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We proposed a method using a merit function to determine the depth of objects in computational
integral imaging by analyzing the existing methods for depth extraction of target objects. To im-
prove the resolution of reconstructed slice images, we use a digital camera moving in horizontal
and vertical direction with the set interval to get elemental images with high resolution and bilinear
interpolation algorithm to increase the number of pixels in slice image which improves the reso-
lution obviously. To show the feasibility of the proposed method, we carried out our experiment
and presented the results. We also compared it with other merit functions. The results show that
merit function SMD?2 to determine the depth of objects is more accurate and suitable for real-time
application.
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1. Introduction

Depth extraction is a crucial point for three-dimensional reconstruction in modern soci-
ety. Researchers have proposed some methods for depth extraction such as monocular
vision, binocular vision, light field cameras, structured light, integral imaging technique
and so on [1-7]. Among them, monocular vision, binocular vision and multi-vision
are the most commonly used methods. Monocular vision is simple in structure and fully
developed in algorithm, but the prior knowledge of the 3D scene is necessary. Binoc-
ular vision requires two cameras to capture two images from different views simulta-
neously. Besides, it needs a series of processing procedures such as camera calibration,
feature extraction, stereo matching, to extract the depth of the scene. However, due to
unfavorable factors such as illumination, noise and lens distortion, it is hard to make
images unambiguously matched. The multi-vision uses three or more cameras to acquire
the images of different views, which is usually used to solve the problem of matching
ambiguity in binocular stereo vision. Compared with aforementioned methods, integral
imaging proposed by LipPMAN in 1908 [8] is more straightforward for depth extraction.
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Integral imaging is regarded as a promising technique in three-dimensional imag-
ing and display technique, which has triggered much interest for many researchers. Re-
searchers focused on it in the past twenty years. LEE ef al. used block matching with sum
of absolute differences for reconstructed slice images in synthetic aperture integral im-
aging in order to attain the depth of objects [9]. A method that combines the correlation
between an elemental image and a periodic function was proposed by JANG et al. [4].
Yoo used block matching between the slice image pairs to obtain it via the windowing
technique [10]. The aforementioned methods mostly use block matching, which would
be affected by the block size. ZHAO et al. used integral imaging technology and the
sum of an absolute differences evaluation function to achieve the depth of target objects
underwater, which can get the depth of target objects conveniently with an appropriate
time cost of calculation [11]. Nevertheless, the sensitivity is not high enough near the
focus (i.e., the function is too flat near the extreme point and the unimodality is not well).
To get the depth more accurately, we use another merit function, which is the morph
of sum of absolute differences (SMD?2) for reconstructing slice images. SMD2 [12] is
an evaluation function that is based on a gray scale difference. It uses the product of
the adjacent pixels difference in horizontal and vertical directions as the core function,
which maintains a good computing performance and steep unimodality.

One of the drawbacks that limit the further development of integral imaging is low
resolution [13]. Interpolation algorithm is an effective way to increase the resolution.
There are mainly three kinds of the interpolation algorithm, such as nearest neighbor
interpolation, bilinear interpolation and cubic convolution interpolation. The nearest
neighbor interpolation has many advantages such as faster operation, but the accuracy
is poor. The accuracy of cubic convolution interpolation is the highest but it is the most
computationally intensive and the most complex. Taking the computation time into ac-
count, we choose the bilinear interpolation algorithm.

In this article, we put forward a method that uses computational integral imaging
with bilinear interpolation algorithm and evaluation function SMD?2 for depth extrac-
tion. In the proposed method, we first capture elemental images with synthetic aperture
integral imaging. Then we get a high resolution slice image with computational integral
imaging and bilinear interpolation algorithm. Finally, the depth information of objects
is extracted by the merit function. To confirm the feasibility of the proposed method,
the experiments are carried out and the results are presented. Also, we analyze different
evaluation functions in the case of effectiveness and computation.

2. Proposed method

2.1. Slice reconstructed images with computational integral
imaging reconstruction

In general, integral imaging is composed of two primary stages, optical pickup stage and
reconstruction stage. In the optical pickup stage, the 3D scene is recorded by a micro
-lens array and an image sensor, which can capture the elemental images array (EIA)
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Fig. 1. The concept of integral imaging; the image pickup stage (a), and the reconstruction stage (b).

as shown in Fig. la. In the computational reconstruction stage as shown in Fig. 1b,
elemental images are projected inversely through a virtual pinhole array to make the
3D scene reconstruct at any reconstruction output plane. There are also two methods
in computational reconstruction stage, view-based integral imaging and depth-based
integral imaging [13]. View-based integral imaging is via periodically extracting the
pixel from the collected elemental images from a certain observation view, and com-
bines the extracted pixels into one view. The resolution of the reconstruction image is
equal to the number of the micro-lenses and the resolution is usually low. Depth-based
integral imaging is by changing the reconstruction distance to achieve the characteristic
of focus and defocus. In this article, we mainly discuss the method of depth-based in-
tegral imaging. In order to get elemental images with high resolution, some methods
such as synthetic aperture integral imaging and computer-synthesized elemental im-
ages have been proposed [13].

Computational integral imaging reconstruction is based on rays back-projection [14].
The conventional computational integral imaging reconstruction is as follows. First,
according to the reversibility principle of light rays, every elemental image is projected
inversely through its corresponding micro-lens or a visual pinhole with a magnification
factor Lg = L/g. The magnification factor represents the ratio of the distance z = L be-
tween the reconstruction plane and the pinhole array to the distance g between the pin-
hole array and the elemental image plane. Second, the enlarged elemental images are
overlapped and summed at the corresponding pixels of the reconstruction plane. By
changing the distance z, we can get a series of reconstruction images.

However, the magnification factor increases with the increase of the reconstructed
distance z, so it requires large computation. What is more, the pixel of the image is
also magnified by Lg, and the size of the pixel is larger and the resolution of the image
is not improved. So we take advantage of pixel-to-pixel mapping proposed by SHIN
and Yoo [15] and integrate it with bilinear interpolation algorithm to overcome the
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Fig. 2. The principle of our proposed method; the calculation principle of the computational integral im-
aging reconstruction stage (a), and the diagram of bilinear interpolation (0 <u < 1,0 <v <1) (b).

problem of low resolution and huge computation time. Bilinear interpolation algorithm
is an effective way to increase the image’s resolution.

The proposed computational integral imaging reconstruction method is composed
of two primary procedures: the inverse mapping and the interpolation. Suppose that
the elemental image array consists of M x N images and the pitch between the lenslet
is P. For the inverse mapping procedure, Fig. 2a illustrates the depth-based method
based on the computational integral imaging reconstruction. Let RI(x, L) be the inten-
sity value of x at the reconstructed distance L, and i be the index of the corresponding
elemental image. RI(x, L) is evaluated from a set of pixels. The coordinate of each pin-
hole in x axis can be set as

Pin X, = (i—%)p (i=1,2,3, ... M) 1)

According to geometrical optics, the range of every elemental image in the recon-

struction plane can be obtained by Eq. (2). Via the maximum function in RI, .. ; and
minimum function in RI, ., ;, the ultimate size of the reconstruction image can be
given by
: S,
RIx mini Pin ‘X[*Lg P
S
RI, oy = Pin X, + Lg—== 2)
RI, = max(RIx, maxi) — min(RIx’ mini)

where RI, S, is the size of reconstruction image and the size of each elemental image
in x direction, respectively. M and N are the number of elemental images in x, y direc-
tion, respectively. This can be extended to vertical y axis as well.

RI(x, L) is attained from a series of pixels and it is determined by averaging the
intensity values of all corresponding rays through the ray mapping as shown in Fig. 2a.
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This means that the index may not be an integer index. In the reconstruction stage, we
use the bilinear interpolation algorithm to calculate the intensity value in each elemen-
tal image. The computational integral imaging reconstruction process is given by

1

O(x)

M ) Pin X, —x
Z EL|Pin X, + ————— 3)
i=1 Lg

1 M
RI(x, L) = mZEIi(xi) =
i=1

where x; needs to be limited in a range, thatis RI, ,;,; <x; <RI, .. O(x, ) is the
total number of pixels that contributes to the wanted intensity value. If the size of square

pixel on CCD is [, the intensity value of EI;(x;) is given by

x;—Pin X, +S§./2
n = floor (4a)
/
p
x;—Pin X, +§./2
u = —-n (4b)
I

The index of m and v can be also calculated in y axis. So the final intensity value
EL;(x;, y;) is determined by the following equation:

EIij(xij:yij) = (1-u)(l- V)EIij(”a m) +u(l - V)EIz'j(” +1,m)
+(1—u)vEIl-j(n,m+l)+quIij(n+1,m+1) %)

After calculating the intensity value, we can get the final reconstructed slice image.
The reconstructed image at RI(x, y, L) is the summation of all the inversely mapped
pixels. The reconstructed images are a series of slice images.

2.2. Depth extraction with focus merit function

A series of image sequences along z axis direction can be attained via changing the
reconstruction distance L from the pinhole array to the reconstruction plane. If the real
depth of the object is equal to the reconstructed distance L, the object on the slice image
is focused, otherwise the object on the slice image is defocused. As shown in Fig. 3,
when the real depth of point 4 is equal to the reconstructed distance L, the point 4 on
the reconstruction plane 1 is a clear point 4, otherwise the image 4" is blurred in re-
construction plane 2. This is fundamental of focus and defocus in reconstruction slice
images. Therefore, we can use this method to extract the depth information of objects
effectively.

There exist some methods to evaluate the degree of focus, which can be divided
into two categories: spatial domain and frequency domain function. The spatial focus
evaluation function includes a gray-scale difference method, image gray-entropy and
so on [12]. The frequency domain function requires to convert the image into the cor-
responding frequency domain. The two basic transformations are Fourier transform
and wavelet transform. To get the depth more accurately, we use the evaluation function
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Fig. 3. The principle of focus and defocus of slice reconstruction images.

SMD2, which is the morph of summation of the absolute difference, for a series of re-
constructed slice images. SMD2 is an evaluation function that is based on a gray scale
difference [12]. It uses the product of an adjacent pixels difference in the horizontal
and vertical directions as a core function. It is an effective and simple evaluation func-
tion to check up whether the image is in focus or defocus. In general, people take the
maximum value of the function as the criterion of judgement. Compared with conven-
tional mostly used evaluation functions such as energy function, peak signal to noise ratio
and so on, it could maintain good computational performance and improve steepness
of the function, which can speed up the convergence of the search focus and improve
the focus accuracy. It is widely used for focus evaluation of sequence images [11]. The
evaluation value of SMD?2 function can be calculated as [12]

SMD2 = %ZZI(x,y)
Xy

I(x,y) = |RI(x,») ~ RI(x + 1, »)|[RI(x, y) - RI(x, y + 1)|

(6)

where /(x, y) is the product of an adjacent pixels difference in the horizontal and ver-
tical directions; K is the total number of pixels for every reconstruction image. By
traversing the entire reconstructed image, we can get the evaluation value SMD?2.
Every slice image has a SMD2 value, the maximum value is corresponding to the focus
image. The larger the value, the clearer the reconstructed image.

3. Experiments and results

To show the feasibility of our proposed method, we carried out preliminary experiments.
Figure 4a shows the experimental setup where a CCD camera is moving on a two-axis
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3D moving stage

Camera lens

Fig. 4. Experimental setup for capturing the EIA of the scene composed of three objects. Three objects
of bear, cube and dice, and a CCD camera on a 3D moving translation stage (a); the moving path of the
CCD camera (b); the clear images of the three objects (¢); the captured elemental images array (d).
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translation stage. The movement of the translation stage is controlled by a software and
a three-dimensional controller. The 3D scene is composed of a bear, a cube and a dice
which are located at appropriately 900, 958 and 987 mm away from the CCD camera,
respectively. On the cube, there are two labels: Pl and C. The focal length of the image
sensor is 35 mm. Elemental images array with high resolution are captured with syn-
thetic aperture integral imaging system as shown in Fig. 4d. The moving path with the
pitch Ax = Ay =4 mm of the camera is shown in Fig. 4b. The resolution of the CCD
is 1024 x 1280. The clear images of the bear, the cube and the dice are shown in Fig. 4¢,
which can be regarded as the reference images.

z =890 mm

Fig. 5. Comparison of images reconstructed by different methods at the distance of 890, 900, 960, 970,
975, and 985 mm. Conventional method (a); proposed method (b).
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All objects images of bear, cube, dice and the two labels on the cube have been
simultaneously reconstructed from the captured EIA. We get slice reconstructed im-
ages with different depth in the range from 880 to 1030 mm. Slice reconstructed images
with different distance are shown in Fig. 5. Figure 5b shows the reconstructed images
using the proposed method at the distance of 900, 960, 975, and 985 mm, where the
bear, the letter C, the label PI and the dice are in focus, respectively. The comparison
between the conventional integral without interpolation and proposed method is also
implemented shown in Fig. 5. We can see that the bear in reconstructed images using
the proposed method is clearer than the image using the conventional method.

There are several metrics to evaluate image quality, such as contrast, sharpness [16],
PSNR and variance. The absolute value of gradient is used to measure the sharpness.
Table 1 compares sharpness, contrast, PSNR and variance values of the images recon-
structed by the conventional method and the proposed method with six different dis-
tances. Higher sharpness, contrast, variance and PSNR are obtained using the proposed
method, which indicates that the proposed method outperform the conventional ap-
proach.

To show that our method is better for a real-time application, we calculate the time
requirement for one time processing. Table 2 compares the computation time of a slice
image reconstructed by the conventional method without interpolation, the proposed
method with bilinear interpolation and the proposed method with cubic interpolation.
It can be seen that the reconstruction without interpolation is the fastest, but in terms
of the sharpness and contrast (see Table 1), the quality of the reconstructed image in
Fig. 5a is worse. The PSNR and the variance values of the images reconstructed by
the conventional method without interpolation are lower than in the proposed method.

Table 1. The comparison of sharpness, contrast, variance and PSNR values between the conventional
method and the proposed method for different distances in Fig. 5.

Distance [mm]

Method
890 900 960 970 975 985
Sharpness 540747 567935 596874 591187 586399 572580
. Contrast 0.789 0.796 0.795 0.796 0.796 0.796
Conventional .
Variance 79.717 80.226 80.933 80.862 80.764 80.555
PSNR 28.6651 28.6219  28.5519 28.5582 28.6191 28.6167
Sharpness 2496795 3652216 3521428 2762004 2448556 2479165
Contrast 0.932 1 0.998 0.998 1 1
Proposed .
Variance 80.140 80.959 81.748 81.620 81.493 81.226
PSNR 29.0926  29.0675 30.0476 30.0484 30.0509 30.1392

Table 2. The comparison of three methods in computation time.

Without Bilinear Cubic
interpolation interpolation interpolation

Time required for a slice image 1.427372 55.485942 94.465645

Method
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The computation time of reconstruction with bilinear interpolation is reduced by half
compared to the cubic interpolation. Considering the computation time, the proposed
method with bilinear interpolation is suitable and effective.

To extract the depth of objects, we use the SMD2 function on every slice image.
If the reconstruction distance of the object is equal to the original depth of object, the
object would be in focus and naturally the SMD2 value will be larger. Figure 6a shows
the SMD2 values of slice images. From Fig. 6a, the points of A, B, E, F represent the
depth 0f 900, 960, 975 and 985 mm, which is near equal to the original depth of the toy,
letter C, label PI and the dice. The comparison between SMD2 and other merit func-
tions such as SMD, variance, energy function and so on are also shown in Figs. 6b—o6e.
In terms of sharpness, SMD?2 is steeper near the focus than SMD. The SMD function
in Fig. 6b can be used in slice image in a certain extent, but it is too flat near the extreme
point and the unimodality is not good. For example, the original depth of the cube is

T 1 _ T a
50 b A(z = 900) B(z = 960)

SMD2

30 F(z = 985)

E(z = 975)

Ay(z = 890)

C4(z = 970)

B4(z = 960)

SMD

E.(z = 985)

80.8 -

Variance

80.4 -

80.0 1 1 1
880 920 960 1000

Reconstruction distance z [mm]

Fig. 6. A comparison of five different merit function values: SMD2 (a), SMD (b), variance (c¢), Vollath (d),
and energy (e).
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Table 3. The comparison of different merit functions in computation time.

Merit function SMD.2 SMD. Variance Volla'th Energy gradient
function function function function

Computation time [s] 0.0328775 0.037065 0.027374  0.026448 0.04507

958 mm, and considering the error of measurement, the peak of SMD function in the
range of 940-965 mm ought to appear once, but two peaks appear in the same range,
which means that the depth extraction is wrong and the precision is not sufficient.
The sharpness and unimodality of energy function are similar with SMD2 function,
which both have one peak in every target depth range and can determine the target depth
uniquely. As for other two functions, we can see the functions are too flat near the peak.
Therefore, the SMD2 and energy function are better choices for depth extraction. How-
ever, taking the computation time into consideration, the energy function is slower than
the SMD2 function as shown in Table 3, which is vulnerable to real-time application.
With comprehensive consideration, SMD?2 outperform other evaluation functions.

4, Conclusion

In conclusion, we have presented a depth extraction method using computational integral
imaging. In the proposed method, elemental images array with high resolution is attained
by moving a digital camera in horizontal and vertical direction with the set interval.
To improve the resolution of reconstructed slice images, we make use of computational
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integral imaging reconstruction with bilinear interpolation algorithm. We compare the
sharpness, contrast and PSNR between the conventional method and the proposed
method. Besides, the calculation time of different reconstruction methods is compared,
which indicates that the reconstruction with bilinear interpolation algorithm is a better
choice. In addition, we use the merit function SMD2 to determine the depth of objects
and compare different merit functions, which shows that SMD2 function is more ac-
curate and suitable for real-time application.
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