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In this paper, we propose a new structure to design a 4-channel optical demultiplexer using a modified
Y-branch structure with 4 hexagonal photonic crystal ring resonators. A new optical filter with
a high transfer coefficient and quality factor has been introduced and designed in the present paper
using a hexagonal photonic crystal ring resonator, which has then been used to design a 4-channel
optical demultiplexer. The proposed demultiplexer has an average transfer coefficient of 95.5%
and a high quality factor of 4164.6. It also has a channel spacing of 2.75 nm and a spectral width
of 0.4 nm. The maximum and minimum crosstalk values of the channels are –10.5 and –36.5 dB,
respectively. To study the photonic band structure, the plane wave expansion method has been used
and the finite-difference time-domain method has also been used to analyze the optical behavior
of the structure.
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1. Introduction

Wavelength division multiplexing (WDM) is an approach to achieve the optimal use of
the fiber capacity with the aim of increasing the number of communication channels [1].
It is done by combining certain wavelengths and transmitting them all over a single
optical fiber and finally, the separation of the desired wavelengths is carried out through
the use of optical demultiplexers [2].

In optical demultiplexers, several design parameters are important to exploit the
full capacity of optical fibers. These parameters include, low channel spacing, high
quality factor, high transfer coefficient and low crosstalk. There are different materials
to use when designing optical demultiplexers. Amongst them, photonic crystals pro-
vide the best platform [3].

Photonic crystals (PhCs) [4–6] are nanostructures with alternating refractive index,
which, have created an appropriate platform in designing and developing optical inte-
grated circuits (PICs) [7]. The most important feature that reveals the practical signif-
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icance of photonic crystals is the photonic band gap (PBG). The guided light can be
controlled fully by this feature. To control the light in photonic crystals, the intra-struc-
ture defects can be used. By creating appropriate defects, different optical devices
based on the photonic crystals can be developed, including optical demultiplexers [3, 
8–10], optical switches [11], optical filters [12, 13], optical logic gates [14], and optical
sensor [15, 16]. There are different mechanisms to design optical devices based on
photonic crystals, such as resonant cavities, defect mode, ring resonator and coupled
waveguides [11].

So far various optical demultiplexers based on photonic crystals have been presented
using ring resonators, linear or point defects. For example, ROSTAMI et al. [17], designed
a 4-channel optical demultiplexer using Y-shaped linear defect. ALIPOUR-BANAEI et al. [8],
presented a 4-channel optical demultiplexer by X-shaped resonators. Using linear de-
fects, GUPTA and JANYANI [18], presented an optical demultiplexer with a very low
channel spacing and high quality factor. MEHDIZADEH et al. [9], designed a 4-channel
optical demultiplexer with high transfer coefficient using quasi-shaped ring resonators.
Using linear defects, ALIPOUR-BANAEI et al. [3], designed initially an optical filter and
then, using this optical filter, they designed an 8-channel, a 16-channel and a 32-chan-
nel demultiplexers with low channel spacing. TALEBZADEH and SOROOSH [19], used ring
resonators to improve the quality factor and the transfer coefficient and also to reduce
the channel spacing. MEHDIZADEH and SOROOSH [20], designed an 8-channel demulti-
plexer with low crosstalk by the use of linear defects. Using eight ring resonators of
square type, VENKATACHALAM et al. [21], designed an 8-channel optical demultiplexer.
KANNAIYAN et al. [22], designed another 8-channel demultiplexer, this time using an oc-
tagonal ring resonator. TALEBZADEH et al. [23] proposed a structure based on photonic
crystals to realize a demultiplexer. To obtain high quality factor, they used arc cavities.
Today, most studies conducted on optical demultiplexers based on photonic crystals
are focused on reducing the channel separation and improving the crosstalk. In recent
years, ring resonators have received considerable attention due to their high transmis-
sion efficiency, high quality factor, low crosstalk and flexibility in selecting an appro-
priate wavelength [8].

In this paper, a 4-channel optical demultiplexer has been designed using a modified
Y-branch structure and 4 hexagonal photonic crystal ring resonators. The proposed
demultiplexer has appropriate bandwidth, high quality factor and transfer coefficient.
The maximum and minimum values of the crosstalk are equal to –10.5 and –36.5 dB,
respectively, and the channel spacing is 2.75 nm. The proposed demultiplexer has re-
sults better than those of other reported structures. 

This paper is formed as follows. In Section 2, the photonic band gap of the structure
prior to introducing defects and other structural parameter are described. Section 3 fo-
cuses on the optical filter and the corresponding optical demultiplexer designed. In
Section 4, the simulation results are presented and discussed, and finally, the conclu-
sions are presented in Section 5.
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2. Photonic band gap structure
In the present paper, a plane wave expansion (PWE) method [24], has been used to
extract the photonic band gap of the structure. To determine the parameters of the pho-
tonic crystal structure, the photonic band gap maps have been used. First, a 21 × 27
structure of dielectric rods immersed in air with triangular lattice is used. To determine
the physical structural parameters of our proposed structure, one requires to calculate
the gap map diagrams of the design. It should be mentioned that a band gap appropriate
for optical telecommunication system is considered in the design. The photonic band
gap is extracted using PWE calculations. Subsequently, in order to obtain the gap map
diagrams, the band structure is calculated at various values of the photonic crystal
parameters, namely, the refractive index, the rod radius and the lattice constant. In
Fig. 1a, it can be seen that the photonic band gap is shifted towards lower frequencies
by increasing the refractive index of the structure. In addition, as can be seen in Fig. 1b,
the photonic band gap is shifted towards lower frequencies by increasing the R/a ratio,
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Fig. 1. Gap map diagrams: variation of PBG versus refractive index (a) and R/a ratio (b). 
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(R is the radius of photonic crystal rods and a is the lattice constant of the structure).
According to the photonic band gap maps in Fig. 1, we are able to determine the struc-
tural parameters. Hence, a refractive index n of 3.9, dielectric rods radius R of 106 nm
and a lattice constant a of 603 nm are considered in the proposed structure. 

Now, according to the above mentioned physical characteristics, the final band gap
diagram is shown in Fig. 2. As can be noted from this figure, the structure has two pho-
tonic band gaps, one in TM and the other in TE mode, amongst which the photonic
band gap in the TM mode is suitable. This is because, TM mode includes appropriate
telecommunication channels. The value of the band gap mentioned in the TM mode
is in the range of 0.275 ≤ a/λ ≤ 0.47, which corresponds to wavelength in the range of
1340 nm ≤ λ ≤ 2900 nm. 

3. Design of optical filter and demultiplexer 
In the present study, we have used a hexagonal photonic crystal ring resonator to design
an optical filter for the selection of an appropriate wavelength. Two linear defects, one
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in the input and the other in the output port along with a ring resonator to isolate the de-
sired wavelength are used in the proposed optical filter. This is shown in Fig. 3. The ring
resonator has an inner radius Ri of 180 nm and the radius of its scattering rods Rs is
equal to 115 nm, which are used to prevent the scattering of light within the structure.
Output spectrum of the structure is shown in Fig. 4. According to this figure, the struc-
ture has a transfer coefficient of 100% and the quality factor of 2446.

Next, the output spectrum of the proposed structure is explored by making changes
to the radius of the inner rods of the ring resonator. According to Fig. 5, the output
spectrum is shifted towards longer wavelengths with an increase in the radius of the
inner rods of the resonator. Using this optical filter, we have proposed a new design
for an appropriate optical demuliplexer.
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Fig. 4. The output spectrum of the proposed filter.
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To design the proposed 4-channel optical demultiplexer, which is shown in Fig. 6,
4 hexagonal ring resonators with inner rods having radii of 178, 179.5, 181 and
182.5 nm for the first, second, third and fourth channels, respectively, are used.

4. Simulation results
The finite-difference time-domain (FDTD) [25] method has been used to carry out sim-
ulations and calculations. The main structure of the demultiplexer has 45 × 55 (the
number of rods in x and z directions are 45 and 55, respectively) arrays of dielectric
rods. As shown in Fig. 7, the proposed structure is able to isolate the wavelengths of
1581.5, 1584.75, 1587.25 and 1589.5 nm by the first, second, third and fourth channel,
respectively. The exact values of the transfer coefficient, the quality factor and the
spectral width of each channel are listed in Table 1. According to this table, the min-
imum and maximum values for the transfer coefficient are equal to 92% and 100%,
respectively, and the minimum and maximum values for the quality factor are equal
to 2890 and 5272.5, respectively. The average width of the spectrum is 0.4 nm and the

Input
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Fig. 6. The sketch of the proposed demultiplexer.

T a b l e  1.  Simulation results of the proposed demultiplexer. 

Central wavelength
[nm]

Resonant rod
[nm]

Spectral width
[nm]

Quality factor
Transmission
[%]

Channel 1 1581.75 178 0.3 5272.5 100

Channel 2 1584.75 179.5 0.35 4527.8 92

Channel 3 1587.25 181 0.4 3968.1 96

Channel 4 1589.5 182.5 0.55 2890 94
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Fig. 7. The output spectra of the proposed demultiplexer. Linear (a) and dB (b) scale.
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channel spacing is 2.75 nm. To better understand how the above mentioned wave-
lengths are isolated by the proposed demultiplexer, Fig. 8 is presented, according to
which, light waves with wavelength of 1584.75 nm exit from channel 2 and with wave-
length of 1589.5 nm exit from channel 4. The crosstalk values are presented in Table 2.
It can be seen that the maximum and minimum values of crosstalk are equal to –10.5
and –36.5 dB, respectively.

To compare the proposed structure with other reported structures, including linear
defects and ring resonators, Table 3 is presented. In this table, transfer coefficient, qual-
ity factor, channel spacing, spectral width and the crosstalk are compared.

According to the above table, our 4-channel demultiplexer has a high quality factor
when compared to other reported structures, so it is much more suitable for DWDM
systems. Our structure has also appropriate transfer coefficient, channel spacing and
crosstalk values, while previously reported demultiplexers have some restrictions to
all or some of the above mentioned parameters.

T a b l e  2.  Crosstalk values of the proposed demultiplexer (dB). 

Channel 1 Channel 2 Channel 3 Channel 4

Channel 1 – –12.5 –24 –18

Channel 2 –17.5 – –20 –21.5

Channel 3 –27 –23.5 – –10.5

Channel 4 –32 –36.5 –21 –

T a b l e  3.  Comparison of the proposed demultiplexer with the other reported ones. 

Proposed 
DMUX

[2] [8] [9] [10] [17] [19]

Number of channels 4 4 4 4 4 4 4

Spectral width [nm] 0.4 0.475 1.7 1.35 0.425 1.05 0.3975

Channel spacing [nm] 2.75 3 3.03 3.2 2.06 3.5 2

Quality factor 4164.6 3409.7 1234.2 1224.7 4107.3 1496.7 3602

Transmission [%] 95.5 99.82 52.2 96.2 93.45 80.25 99.25

Maximum of crosstalk [dB] –10.5 –19 –7.5 –17 –15.35 –10.49 –20.5

Minimum of crosstalk [dB] –36.5 –40 –23.7 –38 –38.41 –33.18 –42

[20] [21] [22] [23]

Number of channels 8 8 8 8

Spectral width [nm] 0.675 1.8 0.787 1.48

Channel spacing [nm] 2.1 4.2 1.7 1.75

Quality factor 2391.8 825 1968.8 1200

Transmission [%] 97.5 81 98 99

Maximum of crosstalk [dB] –11.2 – – –5

Minimum of crosstalk [dB] –40 – – –36.5
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5. Conclusions

In the present study, a new 4-channel optical demultiplexer based on hexagonal photonic
crystal ring resonator is presented. This structure can be used in WDM systems. The pho-
tonic band gap maps have been used to determine the structural parameters. To separate
the desired wavelengths, optical filters based on a ring resonator are used. The optical
filter designed has indeed a very favorable transfer coefficient and quality factor.
The average transfer coefficient and the quality factor are 95.5% and 4164, respective-
ly. The bandwidth and the separation between the channels are 0.4 and 2.75 nm, re-
spectively. In addition, in this structure, the maximum and minimum values of crosstalk
are equal to –10.5 and –36.5 dB, respectively. As the proposed demultiplexer has both
high transfer coefficient and quality factor and low crosstalk, hence it is a very good
candidate for WDM systems.
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