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Two coupling superconducting qubits are studied for the quantum concurrence, discord, and
Pancharatnam phase, for the X and Y states under the dephasing and instantaneous decay environ-
ment as well as their couplings. We find that the X and Y states are special mixed states according
to the Bloch radius. In general, the larger the environment and phonon number are at the larger
region of time, the larger the quantum concurrence and discord are. But we find that the environ-
ment correlations are helpful to implement the quantum computation. The Pancharatnam phases
provide a way to distinguish the X and Y states.
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1. Introduction

By using quantum nonlocality, i.e., quantum entanglement [1, 2], quantum discord [3, 4]
and geometric phase [5–7], quantum computing is far more efficient than its classical
counterparts in factoring large numbers, searching databases and simulating physical
systems [8, 9]. All the aspects of quantum computing are currently under intensive
study. One of the key challenges from quantum computing and information is to over-
come the decoherent effects of physical system in order to preserve the quantum cor-
relations in the real situation.

Another crucial requirement in implementing quantum logic devices is needed to
have a high degree of quantum coherence [10–12]. But the unavoidable interactions
between the physical system and its environment makes the quantum coherence be ex-
tremely fragile and susceptible to decay away. If the coherence in the quantum qubits
system [13] is lost, the qubits become unentangled. Such a decoherent process limits
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the ability of quantum information [8, 14]. Therefore, it is a practical requirement to
consider the decoherent effect on the quantum system and its robustness against the
decoherence [15].

It is difficult to predict the coherence time [16] of the qubits system because all pos-
sible couplings to the other quantum degrees of freedom must be considered. Thus, it is
necessary to study the dynamic evolution of dissipative system by turning off the in-
teraction between the qubit and its environment, which can efficiently preserve the
qubit coherence and correlation. Unfortunately, this generally decouples the correc-
tions among the qubits so as not to prevent two-qubit gate operations [17]. Especially,
the decoupling and the quantum gate are separated in time; such an unprotected gate
is very susceptible to decoherence induced errors.

It is known that the geometric phase embedded in the geometric structure [18] depends
only on the symplectic area spanned in the evolving path of quantum system. Thus the
geometric quantum computation is intrinsically fault-tolerant scheme and therefore
resistent to fluctuating errors from the quantum system. The geometric phase including
the decoherence effects has attracted increasing interests in both fundamental concepts
and wide applications. Therefore, it is important to understand the geometric phase and
implement geometric quantum computation in real physical systems [19–22].

On the other hand, the solid-state quantum gate from the superconducting qubits
[23–26] may be a promising candidate for a quantum computer. In the experiments,
two kinds of elementary linear logic gates [27–30] are sufficient in processing or im-
plementing an arbitrary operation on qubits in order to achieve universal quantum com-
putation. For the geometric quantum computation, therefore, it is important to study
the geometric phases [31, 32] and quantum correlations [33, 34] of superconducting
two-qubit system.

In this paper, we investigate firstly the time-dependent geometric phase of two cou-
pling superconducting qubits system with dissipative effects under the situation of the
initially entangled superconducting qubits state. Then we discuss the relations between
the geometric phases and quantum correlations. By comparing the time-dependent ge-
ometric phases and quantum correlations in both the X and the Y states, at last, we
find that the time-dependent Pancharatnam phases reflect the message of quantum cor-
relations beside keeping the motion memory of such a coupling superconducting two-
qubit system.

2. Coupling superconducting two-qubit in open system

In a quantum system, the basic memory units are a set of the quantum logic gates with
a number of qubits. The quantum gates of a pure quantum state transform an initial
state into a state in terms of unitary matrices and therefore quantum logic gates are
reversible according to the unitary property. The most common quantum gates opera-
tion can be simulated by two coupling qubits. For quantum open system, however, it
is necessary to study the dynamic behavior of two-qubit system.
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Thus, let us start from two coupling superconducting qubits, shown schematically
in Fig. 1, where the resonator plus qubit Hamiltonian is taken as a Jaynes–Cummings
form [35], 

(1)

where ωr is a resonance frequency, ωa, j  is the transition frequency of qubit j, gj is the
coupling strength of the resonator to qubit j,  is Pauli matrices of qubit j,  is raising
and lowering operators.

To avoid excitation of the resonator, we assume that both qubits are strongly de-
tuned from the resonator |Δi | = |ωa, j  − ωr | >> gj. In this situation, we adiabatically elim-
inate the resonant Jaynes–Cummings interaction by

(2)

and the full system with the two qubits and the cavity is described by the effective
Hamiltonian [36, 37],

(3)
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where  ( j = A, B) is a coupling strength between the resonator and the
qubits j and ωj = ωa, j + χr, j  ( j = A, B) are a transition frequency, and 

(4)

is an interacting strength between the two qubits and the cavity a†a = n.
The interaction between the two-qubit system and its environment will be given

by a superoperator L . The time evolution of quantum open system is generated by
a Lindbladian-type master equation [38],

(5)

under the condition of weak coupling inside the system, the Lindbladian-type master
equation is relatively accurate. But if you have a strong coupling inside the system, it is
not very accurate, because after all, this equation is derived from a lot of approxima-
tions.

If all details of the system-environment iteration are known, in principle, one can
construct the corresponding superoperator L. In most situations, however, the deco-
herent ways of open system are very complicated. Therefore, it is interesting to con-
sider the mixture of both the dephasing and instantaneous two-decay mode. In this case,
Lρ may be expressed as

(6)

where  and  are spin operators for the qubits A and B, S+ = aσ+
is a product of the annihilation operator a and raising σ+, S − = a†σ− is a product of the
creation operator and lowering σ−, Γi are the dephasing rates, Γ0 is a correlated dephas-
ing rate which describes the correlation between the environments of two qubits as well
as Γjk describes the correlation between the environments of two qubits under the in-
stantaneous decay mode.

Generally, Γi and Γjk are dependent on each other under the case of non-correlated
environments, thus we can take the autocorrelated environments for the two-qubit sys-
tem in the following, i.e., Γjk = Γ and Γjj = γ, which facilitate the investigation into the
relation between the dephasing and instantaneous decays, and the ratios between them
affect the geometric phase and quantum correlation.
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3. Bloch sphere structure and geometric phase 
of two-qubit system

A mixed state density matrix ρ(t) can be expressed as

(7)

where αk (t ) are a set of classical probability amplitudes with the normalized condition,

(8)

For the geometric phase of a mixed state, a usual way is to permit a nonunitary evo-
lution with the nonunit state vectors  in the complex Hilbert space HN = 
= ; k = 1, 2, ..., N. It is known that the invariant proposed by Bargmann is
an approach to distinguish unitary evolution from nonunitary one. In order to preserve
the unitary property in the study of the mixed state, especially for keeping 
gauge invariants in both the density matrix and geometric phase, we construct a super-
spinorial representation of the mixed state vector in connection with the given density
matrix, i.e. [19], 

(9)

The geometric phase of the mixed state can be obtained by the normalized spinorial
representation in which the smooth curve  is subdivided into L parts. The points
of subdivision are at ti = t0 +iΔ t  with values, where i = 1, 2, ..., L.

Each trajectory, then, is represented by a discrete sequence of quantum states,

(10)

and each  is corresponding to a phase. By using the products of L short
geodesic arcs connecting  with  we get the Pancharatnam phase of
mixed state as

(11)

Using the normalized condition and the limiting process, we obtain 

(12)
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which means that γP(t ) in Eq. (12) is a physical quantity with the gauge invariant. In
order to express exactly the geometric properties, we can map the coupling supercon-
ducting two-qubit system onto a general Bloch sphere structure.

The density matrix can be expanded in terms of a set of traceless and Hermitian ma-
trices. Under the situation of two-qubit system, the Hermitian matrices λi, i = 1, 2, ..., 15
are SU(4) elements as shown in Appendix I. Thus the density matrix is written as

(13)

where  is an expansive coefficient, n is called the general-

ized Bloch vector, I is an 4 × 4 identity matrix, and λi with the orthogonal and normal-
ized conditions,

(14)

where fijk = Tr([λi , λj]λk) are the SU(4) structure constants.
Multiplying λi on the two sides of Eq. (13) and then using Eq. (14), we find that

each component of the Bloch vector is given by

(15)

Obviously, the set

(16)

is an analogue of the generalized 15-dimensional Bloch sphere, and r is called the
Bloch radius. Thus nR( t ) = n( t ) /r is a unit vector on the unit sphere and can be pa-
rameterized by the 14 azimuthal angles of the Bloch sphere.

Next, we represent the density matrix in terms of a set of completely normalized
and orthogonal eigenvectors  of nR(t ) ꞏ λ with eigenequations,

(17)

where  (k = 1, 2, 3, 4) are corresponding eigenvalues, and the eigenvectors 
satisfy the complete condition, i.e.,

(18)
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Inserting Eqs. (13) and (15) into Eq. (19), the density matrix is rewritten as

(20)

where  are classical probabilities of mixture in the open sys-

tem. Thus the density matrix of the two-qubit system can be naturally expressed in terms
of the geometric quantities, i.e., the generalized Bloch radius and azimuthal angles.
From Eq. (13), we find

(21)

which means that the  are also the eigenstates of the two-qubit density matrix ρ (t )
with the eigenvalues χk .

According to Eqs. (9) and (21), the corresponding superspinorial representation of
N-level mixed state is given by

(22)

In terms of the spinorial representation of the density matrix, the Pancharatnam phase
of the mixed state can be expressed as

(23)

where t0 is the initial time, χk(t) is the eigenvalue of the density matrix,  is the
eigenstate of the density matrix.

When the initial state of the two-qubit system is an entangled state, it is helpful to
realize quantum computation in processing of quantum information. Therefore, we
only consider here the X and Y states [39, 40], named from the visual appearance of
the density matrix, which includes maximally entangled Bell states and Werner states.
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of initial density matrix in process of time evolution. The time-dependent density ma-
trix of the two-qubit system is given by

(24)

where ρ11(0) = (1 – a) /3, ρ14(0) = exp(iδ) /9, ρ22(0) = ρ33(0) = 1/3, ρ23(0) = exp(iχ) /3,
ρ32(0) = exp(–iχ) /3, and ρ44(0) = a /3.

Inserting Eq.(15) and SU(4) matrix elements into Eq. (14), then using Eq. (16), the
expression of the Bloch radius can be expressed as

(25)
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(33)

where 
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The corresponding eigenvectors  as well as ρY(t) are given by

(41)

(42)

(43)

(44)

χ4
1
2

------ ρ11 ρ44 ρx2+ + =

N1 4 ρ32
2 ρ22 ρ33 ρx1–– 2+=

N2 4 ρ32
2 ρ22 ρ33 ρx1+– 2+=

N3 4 ρ41
2 ρ11 ρ44 ρx2–– 2+=

N4 4 ρ41
2 ρ11 ρ44 ρx2+– 2+=

ρx1 ρ22 ρ33– 2 4 ρ23 ρ32+=

ρx2 ρ11 ρ44– 2 4 ρ14 ρ41+=

ρY t 

ρ11 t  0 0 0

0 ρ22 t  ρ23 t  0

0 ρ32 t  ρ33 t  0

0 0 0 ρ44 t  
 
 
 
 
 
 
 

=

χk  ,

χ1  1, 0, 0, 0 
 T

=

χ2  1
N1

----------- 0, ρ22 ρ33 ρx1–– , 2ρ32, 0 
 T

=

χ3  1
N2

----------- 0, ρ22 ρ33 ρx1+– , 2ρ32, 0 
 T

=

χ4  0, 0, 0, 1 
 T

=



520 L.Y. XUE, Z.S. WANG
The eigenvalues of density matrix can be written as

(45)

(46)

(47)

(48)

where ρx1, N1 and N2 are the same as X state.

4. Density matrix of mixed states 

In the situations of ωA = ωB = ω and χr, A = χr, B = χr as well as ΓA = ΓB = Γ and γA =
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forms, i.e.,
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(55)

(56)

(57)

In order to get an analytic solution of Eqs. (49)–(57), we assume that 

(58)

(59)

(60)

(61)

and the matrix form is written as

(62)

In order to cancel the constant term, we set

X = X' + X'' (63)

Y = Y' + Y'' (64)

Z = Z' + Z'' (65)

W = W' + W'' (66)

which satisfy

ρꞏ 33 t  i J ρ23 t  ρ32 t – 
 

1
2

------ n 2γ ρ11 t  2γ ρ33 t – Γ ρ23 t  ρ32 t + 
 –

 
 
 

+

–=

ρꞏ 41 t  nγρ41 t – 2iωρ41 t  2 Γ Γ0+  ρ41 t –+=

ρꞏ 44 t  n γ ρ22 t  Γρ23 t  Γρ32 t  γ ρ33 t + + + 
 =

X ρ23 t  ρ32 t + 
  2n γ t exp=

Y ρ23 t  ρ32 t – 
  2n γ t exp=

Z ρ22 t  ρ33 t + 
  2n γ t exp=

W ρ22 t  ρ33 t – 
  2n γ t exp=

d
d t

---------

X

Y

Z

W 
 
 
 
 
 
  2 Γ0 Γ–  nγ+ 4inχr– nΓ– 0

4inχr– 2 Γ0 Γ–  nγ+ 0 2i J

nΓ– 0 nγ 0

0 2i J 0 nγ 
 
 
 
 
 
  X

Y

Z

W 
 
 
 
 
 
 

2nΓ 1 a– 
3

----------------------------

0

0

2nγ 1 a– 
3

---------------------------
 
 
 
 
 
 
 
 
 
 

+=
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(67)

The parameters of X'', Y'', Z'', W'' can be obtained by calculating the matrix equation
above, and the specific results are in the Appendix II.

Thus Eq. (62) can be rewritten as

(68)

The solution to Eq. (68) may be constructed by

(69)

2 Γ0 Γ–  nγ+ 4inχr– nΓ– 0

4inχr– 2 Γ0 Γ–  nγ+ 0 2i J

nΓ– 0 nγ 0

0 2i J 0 nγ 
 
 
 
 
 
  X''

Y''

Z''

W'' 
 
 
 
 
 
 

2nΓ 1 a– 
3

----------------------------

0

0

2nγ 1 a– 
3

---------------------------
 
 
 
 
 
 
 
 
 
 

+ 0=

d
d t

---------

X

Y

Z

W 
 
 
 
 
 
 

d
d t

---------

X'

Y'

Z'

W' 
 
 
 
 
 
  2 Γ0 Γ–  nγ+ 4inχr– nΓ– 0

4inχr– 2 Γ0 Γ–  nγ+ 0 2i J

nΓ– 0 nγ 0

0 2i J 0 nγ 
 
 
 
 
 
  X'

Y'

Z'

W' 
 
 
 
 
 
 

= =

X'

Y'

Z'

W' 
 
 
 
 
 
 

c1 x1t 

h1

i
n γ x1–

2J
---------------------

h2

1 
 
 
 
 
 
 
 
 

exp c2 x2t 

h3

i
n γ x2–

2J
---------------------

h4

1 
 
 
 
 
 
 
 
 

exp

cr ici+  xr ixi+ t 
 

hr ihi+

i
n γ xr– ixi–

2J
---------------------------------

βr iβi+

1 
 
 
 
 
 
 
 
 

exp

cr ici–  xr ixi– t 
 

hr ihi–

i
n γ xr– ixi+

2J
---------------------------------

βr iβi–

1 
 
 
 
 
 
 
 
 

exp

+

+

+

=
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or it can be written as a system of equations

(70)

(71)

(72)

(73)

The parameters of c1, c2, cr, ci, x1, x2, xr, xi , h1, h2, h3, h4, hr, hi , βr, βi  can be obtained
by plugging in the initial values which are shown in Appendix II.

Thus the analytical solutions of the master Eq. (5) can be expressed as

(74)

(75)

(76)

X' c1 x1 t h1exp c2 x2 t h3exp 2cr hr xi t  xr t expcos

2cihi xi t  xr t expcos– 2cr hi xi t sin xr t exp–

2ci hr xi t sin xr t exp–

+ +=

Y'
i

2 J
----------- c1 x1 t  nγ x1– exp c2 x2 t  nγ x2– exp

2cr xi t  xr t  nγ xr– expcos 2ci xi xi t  xr t expcos–

2cr xi xi t sin xr t exp 2ci xi t sin xr t  nγ xr– exp–

+

+

+









=

Z' c1 x1 t h2exp c2 x2 t h4exp 2cr xi t  xr t  βrexpcos

2ci xi t  xr t  βiexpcos– 2cr xi t sin xr t  βiexp–

2ci xi t sin xr t  βrexp–

+ +=

W' c1 x1 t exp c2 x2 t exp 2cr xi t  xr t expcos

2ci xi t sin xr t exp–

+ +=

ρ11 t  1 a–
3

---------------- 2nγ t– exp=

ρ14 t  1
9

------ iδ  nγ 2Γ 2Γ0 2iω+ + + t– 
 expexp=

ρ22 t  1
2

------ c1 x1t  h2 1+ exp c2 x2t  h4 1+ exp

2cr xi t  xr t  βr 1+ expcos 2ci xi t  xr t βiexpcos–

2cr xi t sin xr t βiexp– 2ci xi t sin xr t  βi 1+ exp– Z'' W''

+

+

+ +









2nγ t– exp

=

ρ23 t  1
2

------ c1 x1t h1exp c2 x2t h3exp 2cr hr xi t  xr t expcos

2ci hi xi t  xr t expcos– 2cr hi xi t sin xr t exp–

+ +


=
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(77)

(78)

(79)

(80)

(81)

5. Nonlocal quantum correlations of two-qubit system 

Besides the quantum geometric phase, another fascinating phenomenon is nonlocal
quantum correlation in nature. The idea of quantum nonlocality among remote particles
was originally exploited by EINSTEIN et al. [41], further conceptualized in a seminal
paper by SCHRÖDINGER [42], and a subsequent work by BELL [43].

At present, there exist two kinds of nonlocal quantum correlations, i.e., quantum
entanglement and quantum discord. An entangled state is a state of a composite system
that cannot be separated into product states in terms of  the subsystems. But the quantum

2ci hr xi t sin xr t exp– 
 i

2 J
----------- c1 x1t  nγ x1– exp

c2 x2t  nγ x2– exp 2cr xi t  xr t  nγ xr– expcos

2ci xi xi t  xr t expcos 2cr xi xi t sin xr t exp

2ci xi t sin xr t  nγ xr– exp–

+ +

+ +







 X'' Y''

+

+ + 
 nγ t– exp

ρ32 t  1
2

------ c1 x1t h1exp c2 x2t h3exp 2cr hr xi t  xr t expcos

2ci hi xi t  xr t expcos– 2cr hi xi t sin xr t exp–

2ci hr xi t sin xr t exp–

+ +





 i
2 J

----------- c1 x1t  nγ x1– exp

c2 x2t  nγ x2– exp 2cr xi t  xr t  nγ xr– expcos

2ci xi xi t  xr t expcos 2cr xi xi t sin xr t exp

2ci xi t sin xr t  nγ xr– exp–

+ +

+ +









–

X'' Y''+ +







 nγ t– exp

=

ρ33 t  1
2

------ c1 x1t  h2 1– exp c2 x2t  h4 1– exp

2cr xi t  xr t  βr 1– expcos 2ci xi t  xr t βiexpcos–

2cr xi t sin xr t  βiexp– 2ci xi t sin xr t  βr 1– exp– Z'' W''–

+

+

+









2nγ t– exp

=

ρ41 t  1
9

------ i– δ  nγ 2Γ 2iω–+ t– 
 expexp=

ρ44 t  1 ρ11 t – ρ22 t – ρ33 t –=
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entanglement is not a unique kind of useful correlation emerging in quantum many-par-
ticle system. Even though the entanglement is subtracted from total quantum correla-
tions, the residual correlations are not of an entirely classical origin. Such a correlation,
called as quantum discord, is useful to measure the nonclassical correlations that cannot
be captured by entanglement in the quantum many-particle system. 

Quantum entanglement can be quantified by the concurrence [2, 13], i.e.,

(82)

where  and the quantities λj ( j = 1, 2, 3, 4) are the
eigenvalues arranged in a decreasing order of the following matrix,

(83)

where ρ*(t) is a complex conjugation of ρ(t) and σ y is a Pauli matrix of y-direction. It
is noted that the concurrence varies from C = 0 for a completely unentangled state to
C = 1 for a maximally entangled state.

Inserting Eq. (24) into Eq. (83), we can obtain the eigenvalues of ρ' (t). For the
X-state, thus, one has

(84)

with the conditions ρ22 ρ33 ≥ |ρ23|2, ρ11 ρ44 ≥ |ρ14|2 and Σi ρii = 1. 
For the Y-state, similarly, we find

(85)

in terms of Eqs. (40), (82) and (83).
In order to describe the dynamic evolution of quantum correlations, we first consider

mutual information. The mutual information is an approach to measure total quantum
and classical correlations [44, 45],

(86)

where S ( ρA) = H ( ρ11 + ρ22), S ( ρB) = H ( ρ11 + ρ33), and 

(87)

are von Neumann entropies with the relation H(x) = −x log2x − (1 − x)log2(1 − x).
Next, a set of complete basis vectors, {Bk , k = 1, 2}, is introduced to measure the

subsystem B, and the post-measured state can be written as

(88)

C t  max 0 C̃ t  =

C̃ t  λ1 λ2– λ3– λ4–=

ρ' t  ρ t  σ1
y σ2

y  ρ* t  σ1
y σ2

y =

C̃ t  2 max 0 ρ23 ρ11 ρ44– ρ14 ρ22 ρ33–  =

C̃ t  2 max 0 ρ23 ρ11 ρ44– =

I ρAB  S ρA  S ρB  S ρAB –+=

S ρAB  χi log2 χi
i 0=

4

–=

ρk
1
pk

--------- IA Bk  ρAB IA Bk =
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where , and IA is an identity operator on the subsys-
tem A, then any von Neumann measurement for the subsystem B can be written as

k = 0, 1 (89)

with the unitary matrix V = t + i y ꞏ σ  U (2) for t  ℝ and y = ( y1, y2, y3)  ℝ3 [19],
and Πk =  (k = 0, 1).

The classical correlation can be expressed as

(90)

where I( ρAB|{Bk}) = S ( ρA) − Σk pk S ( ρk) are used [46, 47]. 
The quantum discord [3, 4, 46, 47] is defined by

D( ρAB) = I( ρAB) – Λ( ρAB) (91)

Inserting Eqs. (86), (90) into Eq. (91), the D( ρAB) can be expressed as

(92)

which can further be expressed as

D( ρAB) = min{D1( ρAB), D2( ρAB)} (93)

where

D1( ρAB) = S( ρB) + S( ρAB) – M (94)

D2( ρAB) = S( ρB) + S( ρAB) – N (95)

with M = Σi ρii log2 ρii + H ( ρ11 + ρ33) and N = −H (τ).
For the X-state, we find

(96)

and for the Y-state, we have

(97)

pk Tr IA Bk ρAB IA Bk  =

Bk V Πk V † :=

k  k 

Λ ρAB  max
Bk 

I ρAB | Bk   max
Bk 

S ρA  pk S ρk 
k

– 
 

S ρA  min
Bk 

pk S ρk 
k

 
 
 

–

= =

=

D ρAB  min
Bk 

S ρB  S ρAB – pk S ρk 
k

–
 
 
 

=

τ
1
2

------ 1 1 2 ρ33 ρ44+ – 
 

2
4 ρ14 ρ23+ 
 

2
++

 
 
 
 

=

τ
1
2

------ 1 1 2 ρ33 ρ44+ – 
 

2
4 ρ23

2++

 
 
 
 

=
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6. Discussions

It is known that the quantum nonlocality can be described by the concurrence, the quan-
tum discord and the geometric phase, respectively. On the other hand, the Bloch radius
describes a mixture degree of the single-particle physical system. Therefore, it is in-
teresting to distinguish and compare them in all cases as shown in Figs. 2–8.

In Fig. 2 for the X state, we find that with changing the phonon numbers the n-th
concurrence and quantum discord show an initial dip followed by enhancement of the
correlations and then the decays at a long time. The larger the phonon number is, the
greater the effects of enhancement for the correlations are at the beginning, but the
shorter the decay time is. It implies that, when the phonon number increases, there will
be an increasing coherence, but evolving with the time, it will easily go to zero. In other
words, the ability to retain the retreat is weakened. However, the Pancharatnam phase
would decrease, and the larger n is, the greater the rate of the decrease is.

It is interesting to observe the Bloch radius for the two-particle system, where the
Bloch radius first decreases and then increases, and finally approaches a value less than
one as opposed to a single-particle system. From the derived Bloch radius Eq. (25),
we can see that the last term is (1 − ρ11)2/6, and the matrix element ρ11 is a decreasing
function of the time and finally approaches to 0. Therefore, the increase at the begin-
ning is because the decay items of the previous items are strong, and then the increase
is the last one. The situation is different from the single-particle system.
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Fig. 2. Different phonon numbers n for concurrence (a), quantum discord (b), Pancharatnam phase (c),
and Bloch radius (d) as a function of evolving time in the X state with the same initial conditions J = 2,
Γ = 0.1 s−1, γ = 0.05 s−1, Γ0 = 0.01 s−1, a = 0.2, δ = π/3, ω = 1 s−1, χr = 0.025 and initial phase χ = 3π/2.
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Fig. 3. Different frequencies ω for concurrence (a), quantum discord (b), Pancharatnam phase (c), and
Bloch radius (d) as a function of evolving time in the X state with the same initial conditions J = 2,
Γ = 0.1 s−1, γ = 0.05 s−1, Γ0 = 0.01 s−1, n = 2, a = 0.2, δ = π/3, χr = 0.025 and initial phase χ = 3π/2.
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Fig. 4. Different ratios Γ /γ of environments for concurrence (a), quantum discord (b), Pancharatnam
phase (c), and Bloch radius (d) as a function of evolving time in the X state with the same initial conditions
J = 2, Γ0 = 0.01 s−1, γ = 0.05 s−1, n = 2, a = 0.2, δ = π/3, ω = 1 s−1, χr = 0.025, and initial phase χ = 3π/2.
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For different ω shown in Fig. 3, we find that beside the oscillations, the quantum
concurrence and discord as well as the Bloch radius are independent of the frequency ω.
But the Pancharatnam phase decreases with the increase in the frequency. In other
words, the geometric phase can be used to observe such a change in the frequency.

In order to investigate into the effects of environment correlation to the quantum
nonlocality, we plot the evolving curves of the concurrence, the quantum discord
and the geometric phase for different ratios of the instantaneous decay Γ to the back-
ground γ in Fig. 4 and for the different ratios of the dephasing decay Γ0 to the back-
ground γ in Fig. 5. We find that, when the ratio of the instantaneous decay Γ to the
background γ changes, the concurrence will still decrease at the finial time, increase
and decrease at last, but the quantum discord will directly decrease with the decrease
in the ratio, and keeps all the times. When the ratio is reduced, there will emerge the
death and recovery phenomena of the concurrence, and the ability to retain the deco-
herence is getting weaker.

For the ratio of the dephasing decay Γ0 to the background γ, we found that when the
ratio is of a sufficient value, i.e., 1/2, it is different from the small ratio values. The in-
volving curves for all physical quantities are close to each other as shown in Eq. (6),
but when the ratio is 1 /2, the concurrence and quantum discord increase to a larger
value and take longer to go to 0, which means that the larger the ratio is, the better the
coherence is. Especially, the geometric phase has the same behavior.
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For the Y state, the time-evolving curves of the quantum concurrence, discord,
Pancharatnam phase and Bloch radius are shown in Figs. 6–8. Comparing Fig. 2 with
Fig. 6, Fig. 4 with Fig. 7 and Fig. 5 with Fig. 8, we find that similar cases take place
for the quantum concurrence and the discord. But the Pancharatnam phase is an in-
creasing function of evolving time. Because the X and Y states have different non-di-
agonal elements, different coupling methods are needed. Therefore, the geometric
phase provides a way how to distinguish the X and the Y states.

7. Conclusions

In summary, two coupling superconducting qubits are studied for their nonlocality, i.e.,
the quantum concurrence, discord, and Pancharatnam, for the X and Y states under all
possible environments. We find that the X and Y states are special mixed states ac-
cording to the Bloch radius, where the behavior of the Bloch radius for the two-particle
system is different from the one of the single-particle system. Generally, the larger the
environment and phonon number are at the larger region of time, the larger the quantum
concurrence and discord are. Especially, the ratio of different environment correlations
is important to implement the quantum computation. The Pancharatnam phases have
different behaviors for the X and Y states.

Acknowledgments – This work was supported by the Jiangxi Education Department Fund (GJJ161060).

Y state
0.4

0.3

0.2

0.1

0.0

0.25

0.20

0.15

0.10

0.05

0.00

C
o

n
cu

rr
e

n
ce

Q
u

a
n

tu
m

 d
is

co
rd

bY state a

Y state10

8

6

4

2

0 10 20 30 40 50 60

1.2

1.0

0.8

0.6

0.4

0.0

t [s]

γ P
 [

ra
d

]

B
lo

ch
 r

a
d

iu
s

dY state

0 10 20 30 40 50 60
t [s]

c

0.2

Fig. 8. Different ratios Γ0 /γ of environments for concurrence (a), quantum discord (b), Pancharatnam
phase (c), and Bloch radius (d) as a function of evolving time in the Y state with the same initial conditions
J = 2, Γ = 0.1 s−1, γ = 0.05 s−1, n = 2, a = 0.2, δ = π/3, χr = 0.025, ω = 1 s−1 and initial phase χ = 3π/2.

Γ0/γ = 1/100
Γ0/γ = 1/20
Γ0/γ = 1/10
Γ0/γ = 1/2

0

Γ0/γ = 1/100
Γ0/γ = 1/20
Γ0/γ = 1/10
Γ0/γ = 1/2

Γ0/γ = 1/100
Γ0/γ = 1/20
Γ0/γ = 1/10
Γ0/γ = 1/2

Γ0/γ = 1/100
Γ0/γ = 1/20
Γ0/γ = 1/10
Γ0/γ = 1/2



532 L.Y. XUE, Z.S. WANG
Appendix I

According to SU(4) group, a set of 4 × 4 traceless and Hermitian matrices in Eq. (3) are given by:

Appendix II

Calculated some parameter expressions in the density matrix in Section 4.
Parameters X'', Y'', Z'', W'' can be written as: 

where
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Parameters x1, x2, x3, and xi can be written as: 

where

Parameters h1, h2, h3, h4, hr, hi, and βr, βi can be written as: 
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and

c1 = [6i cy h4 hi J + 2hi x2 – 3cz hi x2 – 2h3 xi + 3cz h3 xi – 3cx h4 xi + 2hr xi – 3cz hr xi 
+ 3cw h4 hr xi – 2hi xr + 3cz hi xr – 3cw h4 hi xr – 6i cy h3 J βi + 6i cy hr J βi 
+ 3cx x2 βi – 3cw hr x2 βi – 3cx xr βi + 3cw h3 xr βi – 6i cy hi J βr + 3cw hi x2 βr + 3cx xi βr 

– 3cw h3 xi βr + 3cw h4 hi n γ – 3cw h3 n βi γ + 3cw hr n βi γ – 3cw hi n βr γ 
+ 2(h4 xi – x2 βi + xr βi – xi βr ) cos χ +4 J (h4 hi – h3 βi + hr βi – hi βr ) sin χ] 

× [3(h2(hi x2 – h3 xi + hr xi – hi xr) + h4 ((h1 – hr) xi + hi (–x1 + xr)) 

+ h3 x1 βi – hr x1 βi – h1 x2 βi + hr x2 βi + h1 xr βi – h3 xr βi + hi x1 βr – hi x2 βr – h1 xi βr + h3 xi βr)]
–1
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+ 2(h2 xi – xi βi + xr βi – xi βr ) cos χ +4 J (h2 hi – h1 βi + hr βi – hi βr ) sin χ] 
× [3(h4 ((–h1 + hr) xi + hi( x1 – xr)) + h2 (–hi x2 + h3 xi – hr xi + hi xr)  

– h3 x1 βi + hr x1 βi + h1 x2 βi – hr x2 βi – h1 xr βi + h3 xr βi – hi x1 βr + hi x2 βr + h1 xi βr – h3 xi βr)]
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– 6i cy h1 J βi + 6i cy h3 J βi + 3cx x1 βi – 3cw h3 x1 βi – 3cx x2 βi + 3cw h1 x2 βi 
+ 3cw h3 hi n γ – 3cw h4 hi n γ – 3cw h1 n βi γ + 3cw h3 n βi γ 

+ 2(h2 xi – h4 xi – x1 βi + x2 βi ) cos χ +4 J (h2 hi – h4 hi – h1 βi + h3 βr ) sin χ] 
× [6(h2(hi x2 – h3 xi + hr xi – hi xr) + h4 ((h1 – hr) xi + hi (–x1 + xr)) 

+ h3 x1 βi – hr x1 βi – h1 x2 βi + hr x2 βi + h1 xr βi – h3 xr βi + hi x1 βr – hi x2 βr – h1 xi βr + h3 xi βr)]
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ci = [6i cy h2 h3 J – 6i cy h1 h4 J – 6i cy h2 hr J + 6i cy h4 hr J + 2h3 x1 – 3cz h3 x1 + 3 cx h4 x1 
– 2hr x1 + 3cz hr x1 – 3cw h4 x1 – 2h1 x2 + 3cz h1 x2 – 3cx h2 x2 + 2hr x2 – 3cz hr x2 

+ 3cw h2 hr x2 + 2h1 xr – 3cz h1 xr + 3cx h2 xr – 2 h3 xr + 3cz h3 xr 
– 3cw h2 h4 xr – 3cx h4 xr + 3cw h1 h4 xr + 6i cy h1 J βr – 6i cy h3 J βr – 3cx x1 βr 
+ 3cw h3 x1 βr + 3cx x2 βr – 3cw h1 x2 βr + 3cw h2 h3 n γ – 3cw h1 h4 n γ 

– 3cw h2 hr n γ + 3cw h4 hr n γ + 3cw h1 n βr γ – 3cw h3 n βr γ 
+ 2(h2 x2 – h2 xr + h4(–x1 + xr) + x1 βr – x2 βr ) cos χ 
+ 4 J (h2 h3 – h1 h4 – h2 hr + h4 hr + h1 βr – h3 βr ) sin χ] 

× [6(h4 ((–h1 + hr) xi + hi (x1 – xr)) + h2(–hi x2 + h3 xi – hr xi + hi xr) 

– h3 x1 βi + hr βi + h1 x2 βi – hr x2 βi – h1 xr βi + h3 xr βi – hi x1 βr + hi x2 βr + h1 xi βr – h3 xi βr)]–1
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