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Abstract: The authors discuss the estimation of a change-point 𝑡0 at which the parameter of 

a (non-stationary) AR(1)-process possibly changes in a gradual way. Making use of the 

observations 𝑋1, … , 𝑋𝑛, we study the least squares estimator 𝑡̂0 for 𝑡0, which is obtained by 

minimizing the sum of squares of the residuals with respect to the given parameters. As the first 

result it can be shown that, under certain regularity and moment assumptions, 𝑡̂0/𝑛 is 

a consistent estimator for 𝜏0, where 𝑡0 = ⌊𝑛𝜏0⌋, with 0 < 𝜏0 < 1, i.e., 𝑡̂0/𝑛 →𝑃  𝜏0 

(𝑛 → ∞). Based on the rates obtained in the proof of the consistency result, a rough 

convergence rate statement can also be given. Some possible further investigations are briefly 

discussed, including the weak limiting behaviour of the (suitably normalized) estimator. 

Keywords: gradual change, change-point estimation, least squares estimator, AR(1)-

process 

1. Introduction and statistical framework 

This work studies the estimation of a change-point at which the parameter 

of a (non-stationary) AR(1)-process possibly changes in a gradual way. 

More precisely, the authors observe a time series possessing the structure 

 𝑋𝑡 = (𝛽0 + 𝛽1𝑔(𝑡, 𝑡0))𝑋𝑡−1 + 𝑒𝑡  (𝑡 = 1,2, … ), with 𝑋0 = 𝑒0,  (1) 
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ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 18(24) 

256 Marie Hušková, Zuzana Prášková, Josef G. Steinebach  

where {𝑒𝑡}𝑡=0,1,… is a sequence of independent, identically distributed 

random variables with 𝐸𝑒0 = 0, 0 < 𝜎2 = 𝐸𝑒0
2 < ∞, 𝐸𝑒0

4 < ∞, 𝛽0, 𝛽1 are 

unknown parameters satisfying 

  |𝛽0| < 1, 𝛽1 = 𝛽1,𝑛 → 0, |𝛽1|√𝑛 → ∞ (𝑛 → ∞),  (2) 

and 𝑔(∙, 𝑡0) is a (known) real function such that 

  𝑔(𝑡, 𝑡0) = 0 (𝑡 ≤ 𝑡0) and 𝑔(𝑡, 𝑡0) ≠ 0 (𝑡 > 𝑡0).  (3) 

That is, we assume that the parameter 𝛽0 of the AR(1)-process changes 

gradually at an unknown time-point 𝑡0 = ⌊𝑛𝜏0⌋, with 0 < 𝜏0 < 1, where 
⌊∙⌋ denotes the integer part, and the aim is to provide an estimator for 𝑡0 

resp. 𝜏0, making use of observations 𝑋1, … , 𝑋𝑛 and under certain 

assumptions on function 𝑔(∙, 𝑡0) in (3) to be specified below. 

Note that if 𝑔(∙, 𝑡0) is a bounded function, then in view of (2), 

𝑏 ≔ sup𝑡≥1|𝛽0+𝛽1𝑔(𝑡, 𝑡0)| < 1 for sufficiently large 𝑛 and, by a repeated 

application of (1), 

𝑋𝑡 = 𝑒𝑡 + ∑ 𝑒𝑡−𝑗

𝑡

𝑗=1
∏ (𝛽0 + 𝛽1𝑔(𝑡 − 𝑖, 𝑡0))

𝑗−1

𝑖=0
 

 (𝑡 = 1,2, … ). 

Let us study the least squares estimator 𝑡̂0 for 𝑡0, which is obtained by 

minimizing 

(𝑏0, 𝑏1, 𝑡∗) = ∑[𝑋𝑡 − (𝑏0 + 𝑏1𝑔(𝑡, 𝑡∗))𝑋𝑡−1]
2

𝑛

𝑡=1

 

with respect to 𝑏0, 𝑏1 ∈ ℝ, 𝑡∗ = 0,1, … , ⌊𝑛(1 − 𝛿)⌋, 𝛿 > 0 arbitrarily small, 

i.e. 

𝑆(𝑏̂0, 𝑏̂1, 𝑡̂0) = 𝑚𝑖𝑛𝑏0,𝑏1,𝑡∗
 𝑆(𝑏0, 𝑏1, 𝑡∗) = 

  𝑚𝑖𝑛𝑡∗ 
𝑚𝑖𝑛𝑏0,𝑏1

 𝑆(𝑏0, 𝑏1, 𝑡∗).  (4) 

Via partial derivatives, it is not difficult to show that, for fixed 𝑡∗, 

 𝑏̂0(𝑡∗) =
∑ 𝑋𝑡𝑋𝑡−1

𝑛
𝑡=1

∑ 𝑋𝑡−1
2𝑛

𝑡=1

−  𝑏̂1(𝑡∗)
∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1

∑ 𝑋𝑡−1
2𝑛

𝑡=1

  (5) 

and 

 𝑏̂1(𝑡∗) =
∑ 𝑋𝑡𝑋𝑡−1

𝑛
𝑡=1  𝑔(𝑡,𝑡∗) − 

∑ 𝑋𝑗𝑋𝑗−1
𝑛
𝑗=1

∑ 𝑋𝑗−1
2𝑛

𝑗=1

∑ 𝑋𝑡−1
2𝑛

𝑡=1  𝑔(𝑡,𝑡∗) 

∑ 𝑋𝑡−1
2𝑛

𝑡=1  𝑔2(𝑡,𝑡∗) − 
(∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 )

2

∑ 𝑋𝑡−1
2𝑛

𝑡=1

 .  (6) 
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On plugging (5) to (6) into (4), we obtain 

𝑆(𝑏̂0, 𝑏̂1, 𝑡̂0) = 𝑚𝑖𝑛𝑡∗
 [∑ (𝑋𝑡 −

∑ 𝑋𝑗𝑋𝑗−1
𝑛
𝑗=1

∑ 𝑋𝑗−1
2𝑛

𝑗=1

 𝑋𝑡−1)
2

− 𝑛
𝑡=1   

 𝑏̂1
2(𝑡∗) ∑ 𝑋𝑡−1

2𝑛
𝑡=1 (𝑔(𝑡, 𝑡∗) −

∑ 𝑔(𝑗,𝑡∗)𝑋𝑗−1
2𝑛

𝑗=1

∑ 𝑋𝑗−1
2𝑛

𝑗=1

)
2

].  (7) 

Since the first term in (7) does not depend on 𝑡∗, a combination of (4) 

– (7) results in 

𝑡̂0 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑡∗
 

(∑ 𝑋𝑡𝑋𝑡−1
𝑛
𝑡=1  𝑔(𝑡,𝑡∗)−

∑ 𝑋𝑗𝑋𝑗−1
𝑛
𝑗=1

∑ 𝑋𝑗−1
2𝑛

𝑗=1

∑ 𝑋𝑡−1
2𝑛

𝑡=1  𝑔(𝑡,𝑡∗))

2

∑ 𝑋𝑡−1
2𝑛

𝑡=1  𝑔2(𝑡,𝑡∗) − 
(∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 )

2

∑ 𝑋𝑡−1
2𝑛

𝑡=1

 .  (8) 

For the theoretical studies of 𝑡̂0 below, it is convenient to make use of 

the model equation (1) and rewrite (8), after a multiplication with 1/𝑛, as 

𝑡̂0 = arg max
 𝑡∗

 

 

[𝛽1 (
1

𝑛
∑ 𝑔(𝑡,𝑡0)𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 − 

1
𝑛

∑ 𝑔(𝑗,𝑡0)𝑋𝑗−1
2𝑛

𝑗=1  
1
𝑛 ∑ 𝑔(𝑗,𝑡∗)𝑋𝑗−1

2𝑛
𝑗=1  

1
𝑛

∑ 𝑋𝑗−1
2𝑛

𝑗=1

)+

1

𝑛
 ∑ 𝑋𝑡−1

2𝑛
𝑡=1  𝑔2(𝑡,𝑡∗) − 

(
1
𝑛 ∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 )

2

1
𝑛

 ∑ 𝑋𝑡−1
2𝑛

𝑡=1

  

 

+ 
1

𝑛
∑ 𝑔(𝑡,𝑡∗) 𝑒𝑡 𝑋𝑡−1

𝑛
𝑡=1 − 

1
𝑛

∑ 𝑒𝑗 𝑋𝑗−1
𝑛
𝑗=1  

1
𝑛

 ∑ 𝑔(𝑗,𝑡∗)𝑋𝑗−1
2𝑛

𝑗=1  

1
𝑛

∑ 𝑋𝑗−1
2𝑛

𝑗=1

]

2

1

𝑛
 ∑ 𝑋𝑡−1

2𝑛
𝑡=1  𝑔2(𝑡,𝑡∗) − 

(
1
𝑛

 ∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1
2𝑛

𝑡=1 )
2

1
𝑛 

∑ 𝑋𝑡−1
2𝑛

𝑡=1

.  (9) 

The main result showed that 𝑡̂0/𝑛 is a consistent estimator for 𝜏0, 

where 𝑡0 = ⌊𝑛𝜏0⌋, with 0 < 𝜏0 < 1, i.e. 𝑡̂0/𝑛 →𝑃  𝜏0 (𝑛 → ∞). 

2. Assumptions and the main result 

For the asymptotic results below, we assume that the gradual change 

function 𝑔(∙, 𝑡∗) satisfies the following assumptions: 

(A.1) For every 𝑡∗ = 0,1, … , 𝑛, the function 𝑔(∙, 𝑡∗) is of the form 

𝑔(𝑡, 𝑡∗) = 𝑔0 (
𝑡 − 𝑡∗

𝑛
) , 𝑡 = 0,1, … , 𝑛, 

where 𝑔0: (−∞, 1] → ℝ is a real function satisfying. 
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(A.2) It holds that 

𝑔0(𝑥) = 0 (𝑥 ≤ 0) and 𝑔0(𝑥) ≠ 0 (0 < 𝑥 ≤ 1). 

(A.3) The function 𝑔0: (−∞, 1] → ℝ is bounded and Lipschitz 

continuous, i.e. 

|𝑔0(𝑥)| ≤ 𝐶 and |𝑔0(𝑥) − 𝑔0(𝑦)| ≤ 𝐷|𝑥 − 𝑦|, 𝑥, 𝑦 ≤ 1, 

with some positive constants 𝐶 and 𝐷. 

Remark 1. Function 𝑔0, for example, could be such that 𝑔0(𝑥) =
±𝑥+

𝜅, where 𝑥+ denotes the positive part of 𝑥 and 𝜅 ≥ 1 is a fixed constant. 

Theorem 1. Let Assumptions (A.1) to (A.3) be satisfied. Then under 

model (1) and the corresponding conditions formulated above, estimator 

𝑡̂0 from (8) and (9), respectively, is consistent, i.e. 

  
𝑡̂0

𝑛
 →𝑃  𝜏0 (𝑛 → ∞).  (10) 

3. A rough rate of consistency 

On checking the estimates in the proof of Theorem 1 more carefully, a 

rough rate of consistency for estimator 𝑡̂0 can be obtained as follows: 

Theorem 2. Under the conditions of Theorem 1, assume that the limit 

function 𝜏∗ ↦ 𝑓(𝜏∗) in (13) below is twice continuously differentiable in a 

small neighbourhood of 𝜏0, with 𝑓"(𝜏∗) > 𝐷 for some 𝐷 > 0. Then, with 

𝑡̂0 = ⌊𝑛𝜏̂0⌋, for every sequence {𝜀𝑛} with 𝜀𝑛 → 0, 

  |𝜏̂0 − 𝜏0| = 𝑂𝑃(|𝛽1|1/2) + 𝑜𝑃 (
1

|𝛽1|1/2 𝜀𝑛 𝑛1/4
) (𝑛 → ∞).  (11) 

Remark 2. If, for example, 𝛽1 = 𝑛−𝛼, with 0 < 𝛼 < 1/2, then 𝜀𝑛 

could be chosen as (log 𝑛)−𝑝, with 𝑝 > 0, therefore one would have the 

polynomial consistency rate 

 |𝜏̂0 − 𝜏0| = {
𝑂𝑃 (

1

𝑛𝛼/2) , if 0 < 𝛼 < 1/4,

𝑜𝑃 (
𝑙𝑜𝑔𝑝 𝑛

𝑛1/4−𝛼/2) , if 1/4 ≤ 𝛼 < 1/2,
 (𝑛 → ∞).  (12) 

4. Some remarks on the proof 

Here the authors only outline some key steps of the proof. For details refer 

to Hušková et al. (2019). 
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Proof of Theorem 1. To prove the convergence 𝑡̂0/𝑛 →𝑃  𝜏0  

(𝑛 → ∞), the idea is to show uniform convergence of the terms in (9) to a 

non-random limit function possessing a unique maximum at 𝜏∗ = 𝜏0, 

where 𝑡∗ = ⌊𝑛𝜏∗⌋. It turns out that the terms in the first line of (9) are the 

dominating ones and the terms in the second line are of a lower order. 

Step 1. Replace the random variables 𝑋𝑡−1
2  by their expectations 

𝐸𝑋𝑡−1
2 , for example, as 𝑛 → ∞, for every sequence {𝜀𝑛} with 𝜀𝑛 → 0, 

𝜀𝑛

√𝑛
 𝑚𝑎𝑥𝑡∗

 |∑ 𝑔(𝑡, 𝑡0)𝑔(𝑡, 𝑡∗)(𝑋𝑡−1
2 − 𝐸𝑋𝑡−1

2 )
𝑛

𝑡=1
| = 𝑜𝑃(1). 

Step 2. Show that the corresponding terms with expectations converge, 

for example, as 𝑛 → ∞, 

𝑚𝑎𝑥𝑡∗
|
1

𝑛
 ∑ 𝑔(𝑡, 𝑡0)𝑔(𝑡, 𝑡∗)𝐸𝑋𝑡−1

2
𝑛

𝑡=1
– 

𝜎2

1 − 𝛽0
2 ∫ 𝑔0(𝑥 − 𝜏0)𝑔0(𝑥 − 𝜏∗)𝑑𝑥

1

0

|  = 𝑂𝑃(|𝛽1|). 

  

Step 3. Estimate the negligible terms, for example, as 𝑛 → ∞, for every 

sequence {𝜀𝑛} with 𝜀𝑛 → 0, 

𝜀𝑛

√𝑛
 𝑚𝑎𝑥𝑡∗

 |∑ 𝑒𝑡  𝑋𝑡−1 𝑔(𝑡, 𝑡∗)
𝑛

𝑡=1
| = 𝑜𝑃(1). 

Step 4. Show convergence of the dominating term in (9), that is, as 

𝑛 → ∞, with 𝑡∗ = ⌊𝑛𝜏∗⌋, 

𝑓𝑛(𝜏∗) ≔

[
1

𝑛
∑ 𝑔(𝑡,𝑡0)𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 − 

1
𝑛

∑ 𝑔(𝑗,𝑡0)𝑋𝑗−1
2𝑛

𝑗=1  
1
𝑛 ∑ 𝑔(𝑗,𝑡∗)𝑋𝑗−1

2𝑛
𝑗=1  

1
𝑛

∑ 𝑋𝑗−1
2𝑛

𝑗=1

]

2

1

𝑛
 ∑ 𝑋𝑡−1

2𝑛
𝑡=1  𝑔2(𝑡,𝑡∗) − 

(
1
𝑛 ∑ 𝑔(𝑡,𝑡∗)𝑋𝑡−1

2𝑛
𝑡=1 )

2

1
𝑛 ∑ 𝑋𝑡−1

2𝑛
𝑡=1

 →𝑃  

 →𝑃 𝜎2

1−𝛽0
2  

[∫ 𝑔0(𝑥−𝜏0)𝑔0(𝑥−𝜏∗)𝑑𝑥
1

0 −∫ 𝑔0(𝑥−𝜏0)𝑑𝑥 ∫ 𝑔0(𝑥−𝜏∗)𝑑𝑥
1

0

1

0  ]
2

∫  𝑔0
2(𝑥−𝜏∗)𝑑𝑥−(∫ 𝑔0(𝑥−𝜏∗)𝑑𝑥

1

0
)

21

0

=: 𝑓(𝜏∗),  (13) 

uniformly in 𝜏∗𝜖[0,1 − 𝛿], i.e. 𝑚𝑎𝑥𝜏∗𝜖[0,1−𝛿] |𝑓𝑛(𝜏∗) − 𝑓(𝜏∗)| →𝑃 0 as 

𝑛 → ∞. 

Step 5. Show that the limit function 𝜏∗ ↦ 𝑓(𝜏∗) in (13) is continuous 

on [0,1 − 𝛿] and has a unique maximum at 𝜏∗ = 𝜏0. 

Step 6. The proof of (10) can then be completed by applying the 

following lemma from real analysis: 
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Lemma. Let 𝑓 be a continuous real function on compact set 𝐾 and 𝑥0 

be a unique maximizer of 𝑓, i.e. 𝑥0 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑥 𝑓(𝑥). Furthermore 

assume that for sequence {𝑓𝑛} of real functions on 𝐾, 

𝑙𝑖𝑚𝑛→∞ 𝑚𝑎𝑥𝑥∈𝐾 |𝑓𝑛(𝑥) − 𝑓(𝑥)| = 0, and let 𝑥𝑛 =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑥 𝑓𝑛(𝑥) be a 

maximizer of 𝑓𝑛 (not necessarily unique). Then 

𝑥̂𝑛 → 𝑥0 as 𝑛 → ∞. 

Proof of Theorem 2. With the notations in (13), we have in a close 

neighbourhood of 𝜏0, 

𝑓𝑛(𝜏̂0) − 𝑓(𝜏0) = 𝑚𝑎𝑥𝜏∗
𝑓𝑛(𝜏∗) − 𝑚𝑎𝑥𝜏∗

𝑓(𝜏∗) = 

[𝑓𝑛(𝜏̂0) − 𝑓(𝜏̂0)] + [𝑓(𝜏̂0) − 𝑓(𝜏0)] = 

[𝑓𝑛(𝜏̂0) − 𝑓(𝜏̂0)] + [𝑓′(𝜏0)(𝜏̂0 − 𝜏0) + 𝑓"(𝜏𝑛)
(𝜏̂0−𝜏0)2

2
], 

where 𝜏𝑛 is between 𝜏̂0 and 𝜏0. Since 𝑓′(𝜏0) = 0 and |𝑓"(𝜏𝑛)| ≥ 𝐷, for 

some 𝐷 > 0, this results in the estimate 

|𝜏̂0 − 𝜏0|2 ≤
2

𝐷
 [|𝑚𝑎𝑥𝜏∗

𝑓𝑛(𝜏∗) − 𝑚𝑎𝑥𝜏∗
𝑓(𝜏∗)| + 𝑚𝑎𝑥𝜏∗

|𝑓𝑛(𝜏∗) −

𝑓(𝜏∗)|] ≤
4

𝐷
 𝑚𝑎𝑥𝜏∗

|𝑓𝑛(𝜏∗) − 𝑓(𝜏∗)| . 

Now, on carefully checking the convergence rates obtained in the proof 

of Theorem 1, it is obvious that 

𝑚𝑎𝑥𝜏∗
|𝑓𝑛(𝜏∗) − 𝑓(𝜏∗)| = 𝑂𝑃(|𝛽1|) + 𝑜𝑃 (

1

 |𝛽1| 𝜀𝑛 √𝑛
), 

which completes the proof of (11). 

5. Concluding remarks 

It is very likely that, in addition to the consistency result in Theorem 1, the 

rough convergence rate statement of Theorem 2 can be improved. For 

instance, some rather technical investigations in Hušková et al. (2019) 

indicate that, under additional conditions on the smoothness of the change 

function 𝑔0, the change-point estimator 𝑡̂0 resp. 𝜏̂0 from Theorems 1 and 2 

has a normal limiting distribution after suitable normalization. 

Moreover, a small simulation study presented in Hušková et al. (2019), 

demonstrates that if the change does not occur too early or too late and if 

the change parameter 𝛽1 is not too small, then the suggested least squares 

estimator performs reasonably well in finite samples. 
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