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Abstract: Frequentists and Bayesians disagree about the soundness of performing calculations based, 
in an important part, on prior information. The disagreement goes back to a  basic philosophical 
disagreement about how to conceptualize the meaning of probability. As frequentists and Bayesians 
use the term differently, there is a basic philosophical incommensurability. However, this philosophical 
incommensurability need not imply an empirical incommensurability. It is possible for there to be, 
simultaneously, philosophical incommensurability and empirical commensurability. This possibility 
implies consequences that this article discusses. 
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1. Introduction

There is a long-standing argument between frequentists and Bayesians about whether 
it is valid or invalid to use prior information. The argument is foundational because 
Bayesian statistics feature prior information whereas frequentist statistics do not. 
Frequentist statistics are superior to Bayesian statistics because frequentists do not 
make assumptions about prior information that may not be true. However, Bayesian 
statistics are superior to frequentist statistics because it is possible to draw stronger 
conclusions. For example, frequentist statistics do not provide the probability that 
a hypothesis is true whereas Bayesian statistics – if one buys into the validity of prior 
probability distributions – do provide this, Or, in terms of intervals, a  frequentist 
confidence interval does not provide the probability that the population parameter 
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of interest is within the interval. However, a Bayesian credible interval does provide 
that probability, again if the researcher ‘buys into’ the validity of prior probability 
distributions. 

Hence, the debate between frequentists and Bayesians comes down, largely, to 
the issue of whether it is permissible to use prior information to draw conclusions. 
The debate can be summarized in the form of two pointed questions; one from 
a frequentist to a Bayesian and the other from a Bayesian to a frequentist. 
•	 Pointed question from a frequentist to a Bayesian: “How can you justify making 

assumptions about the prior distribution when you don’t know, or even have 
a good idea, about the nature of that prior distribution?”

•	 Pointed question from a Bayesian to a frequentist: “How can you justify not using 
all of the information that is available to you to draw the strongest conclusions 
possible?”
Both pointed questions lead to a  third question, “Is it justifiable to use prior 

information?” This is the present topic. 

2. What is probability?

Most frequentists consider probability to be a relative frequency or propensity (see 
Popper, 1983, for a philosophically-based review). For instance, if there are black 
and white balls in an urn, and one is randomly selecting balls, with replacement, 
then the relative frequency definition of probability implies that the probability 
of choosing a white ball is the frequency of white balls in the urn, divided by the 
total number of balls in the urn. To take another instance, imagine a coin-flipping 
machine. An aficionado of the propensity conception of probability would argue 
that the probability of heads depends on the propensity of the coin-machine system 
to produce heads. To say that the probability of heads is 0.50 is to say that it is 
a characteristic of the coin-machine system that it produces heads at that rate. 

In contrast, although there are objective Bayesian approaches to the notion of 
probability (see Gillies, 2000 for a review), most Bayesians consider probability to 
be a state of belief. Thus two people, who have different information, could rationally 
disagree about probabilities. The tension between probability as a relative frequency 
or propensity, versus probability as a state of belief, has existed for centuries (see 
Stigler, 1990, for a  review). In fact, some writers have dramatized the difference 
by using subscripts: probability1 and probability2 for frequentist versus Bayesian 
probability, respectively. 

Gillies (2000) performed an important service by pointing out the many 
philosophical dilemmas in which Bayesians can find themselves. The harder 
dilemmas are associated with objective Bayesian approaches, though even subjective 
Bayesian approaches are not without problems (also see Trafimow, 2006). There is no 
point in reiterating the dilemmas, but it seems worthwhile to summarize. Objective 
Bayesian approaches tend to be problematic because (a) it is easy to set up scenarios 
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where Bayesian probabilities give different answers than probabilities based on 
relative frequencies or propensities, (b) different objective Bayesian methods result 
in different answers, or (c) it often is not clear how to be objective in the first place. 
Subjective Bayesian probabilities suffer from the problem that one has to admit that 
different people can assign different probabilities with both of them being ‘rational’ 
or ‘right’. Frequentists naturally find this sort of admission uncomfortable at best, 
and downright nonsensical at worst. 

Thus we have reached an impasse. One either accepts that the definition of 
probability allows for the assignment of different values by different people or one 
does not accept it. There is a philosophical incommensurability between frequentists 
and Bayesians due to their different probability conceptions; they are not speaking 
the same language. Unsurprisingly, this incommensurability complicates the process 
of discussing the two approaches. 

Is there a way out of the impasse that allows a reasonable discussion to ensue? 

3. Philosophically trivial Bayes

Suppose for a while, that we accept a frequentist conception of probability as being 
most philosophically palatable.1 As the previous section indicates, this seems to 
leave no room for Bayesian thinking, but there are two reasons why this conclusion 
is premature. The first reason is being considered now, and the second, and more 
important one, is reserved for later. 

The first reason is philosophically trivial and can be exemplified with very 
simple Bayesian cases. The underlying premise is that Bayes theorem is a proper 
theorem in the probability calculus, even for frequentists, provided that the 
researcher has frequentist probabilities to instantiate into the equation. There are 
many undergraduate homework assignments where the textbook or teacher provides 
the relevant probabilities for undergraduates to instantiate into Bayes theorem, 
and the answers are objectively correct. This level of thinking has been used in 
research too, for instance, when there is high quality epidemiological data on which 
frequentist probabilities can be based. Trafimow and Trafimow (2016) provided such 
an example in the case of slipped disks (herniated nucleus pulposus). The available 
orthopedic literature included epidemiological work that provided the base rate for 
slipped disks (0.03 or less according to Andersson, 1991; Borenstein, Wiesel, and 
Boden, 1995; Frymoyer, 1988; Lawrence et al., 2008), the conditional probability 
of a positive MRI result given that the person has a slipped disk (0.804 according to 
Boos et al., 1995), and the probability of a positive MRI result given that the person 

1 According to the so-called Bayesian “principal principle”, even a Bayesian should use relative 
frequency information to assign probabilities if that information is available. This could be considered 
a tacit admission that probabilities assigned on the basis of relative frequency information are superior 
to probabilities assigned based on degrees of belief. 
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does not have a slipped disk (0.30 according to Jensen et al., 1994; Marshall et al., 
1977). Instantiating these values into Bayes theorem results in the following: 

𝑃𝑃(𝑆𝑆|+) = 𝑃𝑃(𝑆𝑆)𝑃𝑃(+|𝑆𝑆)
𝑃𝑃(𝑆𝑆)𝑃𝑃(+|𝑆𝑆)+𝑃𝑃(+|¬𝑆𝑆)[1−𝑃𝑃(𝑆𝑆)] =

(0.03)(0.30)
(0.03)(0.30)+(0.804)[1−(0.03)] =0.0114; where 

where
•	 P(S∣+) is the probability of a slipped disk given a positive MRI result,
•	 P(S) is the base rate probability of a slipped disk (0.03),
•	 P(+∣S) is the probability of a positive MRI given a slipped disk (0.30), and
•	 P(+∣¬S) is the probability of a positive MRI given not a slipped disk (0.804).

Thus, at the philosophically trivial level, where there is good relative frequency 
information on which to base probability designations, we see that Bayes theorem 
can be used in a way that both frequentists and Bayesians would accept. Naturally, 
this avoids the nontrivial issue of what to do when quality relative frequency or 
propensity information is not available. 

4. Philosophically nontrivial Bayes

Frequentists and Bayesians suffer an incommensurability with respect to 
basic philosophy; their probability meanings do not match, and thus they are 
speaking different languages. However, the Philosophically Trivial Bayes section 
nevertheless shows that a basic philosophical incommensurability need not lead to 
an empirical incommensurability; as the slipped disk example shows, there exist 
empirical cases where frequentists and Bayesians would agree. That philosophical 
incommensurability does not necessarily entail empirical incommensurability 
suggests an important possibility. Perhaps Bayesian approaches can be useful to 
frequentists, and perhaps not, depending on the quality of the prior information that 
the researcher happens to have. Hence we have arrived at the nontrivial Bayesian 
issue about how to think when there is a  lack of frequentist prior probability 
information, i.e. from a frequentist point of view, the prior information is of lesser 
quality than in the slipped disk example. 

Let us reconsider the slipped disk example, but this time supposing a  lack of 
relevant epidemiological data, so there is no way to have a frequentist estimate of 
the base rate probability of slipped disks. What value does one instantiate into Bayes 
theorem? Laplace’s Principle of Indifference could be argued to support that the 
researcher should use a base rate probability of 0.50. Instantiating that value into 
Bayes theorem results in a posterior value, for the probability of a slipped disk given 
a positive MRI result, namely 0.728. This is very different than the value of 0.0114 
and dramatizes how easily a Bayesian can go wrong from a frequentist perspective. 
Undoubtedly, there are more sophisticated Bayesian approaches. For example, an 
alternative way to use Laplace’s Principle of Indifference would be to assume a prior 
uniform distribution, rather than using a single number, or a non-Laplacian Bayesian 
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might use some other distribution (normal, beta, gamma, Cauchy, etc.). These more 
sophisticated approaches might result in numbers that are less ‘off’, but there would 
remain a substantial discrepancy between these hypothetical results and the published 
ones. As there are also many possible ways to approach the issue of which prior 
distribution to use, and different ways to choose parameters to use even if there were 
agreement about the prior distribution itself; Bayesians can disagree with each other, 
and do disagree with each other, about which prior distributions and parameters to 
use for different problems. This is not the only issue, as empirically based numbers 
were available for the true and false positive rates pertaining to slipped disks and 
MRIs, but there is no guarantee that these will be generally available. 

The contrast between using Bayes when there are empirically-based (or 
frequency-based) values to instantiate into the theorem, versus when there is a lack 
of such values, suggests four extreme but illustrative categories of possibilities. 

4.1. Four extreme possibilities

The four extreme possibilities are as follows:
1. There is high-quality prior probability information and low-quality posterior 

probability information.
2. There is low-quality prior probability information and high-quality posterior 

probability information.
3. There is high-quality prior and posterior probability information.
4. There is low-quality prior and posterior probability information. 
Let us consider the implications of each. When there is high-quality prior 

probability information and low-quality posterior information, it makes sense to be 
an empirical Bayesian, even if one is a philosophical frequentist. This is because the 
empirical Bayesian will obtain a more accurate frequentist posterior probability than 
the empirical frequentist who eschews prior probability information. 

Let us consider the example of white and black balls in an urn, under sampling 
with replacement. Imagine that there are two phases to the study. In Phase I, 1,000,000 
balls are randomly sampled whereas only 10 balls are randomly sampled in Phase II. 
As there is random sampling in both phases, the obvious thing to do is consider 
the total sample to be 1,000,000 + 10 = 1,000,010 cases. The estimated probability 
of choosing a  white ball would be the frequency of white balls sampled across 
the two phases, divided by 1,000,010. However, it is illustrative not to combine 
the two samples and see where it leads. Not combining the two samples results in 
separate, and almost certainly different, Phase I and Phase II probabilities. As the 
Phase I probability is based on a much larger sample size than the Phase II probability, 
it is obvious that the Phase I probability should dominate the final estimate. In this 
example, Bayesians and frequentists would agree that it would be a blatant mistake 
to ignore the Phase I probability. 
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Reversing the Phase I  and Phase II sample sizes dramatically changes the 
conclusion in the previous paragraph. In this case, the Phase I probability could be 
dropped with very little harm, and it is obvious that the Phase II probability should 
dominate. 

Cases three and four are relatively uninteresting, therefore they can be addressed 
quickly. When all the information is of high-quality, it does not matter what the 
researcher will do, as the probability estimate obtained will be good regardless of 
whether it is based on the Phase I probability, the Phase II probability, or both. When 
there is only low-quality information, the obtained probability estimate likely will 
be poor, regardless of whether it is based on the Phase I probability, the Phase II 
probability, or both. 

4.2. Increasing the realism of the example

The previous example is unrealistic because it ignores the fact that there often is 
a qualitative difference between the nature of the prior and posterior information. 
The lack of realism was useful because it dramatized extreme conditions where 
frequentists and Bayesians would agree. Let us increase the realism of the example 
by introducing a qualitative contrast remaining with the black and white balls in an 
urn, but this time changing the nature of the Phase I information. Now, suppose that 
in Phase I there is no sampling of balls from the urn, instead there is a pronouncement 
that the person who placed the balls in the urn likes white balls better than black 
balls, and consequently may have placed more white balls than black balls in the urn. 
Obviously, there is no guarantee that the person placed more balls of the liked than 
disliked colour in the urn, although it is somewhat likely. 

What can be done now? It might depend on the nature of the Phase II information. 
In the case where there are 1,000,000 random draws, the obvious solution is to ignore 
the Phase I  information and use only the posterior probability information. This 
would be what a frequentist would do anyway. A Bayesian might go in this direction 
too, on the grounds that with such a large sample size, posterior information would 
swamp prior information, unless one sets the prior probability of drawing a white 
ball at zero or one. 

Let us suppose that there were only ten random draws in Phase II. In that 
case, the Phase II probability, used alone, is likely to be a poor estimate. Can the 
estimate be improved by using the Phase I information? Here is where frequentists 
and Bayesians would likely have a serious disagreement. A frequentist would insist 
on only using the Phase II probability, with an admission that it is likely to be an 
inaccurate estimate. A Bayesian would say that it is silly to settle for that, and would 
be comfortable using a prior probability distribution to improve the estimate. Other 
Bayesians might disagree about which prior probability distribution to use or where 
to set the parameters of the prior probability distribution, but they would at least 
agree that there ought to be a prior probability distribution. For example, a Bayesian 
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might suggest that as a  beta distribution is conjugate to a  binomial distribution, 
the researcher might commence with a prior beta distribution and then use the ten 
random draws to update. 

5.	Revisiting the distinction between philosophical and empirical 
incompatibility

We have seen that frequentists and Bayesians have different concepts of what 
probability means, thereby resulting in a basic philosophical incommensurability. 
However, philosophical incommensurability need not imply empirical incom-
mensurability. The slipped disk example provided a  philosophically trivial case 
where frequentists and Bayesians would obtain the same posterior probability. In 
addition, when Phase I and Phase II of the urn example are based on random draws, 
one can see again that there is empirical commensurability between frequentists 
and Bayesians, despite the philosophical incommensurability. In contrast, when 
Phase I  and Phase II information were qualitatively different, we finally see that 
there is empirical incompatibility between frequentists and Bayesians. When the 
Phase II sample size is not large, it seems debatable whether or not to use Phase 
I information. To a frequentist, the qualitative difference between Phase I and Phase 
II constitutes an apples-versus-oranges problem, and the two cannot be combined. 
To a Bayesian, it is a fruit problem, with apples and oranges counting as fruit, and so 
it makes sense to combine them. We are finally at the crux of the empirical difficulty. 

5.1. Laplace’s Demon

It is now time to invoke Laplace’s Demon, who is omniscient and always truthful, to 
help clarify this thinking. Let us consider three urn scenarios, but this time involving 
the Demon who knows the frequencies of black and white balls in the urn. 
•	 Scenario 1. A  researcher suggests to the Demon a particular prior probability 

distribution, and the parameters of that distribution too. The researcher then 
asks the Demon whether the resulting probability estimate is more accurate 
instantiating those assumptions into Bayes theorem, or whether the probability 
estimate is more accurate only using the Phase II information. The Demon 
replies that the estimate is more accurate using only the Phase II information. 
In this scenario, it would be best to be a frequentist and use only the Phase II 
information. 

•	 Scenario 2. This scenario is similar to Scenario 1, but with one exception. The 
Demon informs the researcher that the Bayesian estimate, including both the 
Phase I and Phase II information, is superior to the frequentist estimate, using 
only the Phase II information. In this scenario, the Bayesian prevails over the 
frequentist. 
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•	 Scenario 3. This scenario is similar to Scenario 2, but with one exception. 
That is, in addition to favouring the Bayesian estimate as more accurate than 
the frequentist estimate, the Demon also explains that the frequentist definition 
of probability is correct, and the Bayesian definition of probability is wrong. 
Thus the Demon elaborates: “I know the proportion of white balls in the urn, 
and that is the criterion probability I am using to determine whether combining 
Phase I and Phase II information provides a better or worse estimate than using 
Phase II information alone. Note that I am using a frequentist probability as the 
criterion, thereby demonstrating, in my omniscience, that the frequentists are 
philosophically correct in their conception of probability.” 
Scenario 3 is extremely interesting. The Demon is, in essence, telling us that 

Bayesians are philosophically inferior, but that the frequentists are empirically 
inferior with respect to the case at hand. Does one favour philosophical superiority 
over empirical superiority, or empirical superiority over philosophical superiority? 

The answer here is to keep them separate, which was the reason for introducing 
the issue via the three scenarios, i.e. it is perfectly consistent to simultaneously hold 
that (a) the frequentists are philosophically correct and (b) using the philosophically 
incorrect Bayesian approach nevertheless results in a  better probability estimate 
even by frequentist standards. An elegant characteristic of this approach is that 
it recognizes philosophical incommensurability while simultaneously asserting 
that it does not force empirical incommensurability. In turn, the lack of empirical 
incommensurability leaves it open that researchers might, at times, be better-off 
using the philosophically wrong approach. The philosophically wrong approach 
sometimes leads to a better empirical result, and that is that! 

5.2. The judgment call

With philosophical and empirical superiority distinguished, what happens when the 
Demon is no longer available for questioning? Without the Demon it is necessary 
to make judgment calls, and the sciences would be better off admitting to making 
judgment calls, without dogmatic assertions that there is only one right way to go. 
In essence, the judgment calls come down to the issue of the quality of the Phase I and 
Phase II information, and because the Bayesian posterior probability is influenced by 
what prior probability distribution is assumed, and what parameters are assumed, the 
issue might not be frequentist versus Bayesian, but rather frequentist versus Bayesian1 
versus Bayesian2 versus Bayesian3 … versus BayesianN.2 In essence, if the quality of 
the Phase I information is so low, relative to the quality of the Phase II information, 
that using it decreases the accuracy of the empirical estimate, then it is better to be 
an empirical frequentist than an empirical Bayesian. However, if the quality of the 

2 There can be multiple frequentist approaches too with respect to assumptions pertaining to dif-
ferent distributions. 
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Phase I information is not so low, so that using it in conjunction with the Phase II 
information increases the accuracy of the estimate, then it makes more sense to be 
an empirical Bayesian than an empirical frequentist. Once again, it is possible to be 
an empirical Bayesian even while remaining a philosophical frequentist. Hence, at 
the empirical level, it is a judgment call whether to be an empirical frequentist or an 
empirical Bayesian, and, within the Bayesian sphere, it is a judgment call exactly as 
to what kind of empirical Bayesian to be. 

However, the conclusion that whether to be an empirical frequentist or an 
empirical Bayesian, with respect to any particular case at hand, is a judgment call, 
does not force one to base the decision on a coin toss or one’s affective predilections. 
Here is a place where mathematical or computer simulations can help to play out 
the consequences of various possibilities. Suppose that simulations, under all 
possibilities that the researcher considers at least mildly realistic, favour Bayes 
theorem as resulting in a more accurate estimate than the frequentist computation. 
In that case, it is not difficult to conclude that a  Bayesian approach would be 
empirically beneficial, although there would remain the issue of which Bayesian 
approach to use. Naturally, simulations might address the issue of which Bayesian 
approach to use, as well as whether to be Bayesian at all with respect to the case 
at hand. In contrast, simulations might indicate that it is unlikely that Bayesian 
approaches will increase the accuracy of the estimate for the case at hand, which 
would be a reason for not being an empirical Bayesian. Otherwise, there might be 
reasons to fear being misled by assumptions about prior distributions, even in cases 
where there also are reasons to suspect that prior distributions might be helpful. In 
such relatively ambiguous cases, and depending on the particular research contexts, 
intelligent and well-meaning researchers could disagree about whether to maximize 
the expected accuracy which might be improved with a  Bayesian approach, or 
whether to minimize the maximum possible inaccuracy, in which case a frequentist 
approach might be preferred.

To conclude this section, it sometimes is not possible to completely eliminate 
judgment calls at the empirical level because the researcher might not have sufficient 
information to make an unambiguous judgment about how likely a  Bayesian 
estimate, or competing Bayesian estimates, are to seriously mislead the researcher. 
Different research contexts might call for maximizing expected accuracy, minimizing 
maximum inaccuracy, or yet other strategies. It would be desirable for scientists 
and philosophers to simply admit empirical ambiguity and make case-by-case 
judgments about what is empirically appropriate, and grant researchers the privilege 
(and also duty) of providing arguments to support why their judgment calls went 
in one direction or another. It is also possible to make probability estimates using 
both perspectives, or even including multiple Bayesian perspectives along with 
a frequentist perspective, so the reader can gain an idea of how different judgment 
calls lead to different or similar estimates. 
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6.	 An argument for Bayesian philosophical superiority

Let us consider again Scenario 3, where the Demon used its omniscient knowledge of 
the relative frequency of white balls to total balls in the urn to arrive at a frequentist 
criterion probability. That this was the obviously correct course for the Demon to 
take, thus far, supports frequentist philosophical superiority. Yet, there is a potential 
counterargument that can be generated, still assuming that the Demon is correct to use 
its omniscient relative frequency knowledge to set the criterion probability. 

To approach the counterargument, consider the historical context of probability, 
as documented by Stigler (1990). People have often used probability to indicate 
that particular events might come about, even in the absence of relative frequency 
information. It is not difficult to imagine a person living in England during 1587 
saying something like, “It is probable that there will be a war with Spain next year.”3 
The person would not have evaluated relative frequencies and likely would not 
even have known about the concept of relative frequencies, but would have been 
indicating a  state of belief based on knowledge of the various tensions between 
England and Spain at that time. Such knowledge might include assumptions about 
Phillip II’s desire to add England to his empire, the provocative effect of English 
privateering, impatience at Elizabeth I’s political games, and others. The lack of 
relative frequency knowledge need not prevent the person from making a shrewd 
estimate of a likely war. This example highlights that probability is best considered 
to be a state of belief. 

Where does relative frequency apply? A Bayesian could argue that when quality 
frequency information is available, it is rational to base one’s belief upon it. Thus, 
a Bayesian could agree that the Demon’s knowledge of the relative frequency of 
white balls in the urn provides the best basis for a  criterion probability, while at 
the same time insisting that the underlying reason for caring about the relative 
frequency information is the desire to have the most rational state of belief possible. 
From this perspective, it is obvious that relative frequency information, if available, 
should be used, but this is a special case of the more basic, and more general, point 
that the crucial question to be asked is, “What should one believe?” Having asked 
that question, Bayes theorem, with subjective priors, provides a  clear answer. In 
fact it is even possible to generate an argument that, in the absence of relative 
frequency information in Phase I and Phase II, Bayes theorem could still be used 
to suggest the implications of subjective beliefs pertaining to both phases. In any 
event, the Demon’s preference for relative frequency information does not indicate 
the philosophical superiority of the frequentist probability concept, only that the 
frequentist probability concept is a  particularly precise instantiation of the more 
general Bayesian probability. Thus, a Bayesian accusation could be that frequentists 
confuse precision of information with philosophical superiority. That the relative 

3 Spain attempted an invasion of England in 1588 that was repulsed by the English navy. 
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frequency information is precise, renders it preferable to less precise information 
in those cases where it is possible to instantiate relative frequency information into 
Bayes theorem. Yet the bottom-line philosophical concept of a probability as a state 
of belief still holds. 

6.1.	Philosophical and empirical superiority and the rationality problem

It was shown earlier that under an assumption of frequentist philosophical superiority, 
it is nevertheless possible to have particular cases of Bayesian empirical superiority. 
By invoking Laplace’s omniscient Demon, it was possible to know, in particular 
cases, that a frequentist or Bayesian estimate was closer to the relative frequency of 
white balls in the urn. It would be convenient now to reverse matters and assume 
Bayesian philosophical superiority and use the Demon to nevertheless find cases of 
frequentist empirical superiority, however this leads to a problem. 

By insisting on the Bayesian concept that a probability is a state of belief, there 
is no longer an absolute standard that the Demon can use to judge frequentist or 
Bayesian empirical estimates. Although the Demon can assert its knowledge 
of the proportion of white balls in the urn, the Demon would also have to admit 
that different people, with different knowledge or lack thereof, would be justified 
in asserting different values. There is a vagueness here that can be dramatized by 
considering that (a) from a frequentist point of view, the relative frequency of white 
balls in the urn is the probability and (b) from a Bayesian perspective the relative 
frequency of white balls in the urn merely engenders one’s belief state with more 
specificity. A  frequentist would insist that the Demon’s value for the criterion 
probability is de facto correct whereas it is not clear what a Bayesian would insist. 
One Bayesian might insist that the Demon’s value is merely precise, but it is not 
correct in any absolute sense because there is no absolute standard of correctness, 
however this argument leads in an uneasy direction. For example, it opens the door 
for a frequentist to sarcastically assert: “Well, if you are going to insist that there is 
no absolute standard of correctness, why use Bayes theorem at all? Why not just 
have people move directly to their belief states regarding posterior probabilities?” 
The Bayesian might answer by bringing up standards of rationality, but these are 
difficult to defend. Even the assertion that there is something good about having the 
Demon’s precise relative frequency information might be difficult to justify when 
there is a lack of absolute standards, as a frequentist could query how the Bayesian 
defines that which is good in a subjective context. 

Another Bayesian might argue that the Demon’s value is correct, and so there is 
an objective standard after all, but this seems tantamount to accepting the frequentist 
definition of probability and to go against a potential Bayesian assertion that the 
frequentists are confusing specificity with philosophical correctness. 

Matters become worse when considering the scenario involving potential war 
between England and Spain, where it is not clear that probability even has a meaning 
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in the context of absolute knowledge. Consider that in 1587, the omniscient Demon 
knows there will be war in 1588, and so the Demon’s prior probability assignment 
of war would be 1.00. Yet, most Bayesians consider probability assignments of 1 or 
0 to be irrational because such an assignment of prior probabilities leaves no room 
for modification in light of posterior information.4 For example, it is easy to imagine 
a person insisting that the prior probability of the existence of God equals 1.00, and 
thereby declaring that there is no need to consider any other information. A Bayesian 
would insist that such a prior probability assignment is irrational because it allows no 
room to change one’s mind, but such an insistence denies the Demon’s probability 
assignment of 1.00 in 1587 to war in 1588. 

6.2.	Straightforwardness and implications

The previous section clarifies that a Bayesian insistence, at the philosophical level, 
implies difficulties. The Bayesian probability concept is not straightforward and 
implies a necessity to bring in outside arguments about what it means to be rational. 
There is no intellectually honest way to play down the lack of straightforwardness. 
There are implications for possible philosophical avenues.

One avenue is to be a  philosophical frequentist while admitting that Bayes 
may be empirically superior on particular occasions. This was the tack taken in  
a previous section. Another possibility is to insist on being a philosophical Bayesian 
and take on the associated difficulties regarding the lack of objective standards 
and having to demarcate that which is rational from that which is irrational. This 
includes addressing squarely the issue of what justifies a  prior probability of 1 
or 0, or why there is no justification. Either argument is susceptible to rejoinders. 
If prior probabilities of 1 or 0 are deemed acceptable, then the Bayesian admits that  
there is no possibility of updating, and probability updating is usually considered  
the Bayesian glory, or if prior probabilities of 1 or 0 are not deemed acceptable,  
then it is not clear why not. Why might it be rational to have a prior probability of  
0.9999999999999999999999999999999 but not to have a prior probability of 1? 

A  further philosophical difficulty is that there are many more ways to be 
a Bayesian than to be a frequentist. Thus, disagreements among Bayesians are much 
more frequent than disagreements among frequentists. An argument against using  
a Bayesian approach is that commencing with a probability concept that leads to 
more disagreement is a bad idea when it is possible to commence with one that leads 
to less disagreement. A possible Bayesian rejoinder might be that such disagreement 

4 To see that this is true, consider Bayes theorem in its simplest form: 𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐴𝐴)𝑃𝑃(𝐵𝐵|𝐴𝐴)
𝑃𝑃(𝐵𝐵) .  If we 

instantiate 1.00 for P(A), we have the following: 𝑃𝑃(𝐴𝐴|𝐵𝐵) =
(1.00) 𝑃𝑃(𝐵𝐵|𝐴𝐴)

𝑃𝑃(𝐵𝐵)  =  1.00 , as P(B∣A) = P(B) 

in the special case where P(A) = 1.00. Or, if we use 0, we would conclude that P(A∣B) = 0. Either way, 
it is impossible to update the prior probability with posterior information. 
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is the price to be paid for having a more powerful probability conception and besides, 
disagreement can be interpreted as indicating dynamism. 

The issue of what to believe might be less fundamental than Bayesians admit. 
Consider that there was a  time prior to the evolution of humans, and without 
them, human beliefs were irrelevant. However, quantum probabilities and entropic 
probabilities nevertheless functioned,5 thereby suggesting that it is possible to parse 
probabilities from human beliefs. From this point of view, calibration of degrees of 
beliefs might remain important; but is distinguishable from probabilities that are ‘out 
there’, thereby indicating that conceptions of probability should not be subservient to 
concerns about belief calibration. However, if one is a determinist, a rejoinder might 
be that there were no probabilities in the absence of humans and their imperfect 
knowledge states and computational limitations. Thus, if one is a  determinist, it 
makes sense to be a  Bayesian because it is only imperfect human knowledge or 
processing capacity that contributes to uncertainty. Hence probabilities can only 
refer to resulting subjective beliefs, whereas, if one is an indeterminist, probability is 
separable from human knowledge, and so a Bayesian concept of belief is insufficient. 
Put another way, it would make sense for an indeterminist to maintain an ontological 
distinction between epistemic estimates–estimates of one’s state of knowledge – and 
probabilities. 

The remainder of this article will be agnostic to the issue of philosophical 
superiority of probability concepts because of the difficulty in handling issues 
regarding rationality and determinism. The following two sections concern sample 
size estimation and hypothesis testing, respectively. 

7.	Sample size estimation

In the slipped disk example, the goal was to estimate a conditional probability: What 
is the probability of a slipped disk given a positive MRI? In the urn example, the 
goal was to estimate a population proportion or unconditional probability: What is 
the proportion of white balls in the urn? Yet these are not the only possibilities. 
Researchers might be interested in estimating other parameters such as the 
population mean, standard deviation, shape, kurtosis, and others, but they might be 
also interested in estimating sample sizes needed to obtain satisfactory estimates of 
population parameters. 

Recently, a  procedure was developed for sample size estimation, termed the 
a priori procedure (APP). As the present subject is a philosophical discourse, APP 
equations are not presented, but Trafimow (2019a) provided a review, and Li et al. 
(2020) created user-friendly computer programs for making APP calculations. The 
APP researcher makes two specifications.

5 Baggott (2015) has provided quantum and entropic histories of the universe. 
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•	 Precision: How close do I want my sample statistics to be to their corresponding 
population parameters?

•	 Confidence: What probability do I  want to have of meeting the precision 
specification?
Given the specifications for precision and confidence, APP equations or computer 

programs can be used to find required sample sizes for meeting the specifications 
under a variety of assumptions. For example, if the distribution is assumed normal, 
and the researcher desires to have 95% confidence that the sample mean will be within 
one-tenth of a standard deviation of the population mean, at least 385 participants 
are required. Trafimow and Myüz (2019) showed that parameter estimates in five 
areas of psychology are quite imprecise; and Trafimow, Hyman, and Kostyk (2020) 
provided a similar demonstration in the marketing field. 

Just as it is possible to perform frequentist or Bayesian estimation with respect 
to population parameters, it also is possible to perform frequentist or Bayesian 
estimation with respect to the sample sizes needed to obtain good estimates of 
population parameters; but what constitutes good sample size estimates?

From the perspective of scientific conservatism, it is possible to argue that the 
largest estimate is the best one. That is, ceteris paribus, collecting a larger sample 
renders better parameter estimation than collecting a smaller sample. Alternatively, 
from the point of view that participants are expensive, it is possible to argue that the 
smallest estimate is the best one because it is most feasible. Therefore, it is possible 
to query whether frequentist or Bayesian procedures result in larger or smaller sizes 
of samples, and also whether it is good or bad to have larger or smaller samples. 

Wei et al. (Wei, Wang, Trafimow, and Talordphop, 2020) provided a  nice 
demonstration of the Bayesian possibilities. These researchers used mathematical 
and computer simulations to show that under good assumptions about prior 
probability distributions, the resulting Bayesian sample size designations are smaller 
than corresponding frequentist sample size designations. In essence, the availability 
of prior information confers an advantage to the researcher, thereby reducing the 
sample sizes necessary to reach the same levels of precision and confidence. Again, 
we can see that philosophical incommensurability need not engender empirical 
incommensurability. Obviously, as Wei et al. performed the simulations, they were 
able to employ user-defined parameters. In the practice of substantive science, these 
are unknown, and it is not clear, without data, whether a Bayesian or frequentist APP 
is better for particular substantive research projects. This may well depend on the 
idiosyncrasies of substantive research projects. As usual, within the Bayesian sphere, 
there are the issues of which prior distributions to use and how to set the parameters 
of those distributions. 

Before concluding this section, it is worth noting that there are alternative 
frequentist procedures as well as alternative Bayesian ones. Even frequentists might 
disagree with each other on whether the necessary sample size to meet precision 
and confidence specifications should be based on assuming normality, skew 
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normality, lognormality, uniformity, or others. As usual, however, there is more 
room for Bayesians to disagree with each other because they can disagree about 
prior distributions too. 

8.	Hypothesis testing

Undoubtedly, the most contentious aspect of the frequentist-Bayesian debate 
concerns hypothesis tests (e.g. Briggs, 2016; 2019; Cohen, 1994; 1997; Greenland, 
2017; Halsey, Curran-Everett, Vowler, and Drummond, 2015; Hubbard, 2016; 
McShane et al., 2018; Nickerson, 2000; Trafimow, 2003, 2019b; Trafimow and 
Marks, 2015; 2016; Wasserstein and Lazar, 2016; Valentine, Aloe, and Lau, 2015; 
Ziliak and McCloskey, 2016). Frequentists cannot calculate the probability of 
a  hypothesis. For a  frequentist, the probability of a  hypothesis is meaningless as 
the hypothesis is right or wrong, though the researcher might not know which. For 
a Bayesian, hypotheses have meaningful probabilities and it is sensible to perform 
Bayesian calculations to determine those probabilities. Hence, one can see again 
philosophical incommensurability at work. 

Even some Bayesians feel uncomfortable with probabilities of hypotheses, but 
Bayes factors can be used to index how much more likely the data are under one 
hypothesis than another. Let us consider all these issues.

8.1.	Dealing with hypotheses based on frequentist thinking

There are two main frequentist modes for dealing with hypotheses, and neither 
assumes that it is sensible to compute probabilities for a hypothesis. One method 
is to compute a p-value, based on a hypothesis, and conceptualize the p-value as 
indicating the incompatibility of the data with the hypothesis. The other method is 
to engage in error control, where the researcher sets a threshold level, and rejects or 
does not reject the hypothesis depending on whether the p-value is under threshold 
or not. The idea is that if one sets the threshold, say, at 5%, then the researcher will 
wrongly reject hypotheses at a 5% rate or less. Thus, ‘error control’ is achieved at the 
threshold level that the researcher sets. 

However, based on the distinction between estimation and hypothesis testing, 
both methods can be argued to be problematic. To see the distinction, consider 
that when the researcher is using a  sample statistic to estimate a  corresponding 
population parameter, or even to estimate sample sizes required to meet precision 
and confidence specifications, there is no need for all the researcher’s assumptions 
to be exactly correct. On the contrary, the expectation is that the researcher will not 
be exactly correct but might be close enough to correctness for the estimation to be 
useful. However, matters are different for hypothesis testing, as explained below.

To start, let us consider that there are two classes of entities necessary to engage 
in computations involving hypotheses. There is the hypothesis itself. Secondly, 
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however, there are additional assumptions. These can be distributional assumptions, 
the ubiquitous assumption of random selection from the population (Berk and 
Freedman, 2003), and many others. There are so many additional assumptions that 
Bradley and Brand (2016) and Trafimow (2019b) proposed taxonomies of these 
assumptions. One can use the term model to refer to the conjunction of the hypothesis 
and the additional assumptions. As it is tantamount to an impossibility that all model 
assumptions are exactly correct, it should be clear that the model is wrong. One 
might counter, however, that the model is no more ‘wrong’ in a hypothesis testing 
context than in an estimation context, so there is no reason to make such a big deal 
about model ‘wrongness’ in a hypothesis testing context. 

However, there are two problems with the counterargument. One problem is 
that in an estimation context, the model need not contain a  hypothesis, whereas  
it must contain a hypothesis in a hypothesis testing context. Thus, there necessarily 
is more to the model in a hypothesis testing context than in an estimation context, so 
there is more that can go wrong with the model in a hypothesis testing context than 
in an estimation context. There is also a second, and more important problem with 
the counterargument. Specifically, in an estimation context one assumes the model 
is wrong but hopes that it is sufficiently close to correct to render the model useful, 
but in a hypothesis testing context, there are only two possibilities: the hypothesis is 
correct or incorrect; there is no such thing as being close. Yet because the hypothesis 
is embedded in a known to be wrong model, it should be clear that whatever the 
status of the hypothesis, the model is wrong either way. 

To address the consequences of knowing that the model is wrong, whatever the 
status of the hypothesis, consider that something stated earlier – that p-values are based 
on hypotheses – is not true, but rather that p-values are based on models. A p-value 
does not index the incompatibility of the data with the hypothesis, instead a p-value 
indexes the incompatibility of the data with the model. Therefore, if a  researcher 
obtains an impressively low p-value, it is not clear whether the incompatibility is due 
to the hypothesis being wrong, one of the additional assumptions in the model being 
wrong, or due to multiple problems. The only sound conclusion that can be drawn is 
that the data are incompatible with the model. This is of very little value because the 
model is known to be wrong from the start. To ask a pointed and rhetorical question: 
“Why index evidence against a model that is already known to be wrong?”

Are matters improved by moving to an error control concept? Not only is the 
answer in the negative, but error control increases the problems. In the first place, 
again remembering that the p-value is based on the model rather than on just the 
hypothesis; the best that can be obtained is error control with respect to models, not 
with respect to hypotheses. However there is no point in error control at the model 
level because all models are known to be wrong. Therefore, if the p-value comes in 
under the threshold, and hence the researcher rejects the model, nothing is gained 
because the model is already known to be wrong. In contrast, if the p-value does 
not come in under the threshold, the researcher fails to reject the already known 
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wrong model, which is deleterious. Hence, the best outcome that can be obtained 
is no gain, the worst outcome that can be obtained is negative, and so the expected 
utility of error control with respect to models is negative. To ensure that there is no 
misunderstanding, it is worth reiterating that there is no sound way to perform error 
control at the level of hypotheses because hypotheses are embedded in known wrong 
models. 

Yet the negative expected utility of error control is even worse than explained 
in the previous paragraph, which becomes clear upon consideration of what is 
required to obtain p-values under the threshold. There are two factors: sample size 
and sample effect size. As the model is always wrong, one can practically guarantee 
a  statistically significant p-value, merely given a  sufficiently large sample size. 
However, it is possible to make a more interesting argument based on the fact that 
if a  researcher were to collect a  large number of moderately sized samples from 
a  population, the sample effect sizes would vary from sample to sample due to 
the nature of random sampling. As p-values are based, in part, on sample effect 
sizes, they too vary from sample to sample – the so-called dance of the p-values. As 
statistically significant findings – findings where the p-values are under threshold 
– are overwhelmingly more likely to be published than statistically insignificant 
findings, insisting on a threshold level sets the process of regression to the mean into 
motion. It is largely a matter of luck whether a particular researcher’s experiment 
results in a sufficiently large sample effect size for statistical significance, and so the 
scientific literatures contain many lucky findings, i.e. inflated sample effect sizes. 
Following replication attempts, getting lucky is not expected to be often replicated 
successfully, and thus sample effect sizes in replication studies tend to regress in the 
direction of the mean. This is not an esoteric mathematical point, either. The Open 
Science Foundation (2015) examined approximately 100 studies in top psychology 
journals and found that the average sample effect size in the replication cohort was 
less than half the average sample effect size in the original cohort. That error control 
leads to dramatically inflated effect sizes in scientific literatures adds importantly 
to negative expected utility (see Grice, 2017; Hyman, 2017; Kline, 2017; Locascio, 
2017a; 2017b; Marks, 2017 for further discussion). 

8.2.	 Dealing with hypotheses based on Bayesian thinking

That there is no sound way to use frequentist thinking to decide what hypotheses 
to reject or not reject may seem a compelling reason to go Bayesian. Furthermore, 
an advantage of Bayesian thinking, in the context of hypotheses, is that because 
hypotheses are assumed to have probabilities between zero and one, it is possible 
to integrate estimation and hypothesis testing in a  way that is impossible under 
frequentist thinking, in which the hypothesis is either correct or incorrect, and there 
is nothing to estimate; one can only be correct or incorrect. It is this dichotomy 
that is at the bottom of why frequentist thinking does not work in a  hypothesis 
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testing context. Yet a Bayesian could reasonably assume that although the model is 
wrong, it might be close enough to being correct that the estimated probability of 
the hypothesis is reasonably close to the true probability of the hypothesis. As stated 
earlier, a wrong model need not be fatal for estimation whereas it is always fatal for 
hypothesis testing. 

Still, some sobering considerations temper the optimism of the previous 
paragraph. The first consideration harks back to the issue of what probability is. 
Imagine asking Laplace’s omniscient Demon about the hypothesis that the difference 
in means equals zero. Would the Demon assign an intermediate number, such as 0.65, 
or would the Demon assign an extreme number, such as 0 or 1? It seems obvious that 
because the Demon is omniscient, it would assign 0 to indicate that the hypothesis 
is definitely wrong, or 1 to indicate that the hypothesis is definitely right. Moreover, 
suppose the Demon did come back with an answer of 0.65. How would we interpret 
that number? One interpretation is that 0.65 indicates the Demon’s uncertainty, but 
how can an omniscient Demon be uncertain? An alternative interpretation is that 
65% of hypotheses are correct, and so the Demon is interpreting the question as 
asking for the relative frequency of correct hypotheses, but such an interpretation 
is no help whatsoever in drawing a conclusion about the present hypothesis. A third 
interpretation is that 65% of the present researcher’s hypotheses are correct, but again, 
this is not useful for drawing conclusions about the present hypothesis. It is possible 
to invent yet more interpretations for an answer of 0.65, but these interpretations are 
not useful. Thus, the Demon’s answer of 0 or 1 contradicts the notion of Bayesian 
probability, and an intermediate answer is difficult to interpret. Either way, there are 
serious problems with going Bayesian. 

That is not all. Even from a computational perspective, it is not clear what to do. 
How does one assign a prior probability for the hypothesis? How does one assign 
a probability of the finding given that the hypothesis is not true? Regarding the latter, 
how does one sum up the probabilities of the findings given all possible hypotheses 
that are not the hypothesis under investigation? 

A Bayesian way out from under these difficulties is to focus on Bayes factors. 
The idea here is to compute a  Bayes factor that indexes the relative conditional 
probabilities of data given one hypothesis or a competing hypothesis. If the data are 
much more likely given Hypothesis 1 than given Hypothesis 2, then that is considered 
a strong reason for favouring Hypothesis 1 over Hypothesis 2. 

However, the previous paragraph is unfortunately a misstatement. The truth of the 
matter is that, just as we saw in the frequentist section with p-values, Bayes factors 
are based on models, not just on hypotheses. Thus, what Bayes factors index is not 
relative support for one hypothesis against another; but rather relative support for 
one model against another. This may seem like a too-subtle distinction but consider 
again that both models are wrong. To ask a pointed and rhetorical question: “What 
is gained by saying that the data are more likely given one wrong model than given 
another wrong model?”
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Worse yet, both models might be quite unimpressive. For example, suppose the 
probability of the data given Model 1 is 0.01 and the probability of the data given 
Model 2 is 0.001. The resulting Bayes factor would be 10, which is considered by most 
Bayesians to be a respectable value in favour of the hypothesis embedded in Model 1, 
despite the fact that both models perform badly when considered individually. 

The author could now admit painting himself into a  corner, as frequentist 
hypothesis testing and Bayesian hypothesis testing are unsound. What is left? The 
next subsection addresses that question.

8.3.	Returning to estimation as an initial stage in hypothesis testing

From the point of view of the statistician who insists on using inferential statistics 
for hypothesis testing, one remains with a terrible problem that both frequentist and 
Bayesian hypothesis testing are unsound. Fortunately, there is an alternative potential 
point of view that although hypothesis testing is important for scientists, the exercise 
cannot be carried out in the absence of the substantive researcher’s expert judgment. 
From this point of view, the previous century when statisticians have insisted on 
being able to perform hypothesis tests via automated procedures are weeds on the 
lawn of science. There should have been much more of a focus on estimation, and 
this is the direction future researchers should take. 

It is worth taking a brief detour invoking the Demon, but this time with respect to 
estimation. Suppose the Demon informed us that all our sample statistics, in all our 
studies, have absolutely nothing to do with corresponding population parameters. 
This would bring on the most dramatic crisis in the history of science and nobody 
would have confidence in our ability to use such data to test hypotheses. The 
detour renders salient the necessity of the tacit assumption that sample statistics are 
reasonable indicators of corresponding population parameters, as a prerequisite for 
hypothesis testing. 

For instance, suppose that a researcher hypothesizes, based on a theory, that the 
difference between two means should be 27.00. To be sure, this is a point prediction 
that is much more precise than is typical, at least in the social sciences, but let us 
continue anyhow. Suppose that the researcher obtains a difference of 35.83. Does this 
finding confirm or disconfirm the hypothesis? As research is performed today, the 
typical researcher would perform a significance test, and if the obtained difference of 
35.83 is statistically significantly different from the hypothesized value of 27.00, the 
conclusion would be that the data contradict the hypothesis. We have already seen 
this is problematic for multiple reasons, including that the low p-value could be due 
to model wrongness rather than hypothesis wrongness. 

An alternative approach would be to consider two stages, namely an estimation 
stage and a  hypothesis testing stage. In the estimation stage, the researcher or 
statistician would estimate whether the sample size used meets specified criteria for 
precision and confidence, and we have already seen that the APP, whether used in 
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a frequentist or Bayesian way, can aid the researcher in proceeding in this direction. 
If the sample size used is deemed sufficient to engender confidence that the sample 
difference in means is close to the population difference in means, the researcher can 
move on to the hypothesis testing stage. Obviously, the researcher would need to 
consider issues such as whether the model is ‘good enough for government work’.

In the hypothesis testing stage, there is increased subjectivity as there are 
questions that require impressive substantive expertise. A few of the many possible 
questions are bullet-listed below.
•	 What is the range of possible mean differences that could be considered consistent 

with the hypothesis, inconsistent with the hypothesis, or somewhere between?
•	 Are there alternative hypotheses that do a better, or worse, job of accounting for 

the obtained mean difference?
•	 What is the quality of the added (auxiliary) assumptions used to reduce the 

theory to an empirical hypothesis?
•	 What is the quality of the assumptions used to reduce the empirical hypothesis 

to a statistical hypothesis?
It is important not to exaggerate the difference between the estimation and 

hypothesis testing stages. Both the statistician and the substantive researcher have 
roles to play in both stages. Nevertheless, it should be clear that the substantive role 
is more pronounced in the hypothesis testing stage. 

9.	Conclusion

The subject of this paper is that philosophical incommensurability, that is, 
conflicting probability conceptions do not force empirical incommensurability. 
It is not contradictory for a  person to be a  frequentist at the philosophical level 
and nevertheless also be an empirical Bayesian for those cases where Bayes 
theorem is expected to improve estimation accuracy. It also is not contradictory for 
a philosophical Bayesian to insist on empirical frequentist probabilities when high 
quality relative frequency information is available. Thus, there is room for both 
frequentist and Bayesian estimation, regardless of whether the researcher wishes 
to estimate population parameters or sample sizes required to meet specifications 
for precision and confidence. In contrast, we have seen that neither frequentist 
nor Bayesian methods work well for hypothesis testing. This is because statistical 
hypotheses are always embedded in known wrong models. In an estimation context, 
that the model is wrong need not be fatal provided that it is good enough to provide 
a  reasonable estimate. Yet in a  hypothesis testing context, there is no such thing 
as ‘good enough’, there is only ‘right or wrong’. Consequently, there can be no 
automated hypothesis testing procedures that the statistician can perform soundly, 
in the absence of crucial input from the substantive expert. The substantive expert 
must dominate and the statistician, though useful, should be the assistant and not 
the master. Hypothesis testing is necessarily a much more substantive process than 
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is estimation, and a much more substantive process than statisticians have admitted 
over the last century. 

Lest the reader feel uncomfortable with the philosophical theme that higher 
level philosophical incommensurability does not force lower level empirical 
incommensurability, consider that a similar phenomenon occurs in other domains. 
For example, a foundational Kuhnian premise is that different scientific theories are 
incommensurable and therefore cannot be tested against each other as a Popperian 
might wish to do. For example, mass has a  different meaning for Newton and 
Einstein, they are speaking different languages, and so there is no way to perform 
a definitive test of the two theories. However, consistent with the present theme, 
incommensurability at the theoretical level does not imply incommensurability at 
the empirical level (Godfrey-Smith, 2003; Trafimow, 2020). Two researchers who 
disagree about how to conceptualize mass nevertheless can agree on a clock reading. 
If Newton and Einstein made different predictions about the clock reading, they 
could be tested against each other despite incommensurability at the theoretical 
level.6 

In conclusion, although frequentist and Bayesian probability conceptions are 
incommensurable – frequentists and Bayesians are not speaking the same language 
– philosophical incommensurability does not force empirical incommensurability. 
It is possible for a philosophical frequentist to be a practical Bayesian for particular 
cases where Bayesian estimation is likely to be superior to frequentist estimation. 
This is not naïve call for frequentists and Bayesians to get along, they should not 
get along at the philosophical level any more than scientists following Newton’s 
characterization of mass should get along with scientists in favour of Einstein’s 
characterization of mass. Yet frequentists and Bayesians can, and should, get 
along at the empirical level, just as scientists in theoretical opposition can agree on 
empirical clock readings. Hence, although there is no room in a single philosophical 
tent for both frequentists and Bayesians, the empirical tent is much larger, and does 
contain sufficient room. Empirical commensurability, even in the presence of higher 
level philosophical or theoretical incommensurability, entails consequences. 
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ZWOLENNICY CZĘSTOŚCI A ZWOLENNICY PODEJŚCIA 
BAYESOWSKIEGO. SPÓR O NIEWSPÓŁMIERNOŚĆ  
W ZNACZENIU FILOZOFICZNYM I EMPIRYCZNYM

Streszczenie: Zwolennicy częstości i podejścia bayesowskiego nie zgadzają się co do rzetelności wy-
konywania obliczeń opartych w istotnej części na wcześniejszych informacjach. Niezgoda powraca do 
podstawowego sporu filozoficznego dotyczącego tego, jak określać znaczenie prawdopodobieństwa. 
Ponieważ obydwie grupy naukowców używają tego terminu w inny sposób, powstaje kluczowa filo-
zoficzna niewspółmierność. Jednak w efekcie nie musi ona oznaczać empirycznej niewspółmierności. 
Możliwe jest, że jednocześnie może istnieć niewspółmierność filozoficzna z empiryczną współmierno-
ścią. W artykule omówiono konsekwencje przedstawionej sytuacji.

Słowa kluczowe: niewspółmierność, współmierność, procedura a priori, estymacja, testowanie hipo-
tez, wskaźniki bayesowskie.
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