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Propagation of solitary wave 
in non-uniform fiber system 
with high-order nonlinear effects
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The ultra-short pulse propagation in a non-uniform fiber system is investigated based on the variable
coefficient coupled higher-order nonlinear Schrödinger equation with the dispersion gain and
nonlinear gain terms. By using the ansatz method and the split-step Fourier method, we get the exact
solitary wave solution, with which the transmission process of the solitary wave is studied. Further-
more we obtain the stability of the solitary wave under finite initial perturbations. The interaction
between two neighboring solitary waves is also studied.
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1. Introduction

Optical soliton, one of the best information carriers for large capacity and long distance
optical transmission systems, has attracted much attention and has became the impor-
tant resources in optical communications [1, 2]. Propagation of optical pulse in fiber
was described by the nonlinear Schrödinger (NLS) equation, in which the group ve-
locity dispersion (GVD) and the self-phase modulation (SPM) were considered. Optical
soliton can propagate over a long distance without the shape change in optical fiber
depended on the balance between GVD and SPM [3]:

(1)

where U describes the envelope amplitude of the electric field, the subscripts represent
the partial derivatives, z and t are the normalized distance along the direction of the
propagation and retarded time, β2 denotes the GVD, and γ1 represents the SPM parameter.

The solutions of NLS equations have been extensively studied. Two families of
analytical light bullet solutions with two types of PT-symmetric potentials are obtained
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based on the (3 + 1)-dimensional NLS equation with variable-coefficient dispersion/dif-
fraction and cubic-quintic-septimal nonlinearities [4]. The (2 + 1)-dimensional variable-
coefficient NLS equation with partial nonlocality is studied by CHAO-QING DAI et al.
and they have found the hierarchies of Peregrine solution and breather solution [5].
Furthermore, the (3 + 1)-dimensional partially nonlocal NLS equation is also consid-
ered, from which they obtained the approximate spatiotemporal Hermite–Gaussian
soliton solutions [6].

Solitary wave solutions under the special relationship of system parameters of
NLS equation were obtained [7–11] already for ultra-short optical pulse, such as pico-
second and femtosecond optical pulses. In order to consider the higher-order nonlinear
effects such as third-order dispersion, self-steepening and self-frequency-shift on the
transmission media, the nonlinear Schrödinger equation is extended to higher-order
nonlinear Schrödinger (HNLS) equation [12–16], 

(2)

where β3 describes the third-order dispersion, γ3 describes the self-steepening, γ4 rep-
resents the delayed nonlinear process, and the imaginary part of γ4 represents the low
frequency component of self-frequency-shift. It was shown that the stably solitary
wave can be used to describe the propagation of femtosecond pulses in an optical fiber
under certain parametric conditions [17, 18]. 

The influence of the inter-mode coupling on nonlinear dynamics in optical fibers
was discussed [19, 20]. Taking into account the case where two polarized components
of one optical pulse or two optical pulses propagate at the same time with higher-order
effects, the higher-order nonlinear Schrödinger equation was then extended to the
coupled higher-order nonlinear Schrödinger (CHNLS) equation:

(3a)

(3b)

which are proposed to model the ultra-short pulse propagation in optic fiber, z and t are
the normalized distance along the direction of the propagation and retarded time, respec-
tively, U1 and U2 represent the two complex envelope amplitudes of the electric field,
respectively. The exact solitary wave solutions of CHNLS equation were also extensively
studied [14, 21].
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In this paper, based on the CHNLS equation, we also take the dispersion gain, the
nonlinear gain, self-steepening and self-frequency-shift into account. In order to be
more in line with the actual situation, we consider the parameters of fiber as variable
coefficients. In Section 2 of this paper, by using the ansataz method we obtained the
exact solitary wave solution of our theoretical model. In Section 3, by using the split-
step Fourier method, we present the numerical simulations of the propagation charac-
teristics. The stability analysis and the interaction behaviors is also discussed.
Section 4 contains our conclusions.

2. Theoretical analysis and soliton solutions

The coupled higher-order nonlinear Schrödinger (CHNLS) equation with the disper-
sion gain and the nonlinear gain is used to describe the propagation of ultra-short optical
pluses. It is given by:

(4a)

(4b)

where U1 and U2 represent the two complex envelope amplitudes of the electric field,
z and t are the normalized distance along the direction of the propagation and retarded
time, respectively; β2 denotes the GVD, α1 is the dispersion gain, γ1 is the SPM param-
eter and γ2 is the nonlinear gain, β3 describes the third-order dispersion, γ3 describes
the self-steepening, and γ4 represents the self-frequency-shift.

Solitary wave solution has been achieved under certain parametric choice by the
ansatz method of the HNLS equation. In this paper, we will concentrate on Eqs. (4a)
and (4b) to find its solitary wave solution by assuming a solution of the following
form [22–24]:

i = 1, 2 (5)

(6)

where ρ(z) denotes the nonlinear chirp, A(z), η(z), T(z) and φ(z, t) are real functions of
amplitude, inverse pulse width, time position and phase of pulse, respectively. The pa-
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rameters a(z), b(z) and c(z) describe the initial phase, frequency and linear chirp effects,
respectively. Substituting Eqs. (5) with (6) into Eqs. (4a) and (4b), removing the ex-
ponential terms, then separating the real and imaginary parts, and equating the coeffi-
cients of independent terms, we can obtain the following expressions:

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

We obtain the relation of the model parameters and the soliton solution parameters
of Eqs. (4a) and (4b) after performing some algebra. From the calculation process, a note-
worthy feature of the result is that ρ(z) = β3(z) = 0 and b(z) = c(z) = 0. It means that
Eqs. (4a) and (4b) has no linear chirp nor nonlinear chirp, thus third-order dispersion
needs to be compensated. Since the amplitude of the pulse is real in practice, we can
infer from Eq. (14) that A(z) is constant, indicating that the amplitude is unchanged
under the transmission process. Besides, the inverse pulse width η(z) is a constant too,
namely, pulse width will not change during propagation along the fiber. It means that
energy is conserved. Further, we can know that T(z) is also a constant. That is to say,
the center position of the pulse is unchanged. From Eqs. (10)–(13) we can know that
β2 and γ1, γ2 and α1, γ3 and γ4 have a certain constraint relationship. To further simplify
the above formula, we can get: 
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(18)

(19)

So we find the exact solitary wave solution of the Eqs. (4a) and (4b). However,
during the academic calculating, it is difficult to determine each model parameter and
each solitary wave solution parameter. We can only determine the mutual relation of
the parameters by Eqs. (16)–(19). So, if giving a part of the model parameters, such
as β2, γ2, γ3 and g, we can determine the other model parameters and the solitary wave
solution parameters from Eqs. (16)–(19).

3. Numerical simulation

In what follows, we analyze the stability of the exact solitary wave solution by employing
the numerical split-step Fourier method. As in the practical non-uniform fiber, the
parameters of fiber could fluctuate nearby the ideal value. If the amplitude of fluctu-
ation is small, we distribute the parameters of fiber in variable coefficients forms:

(20)

(21)

(22)

where β20, γ20 and γ30 are ideal fiber parameters, a1 – small quantities that characterize
the amplitudes of fluctuations, μ – small real constants, and σ is related to the variation
period of the fiber parameters. In this paper, we take the system parameters as: a1 = 0.01,
μ = –0.04, σ = 0.01, and g = 0.0005.

For such a set of parameters, we demonstrate a typical example, in which the param-
eters of the solitary wave solution and the parameters of the fiber system we adopted
are: η0 = 0.15, A(z) = 0.8, β20 = 0.5, γ20 = 0.002 and γ30 = 0.05. Then the parameters
γ1, α1 and γ4 are determined by Eqs. (16)–(19). In our numerical simulation, we take
the parameter T(0) = 0, which said the initial time position of the pulse is zero. 

First, we get as the input pulse:

i = 1, 2 (23)

Through the check of simulation, the evolution of the transmission diagram is shown
in Fig. 1a. This clearly indicates that solitary wave keeps its shape in propagating along
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the fiber after self-adjustment at the beginning, and transmission stably. In Fig. 1b, we
compare the initial pulse at z = 0 and z = 100, which shows that after self-adjustment
the soliton pulse is widened and the amplitude is reduced slightly. We also compare
the initial pulse at z = 30 and z = 100. It turns out that the solitary wave is almost the
same, keeps amplitude and pulse width unchanged. This simulation result is also coin-
ciding with the theoretical analysis. 

In order to investigate the stability of the solitary wave with the effect of the disper-
sion gain and the nonlinear gain and high order nonlinearity, we consider finite initial
perturbations. We performed three types of numerical simulation experiments: 

1. We perturbed the amplitude in the initial distribution. The second condition was

i = 1, 2 (24)

The parameters of the solitary wave solution and the parameters of the fiber system
are the same as first condition. Then we get the transmission diagram as shown in

Fig. 1. The evolution plot of the solitary wave (a). The compared plots of the initial pulse at different trans-
mission positions (b).
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Fig. 2a. From it we can find that, after a short period of self-adjustment, the pulse is
rather stable and can propagate 100 dispersion lengths along fiber. In Fig. 2b, we
compare the initial pulse and the amplitude perturbation pulse, which shows that the
solitary wave shape is basically similar, except that the amplitude is reduced. After
the self-adjustment, the pulse transmission is stable. From Fig. 2 we demonstrate that
the small perturbations of amplitude will not affect the pulse stability if we take the
appropriate parameter values.

2. We added white noise in the initial pulse, and the third condition was

i = 1, 2 (25)

The parameters of the solitary wave solution and the parameters of the fiber system
are the same as first condition. Then we get the transmission diagram as shown in
Fig. 3a. From it we can find that, after a short period of self-adjustment, the pulse sta-

Fig. 2. The evolution plot of the solitary wave with amplitude perturbation (a). The compared plots at
different transmission positions (b).
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bilizes and can propagate 100 dispersion length along fiber. In Fig. 3b, we compare
the initial pulse and the pulse with white noise, which shows that the solitary wave
shape is basically similar. We can also find that the pulse is widened and the amplitude
increases a little compared to the initial pulse. After the self-adjustment, the pulse trans-
mission is stable. From Fig. 3 we demonstrate that the white noise will not affect the
pulse stability if we take the appropriate parameter values.

3. We added phase perturbation in the initial pulse, and the fourth condition was

i = 1, 2 (26)

The parameters of the solitary wave solution and the parameters of the fiber system
are the same as first condition. Then we get the transmission diagram as shown in
Fig. 4a. From it we can find that, after a short period of self-adjustment, the pulse sta-
bilizes and can propagate 100 dispersion length along fiber. In Fig. 4b, we compare
the initial pulse and the phase perturbation pulse, which shows that the solitary wave

Fig. 3. The evolution plot of the solitary wave with white noise (a). The compared plots at different trans-
mission positions (b).
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shape is almost identical. After self-adjustment, the pulse transmission is stable. In
Figs. 4a and 4b, we demonstrate that the phase perturbation will not affect the pulse
stability if we take the appropriate parameter values.

In addition, we investigate the evolution features of the interaction between two
neighboring pulses in the fiber system with the effect of the dispersion gain and the
nonlinear gain. The input pulse forms are as follows: 

i = 1, 2 (27)

Here q0 is the initial separation between two adjacent pulses. The parameters of the
solitary wave solution and the parameters of the fiber system are the same as first con-

Fig. 4. The evolution plot of the solitary wave with phase perturbation (a). The compared plots at different
transmission positions (b).
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dition. Using the same method we get the interaction diagram of two neighboring solitary
waves as in Fig. 5.

From Fig. 5a we can find that after a short period of self-adjustment, for the two
neighboring solitary waves the elastic collision did not happen, and they can propagate
100 dispersion lengths steady in the fiber system. From the contour plot of Fig. 5b, we
can clearly see that the soliton pulses are independent of each other. Through a series
of numerical simulations, we find that as the initial separation reaches up a certain
value, the interaction of the solitary wave exhibits neither the elastic interaction nor
the mutually exclusive effect. Therefore, we may infer that the solitary wave can restrain
the interaction between the neighboring pulses. This is also an advantage in improving
the information bit rate in optical communication.

4. Conclusion

In this paper, we have investigated the coupled higher-order nonlinear Schrödinger
equation with variable coefficients, which describe the ultra-short pulse propagation
in the non-uniform fiber system. The exact solitary wave solution is presented by using
the ansataz method. In the numerical simulation experiment, we find that the solitary
wave keeps its shape in propagating along the fiber system, and the small perturbations
of amplitude, phase and white noise will not affect the stability of the solitary wave.

Fig. 5. The evolution (a) and the contour (b) plots of two neighboring solitary waves.
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Meanwhile, we investigate the interaction between the two neighboring solitary waves.
It turns out that the two neighboring solitary waves can propagate steady along the fiber
system. Our analytic results can be used to improve the information bit rate in optical
communication.

References

[1] AGRAWAL G.P., Nonlinear Fiber Optics, Academic Press, New York, 1995, pp. 188–208.
[2] HASEGAWA A., KODAMA Y., Solitons in Optical Communications, Oxford University Press, Oxford,

1995, pp. 153–161.
[3] MOLLENAUER L.F., STOLEN R.H., GORDON J.P., Experimental observation of picosecond pulse nar-

rowing and solitons in optical fibers, Physical Review Letters 45(13), 1980, pp. 1095–1098. 
[4] CHAO-QING DAI, RUI-PIN CHEN, YUE-YUE WANG, YAN FAN, Dynamics of light bullets in inhomoge-

neous cubic-quintic-septimal nonlinear media with PT-symmetric potentials, Nonlinear Dynamics
87(3), 2017, pp. 1675–1683. 

[5] CHAO-QING DAI, JIU LIU, YAN FAN, DING-GUO YU, Two-dimensional localized Peregrine solution and
breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality,
Nonlinear Dynamics 88(2), 2017, pp. 1373–1383. 

[6] CHAO-QING DAI, YU WANG, JIU LIU, Spatiotemporal Hermite–Gaussian solitons of a (3 + 1)-dimen-
sional partially nonlocal nonlinear Schrödinger equation, Nonlinear Dynamics 84(3), 2016, pp. 1157
–1161. 

[7] QIN ZHOU, Optical solitons in the parabolic law media with high-order dispersion, Optik – Interna-
tional Journal for Light and Electron Optics 125(18), 2014, pp. 5432–5435. 

[8] QIN ZHOU, Analytical 1-solitons in a nonlinear medium with higher-order dispersion and nonline-
arities, Waves in Random and Complex Media 26(2), 2016, pp. 197–203. 

[9] GEDALIN M., SCOTT T.C., BAND Y.B., Optical solitary waves in the higher order nonlinear Schrödinger
equation, Physical Review Letters 78(3), 1997, pp. 448–451. 

[10] KRUGLOV V.I., PEACOCK A.C., HARVEY J.D., Exact self-similar solutions of the generalized nonlinear
Schrödinger equation with distributed coefficients, Physical Review Letters 90(11), 2003, article
ID 113902. 

[11] QIN ZHOU, QIUPING ZHU, BISWAS A., Optical solitons in birefringent fibers with parabolic law nonlin-
earity, Optica Applicata 44(3), 2014, pp. 399–409. 

[12] PANOIU N.-C., MIHALACHE D., MAZILU D., MEL’NIKOV I.V., AITCHISON J.S., LEDERER F., OSGOOD R.M.,
Dynamics of dual-frequency solitons under the influence of frequency-sliding filters, third-order
dispersion, and intrapulse Raman scattering, IEEE Journal of Selected Topics in Quantum Elec-
tronics 10(5), 2004, pp. 885–892. 

[13] LV TINGTING, XIAO YAN, Propagating of the combined solitary wave in birefringence fiber, Acta
Sinica Quantum Optica 19, 2013, pp. 351–357.

[14] RUIYU HAO, LU LI, ZHONGHAO LI, GUOSHENG ZHOU, Exact multisoliton solutions of the higher-order
nonlinear Schrödinger equation with variable coefficients, Physical Review E 70, 2004, article
ID 066603. 

[15] XIAOJUAN SHI, LU LI, RUIYU HAO, ZHONGHAO LI, GUOSHENG ZHOU, Stability analysis and interaction
of chirped femtosecond soliton-like laser pulses, Optics Communications 241(1–3), 2004, pp. 185–194. 

[16] JUANFEN WANG, LU LI, ZHONGHAO LI, GUOSHENG ZHOU, MIHALACHE D., MALOMED B.A., Generation,
compression and propagation of pulse trains under higher-order effects, Optics Communications
263(2), 2006, pp. 328–336. 

[17] ZHONGHAO LI, LU LI, HUIPING TIAN, GUOSHENG ZHOU, New types of solitary wave solutions for the
higher order nonlinear Schrödinger equation, Physical Review Letters 84(18), 2000, pp. 4096–4099. 

[18] GUO ZEDONG, LV TINGTING, ZHANG JIAN, XIAO YAN, Impact of fifth-order non-Kerr effect on the
evolution of optical pluse in the fiber amplifier, Journal of Quantum Optics 21, 2015, pp. 44–50.

https://doi.org/10.1007/s11071-016-3143-0
https://doi.org/10.1007/s11071-016-3143-0
https://doi.org/10.1007/s11071-016-3316-x
https://doi.org/10.1007/s11071-016-3316-x
https://doi.org/10.1007/s11071-015-2560-9
https://doi.org/10.1007/s11071-015-2560-9
https://doi.org/10.1016/j.ijleo.2014.06.017
https://doi.org/10.1016/j.ijleo.2014.06.017
https://doi.org/10.1080/17455030.2015.1132861
https://doi.org/10.1103/PhysRevLett.78.448
https://doi.org/10.1103/PhysRevLett.90.113902
https://doi.org/10.1103/PhysRevLett.90.113902
https://doi.org/10.5277/oa140305
https://doi.org/10.1109/JSTQE.2004.837211
https://doi.org/10.1109/JSTQE.2004.837211
https://doi.org/10.1103/PhysRevE.70.066603
https://doi.org/10.1103/PhysRevE.70.066603
https://doi.org/10.1016/j.optcom.2004.07.003
https://doi.org/10.1016/j.optcom.2006.02.001
https://doi.org/10.1016/j.optcom.2006.02.001
https://doi.org/10.1103/PhysRevLett.84.4096
https://doi.org/10.1103/PhysRevLett.45.1095


284 YAN XIAO et al.
[19] HASEGAWA A., Self-confinement of multimode optical pulse in a glass fiber, Optics Letters 5(10), 1980,
pp. 416–417. 

[20] WEN-RONG SUN, BO TIAN, YU-FENG WANG, HUI-LING ZHEN, Dark single- and double-hump vector
solitons of the coupled higher-order nonlinear Schrödinger equations in the birefringent or two-mode
fibers, Optics Communications 335, 2015, pp. 237–244. 

[21] SASA N., SATSUMA J., New-type of soliton solutions for a higher-order nonlinear Schrödinger equa-
tion, Journal of the Physical Society of Japan 60(2), 1991, pp. 409–417. 

[22] JINPING TIAN, GUOSHENG ZHOU, Chirped soliton-like solutions for nonlinear Schrödinger equation
with variable coefficients, Optics Communications 262(2), 2006, pp. 257–262. 

[23] FANG FANG, YAN XIAO, Stability of chirped bright and dark soliton-like solutions of the cubic complex
Ginzburg–Landau equation with variable coefficients, Optics Communications 268(2), 2006, pp. 305
–310. 

[24] TRIKI H., AZZOUZI F., GRELU P., Multipole solitary wave solutions of the higher-order nonlinear
Schrödinger equation with quintic non-Kerr terms, Optics Communications 309, 2013, pp. 71–79. 

Received June 28, 2017
in revised form September 21, 2017

https://doi.org/10.1364/OL.5.000416
https://doi.org/10.1364/OL.5.000416
https://doi.org/10.1016/j.optcom.2014.09.007
https://doi.org/10.1143/JPSJ.60.409
https://doi.org/10.1016/j.optcom.2006.01.012
https://doi.org/10.1016/j.optcom.2006.07.014
https://doi.org/10.1016/j.optcom.2006.07.014
https://doi.org/10.1016/j.optcom.2013.06.039

	Propagation of solitary wave in non-uniform fiber system with high-order nonlinear effects
	1. Introduction
	2. Theoretical analysis and soliton solutions
	3. Numerical simulation
	4. Conclusion
	References

