fprintf('Calculating S_2(j,k): %5.1f%%.\n', ((1-1)*n_y + 1-1) /
(n_x * n_y))

135 for j = 1:n_x
136 x_j = x(j);
137 s_x = s(x_j);
138 i_x = i(x_j);

140 for k = 1:n_y
141 y_k = y(k);
142 s_y = s(y_k);
143 i_y = i(y_k);

145 S_2(j,k) = ...
146 s_x * s_y * V(i_x+1, i_y+1, N) + ...
147 (1-s_x) * s_y * V(i_x, i_y+1, N) + ...
148 s_x * (1-s_y) * V(i_x+1, i_y, N) + ...
149 (1-s_x) * (1-s_y) * V(i_x, i_y, N);

151 fprintf('\b\b\b\b\b\b\b\b%5.1f%%.\n', 100*((j-1)*n_y + k) /
(n_x * n_y))

152 end
153 end
154 %}
155 end

157 function V = V(x, y, varargin)
158 % V Random numbers production.

160 %% Optional arguments

162 nVarargs = length(varargin);

164 if nVarargs >= 1 && isnumeric(varargin{1}) % first optional
argument, number N of random numbers on an edge of a
n-dimensional hypercube of random numbers to be produced: N ⩾
1 (default: 100, often used: 100, 50)

165 N = varargin{1}; % choose number N of random numbers on an
edge of a n-dimensional hypercube of random numbers to be
produced

166 else
167 N = 100; % default value
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168 %N = round(sqrt(2)^(ceil((1-log2(1))/log2(sqrt(2))) + 8) *
512); % default value: (r^k_2) * L =
r^((1-log2(Delta))/log2(r) + 8) * L = 16384

169 end

171 %% Initialization

173 rng('default')
174 %rng(0)
175 %rng(0, 'twister')
176 %rng(0, 'philox')
177 T = randn(N);%randn(N,N);

179 i = @(x) mod(x-1, N) + 1;
180 V = T(i(x), i(y));
181 end

183 function cv = cv(x)
184 % CV Convert to column vector.

186 cv = reshape(x,[],1);
187 end

189 function rv = rv(x)
190 % RV Convert to row vector.

192 rv = reshape(x,1,[]);
193 end

c.5 segmented linear regression

Listing C.5: Implementation of bisegmental linear regression with optimization of break-
points (core part) (2. Main/src/+piecewiselinfit/lin_biseg_fit.m)

100 % The main loop for the bisegmental linear fit:
101 for indSSE = 1:L2
102 ind = indSSE + 1;
103 x1 = x(1:ind); x2 = x(ind:end);
104 y1 = y(1:ind); y2 = y(ind:end);
105 p1 = polyfit(x1, y1, 1);
106 xi = x(ind); yi = polyval(p1, xi); % the point of intersection
107 % (constraint)
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108 if constrained
109 p2_i = polyfit(x2, y2, 1); % unconstrained LS - to be used
110 % as an initial estimator
111 p2 = fmincon(@piecewiselinfit.bisegmental_error, p2_i, ...
112 [], [], [], [], [], [], ...
113 @piecewiselinfit.bisegmental_const, Options, x2, y2, ...
114 xi, yi); % constrained LS
115 else
116 p2 = polyfit(x2, y2, 1); % unconstrained LS
117 end
118 y1_hat = polyval(p1, x1); y2_hat = polyval(p2, x2);
119 SSE1 = sum((y1-y1_hat).^2); SSE2 = sum((y2-y2_hat).^2);
120 SSE(indSSE) = SSE1 + SSE2;
121 end

123 [~, indSSEi] = min(SSE);
124 indi = indSSEi + 1;

126 x1 = x(1:indi); x2 = x(indi:end);
127 y1 = y(1:indi); y2 = y(indi:end);
128 %y1_avg = nanmean(y1); y2_avg = nanmean(y2);
129 y1_avg = mean(y1); y2_avg = mean(y2);

131 % Second LS fitting - for the set that gave minimum global SSE
132 % (sum of squared errors):

134 p1 = polyfit(x1, y1, 1);

136 xi = x(indi); yi = polyval(p1, xi); % the point of constraint
137 if constrained
138 p2_i = polyfit(x2, y2, 1); % unconstrained LS - to be used
139 % as an initial estimator
140 p2 = fmincon(@piecewiselinfit.bisegmental_error, p2_i, [], ...
141 [], [], [], [], [], @piecewiselinfit.bisegmental_const, ...
142 Options, x2, y2, xi, yi); % constrained LS
143 else
144 p2 = polyfit(x2, y2, 1); % unconstrained LS
145 end

147 y1_hat = polyval(p1, x1); y2_hat = polyval(p2, x2);
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d.1 validation of p-gbc-img  implementation
on simple matrices

Listing D.1: Illustrative output code for validation of P-GBC-IMG  on image
matrix of size 4 px× 4 px (0c. P-GBC-img validation on simple

matrices_ex_out.txt)� �
Image 1 of 1 (4 × 4 px), BC FDE = 0.64 (note that there was no ε n

sequence cut-offs applied):

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

Preprocessed - i.a., cropped - image used by (internal)
box-counting algorithm (4 × 4 px):

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

Resized sub-images:

Sub-image 1 of 3 (grid size: 4 × 4 box; box size: 1 × 1 px) -
- counted boxes numbers (i.e., box’ entropies: N =

-Σi p i · log2p i), ΣN = 0.00:

0 | 0 | 0 | 0
-----+-----+-----+----

0 | 0 | 0 | 0
-----+-----+-----+----

0 | 0 | 0 | 0
-----+-----+-----+----

XXXIX
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0 | 0 | 0 | 0

Matrix of p i probability values (box size: 1 × 1 px):

1.00 | NaN | NaN | NaN
------+------+------+-----
1.00 | 1.00 | NaN | NaN
------+------+------+-----
1.00 | 1.00 | 1.00 | NaN
------+------+------+-----
1.00 | 1.00 | 1.00 | 1.00

Matrix of log2p i values (box size: 1 × 1 px):

0.00 | NaN | NaN | NaN
------+------+------+-----
0.00 | 0.00 | NaN | NaN
------+------+------+-----
0.00 | 0.00 | 0.00 | NaN
------+------+------+-----
0.00 | 0.00 | 0.00 | 0.00

Matrix of -p i · log2p i values (box size: 1 × 1 px):

0.00 | NaN | NaN | NaN
------+------+------+-----
0.00 | 0.00 | NaN | NaN
------+------+------+-----
0.00 | 0.00 | 0.00 | NaN
------+------+------+-----
0.00 | 0.00 | 0.00 | 0.00

Sub-image 2 of 3 (grid size: 2 × 2 box; box size: 2 × 2 px) -
- counted boxes numbers (i.e., box’ entropies: N =

-Σi p i · log2p i), ΣN = 5.17:

1.58 | 0.00
------+-----
2.00 | 1.58

Matrix of p i probability values (box size: 2 × 2 px):

0.33 0.00 | NaN NaN
0.33 0.33 | NaN NaN
------------+-----------
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0.25 0.25 | 0.33 0.00
0.25 0.25 | 0.33 0.33

Matrix of log2p i values (box size: 2 × 2 px):

-1.58 -Inf | NaN NaN
-1.58 -1.58 | NaN NaN
------------+-----------
-2.00 -2.00 |-1.58 -Inf
-2.00 -2.00 |-1.58 -1.58

Matrix of -p i · log2p i values (box size: 2 × 2 px):

0.53 NaN | NaN NaN
0.53 0.53 | NaN NaN
------------+-----------
0.50 0.50 | 0.53 NaN
0.50 0.50 | 0.53 0.53

Sub-image 3 of 3 (grid size: 1 × 1 box; box size: 4 × 4 px) -
- counted boxes numbers (i.e., box’ entropies: N =

-Σi p i · log2p i), ΣN = 3.32:

+-----+
| 3.32|
+-----+

Matrix of p i probability values (box size: 4 × 4 px):

+-----------------------+
| 0.10 0.00 0.00 0.00|
| 0.10 0.10 0.00 0.00|
| 0.10 0.10 0.10 0.00|
| 0.10 0.10 0.10 0.10|
+-----------------------+

Matrix of log2p i values (box size: 4 × 4 px):

+-----------------------+
|-3.32 -Inf -Inf -Inf|
|-3.32 -3.32 -Inf -Inf|
|-3.32 -3.32 -3.32 -Inf|
|-3.32 -3.32 -3.32 -3.32|
+-----------------------+
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Matrix of -p i · log2p i values (box size: 4 × 4 px):

+-----------------------+
| 0.33 NaN NaN NaN|
| 0.33 0.33 NaN NaN|
| 0.33 0.33 0.33 NaN|
| 0.33 0.33 0.33 0.33|
+-----------------------+� �
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