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Abstract: The aim of the paper is to compare the forecasting potentials of two classes of
Multiplicative Stochastic Factor — scalar BEKK (MSF-SBEKK) models which differ in the
type of latent process. In the first class, the innovations of a first order autoregressive
structure for the natural logarithm of latent variables are log-normal, whereas in the second
class the innovations are inverted gamma distributed. The comparison of the models’
forecasting abilities by means of the predictive Bayes factor as well as the log predictive
score and energy score were performed based on the Polish exchange rates. The author
considered one- to ten-step-ahead predictions during the period beginning from
3 September 2019 and ending on 2 September 2020, which covers the time of the crisis
caused by COVID-19. The author concluded that for most of the forecast horizons, the
considered log-normal innovations outperformed the inverted gamma ones.

Keywords: stochastic volatility model, forecasting, predictive Bayes factor, energy score,
log-predictive score.

1. Introduction

In volatility modelling of financial time series, two major classes of models
are used: the autoregressive conditionally heteroscedastic (ARCH) and
stochastic volatility (SV) models. The conceptual difference between the
two classes lies in modelling conditional variance. In the ARCH-type

* Research supported by a grant from the National Science Center under decision no.
UMO-2018/31/B/HS4/00730.
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models, volatility is described by a deterministic function of the past of the
process, whereas in the SV models the conditional variance is subject to
unpredictable shocks. In joint modelling of multiple time series the
following multivariate counterparts of these models are used: Multivariate
GARCH (MGARCH) and Multivariate Stochastic Volatility (MSV)
classes (see: Bauwens, Laurent, and Rombouts, 2006); Tsay, 2005). The
multivariate approach to modelling financial time series is much more
difficult than the univariate one, as it explicitly takes into account the full
conditional covariance structure of asset prices, i.e. individual volatilities
and correlations. Only a few of them could serve as practical tools for large
portfolios. A solution to the problem of multivariate volatility modelling is
using the hybrid models proposed by (Osiewalski, 2009) and (Osiewalski
and Pajor, 2009, 2018), based on scalar BEKK (SBEKK; Baba, Engle,
Kraft, and Kroner, 1989) correlation structure and on one latent process
(Multiplicative Stochastic Factor, MSF). The hybrid models exploit the
advantages of both model classes: the flexibility of the SV class, where
volatility is modeled by latent stochastic processes, and the relative
simplicity of the MGARCH class.

The paper focuses on two types of the MSF-SBEKK specification: the
LN-MSF-SBEKK and IG-MSF-SBEKK. The LN-MSF-SBEKK structure
is obtained by multiplying the SBEKK conditional covariance matrix at
time ¢, X;, by a scalar random variable g, such that {In g;} is a Gaussian
AR(1) latent process with auto-regression parameter ¢. The LN-MSF-
SBEKK process can be treated as a direct extension of the SBEKK process
with unknown conditional distribution. When ¢ = 0, the LN-MSF-
SBEKK process reduces itself to the SBEKK process with the conditional
distribution being a continuous mixture of multivariate normal distri-
butions with covariance matrices X;g;, where g;'s are independent and
log-normally distributed. On the other hand, the multivariate Student t
distribution can be expressed as a scale mixture of normal distributions
with the inverted gamma (IG) as a mixing distribution. This fact was
examined in Osiewalski and Pajor (2018, 2019), where the 1G-MSF-
SBEKK specification was proposed as a natural hybrid extension of the
SBEKK process with the Student t conditional distribution (t-SBEKK). In
the 1IG-MSF-SBEKK specification the latent process {In g,} remains an
autoregressive process of order one, but with log inverted gamma
innovations. For ¢ = 0 the latent variables g; (where t € Z) are
independent and have inverted gamma distribution. Thus ¢ = 0 leads to
the t-SBEKK specification, in which the conditional distribution is
represented as a continuous mixture of multivariate normal distributions
with covariance matrices X, g; and an inverted gamma distribution of g;.
For ¢ # 0 the unconditional distribution of the latent variables g, is
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unknown; moreover, the latent variables g; (t € Z) are dependent, so there
exists an additional source of dependence. The non-Gaussian character of
the noise sources can significantly influence the explanatory and predictive
power of the hybrid model.

The aim of the paper is to compare the predictive capacity of the two
models: LN-MSF-SBEKK and IG-MSF-SBEKK, as well as their reductions
to pure SV and SBEKK ones. The data used in our empirical application are
daily quotations on three exchange rates: USD/PLN, EUR/PLN and
GBP/PLN. These currencies are very important for the Polish economy. The
forecasting horizons are from one to ten trading days. The criteria used in
this study for drawing this comparison are the predictive Bayes factor,
logarithmic score and energy score (see e.g. Geweke, 2005; Geweke and
Amisano, 2010; Gneiting and Raftery, 2007).

The paper is organized as follows. In Section 2 Bayesian LN-MSF-
SBEKK and IG-MSF-SBEKK models are presented. Section 3 is devoted to
the predictive Bayes factor and selected scoring rules. Section 4 contains the
empirical results, and Section 5 concludes the paper.

2. The MSF-SBEKK models

Let us assume that r, = (131,72, -, Ten)s t=1,2,..., T+ H, be 1 Xn
vectors of observations (log-returns), which follow the first order vector
autoregressive (VAR) structure. Thus VAR(1) can be written:

Tt=50+rt_1CD1+€t,t=1,...,T+H, (1)

where &, is 1 xn vector of parameters, ®,is n X n matrix of real
coefficients, and T is the length of the observed time series, H is the number
of future (forecasted) observations. The hybrid MSF-SBEKK structure for
the 1 x n disturbance term &, is defined by the following equality:

= g,3! 5172 1/2, @)

where
T == Bf = BHA+ B (gl—180-1) + P51, 3)
Ing: = @lng, 4 +Iny, 4)

{¢:}~iiN(0,1,),{; Lysforallt,s € {1,..., T+ H}, 0<|p| <1, (5

{¢;} is a Gaussian white noise sequence with the mean vector zero and the
unit covariance matrix, Z ¢ is a square matrix of order n, symmetric and
positive definite for each t and having a scalar BEKK (SBEKK) form, {g.}
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is a scalar stochastic latent process, {y;} is a sequence of independent
positive random variables, §; and f, are real numbers satisfying the
inequality B2 + BZ < 1, the notation ¢, L y, denotes that random variables
{; and y, are independent. Furthermore, the process defined by (1)-(5)
contains initial conditions go, 79 = (*_11, -+, T—11, 70,15 --» Ton) @Nd Zg Of
g, 1 and of X, respectively.

In the IG-MSF-SBEKK process, y; is inverted gamma distributed with
mean vaz for v > 2, that is {yt}~iilG(g,g), whereas in the LN-MSF-

1
SBEKK process y; is log normal distributed with mean e2%" and variance
(e?° —1)e%", in other words {Iny,}~iiN(0, 62).

Under (1) to (5), the conditional distribution of r; (given the past of r; and
the current latent variable g,) is determined by the distribution of ;.
Therefore, given the past of r; and the current latent variable g, r; has the
normal distribution with the mean vector u; =68, +r:—1®; and the
covariance matrix g, ;. In turn, the distribution of r, given only its past is the
scale mixture of N(u¢, g¢Z¢). In the case of the LN-MSF specification, the
marginal distribution of g, is log-normal. In the IG-MSF specification this
marginal distribution is unknown. However, for ¢ = 0 g, = y;, hence the
distribution of g, is inverted gamma. Consequently, ¢ = 0 leads to the
SBEKK process with conditional Student t distribution. Thus one can view the
IG-MSF-SBEKK structure as a natural hybrid extension of the popular t-
SBEKK specification. It is worth mentioning that in the LN-MSF-SBEKK
process, ¢ = 0 also leads to the SBEKK process, but with an unknown
conditional distribution.

The Bayesian statistical model amounts to specifying the joint
distribution of all observations, latent variables and parameters. The
assumptions presented so far determine the conditional distribution of the
vector of observations and the vector of latent variables given the parameters.
Therefore, what remains to be done is to formulate the marginal distribution
of the parameters (the prior distribution). The author assumed independence
among the groups of parameters and used the following prior distributions
(cf. Osiewalski and Pajor, 2019; Pajor and Wroblewska, 2017)%:

1 The following symbols are used:

fmn (x|M, U, V) — the probability density function of the matrix normal distribution
with mean M, and positive definite matrices U and V,

fic (x| a, b) — the probability density function of the inverted gamma distribution with
mean b/(a — 1) fora > 1,

fiw (x|V, @) — the probability density function of the inverse Wishart distribution with
p X p scale matrix V and g degrees of freedom,

fn (x| a, b) — the probability density function of the normal distribution with mean a
and variance b,

fc (x| a, b) — the probability density function of the gamma distribution with mean %,
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e the multivariate t distribution for & =[8, ®1]: p(8|0f) =
fmn (810, I, 05 1,41 ) with inverted gamma distribution for o§: p(63) =
fm(a§| 3,2), E(ag) = 1,V(0§) =1, V(vec(6)|a§) =L, Q®
051n4q = 0fL2,, thus E(8) = 0,V (vec(8)) = L2,

e the inverse Wishart distribution for A: p(A4) = fiw(A|l,, n + 2), SO
E(A) = Iy,

e the normal distribution for ¢, truncated by the restriction || < 1:
p(@) « fy(@|0, 100)]_4,1)(e),

o the inverted gamma distribution for 6% : p(6?) = f;¢(c%|2.5,0.16), s
E(c*) ~0.107,

e the gamma distribution for v: p(v) = f;(v|3,0.1), so E(v) = 30,
Mode(v) = 20,

e the uniform distribution over the unit square [0,1]? for B;and S,
truncated by the restriction B + B35 < 1: p(By, B2) o I(01)(BL + B3),

e the exponential distribution for ay: p(0¢) = fexp(0¢11),50E(0§) = 1.
The prior distributions reflect little prior knowledge about the model

parameters. As regards initial conditions for X, we take X, = o¢1, and

treat ¢ > 0 as an additional parameter, exponentially distributed a priori
with mean 1, whereas the initial value of g;, g,, is assumed to be non-
random and equal to 1. When it comes to rg, the first two vectors of

observations are used as initial conditions for r,.

3. Forecast evaluation

The standard approach to the Bayesian forecast evaluation is based on the
predictive likelihood — the predictive data density value at the observed
future data. Letrd = (ry, 7y, ..., ) be the vector of observations up to time
T, 6 be the vector of unknown parameters and g7 *"* = (g4, ..., gr+n) the
latent variable vector. The predictive density function for h-step-ahead

forecast is as follows:
p(rranlrd) = [ p(rren|rd, 91" 90,0)p (g1 ", 0173, go) dgi*™ db, (6)

where p(rryn|rd, g7 ", go,0) is the conditional density of the future
observation vector given the vector of parameters, 8, and latent variables,
91, gr+n; P(g1T, 0118, 90) is the posterior probability density
function of parameters and latent variables at time T. Let 7 ° and g, ,

fExp (x| A) —the probability density function of the exponential distribution with mean %
I(a,p)(x)— the indicator function of the interval (a, b).
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denote observed values of rl and 7r,,, respectively. The predictive
likelihood conditional on 7, *° is the real number p(7£, |, *°). To compute

this predictive likelihood we draw g} *"®,6® for i = 1,...,N from the

posterior distribution, next, if A > 1, simulate the vector rf:f_l’(i) from

conditional sampling distribution of observations given roT"’, ng”l'(i) and

6@, and then calculate the average:

1

A T+h-1,(i) T+h(i -
Bl =2 ©,gTH0 g, 9©)

N 0 T,o
i=1p(rT+h|r0 T4 91

forh > 1, (7)

or

A 1 T+1,(i ,
P(T79+1|rg) =5 ?’:1}7 (7”79+1|7"0T'0u91Jr (l),go’g(L)) forhn=1. (8)

Let us assume that there are two competing models: M; and M;. Then
the main Bayesian criterion of model comparison from the predictive point
of view is the predictive Bayes factor, which is the ratio of the predictive
likelihoods. In fact the posterior odds ratio can be expressed as the product
of the predictive Bayes factor and the posterior odds ratio given the

observed data 7, *°:

PMilrRyn ) _ pCrfynlry *MD) p(Milrg ) )
P(MjIrRents®)  Pfnlre M) D(Mjlrg %)
Thus, the predictive Bayes factor:
(o [.ToY _ PPiplr M)

BU(TT+h|To )— P8 o)) (10)
updates the ratio of posterior probabilities based on the first T observations
after observing predicted data r7, . It is well-known that the negative log
predictive likelihood, — logp(rﬁ+h|r0T), is the logarithmic score (log
score) for the predictive distribution at observation r7,, (see: Bernardo

and Smith, 1994; Dawid and Musio, 2014). Thus the logarithm of the
Bayes factor is the difference of the log scores for the two models:

log Byj (rf4n|ry ") = 10gp(rfsnlry *, My) — log p(rfsnlty %, M). (11)
The logarithm of the Bayes factor measures by how much the log score

for model M; is better (smaller) than that for model M; (see: Dawid and
Musio, 2015). The value of log B;;(1f,|7, °) < 0 indicates the poor
forecasting performance of model M; at time T for the h-step-ahead
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forecast in comparison to model M;. The logp(rﬁ+h|r0T'°,Ml-) returns

a high value if 7, is in the high density region of p(rT+h|rOT'°, M;), and
a low value otherwise. The drawback of the log score is that it does not
depend directly on the shape of the entire predictive density, but only on
the value of the predictive density at the realized value of r; .

To compare the forecasting ability of the models under consideration
for the forecast horizon h, in the period from T+ 1 to T + H),, (where H,
represents the number of h-step-ahead forecasts, H;, < H), we aggregate
log scores and rank models by the average of the logarithms of the
predictive likelihoods:

1 T+H -
ST+ 1L,T + Hy, My) = -3 2p 0y log p(ren-alty ™%, My). (12)
The S(h,T + 1,T + Hy, M;) is a positively oriented score, which
means that its larger values indicate more accurate density forecasts (in
other words, larger values of this score are better). Unfortunately, the
logarithmic scoring rule is sensitive to outliers.

Note that for h=1 S(1,T+1,T + Hy,M;) = H% log p(r24 1, ..,

TP+, |r0T . M;) thus the average of the log predictive density scores times the
length of forecasting period amounts to the predictive likelihood of the
observed data from T + 1 to T + H,. This is so because the log predictive
likelihood at 72, 4, ..., 774, » Can be rewritten as a sum of one-step-ahead log

predictive likelihoods:

H -
10g (P41, oo r Thyp, 1T 0, My) = Xty log p(rfy g 710, My). (13)

Consequently, for h = 1 there exists a Bayesian substantiation of the
use of the sum of logarithmic scores. Equality (12) breaks down for h > 1.
The predictive density at r7,p, ..., 774y, cannot be decomposed in terms
of the h-step-ahead predictive likelihoods. Moreover, some models can
perform well for certain forecast horizons while other models can be better
for other horizons.

In the paper the author also used the energy score (ES), recommended
for assessing the multidimensional predictive density (see e.g. Gneiting
and Raftery, 2007; Székely and Rizzo, 2013). Let us assume that Py r4p
denotes the predictive distribution for r,; given the data up to time T.
The energy score is defined as:

1
ES(PT,T+h’TTO+h) = EPT‘T+h”X - 7/"Iq+h||‘8 - EEPT’T+h||X - Y”B’ (14)

where g € (0,2), X and Y are independent random vectors with
distribution Pr 7,5, and ||-|| denotes the Euclidean norm.
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ES(PT,T+h:r79+h) = 52”95(1) - T79+h|| -
i=1

1
2m?

T B X =y, (15)

where x® and yU) are drawn from predictive distribution of ., using
the MCMC methods presented in (Osiewalski and Pajor, 2009; Pajor,
2020). In this paper ES is applied with § = 1, and it is aggregated over T,
oy T+ Hy — 1

—==T+Hp—1 1 «T+Hp-1 ==
EST,; " :H_hzt:Th ES(Pt,t+h'rto+h)' (16)

The average energy score is used to rank (of course informally from
the Bayesian point of view) competing models.

4. Empirical results

In this part of the paper the author analysed financial data of daily
quotations on three major Polish exchange rates: the EURO to the Polish
zloty (EUR/PLN), the US dollar to Polish zloty (USD/PLN), and the
British pound to the Polish zloty (GBP/PLN, all data were downloaded
from http://stoog.com). The daily currency return data used in this study
cover the period from 28 December 2017 to 2 September 2020 (see Figures
1 and 2). The dataset of the growth rates of the exchange rates consists of
693 observations (for each series). The first two observations were treated
as an initial condition, while the last 237 observations were used for the
forecast evaluation, thus T = 456. In other words, to compare the
predictive capacity of the models under consideration, the author used
these first 456 observations as a training sample. The predictive capacity
of the models was analysed in the most recent 237 trading days (H = 237).
The author took into consideration one- to ten-step-ahead predictions
during the period beginning on 3 October 2019 and ending on 2 September
2020, thus obtaining 228 predictive distributions for the one- to ten-day-
ahead forecast horizons. The predictive distributions were calculated based
on the whole dataset available at time T + t foreacht = 0,1, ..., H — 10.
This resulted in 2280 estimated predictive distributions. The sequence of
the one-step-ahead predictive distributions covers the period from
3 October 2019 to 20 August 2020, while the sequence of the ten-step-
ahead predictive distributions covers the period 16 October 2019-
2 September 2020.
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Moreover, the forecasting period was split using 12 March 2020 as the
dividing point. The first subperiod (3 October 2019-11 March 2020) is
characterized by the relatively (as compared to the second subperiod) low
volatility of the forecasted exchange rates, whereas the second subperiod
(12 March 2020-2 September 2020) contains the time of the crisis caused by
the COVID-19 pandemic (the first incidence of COVID-19 was reported by
the Polish authorities on 4 March 2020, and the lockdown-type control
measures started on 12 March). Due to the coronavirus (COVID-19) and
lockdown, significant turbulences and high volatility were observed, espe-
cially at the beginning of the pandemic lockdown period (see Figures 1 and 2).
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Fig. 1. Daily quotations on exchange rates. The first vertical (red) line represents
3 September 2019 (the beginning of the forecasting period), the second one represents
12 March 2020 (when lockdown-type control measures were first implemented in Poland)

Source: calculated by the author (based on data from www.stoog.com).
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Fig. 2. Logarithmic daily growth rates of USD/PLN, EUR/PLN and GBP/PLN
(in percentage points). The first vertical (red) line represents the beginning
of the prediction period (3 September 2019), the second one represents 12 March 2020

Source: calculated by the author (based on data from www.stoog.com).
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As one can see from Figures 1 and 2, the EURO growth rates series
seems to have the lowest volatility. The exchange rate series of USD/PLN
appears to be the most volatile. The USD/PLN exchange rate strengthened
t0 4.29327 on 23 March 2020 from 3.87587 on 2 March 2020, and next fell
below 3.6900 on 28 August 2020. A similar (but not the same) pattern
during the forecasting period is observed in the plot of the GBP/PLN
exchange rate. During the second predictive subperiod, relatively large
fluctuations in all the exchange rates considered were observed. Thus it
was possible to check how the outliers affect the predictive ability of the
(MSF-)SBEKK models.

The VAR(1)-MSF-SBEKK models were re-estimated at a daily
frequency. The computations are based on the 30000 Markov chain Monte
Carlo posterior samples after having burnt 50000 cycles in each model.

4.1. A comparison of models with the predictive Bayes factor

As mentioned above, the author considered two basic specifications of the
MSF-SBEKK models, LN-MSF-SBEKK and 1G-MSF-SBEKK. Additio-
nally, there are two natural reductions of the two hybrid models to SBEKK
specifications, LN-SBEKK and IG-SBEKK (t-SBEKK), which result from
imposing a zero restriction on ¢. Moreover, there are two reductions to pure
MSF specifications, LN-MSF and 1G-MSF, which result from imposing zero
restrictions on f; and f3,. For the sake of comparison, the study also
considered the VAR model with constant conditional covariance matrix,
despite the fact that this model seems to be inadequate for the type of the data
considered. The model assumptions are presented in Table 1.

Table 1. The model assumptions

Description of process {¢;}:
Model
g =2 2% t=1,..,T+H
: : Iy = (1= Bf = BHA+ Bl (ef_160-1) + P51, Ing, =
LN-MSF-SBEKK Ing,_, +Iny,, (Iny}~iiN(0,0?)
S =(1—p2—PBHA+ B2(el_180-1) + B22i_1,Ing, =
1G-MSF-SBEKK t 1 2 __1 t—-1¢t-1 24t-1 t
@lng,y +Iny,, {y}~iilG(v/2,v/2)
~ e =1 —Bf = B3A+ BL(el_q8e-1) + P3Zi1, Ing, =
LN-SBEKK Iny,, {Iny}~iiN(0, 6?)
IG-SBEKK Iy = (1—Bf = BHA+ Bf(g{_160-1) + B5Zi—1, Ing, =
(t-SBEKK) Iny,, {y J~iilG(v/2,v/2)
LN-MSF 2. =A,Ing, = ¢lng,_; + Iny,, {Iny}~iiN(0, 6?)
IG-MSF Y. =AIng, =¢plng,_; +Iny,, {y}~iilG(v/2,v/2)
VAR S, =A4,g =1

Source: author’s elaboration.
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Table 2. The log predictive Bayes factors in favour of the LN-MSF-SBEKK model (M;),
obtained for the whole forecasting period and for two subperiods

Log-predictive Bayes factor
Model 3 September 2019- 3 September 2019- 12 March 2020-
20 August 2020 11 March 2020 20 August 2020

LN-MSF-
SBEKK 0 0 0
1G-MSF-
SBEKK 15.256 5.442 9.814
LN-SBEKK 17.018 2.249 14.769
IG-SBEKK
(t-SBEKK) 16.122 2.071 14.051
LN-MSF 2.037 2.702 -0.665
IG-MSF 2.684 3.028 -0.343
VAR 53.915 10.490 43.425

Source: calculated by the author.

Table 2 presents the decimal logarithms of the predictive Bayes factors
for the whole forecasting period (T +1,..,T +228) and for two
subperiods (T + 1, ...,T + 113 and T + 114, ..., T + 228) in favour of the
LN-MSF-SBEKK model (M;) wversus the other models under
consideration. The predictive Bayes factors (the preferred method of the
Bayesian forecast comparison) presented in Table 2 show how the
additional data (the whole path of observed future data in each period
considered) influenced the posterior probability of the LN-MSF-SBEKK
model relative to all the specifications under consideration. As one can see
from Table 2, the LN-MSF-SBEKK model fits the data (in terms of the
predictive Bayes factor) much better than the IG-MSF-SBEKK one. The
predictive power of the LN-MSF-SBEKK model within the whole period
T+1,..,T+ 228 (3 September 2019-20 August 2020) and within the
first subperiod (3 September 2019-11 March 2020) dominates all the
models considered. A different result was obtained for the lockdown period
(12 March 2020-20 August 2020). Surprisingly, the LN-MSF model turned
out to be the best from the predictive point of view. The predictive
performance of the LN-MSF model dominates other models. In fact, the

negative value of log By; (77,112 |1o°) means that this relative posterior
probability of the LN-MSF-SBEKK model decreases. The IG-MSF model
took second place, while the LN-MSF-SBEKK ranked third. However, the
log-predictive Bayes factors in favour of the LN-MSF-SBEKK
specification over the LN-MSF and IG-MSF ones are less than one (in
absolute terms) each, and thus, according to the scale presented by (Kass

and Raftery, 1995), it is only a positive (not strong) evidence against the
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LN-MSF-SBEKK model. In general, as indicated by predictive Bayes
factors, lognormal innovations in MSF-SBEKK and MSF structures lead
to greater predictive capacity compared with the same structures based on
inverted gamma innovations.

The predictive Bayes factors provided very strong evidence in favour of
the LN-MSF-SBEKK specification against the IG-MSF-SBEKK one in the
three forecasting periods considered. For the whole forecasting period,
3 September 2019 to 20 August 2020, the decimal logarithm of the
predictive Bayes factor in favour of the LN-MSF-SBEKK model against the
IG-MSF-SBEKK model (M,) was close to 15, which indicates that the
posterior odds ratio based on the first T = 456 observations (p(M|ry °)/

p(M2|r0T %)) increased by about 15 orders of magnitude after observing

predicted data r;-, £ 2%°. The increase of the posterior odds ratio was higher

for the second subperiod (the lockdown period) by about 10 orders of
magnitude. While comparing two pure SV specifications (the LN-MSF and
the 1G-MSF), the author concluded that log-normal innovations in the latent

process were preferred by each additional set of data: ;. 2>, rp. *>° and

rr228° The opposite conclusion can be reached if one compares the two

pure SBEKK specifications. The SBEKK model with conditional Student t
distribution is better from the predictive point of view than the LN-SBEKK
one. It seems that the SBEKK structure is less flexible in dealing with
outliers, and therefore it requires a conditional distribution with thicker tails.
Obviously, the last position is occupied by the VAR model with constant
conditional covariances.

4.2. Forecast evaluation with the log-predictive score
and energy score

This section presents the results of comparing the predictive ability of the
considered Bayesian models with the use of non-Bayesian tools. Tables 3
to 5 present the average log-predictive scores along with their respective
ranks. The first conclusion from Tables 3 to 5 is that the LN-MSF-SBEKK
model produced the best forecasts for all the considered forecast horizons
and for all the forecasting periods considered, except for h = 1 in the
lockdown period (11 March 2020-2 September 2020), for which the
LN-MSF model turned out to be the best. Moreover, for the whole period
T +h,.., T+ 228 + h (3 September 2019-2 September 2020) and for the
second subperiod (11 March 2020-2 September 2020) the first four
positions in the ranks are occupied by the LN-MSF, IG-MSF, LN-MSF-
SBEKK, and IG-MSF-SBEKK models. Thus, the second conclusion was
that the presence of a latent process with dependent latent variables is more
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important than allowing for the pure SBEKK structure. Both the LN-
SBEKK and IG-SBEKK models, which do not use any latent
autoregressive processes and therefore are less flexible in dealing with
outliers, appeared as the worst among conditional heteroscedastic models
in terms of the average log-predictive score.

Table 3. The average log predictive scores and ranks obtained for the whole forecasting
period 3 September2019-2 September 2020

Model h=1| rank | h=2 | rank | h=3 | rank | h=4 | rank | h=5 | rank

LN-MSF-

SBEKK -0.658 1 -1.122 1 -1.401 1 -1.593 1 -1.747 1
IG-MSF-

SBEKK -0.725 4 -1.202 4 -1.453 4 -1.652 4 -1.817 4
LN-SBEKK -0.733 6 -1.217 6 -1.499 6 -1.708 6 -1.893 6
IG-SBEKK

(t-SBEKK) -0.729 5 -1.209 5 -1.490 5 -1.705 5 -1.864 5
LN-MSF -0.667 2 -1.141 2 -1.417 2 -1.618 2 -1.773 2
IG-MSF -0.668 3 -1.142 3 -1.419 3 -1.623 3 -1.778 3
VAR -0.894 7 -1.421 7 -1.782 7 -2.078 7 -2.410 7

Model h=6 | rank | h=7 | rank | h=8 | rank | h=9 | rank [h=10| rank

LN-MSF-

SBEKK -1.883 1 -2.005 1 -2.117 1 -2.202 1 -2.273 1
IG-MSF-

SBEKK -1.992 4 -2.103 4 -2.232 4 -2.336 4 -2.399 4
LN-SBEKK -2.102 6 -2.247 6 -2.410 6 -2.527 6 -2.621 6
IG-SBEKK

(t-SBEKK) -2.035 5 -2.203 5 -2.293 5 -2.467 5 -2.556 5
LN-MSF -1.928 2 -2.054 2 -2.172 2 -2.265 2 -2.334 2
IG-MSF -1.937 3 -2.061 3 -2.190 3 -2.287 3 -2.356 3
VAR -2.890 7 -3.144 7 -3.459 7 -3.608 7 -3.596 7

h denotes forecast horizon.

Source: calculated by the author.

Surprisingly, the IG-MSF-SBEKK maodel fits the predicted data worse
(in terms of the average log predictive score) than the 1G-MSF and LN-
MSF ones. Both of the latter specifications used one latent process
common to all the conditional variances and covariances. This assumption
of common dynamics led to constant conditional correlations. While
comparing the average log predictive score for the LN-MSF and IG-MSF
models, the author found that the inverted gamma innovations in the
autoregressive specification for the latent process were outperformed by
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Table 4. The average log-predictive scores and ranks obtained for the first forecasting
subperiod: 3 September 2019-11March 2020

Model h=1 | rank | h=2 | rank | h=3 | rank | h=4 | rank | h=5 | rank

LN-MSF-

SBEKK -0.424 1 -0.881 1 -1.194 1 -1.389 1 -1.539 1
1G-MSF-

SBEKK -0.472 6 -0.946 6 -1.251 6 -1.451 6 -1.610 6
LN-SBEKK |-0.443 3 -0.930 5 -1.230 4 -1.435 4 -1.584 4
IG-SBEKK

(t-SBEKK) -0.442 2 -0.926 4 -1.233 5 -1.444 5 -1.606 5
LN-MSF -0.447 4 -0.914 2 -1.222 2 -1.420 2 -1.570 2
IG-MSF -0.448 5 -0.916 3 -1.223 3 -1.426 3 -1.572 3
VAR -0.516 7 -1.010 7 -1.328 7 -1.530 7 -1.676 7

Model h=6 | rank | h=7 | rank | h=8 | rank | h=9 | rank [h=10]| rank

LN-MSF-

SBEKK -1.662 1 -1.781 1 -1.892 1 -1.962 1 -2.011 1
1G-MSF-

SBEKK -1.735 6 -1.858 5 -1.957 4 -2.033 4 -2.086 4
LN-SBEKK |-1.721| 4 -1.859 6 -1.982 6 -2.050 6 -2.092 5
IG-SBEKK

(t-SBEKK) -1.722 5 -1.850 4 -1.966 5 -2.049 5 -2.097 6
LN-MSF -1.694| 2 -1.827 2 -1.922 2 -2.009 2 -2.045 2
IG-MSF -1.698 3 -1.827 3 -1.941 3 -2.012 3 -2.063 3
VAR -1.800 7 -1.918 7 -2.062 7 -2.150 7 -2.161 7

h denotes forecast horizon.

Source: calculated by the author.

Turning attention to the energy score, one can see that the previous
conclusion (based on the average log-predictive score) that the LN-MSF-
-SBEKK model outperformed the other models holds for the whole
forecasting period considered (3 September 2019-2 September 2020 as
well as for the subperiod 12 March 2020-2 September 2020. In the case of
these two forecasting periods, the rank correlation coefficients were large
and positive, see Table 8. Table 6 and Figure 3 also confirm superiority of
the LN-MSF-SBEKK model in the period: 3 September 2019-2 September
2020. For periods containing the lockdown crisis the first four positions in
the rank were occupied by the LN-MSF-SBEKK, 1G-MSF-SBEKK,
LN-MSF and IG-MSF models. The imposition of zero restrictions on ¢ led
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Table 5. The average log-predictive scores and ranks obtained for the second forecasting
subperiod: 12 March 2020-2 September 2020

Model h=1 | rank | h=2 | rank | h=3 | rank | h=4 | rank | h=5 | rank

LN-MSF-

SBEKK -0.888 3 -1.355 1 -1.597 1 -1.783 1 -1.936 1
1G-MSF-

SBEKK -0.974 4 -1.449 4 -1.645 4 -1.840 4 -2.006 4
LN-SBEKK |-1.017 6 -1.494 6 -1.754 6 -1.963 6 -2.176 6
IG-SBEKK

(t-SBEKK) -1.010 5 -1.482 5 -1.734 5 -1.949 5 -2.102 5
LN-MSF -0.882 1 -1.360 2 -1.602 2 -1.803 2 -1.959 2
IG-MSF -0.884 2 -1.360 3 -1.604 3 -1.808 3 -1.967 3
VAR -1.266 7 -1.817 7 -2.212 7 -2.588 7 -3.083 7

Model h=6 | rank | h=7 | rank | h=8 | rank | h=9 | rank [h=10| rank

LN-MSF-

SBEKK -2.081 1 -2.202 1 -2.314 1 -2.407 1 -2.493 1
1G-MSF-

SBEKK -2.223 4 -2.319 4 -2.471 4 -2.594 4 -2.662 4
LN-SBEKK | -2.445 6 -2.591 6 -2.782 6 -2.934 6 -3.065 6
IG-SBEKK

(t-SBEKK) -2.317 5 -2.515 5 -2.577 5 -2.824 5 -2.942 5
LN-MSF -2.138 2 -2.255 2 -2.389 2 -2.484 2 -2.577 2
1G-MSF -2.151 3 -2.267 3 -2.406 3 -2.522 3 -2.601 3
VAR -3.871 7 -4.228 7 -4.672 7 -4.852 7 -4.800 7

h denotes forecast horizon.

Source: calculated by the author.

to a substantial deterioration in forecast performance. In fact, the pure
SBEKK models took the last two positions among the models with
conditional heteroscedasticity. A different result was obtained for the

period 3 September 2019-11 March 2020 (characterized by relatively low

volatility), in which the 1IG-MSF-SBEKK model was clearly superior to
the other specifications at all the forecast horizons. For h = 2, ...,10 the
second position was occupied by the 1G-SBEKK model, and the fourth
position by the LN-MSF-SBEKK one. As one can see from Table 8, for
the subperiod 3 September 2019-11 March 2020 the rank correlation
coefficients were negative. However, the differences between the average
energy scores seem to be within the limits of the numerical error.
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Model h=1 |rank| h=2 |rank| h=3 |rank| h=4 |rank| h=5 |rank

LN-MSF-
SBEKK 250.145 | 1 |250.125| 1 |250.108| 1 |250.091| 1 |250.081| 1
1G-MSF-
SBEKK 250.147 | 3 | 250.128 | 2 |250.112| 2 |250.095| 2 | 250.086 | 2
LN-SBEKK | 250.149 | 6 | 250.133 | 7 (250.118| 7 |250.104| 7 | 250.097 | 7
IG-SBEKK
(t-SBEKK) 250.149 | 5 |250.131| 5 |250.116| 5 |[250.102| 5 |250.094 | 5
LN-MSF 250.147 | 4 | 250129 | 4 |250.114| 4 |250.099| 4 |250.091| 4
IG-MSF 250.146 | 2 | 250.129 | 3 |250.113| 3 |250.098| 3 |250.089 | 3
VAR 250.149 | 7 |250.132 | 6 |250.117| 6 |250.102| 6 |250.094 | 6
Model h=6 |rank| h=7 |rank| h=8 |rank| h=9 |rank| h=10 |rank
LN-MSF-
SBEKK 250.072 | 1 |250.057 | 1 |250.040| 1 |[250.025| 1 |[250.019| 1
1G-MSF-
SBEKK 250.078 | 2 | 250.064 | 2 |250.049| 2 |250.033| 2 |250.030 | 2
LN-SBEKK | 250.091 | 7 | 250.080 | 7 [250.068| 7 |250.057| 7 | 250.050 | 7
IG-SBEKK
(t-SBEKK) 250.088 | 6 | 250.076 | 6 |250.063| 6 |250.052| 6 |250.045| 6
LN-MSF 250.084 | 4 | 250.072 | 4 |250.059| 4 |250.048 | 4 | 250.040 | 4
IG-MSF 250.082 | 3 |250.071| 3 |250.057| 3 |250.046| 3 |250.038 | 3
VAR 250.088 | 5 |250.076 | 5 |250.063| 5 |[250.051| 5 |[250.044| 5

Source: calculated by the author.

Table 7. The average energy score and ranks obtained for the whole forecasting period:
3 September 2019-11 March 2020

Model h=1 |rank| h=2 |rank | h=3 | rank h=4 J|rank| h=5 |rank
1 2 3 4 5 6 7 8 9 10 11

LN-MSF-
SBEKK 247.945| 4 |247.932| 4 |247.928| 4 247923 | 4 | 247923 | 4
1G-MSF-
SBEKK 247944 1 |247931| 1 |247.927 1 247.921 1 247.921 1
LN-SBEKK |(247.945| 6 |247.933| 5 |247.930 6 247.925 6 247.925 5
IG-SBEKK
(t-SBEKK) 247.945| 3 |247.932| 2 |247.928| 2 247922 | 2 | 247923 | 2

LN-MSF 247945| 7 |247.934| 7 |247.930| 7 247925 | 7 | 247926 | 7

IG-MSF 247945| 5 |247.933| 6 |[247.930| 5 247925 | 5 | 247925 | 6

VAR 247944 2 |247.932| 3 |247.928| 3 247923 | 3 | 247923 | 3
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1 2 3 4 5 6 7 8 9 10 11
Model h=6 |rank| h=7 |rank | h=8 | rank h=9 |rank| h=10 |rank

LN-MSF-
SBEKK 247926 | 4 |247.926| 4 |247.923| 4 247923 | 4 | 247920 | 4
1G-MSF-
SBEKK 247923 1 |247.923| 1 |247.919 1 247.918 1 247.914 1
LN-SBEKK |247.928| 6 [247.929| 6 |247.926 6 247.927 6 247924 | 6
IG-SBEKK
(t-SBEKK) 247.925| 2 |247.926| 2 |247.922 2 247.922 2 247.919 2
LN-MSF 247.929| 7 |247.930| 7 |247.927| 7 247928 | 7 | 247925 | 7
1G-MSF 247928 | 5 |247.929| 5 |247.926| 5 247927 | 5 | 247924 | 5
VAR 247.926| 3 |247.926| 3 |247.922| 3 247923 | 3 | 247919 | 3

Source: calculated by the author.

Table 8. Rank correlation coefficients for the average log-predictive score

and the average energy score

Forecasting period| h=1 | h=2 | h=3 | h=4 | h=5|h=6 | h=7 | h=8| h=9 |h=10
328§§;$énn?|§£r2203290 089 | 0.82 | 0.82 | 082 | 082 | 0.75 | 075 | 075 | 075 | 075
Sepember 2019 | 0.39 | -057 | 064 |-064 |-0.68 [-0.64 |-032 |-029 | 029 |0.43
1228'\:;[2215252020 086 | 093 | 082 | 082 | 075 | 0.75 | 075 | 0.75 | 0.75 | 0.75

Source: calculated by the author.
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Fig. 3. The average log-predictive scores (positive oriented) and the average energy scores
(negative oriented) for the whole forecasting period (3 September 2019-2 September 2020)

Source: calculated by the author.

SLASKI
PRZEGLAD
STATYSTYCZNY

Nr 18(24)



SLASKI
PRZEGLAD
STATYSTYCZNY

Nr 18(24)

214 Anna Pajor
LN-MSF-SBEKK LN-MSF-SBEKK
51 4 guantilesof order | 5.1 quantilesof order
4321 e aas 4341 B 045
47 4 47 4 e ma 035
45 4 45 - a5
43 1 431 L ===-e0s
41 1 e
41 T~ TRITITTTY 035
35 4 3.9 4
UsDyPLN
37 4 3.7 1 g
e T T T T T T T 3.5 T T T T T T 1
T 22 R 8 88 S ZEREEEAEER
= = = = = = = = = f o T e | o o o o o o
= T T T T U o S = = oMo
- - L] L= (=] [=] =] (=] — o o o o o o
Moo d oo o oo -.Q:I T I B
(=] Ll ™ m - ™~ m (=] = ™ [=T o N (=T e ]
LN-MSF LN-MSF
51 4 guantilesof order | 5.1 1 guantilesof order
4314 e 005 431 B 005
47 - I 47 - e oas
45 J 45 4 -
05 a5
43 43 | b emmmegos
41 - ====-07i 41 - iz '
. o a5 s aannan 035
I T T . T o as X I
A7 A USD/PLN 3.7 i
3.5 T T T T T T T T 3.5 T T T T T 1
o ;o ;o o o O o o o oo o o o o O O
— — — ™~ ™~ ™~ ™~ ™ ™ — ™ ™o Lo I o B |
= = = = = = = = (=] o QR e | o o o o o o9
I I s B B A GG Ry
o = ™ = M= [ E o o — ™ Mmoo ow -
Mmoo o D Do o oo o= omow oM oror
= o s L m o — N D N O ™
LN-SBEKK LN-SBEKK
51 4 quantilezof order | 5.1 quantilesof order
a9 4 i 005 48 4{ .
47 - I a7z 4 -
45 |
43 03
41 4 . mmm=e(T5
39 4
a7 4 T Mg 0435 ‘_!:
35 T T T T T T T T 35 T T T T T T T
o ;I o O O o o o [ TR = TR e Y e N e Y o R o R o
-t -t - ™ ™ ™ ™ ™ ™ — ™ ™ ™ Lo I o
= = = = = = = = (=] e QR e | o o 9 Qo 9 Q9
™~ (] (2] (2] (] (] (] (] ™~ ™~ LT I T B ™ ™
o e T T s T O T E = = = oo e
4 - -85 49 3o 4 Ao 8534933
s T B B B~ — - o o= oMo oM orord
(= e S L m o L = = A |

Fig. 4. Quantiles of predictive distributions for USD/PLN

Source: calculated by the author.
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Fig. 5. Quantiles of predictive distributions for USD/PLN

Source: calculated by the author.
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As expected, the dispersion of the predictive distributions (measured
by e.g. the interquartile range) increased with the forecast horizon. In fact,
for the USD/PLN and EUR/PLN exchange rates, the average interquartile
range for the ten-day forecast horizon was about three times larger than for
the one-day horizon. In turn, for the GBP/PLN the average interquartile
range for the ten-day forecast horizon was about eight times larger than for
the one-day horizon. To illustrate how the predictive distribution changed
along with the increasing forecast horizon, the author presents (in Figures
4 and 5) quantiles of the predictive distributions for h = 1 and h = 10,
obtained in the models considered. The predictive distributions for h = 10
were much more spread than those for h = 1. Moreover, the accuracy of
forecasts with h = 10 was not quite satisfactory — a few realized data were
outside of the 90% confidence intervals.

As seen from Figures 4 and 5, and while analysing the predictive
quantiles, the predictive distributions obtained in the LN-MSF-SBEKK
model turned out to be the most dispersed — this dispersion was measured
by interquartile ranges and the difference between the quantile of order
0.05 and of order 0.95. The LN-SBEKK and IG-BEKK models are
characterized by the least spread of predictive distributions. The
differences in the predictive distributions among the models influenced the
values of the predictive Bayes factors, log-predictive scores and energy
SCores.

5. Conclusion

The paper compared the predictive ability of the LN-MSF-SBEKK and I1G-
MSF-SBEKK models (and their simplifications) in the context of
modelling the main exchange rates for PLN. According to the results
obtained on the basis of the average log-predictive score and energy score,
the author concluded that for most of the forecast horizons considered, the
LN-MSF-SBEKK specification outperformed the IG-MSF-SBEKK one.
As measured by the average log-predictive score, the predictive perfor-
mance of the stochastic volatility models with log-normal innovations
dominated that of the SV ones with inverted gamma innovations.

The results can be sensitive to the prior assumptions regarding the
model parameters, especially the parameters related to the latent process:
@, 2 and v. In this paper the author did not carry out the study of the
sensitivity of these results to a priori assumptions. It is worth mentioning
that under the author’s prior assumptions about the parameters of latent
processes, the marginal variances of the two latent processes (based on log-
normal and inverted gamma innovations) had similar prior distributions. In
this sense, the prior distributions of the basic parameters in the LN-MSF-
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SBEKK and IG-MSF-SBEKK models were treated as coherent (see:
Osiewalski and Pajor, 2019). The application of this analysis to alternative
conditional covariance assumptions can provide a useful direction for
future research.
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ODWROCONE GAMMA A LOGARYTMICZNO-NORMALNE
INNOWACJE W MODELACH MSF-SBEKK W PROGNOZOWANIU
WYBRANYCH POLSKICH KURSOW WALUTOWYCH

Streszczenie: Celem badania jest porownanie wlasnosci prognostycznych dwoch klas
modeli MSF-SBEKK rdznigcych si¢ postacia procesu ukrytego. W klasie pierwszej
innowacje w strukturze autoregresyjnej pierwszego rzedu dla logarytmoéw naturalnych
zmiennych ukrytych maja rozktad logarytmiczno-normalny, w klasie drugiej zas innowacje
te maja odwrdcony rozktad gamma. Porownanie modeli z wykorzystaniem predyktywnego
czynnika Bayesa, a takze metod scoringowych dokonywane jest w kontekscie
prognozowania wybranych kursoéw walutowych: USD/PLN, EUR/PLN i GBP/PLN
w okresie obejmujacym kryzys wywolany pandemig COVID-19. Wyniki empiryczne
pokazaty, ze dla wigkszosci branych pod uwage horyzontdow prognozy modele
z innowacjami o rozktadzie logarytmiczno-normalnym maja lepsze wiasnosci predyktywne
niz modele z innowacjami o rozktadzie odwréoconym gamma.

Stowa kluczowe: model zmiennoéci stochastycznej, prognozowanie, predyktywny czynnik
Bayesa.
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