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One of the main functions of a prism is to produce an image orientation function without spectral
dispersion. The present study extends the work previously reported in [JOSAA 33(7), 2016, pp. 1257
–1266] to analyze the sufficient conditions for a prism to produce two particular image orientation
functions (Φ2 and Φ5) without spectral dispersion. It is shown that there exist two sufficient con-
ditions under which spectral dispersion can be avoided: (1) the rays enter and exit the prism perpen-
dicularly, or (2) the prism comprises two halves which are mirror images of one another. The present
findings provide a useful basis for the design of prisms without spectral dispersion.
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1. Introduction 

Prisms are widely used in optical applications for reflecting/refracting light or dispers-
ing light into its spectral components (p. 91 of  [1], and [2]). The exact angles between
the flat boundary surfaces of a prism depend on the particular application. The collo-
quial use of “prism” generally refers to a triangular prism with a triangular base and
rectangular sides. However, in fact, prisms may actually have many different geometric
forms, including square prism, triangular prism and pentagonal prism.

While traditionally used for the purposes indicated above, prisms have been more
recently employed as a means of changing the polarization direction of the incident
light [3]. For example, APPEL and DYER [4] changed the polarization direction of the
incoming light by 90° by rotating the optical beam via total internal reflection in three
fused-silica glass components. MORENO [5] employed a Jones matrix formulation and
an exact ray-tracing method to investigate the polarization-transforming properties of
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rotational prism. It was shown that the theoretical predictions for the output states of
polarization of a linearly polarized beam incident on a Dove prism were in good agree-
ment with the experimental observations.

One of the most common uses of prisms is to output an image with an orientation
changed in a prescribed manner relative to the object. The prism design process is gen-
erally performed using the trial-and-error method proposed by SMITH (pp. 100–121
of [1]). GALVEZ and HOLMES [6] proposed a method based on the concept of geometric
phase for analyzing the image orientation produced by optical rotators. GINSBERG [7] pre-
sented a simple equation for predicting the rotation of an image by a mirror or prism
without the need for vectorial analysis. WENWEI MAO [8] examined the effect of small
rotations of a reflecting prism about an arbitrary axis on the orientation of the output im-
age. NING LIN et al. [9] used a second-order approximation to investigate the orientation
conjugation between the object and the image in a system of reflecting rotating prisms.
However, all of these studies consider the performance of existing prisms or mirror sys-
tems, rather than the design of new prisms. Accordingly, in [10, 11], the present group
proposed a numerical approach for determining the minimum number of reflecting sur-
faces required in a single prism to produce an output image with a specific orientation.

Refraction processes at the first and last boundary surfaces (i.e., r1 and rn) of a prism
often cause spectral dispersion. Such an effect is undesirable in many applications for
a prism to change the orientation of an image. Studies have shown that spectral dispersion
can be avoided if 0 and n enter/exit the boundary surface perpendicularly [11]. Thus,
when using a prism to re-orientate the image, the entrance rays and exits rays are usually
designed as normal incidence rays. However, Porro prisms and solid glass corner-cubes
avoid spectral dispersion even when the entrance and exits rays are not normal to their
respective boundary surfaces (pp. 109 and 113 of [1]). Accordingly, taking two orthog-
onal image orientation functions (IOFs) (Φ2 and Φ5) for illustration purposes, this study
performs a further investigation into the sufficient conditions under which spectral dis-
persion can be avoided in a prism.

Throughout the remainder of this paper, the i-th unit directional vector gi is written
as a column matrix gi = [lix liy liz]T, in which the pre-superscript “g” of the leading sym-
bol gi indicates that the vector is defined with respect to coordinate frame (xyz)g. Fur-
thermore, given a vector gi, its transformation hi is represented by the matrix product
hi = hAg

gi, where hAg is a 3 × 3 orientation matrix which defines the orientation of
coordinate frame (xyz)g with respect to coordinate frame (xyz)h. If a vector 0i is re-
ferred to the world coordinate frame (xyz)0, then its pre-superscript “0” is omitted for
simplicity.

2. Reflector matrix and orthogonal image orientation function

Consider a prism with n flat boundary surfaces labeled sequentially from i = 1 to i = n.
Assume that the i-th boundary surface, denoted as ri, has a unit normal vector of ni
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(see Fig. 1) and the first and last boundary surfaces are denoted as r1 and rn, respec-
tively. To determine the image orientation change produced by the prism, it is first nec-
essary to establish the world coordinate frame (xyz)0. The image orientation 
relative to the object (xyz)0 can then be given by the following IOF: 

(1)

where a, b and c are the unit directional vectors of the   and  axes of ,
respectively, with respect to (xyz)0 (see Fig. 2).
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Fig. 1. Unit directional vectors of the incoming ray and refracted (or reflected) ray.

xyz( )'0

Φ a b c

ax bx cx

ay by cy

az bz cz

= =

x'0, y'0 z'0 xyz( )'0

z'0

z0

c = [cx cy cz]
T

x0

y0

y'0

x'0

b = [bx by bz]
T

a = [ax ay az]
T

Fig. 2. Orientation of  with respect to (xyz)0.xyz( )'0



578 TE-TAN LIAO, PSANG DAIN LIN
When the angles between any two axes of frames  and (xyz)0 are equal to
0°, 90°, 180° or 270°, Φ in Eq. (1) is referred to as an orthogonal IOF. According to
Eq. (2) of [11], Φ can be obtained from the following matrix manipulation:

(2)

where  is the first-order derivative matrix (i.e., Jacobian matrix) of the unit
directional vector i of the reflected/refracted ray with respect to the unit directional
vector i – 1 of the incoming ray (see Fig. 3). For a reflection process,  (from
i = 2 to i = n – 1) is given by

(3)

In other words, for a reflection process,  is a function only of the unit
normal vector ni = [nix niy niz]

T of the flat boundary surface ri. For a refraction process,
 (i = 1 and i = n) is given as

(4)
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Fig. 3. Image orientation of object (x y z)0 imaged by a prism with n boundary surfaces.
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with

(5)

It is noted from Eq. (5) that for a refraction process,  is a function
not only of the unit normal vector ni, but also of the relative refractive index Ni and
incidence angle θi. 

In general, the refraction processes at r1 and rn of Eq. (4) have a direct effect on the
orientation of the output image. However, under certain conditions, the two refraction
events have no effect on the image orientation produced by the other (n – 2) reflectors
in the prism. In other words,

(6)

The aim of this paper is to determine the sufficient conditions under which the two
refraction processes at r1 and rn can be ignored. These sufficient conditions can be ob-
tained by expanding Eq. (6) using  (Eq. (4) with i = n) and  (Eq. (4)
with i = 1) to give

(7)

As discussed in [12], there exist six categories of orthogonal IOF, namely Φ1, Φ2,
Φ3, Φ4, Φ5 and Φ6. However, Φ3, Φ4 and Φ6 can be transformed to Φ2 and Φ5 by re-
ferring them to another coordinate frame (Eqs. (24), (B6) and (B7) of [12]). As a result,
there actually exist only three main types of orthogonal IOF, namely 

with ax = ±1 and cz = ±1 (8)

with az = ±1 and cx = ±1 (9)

with az = ±1 and cy = ±1 (10)

The necessary conditions to avoid spectral dispersion when producing Φ1 have
been addressed in [12]. Accordingly, this study investigates the sufficient conditions
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to avoid spectral dispersion for the other two categories of orthogonal IOF, namely Φ2
and Φ5. 

3. Sufficient conditions for avoiding spectral dispersion for Φ2 
The matrix Φ2 has the an anti-diagonal matrix form, i.e., the elements are all equal to
zero other than those on the diagonal running from the lower-left corner to upper-right
corner. By contrast, Φ1 is a diagonal matrix (see Eq. (8)). It can be easily proven that
Φ2 cannot be transformed to Φ1. In other words, Φ1 and Φ2 belong to different cate-
gories of orthogonal IOF. However, as shown in the following, even though Φ2 and
Φ1 have completely different structures, the sufficient conditions for avoiding spectral
dispersion are similar in both cases.

To derive the sufficient conditions from Eq. (7), one first needs the unit normal vec-
tors n1 and nn. Mathematically, a unit normal vector can be defined by two independent
angles. Therefore, the required unit normal vectors can be obtained as (see Fig. 4)

(11a)

(11b)
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ωix( )cos

ωiy( )cos ωix( )sin

=
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Fig. 4. Unit normal vector ni of ri (i = 1 and n).

n1

ω1y( )sin ω1x( )sin

ω1x( )cos

ω1y( )cos ω1x( )sin

,±= 90°– ω1x 90°,≤ ≤ 0° ω1y 360°<≤

nn

ωny( )sin ωnx( )sin

ωnx( )cos

ωny( )cos ωnx( )sin

,±= 90°– ωnx 90°,≤ ≤ 0° ωny 360°<≤



Sufficient conditions for prisms to produce orthogonal image orientation functions... 581
Substituting Eqs. (11a) and (11b) into Eq. (7) with Φ = Φ2 yields the following
equations:

(12a)

(12b)

(12c)

(12d)

(12e)

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn ωny( )sin ωnx( )sin ωnx( )cos B1 ω1x( )cos ω1y( )sin ω1x( )sin

cx Bnsin2 ωny( )sin2 ωnx( ) B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

cx B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

+

+

+ 0=

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn ωny( )sin ωnx( )sin ωnx( )cos 1 B1cos2 ω1x( )+

cx Bnsin2 ωny( )sin2 ωnx( ) B1 ω1y( )cos ω1x( )sin ω1x( )cos

cx B1 ω1y( )cos ω1x( )sin ω1x( )cos

+

+

+ 0=

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn ωny( )sin ωnx( )sin ωnx( )cos B1 ω1x( )cos ω1y( )cos ω1x( )sin

cx Bnsin2 ωny( )sin2 ωnx( ) 1 B1cos2 ω1y( )sin2 ω1x( )+

cx B1cos2 ω1y( )sin2 ω1x( )

+

+

+ 0=

az Bn ωnx( )cos ωny( )cos ωnx( )sin 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn cos2 ωnx( ) B1 ω1x( )cos ω1y( )sin ω1x( )sin

cx Bn ωnx( )cos ωny( )sin ωnx( )sin B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

B1 ω1x( )cos ω1y( )sin ω1x( )sin

+

+

+ 0=

az Bn ωnx( )cos ωny( )cos ωnx( )sin B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn cos2 ωnx( ) 1 B1 cos2 ω1x( )+

cx Bn ωnx( )cos ωny( )sin ωnx( )sin B1 ω1y( )cos ω1x( )sin ω1x( )cos

B1 cos2 ω1x( )

+

+

+ 0=
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(12f)

(12g)

(12h)

(12i)

Equations (12a)–(12i) can be solved numerically to determine the required unit nor-
mal vectors (i.e., n1 and nn) which produce Φ2 given a particular refractive index ξi
of the prism and a particular unit directional vector 0 of the source ray. However, for
most applications, the source rays are usually converging or diverging, i.e., the rays
have different unit directional vectors 0. Consequently, an analytical (rather than nu-
merical) approach is required to determine the conditions under which spectral disper-
sion can be avoided. In practice, Eqs. (12a)–(12i) should be investigated for four
particular cases, i.e.,

ω1y = 0° and ωny = 90° 
(n1 = ±[0 cos(ω1x) sin(ω1x)]

T, nn = ±[sin(ωnx) cos(ωnx) ,0]T) (13a)

az Bn ωnx( )cos ωny( )cos ωnx( )sin B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn cos2 ωnx( ) B1 ω1x( )cos ω1y( )cos ω1x( )sin

cx Bn ωnx( )cos ωny( )sin ωnx( )sin 1 B1 cos2 ω1y( )sin2 ω1x( )+

B1 ω1x( )cos ω1y( )cos ω1x( )sin

+

+

+ 0=

az Bn cos2 ωny( )sin2 ωnx( ) 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn ωny( )cos ωnx( )sin ωnx( )cos B1 ω1x( )cos ω1y( )sin ω1x( )sin

cx Bn ωnx( )cos ωny( )sin sin2 ωnx( ) B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

az B1 sin2 ω1y( )sin2 ω1x( )

+

+

+ 0=

az Bn cos2 ωny( )sin2 ωnx( ) B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn ωny( )cos ωnx( )sin ωnx( )cos 1 B1 cos2 ω1x( )+

cx Bn ωny( )cos ωny( )sin sin2 ωnx( ) B1 ω1y( )cos ω1x( )sin ω1x( )cos

az B1 ω1y( )sin ω1x( )sin ω1x( )cos

+

+

+ 0=

az Bn cos2 ωny( )sin2 ωnx( ) B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn ωny( )cos ωnx( )sin ωnx( )cos B1 ω1x( )cos ω1y( )cos ω1x( )sin

cx Bn ωny( )cos ωny( )sin sin2 ωnx( ) 1 B1 cos2 ω1y( )sin2 ω1x( )+

az B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

+

+

+ 0=
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ω1y = 90° and ωny = 0° 
(n1 = ±[sin(ω1x) cos(ω1x) 0]T, nn = ±[0 cos(ωnx) sin(ωnx)]

T) (13b)

ω1y = ωny = 0° 
(n1 = ±[0 cos(ω1x) sin(ω1x)]

T, nn = ±[0 cos(ωnx) sin(ωnx)]
T) (13c)

ω1y = ωny = 90° 
(n1 = ±[sin(ω1x) cos(ω1x) 0]T, nn = ±[sin(ωnx) cos(ωnx) 0]T) (13d)

It is noted that nn = ±Φ2n1 is satisfied if the unit normal vectors n1 and ni are given
as shown in Eq. (13a) or (13b). Consequently, as shown in Example 3 of [12], spectral
dispersion is avoided if the source ray and exit ray are both normal incidence rays.
However, nn = ±Φ2n1 is not satisfied if n1 and nn have the directions shown in Eq. (13c)
or (13d). In other words, spectral dispersion occurs even if the source and exit rays are
normal incidence rays. Accordingly, the following results consider the sufficient con-
ditions under which spectral dispersion can be avoided for the four cases shown in
Eqs. (13a)–(13d).

Table 1 summarizes all the relevant solutions of Φ2 for the case with ω1y = 0° and
ωny = 90°. Consequently, Table 1 is also applicable to Φ2 for unit normal vectors n1
and nn with ω1y = 90° and ωny = 0° provided that cx in Table 1 is replaced by az. Table 2
presents all of the solutions of Φ2 for the cases with ω1y = ωny = 0° and ω1y = ωny = 90°.

4. Sufficient conditions for avoiding spectral dispersion for Φ5

It is noted that Φ5 is neither a diagonal matrix nor an anti-diagonal matrix. Consequently,
its derivations and sufficient conditions for avoiding spectral dispersion are different
from those of Φ1 and Φ2. Furthermore, nn = ±Φ5n1 is not satisfied when the directions

T a b l e 1. Sufficient conditions to avoid spectral dispersion for IOF Φ2 when n1 and nn are defined in
Eq. (13a) or (13b).

Cases Solutions

cx = 1
ωnx = ω1x

ωnx = ω1x = 0° Bn + BnB1 + B1 = 0

ωnx = ω1x ≠ 0° Bn + BnB1 + B1 = 0

ωnx = –ω1x ≠ 0° Bn = B1 = 0

cx = –1
ωnx = ω1x

ωnx = ω1x = 0° Bn + BnB1 + B1 = 0

ωnx = ω1x ≠ 0° Bn = B1 = 0

ωnx = –ω1x ≠ 0° Bn + BnB1 + B1 = 0

T a b l e 2. Sufficient conditions to avoid spectral dispersion for IOF Φ2 when n1 and nn are defined in
Eq. (13c) or (13d).

Cases Solutions

ω1x = 0°
ωnx = 0° Bn + BnB1 + B1 = 0

ωnx ≠ 0° Bn = B1 = 0

ω1x ≠ 0° Bn = B1 = 0
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of n1 and nn are defined in any of the forms shown in Eqs. (13a)–(13d). Consequently,
spectral dispersion occurs even if the source ray and exit ray are normal incidence rays.
Accordingly, the following discussions derive the sufficient conditions under which
spectral dispersion can be avoided. Substituting Eqs. (11a) and (11b) into Eq. (7) with
Φ = Φ5, the following nine equations are obtained: 

(14a)

(14b)

(14c)

(14d)

(14e)

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn sin2 ωny( )sin2 ωnx( ) B1 ω1x( )cos ω1y( )sin ω1x( )sin

cy Bn ωny( )sin ωnx( )sin ωnx( )cos B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

B1 ω1x( )cos ω1y( )sin ω1x( )sin

+

+

+ 0=

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn sin2 ωny( )sin2 ωnx( ) 1 B1 cos2 ω1x( )+

cy Bn ωny( )sin ωnx( )sin ωnx( )cos B1 ω1y( )cos ω1x( )sin ω1x( )cos

B1cos2 ω1x( )

+

+

+ 0=

az Bn ωny( )sin ωny( )cos sin2 ωnx( ) B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn sin2 ωny( )sin2 ωnx( ) B1 ω1x( )cos ω1y( )cos ω1x( )sin

cy Bn ωny( )sin ωnx( )sin ωnx( )cos 1 B1cos2 ω1y( )sin2 ω1x( )+

B1 ω1x( )cos ω1y( )cos ω1x( )sin

+

+

+ 0=

az Bn ωnx( )cos ωny( )cos ωnx( )sin 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn ωnx( )cos ωny( )sin ωnx( )sin B1 ω1x( )cos ω1y( )sin ω1x( )sin

cy Bncos2 ωnx( ) B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

cyB1 ω1y( )cos ω1y( )sin sin2 ω1x( )

+

+

+ 0=

az Bn ωnx( )cos ωny( )cos ωnx( )sin B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn ωnx( )cos ωny( )sin ωnx( )sin 1 B1cos2 ω1x( )+

cy Bn cos2 ωnx( ) B1 ω1y( )cos ω1x( )sin ω1x( )cos

cy B1 ω1y( )cos ω1x( )sin ω1x( )cos

+

+

+ 0=
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(14f)

(14g)

(14h)

(14i)

az Bn ωnx( )cos ωny( )cos ωnx( )sin B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn ωnx( )cos ωny( )sin ωnx( )sin B1 ω1x( )cos ω1y( )cos ω1x( )sin

cy Bn cos2 ωnx( ) 1 B1cos2 ω1y( )sin2 ω1x( )+

cy B1cos2 ω1y( )sin2 ω1x( )

+

+

+ 0=

az Bn cos2 ωny( )sin2 ωnx( ) 1 B1sin2 ω1y( )sin2 ω1x( )+

Bn ωny( )cos ωny( )sin sin2 ωnx( ) B1 ω1x( )cos ω1y( )sin ω1x( )sin

cy Bn ωny( )cos ωnx( )sin ωnx( )cos B1 ω1y( )cos ω1y( )sin sin2 ω1x( )

az B1sin2 ω1y( )sin2 ω1x( )

+

+

+ 0=

az Bncos2 ωny( )sin2 ωnx( ) B1 ω1y( )sin ω1x( )sin ω1x( )cos

Bn ωny( )cos ωny( )sin sin2 ωnx( ) 1 B1cos2 ω1x( )+

cy Bn ωny( )cos ωnx( )sin ωnx( )cos B1 ω1y( )cos ω1x( )sin ω1x( )cos

az B1 ω1y( )sin ω1x( )sin ω1x( )cos

+

+

+ 0=

T a b l e 3. Sufficient conditions to avoid spectral dispersion for IOF Φ5 when n1 and nn are defined in
Eqs. (13c), (13b) and (13d) with ω1y = ωny = 0°, ω1y = 90° and ωny = 0°, and ω1y = ωny = 90°. 

Cases Solutions

ω1y = ωny = 0°
ω1x = 90° and ωnx = 0° Bn + BnB1 + B1 = 0

ω1x ≠ 90° or ωnx ≠ 0° Bn = B1 = 0

ω1y = 90° and ωny = 0°
ω1x = ωnx = 90° Bn + BnB1 + B1 = 0

ω1x ≠ 90° or ωnx ≠ 90° Bn = B1 = 0

ω1y = ωny = 90°
ω1x = 0° and ωnx = 90° Bn + BnB1 + B1 = 0

ω1x ≠ 0° or ωnx ≠ 90° Bn = B1 = 0

az Bn cos2 ωny( )sin2 ωnx( ) B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

Bn ωny( )cos ωny( )sin sin2 ωnx( ) B1 ω1x( )cos ω1y( )cos ω1x( )sin

cy Bn ωny( )cos ωnx( )sin ωnx( )cos 1 B1cos2 ω1y( )sin2 ω1x( )+

az B1 ω1y( )sin ω1y( )cos sin2 ω1x( )

+

+

+ 0=
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As in the previous section, Eqs. (14a)–(14i) are investigated for the four cases given
in Eqs. (13a)–(13d). The solutions of Φ5 for the four different cases are summarized
in Tables 3 and 4.

5. Conclusions

One of the main functions of a prism is that of re-orienting the image in such a way as
to produce the required orthogonal image orientation function Φ. This study has inves-
tigated the sufficient conditions for producing two particular categories of orthogonal
image orientation function (i.e., Φ2 and Φ5) without spectral dispersion. Assuming that
n1 and nn are the unit normal vectors of the first r1 and last rn boundary surfaces of the
prism, respectively, the present results have shown that either one of the following two
conditions should be satisfied in order to avoid spectral dispersion for a given Φ:

1) The entrance and exit rays of the prism are both normal incidence rays (i.e.,
the rays enter and exit the respective boundary surfaces perpendicularly) and equation
nn = ±Φn1 should be satisfied.

2) The incidence angle θ1 at the first boundary surface r1 is equal to the refraction
angle θn at the last boundary surface rn in order to fulfill the sufficient Bn + BnB1 + B1
= 0. It is noted that this condition is usually satisfied by mirror-symmetry prisms (i.e.,
prisms in which the two halves are mirror images of one another).

In general, the findings presented in this study provide a useful basis for analytical
methods aimed at designing prisms which produce the required orthogonal image ori-
entation function without spectral dispersion.
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