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Ring core fibre as an optical amplifier 
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The ring shape of doped rare earth core fibre (M-profile fibre) offers the possibility of stimulating
luminescence from inside of the fibre with higher efficiency of coupling. In this type of fibre, the
inner and outer claddings have lower than the ring core refraction indexes. The pump light is guided
by the multimode inner cladding and the laser light is guided by the doped rare earth ions ring
-core. The pump absorption is almost complete because of the geometry of that kind of fibre
construction. In this paper, a ring core doped Dy3+ ions fibre is presented. In the first part of
this report, an analysis of light transfer between inner cladding and ring-core in ring-core optical
fibre is presented. In the second part, the parameters of Dy3+ ions doped ring core optical fibre
manufactured by author are described. It seems that this kind of fibre may be used for optical
amplifier construction.
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1. Analysis of the ring core fibre material and geometrical parameters 
on radiation distribution inside the fibre 

In the ring-core optical fibre the pump light is guided by the multimode inner cladding
[1], [2]. For this reason an analysis of energy distribution inside the fibre is necessary.
The laser light is guided by the doped rare earth ions ring-core.

The objective of the present study is a ring shaped core optical fibre (Fig. 1). The
following assumptions have been made:

1. The geometry of the elements of a ring core light fibre is known: r1 – inner
cladding radius, r2 – ring-core outer radius, r3 – outer radius of the fibre, l – length of
the fibre.

2. The particular layers of the fibre are made of materials of constant and known
refractive index: n1 – refractive index of the inner cladding material, n2 – refractive
index of the ring-core, n3 – refractive index of the outer cladding. The dependence
n1 < n2 > n3 is accepted. 

3. The front surface of the inner cladding is illuminated from the direction inclined
at the angle α with respect to the optical fibre axis. The intensity of lighting E0 of the
light source is known. 
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4. The elementary luminous flux is carried by a vector. Elements of all surfaces
cooperating with this vector are flat.

5. The symmetry axis of the light fibre coincides with the axis of rectangular
coordinate system. The light source is displaced in the plane x, z from the adopted
coordinate system.

The angle α is a parameter constant for the entire front surface of the fibre. It can
be changed arbitrarily from 0° to 90° (Fig. 2). On the front surface of the fibre the
lighting intensity amounts to Ep = Eocosα (where: Eo – normal intensity of lighting,
α – angle of incidence of the light beam).

An elementary light ray incident on an element of the light fibre front and
represented by the vector P is equal to:

|P| = Eo ∆x ∆y cosα (1)

where ∆x, ∆y – dimensions of the sides of a rectangular elementary surface. 
If the diameter of inner cladding (2r1) is divided into nR elements, the dimensions

∆x and ∆y can be assumed as equal to:

(2)

The coordinates of the point P can be determined from the dependence:

(3)

where: i = 0 ... nR – successive calculation points in the direction of the x axis,
j = 0 ... nR – successive calculation points in the direction of the y axis. 
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Fig. 1. Cross-section of a ring core optical fibre.
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If  then the point P under consideration lies outside the front of the
inner cladding surface and in the calculations this elementary luminous flux is not
analysed any longer.

The knowledge of the angle of incidence α allows us to determine the angle of
refraction β, lying also in the plane parallel to x, y from the equation

(4)

Knowing the angles α  and β  we can determine Fresnel’s coefficient of reflection
ρP at the point P from the expression

(5)

and in the case where α = 0 (the flux runs parallel to the symmetry axis of the fibre),
from:

(6)

The luminous flux R reflected from the front surface is equal to:

|R| = ρP |P|. (7)

The remaining part of the elementary luminous flux |S1| enters the inner cladding
of the ring-core light fibre

|S1| = (1 – ρP)|P| (8)

where the vector S1 has the components: S1x = |S1|sinβ, S1y = 0, S1z = |S1|cosβ.
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Fig. 2. Course of an elementary luminous flux in a ring-core optical fibre.
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In order to determine the point S1 at which the vector S1 hits the side surface of
the inner cladding, we must solve the system of equations when yS1 = yP :

i) equation for a straight line passing through the point P and parallel to the
vector S1

(9)

ii) equation of the cylindrical core surface

(10)

Hence:

(11)

If zS1 > l (l – length of the light pipe), the light ray meets the exit surface of the
inner cladding at the point Q1 and the coordinates of this point are equal to:

(12)

If zS1 < l, the other coordinates of the point S1 can be determined from the dependence:

(13)

At the point S1 the unit vector NS1, normal to the side surface of the inner cladding
is equal to:
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The angle of incidence δ1 of the vector S1 on the side surface of the inner cladding
is determined from:

(14)

Now, we can calculate the angle of refraction ε1 of the luminous flux T1 running
in the ring-core of the light fibre being analysed

n2sinε1 = n1sinδ1.

Hence:

(15)

Knowing the angles δ1 and ε1 we can determine the coefficient of Fresnel’s
reflections ρS1 at the point S1:

(16)

At the point S1 some part of the luminous flux undergoes refraction T1

|T1| = (1 – ρS1)|S1| = (1 – ρS1)(1 – ρP)|P| (17)

and the remaining part V1 is equal to:

|V1| = ρS1|S1| = (1 – ρP)ρS1|P|. (18)

The vector V1 reflected at the point S1 is determined from the relation

V1 = [S1 + 2|S1|NS1cosδ1 ]ρS1 (19)

and its components are equal to:

(20)
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Equation for the vector T1:

enables to determine its components:

(21)

The vector T1 hits the side surface at the point T1 being the boundary between the
ring-core with the refractive index n2 and outer cladding with the index n3. The
coordinates of the point T1 can be determined from the system of equations: 

(22)

If zT1 > l, the vector T1 hits the exit surface of the light fibre and the coordinates
of this point Q2 are equal to:

(23)

If zT1 < l, we can determine the other coordinates of the point T1 from the Eq. (22).
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At the point T1, at the boundary of two media with the coefficients n2 and n3, the
unit vector NT1 normal to the boundary surface is equal to:

The angle of incidence ϕ1 of the luminous flux (vector T1) on the boundary surface
is described by the relation:

(24)

At the point T1 we must check if there occurs the phenomenon of the complete
inner reflection. This phenomenon takes place if the following condition is
satisfied:

(25)

The vector F1 of the inside reflection is described by the relation:

Hence, the components of this vector are equal to:

(26)

When determining the point F1 the following system of equations is applicable:
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If the coordinate of point F1: zF1 > l, the luminous flux meets the entrance surface
of the fibre at the point Q3 with the coordinates:

(28)

If zF1 < l, the other coordinates can be determined from relation (27). However, it
happens occasionally that the luminous flux F1 by-passes the inner cladding of the
fibre and again meets the outer side surface of the ring. In this case, in order to
determine the point of intersection of the vector F1 with the side surface of the ring,
the radius r2 should be substituted into the equation of the ring in relation (27) and
then the calculations should be carried out as above. 

If at the point T1 the condition (25) is not satisfied, the inside reflection does not
occur, then the luminous flux will penetrate into the area of the cladding (n3), but we
must take into consideration Fresnel’s reflection. The angle of refraction ψ1 is
determined from the relation:

(29)

and the reflection coefficient ρT1 – in a similar way as from relation (16):

(30)

Knowing the reflection coefficient ρT1 it is possible to determine the values of the
elementary luminous fluxes F1 (Fresnel’s reflection) and U1 (the main luminous flux):

(31)

The luminous flux U1, running in the jacked, escapes from it through the side surface
and is not analysed any longer. 

In the case where at the point T1 a complete inner reflection takes place
(condition (25) is satisfied) and zF1 < l, the main luminous flux F1 will enter the inner
cladding. In this case, the angle of incidence µ1 should be determined from the relation:
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(32)

and the vector NF1 is determined as follows:

Next, the angle of refraction η1, occurring when the main ray S2 penetrates into the
inner cladding:

(33)

and the coefficient of Fresnel’s reflection is determined

(34)

The luminous fluxes S2 (main) and G1 (Fresnel’s reflection) are determined from
the relations: 

(35)

The luminous flux G1 behaves in a similar way as T1 and its further course can be
analysed in accordance with the relation (17) and the next ones.
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point S2, thus it is necessary to determine the coordinates of this point, using the
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Further course of the rays refracted and reflected at the point S2 is analysed in the
same way as for the point S1.

The vector V1, determined by Eqs. (18)–(20), meets the surface of the ring-core at
the point V1. The coordinates of this point can be determined by solving the system of
equations:

(37)

If the coordinate zV1 > l, the ray V1 hits the exit surface of the inner cladding at the
point Q. The coordinates of the point Q are determined in a similar way as in the case
of the ray S1, Eq. (12). In the opposite case the other coordinates of this point must be
found. In order to calculate the reflection coefficient ρV1 we must know the angle of
incidence κ1 and the angle of λ1. Knowing that

these angles are determined from the relations: 
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Knowing the value of the reflection coefficient ρV1 makes it possible to determine
the division of the elementary luminous flux at the point V1 into the reflected part H1
and the refracted part T2:

(41)

A similar situation is found at the points V2, V3, etc. The refracted beam T2 at the
point V1 becomes also completely reflected at T2 and will hit the point F2. Thus,
the phenomena occurring at the point V1 will be analogous to phenomena occurring
at the other points V. Calculations of the points F and V are repeated many times. 

The refracted beam H1 behaves similarly as V1, thus its further analysis is known.
The final result of the calculations is the fact of hitting the exit surface of the optical

fibre by the elementary luminous flux. Part of this flux escapes through the inner
cladding, and part through the ring core. In order to determine the distribution of the
luminous flux the exit face of the fibre was divided into elements having the shape of
squares each with m elements along the diameter of the ring (Fig. 3). 

Based on relations (12), (23) and (28) the coordinates of the point where the
elementary luminous flux hits the exit surface of the fibre are determined. On this
surface there also appear Fresnel’s reflections, hence it is necessary to know the value
of the incidence angle βQ and that of the refraction angle γQ. These angles are
determined from the dependence
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Fig. 3. Escape of luminous fluxes from the ring-core optical fibre.
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and for the luminous fluxes leaving the inner cladding:

(43)

and for the fluxes leaving the ring core 

(44)

Next, the reflection index ρQ is calculated from the relation

(45)

Now, we can determine the value of the elementary luminous flux |Q| leaving the
fibre

(46)

The above calculations are carried out in the same way for all partial elementary
luminous fluxes S, V, T and F.

It is necessary to sum up all the elementary luminous fluxes leaving the inner
cladding ΦR and the ring-core ΦP:
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Fig. 4. Relative values of luminous fluxes leaving inner cladding (1) and ring-core (2) as a function of
outer ring-core radius r2 (n1 = 2.17; n2 = 2.20; n3 = 1.52; r1 = 0.5 mm; r3 = r2 + 0.2 mm).
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(47)

(48)

In this way, the operation of a ring-core optical fibre is illustrated.
For numerical calculations the following data have been accepted: r1 = 0.5 mm;

r2 was changed from 0.7 do 1.5 mm; r3 = r2 + 0.2 mm; length l was changed from 30
to 150 mm; n1 = 2.17; n2 = 2.20; n3 = 1.52. The result is presented in Fig. 4.

2. Parameters of the fibre

Heavy metal oxide (HMO) glasses are very attractive hosts for rare earth ions. Among
the HMO glasses one of the most interesting are PbO–Bi2O3–Ga2O3–BaO glasses
because of their high transparency (up to 70%) within the 0.5–7.6 µm IR spectral
range [3]. Mainly PbO and Bi2O3 oxides determine optical properties of this family of
glasses [4]. Moreover, the HMO glass structure is flexible enough to accept rare earth
elements.

The glass composition: PbO(0.50)–Bi2O3(0.25)–Ga2O3(0.20)–BaO(0.05) (mol%)
doped with 0.5% of Dy2O3 for the ring-core fibre construction was used [4]. The molten
mass of glass was poured into a vertically whirling brass cylinder and after forming
was distressed at a temperature of 350°C. In this way, the glass attained the ring
shape. For the inner cladding glass, the composition PbO(0.40)–Bi2O3(0.28)–
Ga2O3(0.25)–CdO(0.07) (mol%) was chosen. The glass rod with refractive index of
n1 = 2.17 (λ = 630 nm), thermal expansion coefficient α1 = 115×10–7 K–1 was
obtained. The outer radius of the rod fitted the inner radius of the ring-core glass.

Because of a very low viscosity of prepared glasses it was impossible to use
“classic” drawing methods (double crucible, rod in tube, etc.) As a first operation,
cylindrical rod for inner cladding was insert into the ring core shaped glass. Both

ΦR QR ,∑=

ΦP QP .∑=

Fig. 5. Step index ring-core optical fibre doped by Dy3+ ions. Outer diameter of the fibre 150 µm.
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glasses were heated in a fine fit crucible. The nozzle of the crucible was earlier
connected with a capillary made from SiO2–Na2O–CaO glass, used for outer cladding.
At a temperature of about 625°C the core and inner cladding glasses flew into the
capillary and then a two-step drawing process was possible.

The wide IR transparency (up to 7.6 µm) is a result of a relatively low phonon
energy (about 700 cm–1) defined by the large atomic mass of the cations, such as Pb,
Ga, Bi, Ba. The core glass has refractive index n2 = 2.20 (λ = 630 nm), thermal
expansion coefficient α2 = 120×10–7 K–1 and measured non-linear coefficient
n2 = 8.5 ×10–19 m2/W. Figure 6 presents IR absorption spectra of the ring core fibre
doped with 0.5% of Dy3+ (in weight units). We can see five absorption bands:
910 nm (1), 1160 nm (2), 1320 nm (3), 1700 nm (4) and 2780 nm (5). The observed
bands correspond to the optical excitation from the ground 6H15/2 state to the excited
6F7/2, 6H7/2, 6H9/2, 6H11/2, 6H13/2 states.

Fig. 6. IR absorption spectra of the fibre. 

Fig. 7. Core luminescence spectra PbO–Bi2O3–Ga2O3–BaO–Dy3+.
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Luminescence spectra of PbO–Bi2O3–Ga2O3–BaO–Dy3+ fibre pumped at 1.06 µm
YAG-Nd laser at room temperature are presented in Fig. 7. Luminescence bands at
1890 nm (1) and 3020 nm (2) are due to 6H11/2 → 6H15/2 and 6H11/2 → 6H13/2
transitions, respectively. Measured lifetimes of Dy3+ levels and their quantum
efficiency are as follows: τ = 200 ms, η = 41% (1) and τ = 3200 ms, η = 13.8% (2).

The first experiments showed that too many energy propagates through the inner
cladding. To reduce it a ring-core optical fibre with special inner stimulation channel
was constructed [5] (see Fig. 8).

3. Conclusions

The following conclusions can be drawn:
1. The ring core optical fibre can be used to divide the luminous flux between the

inner cladding and cylindrical core proportionally. The range of those changes is
relatively wide and depends on inner cladding and core ratio (Fig. 4). 

2. The measured lifetime of Dy3+ level was about 6211 µs and is not far from that
of the crystalline materials. The relatively high quantum efficiency of the 6H13/2 →
6H15/2 transition is probably caused by an increased multiphonon relaxation due to the
low energy differences between the ground and first excited states.

3. The ring core Dy3+ doped optical fibre was made (Fig. 5). In spite of 25 years
of experience in glass technology and optical fibre drawing the author had to solve
some problems connected with low viscosity of the glasses used. Particularly, the
method of forming whirling glass elements seems to be suitable for construction of
optical fibres from  the glasses characterised by very low viscosity. This method will
be developed by the author.
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Fig. 8. Ring-core optical fibre with special channel for inner stimulation. 
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