
e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 7–60, DOI 10.37190/e-Inf200101

What Support do Systematic Reviews Provide for
Evidence-informed Teaching about Software

Engineering Practice?

David Budgen∗, Pearl Brereton∗∗, Nikki Williams∗∗∗, Sarah Drummond∗∗∗∗

∗Department of Computer Science, Durham University
∗∗School of Computing & Maths, Keele University

∗∗∗Centre for Electronic Warfare, Information & Cyber, Cranfield University
∗∗∗∗Department of Computer Science, Durham University

david.budgen@durham.ac.uk, o.p.brereton@keele.ac.uk, nikki.williams@cranfield.ac.uk,

Abstract
Background: The adoption of the evidence-based research paradigm by software engineering
researchers has created a growing knowledge base provided by the outcomes from systematic
reviews.
Aim: We set out to identify and catalogue a sample of the knowledge provided by systematic
reviews, to determine what support they can provide for an evidence-informed approach to teaching
about software engineering practice.
Method: We undertook a tertiary study (a mapping study of systematic reviews) covering the
period to the end of 2015. We identified and catalogued those reviews that had findings or made
recommendations that were considered relevant to teaching about industry practice.
Results: We examined a sample of 276 systematic reviews, selecting 49 for which we could clearly
identify practice-oriented findings and recommendations that were supported by the data analysis
provided in the review. We have classified these against established software engineering education
knowledge categories and discuss the extent and forms of knowledge provided for each category.
Conclusion: While systematic reviews can provide knowledge that can inform teaching about
practice, relatively few systematic reviews present the outcomes in a form suitable for this purpose.
Using a suitable format for presenting a summary of outcomes could improve this. Additionally,
the increasing number of published systematic reviews suggests that there is a need for greater
coordination regarding the cataloguing of their findings and recommendations.

Keywords: Systematic review, education, provenance

1. Introduction

Over the half-century since software engineering
became recognised as a distinct sub-discipline of
computing [1], a degree of consensus has emerged
about what it encompasses [2], as well as about
the skills and knowledge that are needed by soft-
ware engineers. For the latter, the ACM and
IEEE produced a set of curriculum guidelines in
2004 aimed at consolidating ideas about what

a software engineer should acquire from an un-
dergraduate education, and this was updated in
2015 after wide consultation across academia and
industry [3].

However, although there is fairly general
agreement about what a software engineer should
know, much less attention has been given to how
that knowledge might be obtained. Indeed, much
of our knowledge is still based upon “expert opin-
ion”, and although this is largely derived from

The work reported in this paper was partly undertaken when Nikki Williams was employed by Keele University.

Submitted: 23 August 2019; Revised: 16 January 2020; Accepted: 17 January 2020; Available online: 13 February 2020

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_14/eInformatica2020Art01.pdf

8 David Budgen et al.

experience, it lacks rigour as the foundation for
what aspires to be an engineering discipline [4].
And, even when more systematically-acquired
evidence is available, this does not necessarily
mean that it will be readily accepted or adopted
by practitioners [5, 6].

This raises two related questions. The first is
concerned with how rigorous knowledge about
the effectiveness of software engineering proce-
dures might be derived (that is, how can we
identify what works or doesn’t work, and under
what conditions?). And then when we have such
knowledge, how can it most usefully be used for
educating students?

In many disciplines, the major source of such
knowledge is practice-related research, which is
usually derived from “field studies” of the effects
that arise from the use of some intervention. (For
software engineering, the interventions might be
the introduction of innovative technologies or
processes, such as the use of agile practices.)

In software engineering research, there has
been increasing use of empirical studies as
a means of obtaining knowledge about software
engineering practice. A comparison of the char-
acteristics of papers submitted to, and accepted
by, the ICSE conferences in 2002 and 2016 shows
a significant increase in the reporting of empirical
studies and the use of empirical models [7]. In
particular, while no papers reporting empirical
studies were accepted in 2002, this category made
up 30% of the accepted papers in 2016.

Researchers have also adopted the evidence-
based paradigm as a means of aggregating the
knowledge available from a set of “primary” stud-
ies that investigate a given topic, based upon the
use of the systematic review as its main tool [8].
This in turn has helped to create a growing knowl-
edge base of research findings about software
engineering procedures that should potentially
be able to inform teaching (and hence, implic-
itly, inform practitioners). In [8], the authors
suggested that adopting evidence-based software
engineering (EBSE) would potentially provide:
– “A common goal for individual researchers

and research groups to ensure that their re-
search is directed to the requirements of in-
dustry and other stakeholder groups.”

– “A means by which industry practitioners
can make rational decisions about technology
adoption.”

For the study reported here we consider teach-
ers and students to be additional stakeholders.
Teachers can be regarded as being direct benefi-
ciaries, as such knowledge can lend appropriate
authority to reinforce teaching about software
engineering topics. We view students as being
indirect stakeholders, largely benefiting through
the material presented by their teachers, rather
than through direct use of the findings from
systematic reviews.

To set this paper into context, we explain
here how it originated and how it relates to other
analyses that we have published. As experienced
teachers, we wondered whether knowledge de-
rived from the use of EBSE might be used in
support of our teaching about software develop-
ment practices. We envisaged that this support
would have a number of forms, but our main
expectation was that they might provide some
authoritative support for the use of particular
practices, or at least, an indication of when these
were likely to be effective (or otherwise). In ad-
dition we expected that we might obtain some
examples from experience about how or when to
adopt new technologies.

In order to identify the extent and forms of
knowledge about practice that was available, we
originally undertook a study of a sample of the
systematic reviews that were available up to the
middle of 2011, selected on the basis that their
topics related to practice, with our findings being
reported in [9]. Although that study identified
a set of potentially useful systematic reviews, in
trying to use these to inform our teaching, we re-
alised that they rarely presented their findings in
a readily-usable form. So, beginning in 2016, we
undertook a further study (reported here) that
extended the earlier one in two ways. Firstly,
we included systematic reviews published to the
end of 2015, so including more reviews that were
undertaken when their form had become more
established. Secondly, we have performed a more
comprehensive process of selection and analysis,
requiring that a review should not only cover
a topic relevant to practice, but also provide

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 9

topic-related findings that were supported by its
analysis of the available data.

While conducting this review, the problems
encountered in identifying both relevant informa-
tion about the processes followed in the reviews,
as well as about their findings, led us to use our
material to analyse and report on the ways that
systematic reviews in software engineering were
being reported [10] before writing a summary of
our findings (this paper). Our aim was to per-
suade authors and reviewers of the urgent need
to improve the quality of published reviews.

A separate question that arose was how ex-
tensively practitioners formed the participants in
the primary studies used in our set of 49 system-
atic reviews and to what extent these were con-
ducted in an industry setting (“field studies”)?
Addressing this involved further additional data
extraction, with the outcomes reported in [11].
We do discuss some of the findings from this anal-
ysis later, as they provide useful supplemental
information about the context of the knowledge
available from the systematic reviews.

We begin by examining the evidence-based
paradigm and the way that this has been employed
by other disciplines. We then examine how its use
has been adopted in software engineering; identify
the forms of knowledge systematic reviews can
provide; describe the design and conduct of our
own study; and report our findings. We also
examine the ways that other disciplines have used
such knowledge to inform their teaching, and
what we might learn from their experiences.

2. The evidence-based paradigm and
software engineering

Use of the evidence-based paradigm originated
in what has become known as Evidence-Based
Medicine (EBM), by which a medical practitioner
can draw upon the findings and recommendations
from systematic reviews to aid them in making
decisions about how to treat individual patients.
Some of its success, in terms of its widespread
adoption, derives from the nature of the clinical
studies used in the reviews. While these are
human-centric, the participants are usually recip-

ients of the treatment being studied, and so any
variation in the outcomes is likely to occur mainly
because of physiological differences among the
participants. This, together with the extensive
use of Randomised Controlled Trials (RCTs) –
which are field experiments with rigorous controls,
allows the findings from a set of primary studies to
be synthesised using statistical meta-analysis [12].
Use of such forms of analysis makes it possible to
assign a high level of confidence to the outcomes.

The evidence-based paradigm has also been
successfully adapted to the needs of other “so-
cial” disciplines (in which humans interact with
each other), including management, education
and psychology as well as to more general social
and health-related fields [13–15]. For these, other
forms of synthesis that may be more appropriate
to particular forms and mixes of primary studies
have been developed. An overview of the forms
that are potentially useful for software engineer-
ing is provided in [16], and in addition, a form
of synthesis that can aggregate qualitative and
quantitative evidence has been proposed for use
in software engineering research [17].

While the term evidence-based software en-
gineering (EBSE) is often used in analogy with
evidence-based medicine (EBM), this can lead
to inflated expectations. Rather than RCTs, em-
pirical research in software engineering employs
a mix of primary study forms that is actually
more typical of the social sciences. In addition,
the “treatment” used in software engineering
studies usually involves participants in actively
performing creative tasks related to software de-
velopment, rather than being passive recipients.
Since these tasks are likely to differ in detail
between studies, this makes it more difficult to
synthesise the data using forms such as statistical
meta-analysis. (Comparison with a number of
other disciplines using systematic reviews sug-
gests that the discipline most similar to software
engineering is that of Nursing and Midwifery
[18], which helps to highlight the “social” nature
of software engineering, where humans both in-
teract with each other, and also with (or via)
technology.)

For many disciplines, systematic reviews, are
apt to be commissioned by policy-makers and

10 David Budgen et al.

research agencies, and hence the topics studied
are likely to be ones considered to be of strategic
importance to that discipline and its practition-
ers. In addition, the task of searching for primary
studies will often be performed by trained librar-
ians [15]. In contrast, for systematic reviews on
software engineering topics:
– coverage of key topics is uneven (see Ap-

pendix B) and the choice of topics appears
to be almost entirely researcher-driven, with
little to indicate that professional bodies, re-
search agencies or industry have so far taken
much interest in identifying suitable topics;

– the quality of reviews is apt to be uneven, par-
ticularly with regard to the rigour with which
the primary studies are selected, categorised
and synthesised [19].

– reporting is apt to be poorly structured and
findings are not presented clearly [10];

– many studies use unnecessarily weak forms
of synthesis [16];

Together, these influence the form and quality
of the available knowledge.

3. The nature of software engineering
knowledge

In this section we consider what forms of knowl-
edge useful for teaching about software engineer-
ing practice can be provided from systematic
reviews.

3.1. The nature of the knowledge
provided from systematic reviews

The knowledge provided from any systematic
review can be expected to be organised around
the research question that the review is seeking
to answer, as well as whether this question is
concerned with issues related to research or to
practice. Three important aspects of this knowl-
edge are: the form in which the findings are
presented; the strength of evidence supporting
these findings; and how useful they are.

In terms of their usefulness for teaching, in
examining the reviews we selected, we have ob-
served that systematic reviews commonly provide

knowledge about practice in three different forms
(and obviously, the findings of any review may
consist of a mix of these).

The first way in which the presentation of the
findings is structured is concerned with knowl-
edge that has been derived from the experiences
of others, in the form of lessons that have been
derived about particular software engineering
activities. The investigation of the effects of user
participation in software development reported
in [20] offers a good example of a topic where
presenting qualitative knowledge about the ex-
periences of others may well be the most useful
form of knowledge to provide. Pedagogically, this
can be viewed as providing broader knowledge
about software engineering activities than can
usually be provided in the classroom, or through
practical exercises.

A rather different way of presenting knowl-
edge that has been derived from experience is to
provide a list of factors that should be considered
when undertaking some task or adopting a tech-
nique. A good example is provided by [21], where
the authors identify the factors that can make
for the effective adoption of global software de-
velopment practices. This type of knowledge can
provide more directly useable guidance, possibly
in the form of checklists, and hence can usefully
be used to supplement classroom teaching about
a given topic.

The third way to present knowledge is largely
concerned with providing guidance about choices
between different techniques. Such knowledge is
more quantitative in its nature, and may well be
involve ranking the different options in some way.
A good example of using such a form is provided in
the review by Dieste and Juristo [22] that assesses
the effectiveness of different requirements elicita-
tion techniques. From a pedagogical perspective,
where the findings are organised in this form, they
can be used to provide an authoritative basis for
choosing to use particular practices.

The usefulness of any systematic review is also
dependent upon the provenance for its findings
– that is, how far we can be confident that the
original primary studies are reliable and relevant.
One reason for systematic reviewers to perform
a quality check on the primary studies when per-

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 11

forming a systematic review is to help make some
assessment of their reliability, in order to inform
the process of synthesis. If they conclude that
a primary study was conducted well, this provides
some reassurance that including its findings in
a synthesis procedure will help with producing
sound findings from that process. This in turn pro-
vides scope for assessing the strength of evidence
supporting the findings from a review [23].

The issue of the relevance of the findings from
the primary studies used in a review is more chal-
lenging. In [24] this is defined as the “potential
impact the research has on both academia and
industry”, and the authors observe that the long
maturation period for technology makes it “infea-
sible to use the actual uptake of research results by
industry” as an evaluation tool. They propose an
evaluation model for relevance that is based upon
“potential for impact” and that uses four aspects:
subjects; context; scale; and research method.
Unfortunately, the reports of systematic reviews
rarely provide much detail about these charac-
teristics of the primary studies, and particularly
about their context and scale, so we were not able
to apply this model retrospectively in our analysis.

From the perspective of the teacher wishing
to use the findings as supplemental material,
the first aspect should require little more than
explaining to students about the nature of a sys-
tematic review, in order for them to understand
the nature of the evidence. An appreciation of
the second (and to some extent the third) as-
pect may require a rather fuller explanation of
the forms and limitations of empirical software
engineering studies. However, since few software
engineering systematic reviews provide any infor-
mation about the strength of evidence, our own
experiences suggest that this explanation need
not be particularly detailed or extensive.

3.2. Categorising software engineering
knowledge

Categorising and organising software engineering
knowledge has been the goal of a number of ini-
tiatives. ACM and IEEE have jointly sponsored
two that are relevant to this paper.

– The Software Engineering Body of Knowledge
(SWEBoK) [2].

– The software engineering undergraduate cur-
riculum guidelines (SE2014), and within this,
the Software Engineering Education Knowl-
edge (SEEK) categorisation of relevant knowl-
edge [3].

The first of these is largely concerned with iden-
tifying the topics that collectively comprise the
activities that make up software engineering
practices, and where possible, identifying good
sources of material related to these. So it can be
considered to provide an expert interpretation
of the nature of software engineering itself.

The second is concerned with identifying
what an undergraduate studying software en-
gineering should know, and hence the SEEK has
been used in this paper to categorise the system-
atic reviews identified within the tertiary study.
Even where a student is not studying software
engineering as the major element of a degree,
these are still topics that they need to be aware
of, although perhaps in less detail than would be
appropriate for a specialist course.

Table 1. Knowledge Areas used to categorise the
SEEK

Knowledge Area Key

Computing Essentials CMP
Mathematical and Engineering Fundamen-
tals

FND

Professional Practice PRF
Software Modelling and Analysis MAA
Requirements Analysis and Specification REQ
Software Design DES
Software Verification and Validation VAV
Software Process PRO
Software Quality QUA
Security SEC

As a framework, while the SEEK can appear
to be organised around technology issues rather
than “social” issues, this impression is misleading.
Table 1 lists the major Knowledge Areas (KAs)
used to structure the 2014 version of the SEEK.
Each Knowledge Area is organised as a set of
Knowledge Units (KUs) and both in these and in
the guidelines there is quite extensive emphasis

12 David Budgen et al.

upon the importance of more “social” aspects
of software engineering such as the human in-
teractions that occur in agile development and
groupwork. Also, as emphasised in the Curricu-
lum Guidelines, the Knowledge Areas are not
meant to be templates for modules.

4. Research method

In order to answer the question posed in the title
of this paper, we divided this into two separate,
but linked, research questions, as follows.
RQ1: Which systematic reviews published up to

the end of 2015 produced findings that were
relevant to teaching about practice in software
engineering?

RQ2: What guidance did each systematic review
provide that could help a student (or practi-
tioner) to understand how to make an effective
choice or use of a technology or practice?

To answer RQ1, we conducted a systematic map-
ping study of published systematic reviews (a ter-
tiary study). We then used the Knowledge Areas
from the SEEK to categorise those that were
selected as being relevant. To answer RQ2, we
analysed the outcomes from each of the system-
atic reviews that we included, in order to identify
relevant findings and explicit recommendations.
As a point of clarification regarding RQ2, we
did expect that for students, the process of un-
derstanding this guidance was something that
would usually be mediated by a teacher. Indeed,
for both students and practitioners, we expected
that the findings of a review would mainly pro-
vide “help” by identifying those circumstances
where a technique or practice might be most
effectively employed (or where it would be inap-
propriate to employ it).

In the rest of this section, we explain our
choices for the procedures required to answer these
two questions, and then the following section de-
scribes how these procedures were implemented.

4.1. Scope of the study

For a systematic review, the aim should be to
find all of the primary studies that can provide
findings relevant to the topic of the review, in

order to avoid bias. Because a mapping study has
the purpose of creating a “map” of the knowledge
available about a topic, rather than synthesising
its inputs, it does not usually need to be quite
as comprehensive. Our aim, as posed in the title
and RQ1, is concerned with establishing whether
teaching about practice could be supported by
the findings of systematic reviews. We therefore
considered that our question could be answered
from a suitably large sample of systematic reviews.

We also restricted the scope of our study to
those systematic reviews for which the findings
were published in journals. The page constraints
of conference proceedings often means that re-
ports of systematic reviews have to omit impor-
tant details. Additionally, while many systematic
reviews are first reported in conference proceed-
ings, it is quite common for a later and fuller ver-
sion to also be published as a journal paper. Since
we were concerned with finding those systematic
reviews that were reported in sufficient detail to
be of use in making decisions and choices, we felt
that it was appropriate to constrain our study
to reviews published in journals. It was also con-
sidered that this would make our final selection
more readily accessible for teachers, students and
practitioners.

For the period to the end of 2009, we se-
lected the journal papers from three existing
“broad” tertiary studies to form our set of can-
didate systematic reviews [25–27]. These studies
used a mix of manual and electronic searching
to achieve a comprehensive degree of coverage
for that period. As no equivalent sources were
available for the period January 2010 to end 2015
and the number of published systematic reviews
was rapidly increasing, we searched five major
software engineering journals for those system-
atic reviews published in this later period. These
were IEEE Transactions on Software Engineer-
ing, Empirical Software Engineering, Information
and Software Technology, Journal of Systems and
Software, and Software Practice and Experience.

Our choice of these journals was made on the
basis that these were major publishers of sys-
tematic reviews addressing software engineering
practices. One of the journals (Information and
Software Technology) also had a special section
for systematic reviews.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 13

Table 2. The Inclusion and exclusion criteria adopted for this study

Criteria

Inc-1 The paper is published in a journal and either included in the three broad tertiary studies or in
one of the five journals (depending on publication date).

Inc-2 The topic of the paper is related to practice and is considered appropriate for use with introductory
teaching of SE, as defined by the SEEK.

Inc-3 The paper contains findings and/or recommendations that are explicitly supported by the
reviewers’ analysis.

Excl-1 Systematic reviews addressing research trends.
Excl-2 Systematic reviews addressing issues related to research methodology.
Excl-3 Mapping studies with no synthesis of data.
Excl-4 Systematic reviews that address topics not considered to be relevant for introductory teaching of

SE.

4.2. The inclusion/exclusion criteria

We required that any reviews included in our
study should address a topic relevant to practice
(rather than research) and that these topics should
also be relevant to “introductory” – as opposed to
“advanced postgraduate” – teaching. (Since our
model for this was based on the SEEK, it could be
considered to cover anything that would be ma-
terial for an undergraduate degree programme.)
In addition the review needed to provide some
knowledge about practice that was explicitly
supported by a synthesis of the findings of the pri-
mary studies. The resulting inclusion/exclusion
criteria for the study are described in Table 2.

To be included, a systematic review needed to
meet all of the inclusion criteria, while it could be
excluded if it met any of the exclusion criteria. Us-
ing the SEEK gave us a reasonably clear measure
of the set of topics that we considered appropriate
for answering our research question. In particular,
even where a review might meet all of the inclu-
sion criteria, if we considered its topic as inappro-
priate for an introductory course, it could still be
excluded (Excl-4). Typically such reviews were on
relatively advanced topics that combined differ-
ent aspects of software engineering, such as “secu-
rity in process-aware information systems” [28].

4.3. Searching for systematic reviews

Our decisions about scope, as described above,
meant that the searching process was relatively
straightforward. The set of 120 papers from the

three broad tertiary studies were listed in the re-
ports, and for the journals we employed a manual
search of index sections. We complemented the
manual search by using an electronic search to
check for any systematic reviews that might have
been missed (not all systematic reviews have titles
that explicitly identify them as being reviews).

4.4. Quality assessment

Quality assessment of systematic reviews is com-
monly performed by using the DARE criteria
(Database of Attributes of Reviews)1 that were
originally devised for use in clinical medicine. In
its current form, the DARE assessment is based
upon the following five questions.
1. Are the review’s inclusion and exclusion cri-

teria described and appropriate?
2. Is the literature search likely to have covered

all relevant studies?
3. Did the reviewers assess the quality/validity

of the included studies?
4. Were basic data/studies adequately de-

scribed?
5. Were the included studies synthesised?

For this study we adopted the use of DARE
as a means of providing an assessment of how
thoroughly each systematic review had been per-
formed, and hence some indication of how reliable
the findings from it might be. (This was also em-
ployed in the three broad tertiary studies.) In
doing so we also adopted the widely-used conven-
tion of scoring each question using a three-point
scale: yes (1); partly (0.5); no (0), with the max-

1http://www.crd.york.ac.uk/CRDWeb/AboutPage.asp.

http://www.crd.york.ac.uk/CRDWeb/AboutPage.asp

14 David Budgen et al.

Table 3. Interpretation of the DARE Criteria used for the tertiary study

Criterion Score Interpretation

Inclusion and exclusion yes The criteria used are explicitly defined in the paper.
partly The inclusion/exclusion criteria are implicit.
no The criteria are not defined and cannot be readily inferred.

Search coverage yes The authors have searched four or more digital libraries and included
additional search strategies OR identified and referenced all journals
addressing the topic of interest.

partly Searched three or four digital libraries with no extra search strategies
OR searched a defined but restricted set of journals and conference
proceedings.

no Searched up to two digital libraries or an extremely restricted set of
journals.

Assessment of quality yes The authors have explicitly defined quality criteria and extracted them
from each primary study.

partly The research question involved quality issues that are addressed by the
study.

no No explicit quality assessment of individual papers has been attempted.

Study description yes Detailed information is presented about each study.
partly Only summary information is presented about the studies.
no Details of the studies are not provided.

Synthesis of studies yes The authors have performed a meta-analysis or used another form of
synthesis for all the data of the study.

partly Synthesis has been performed for some of the data from some of the
primary studies.

no No explicit synthesis has been performed (as in a mapping study).

imum score then being 5.0. Table 3 explains how
the scoring was interpreted for the DARE criteria
in the case of this study.

For each of the DARE questions, a score of
“no” was awarded where there was an absence of
information (apart from “search coverage” where
we had defined a lower bound). Likewise, a “yes”
indicated that the description or related opera-
tions for that criterion exceeded some threshold.
A score of “partly” indicated that, while some-
thing was provided, it might only be for some of
the primary studies (say), or that it was provided
in some aggregate form. Hence a rating of “partly”
could be interpreted as “present but incomplete”.

We should also note that DARE is only con-
cerned with the systematic review process and
whether these activities have been performed,
rather than how well they have been done. How-
ever, until we have better reporting of systematic

reviews performed in software engineering, it does
not seem practical to employ some of the other
forms of assessment discussed in [23] and [29].

4.5. Data extraction

Our inclusion criteria, as summarised in Table 2,
required that we should be able to identify find-
ings and recommendations for any systematic
review that was to be included. This stemmed
from a concern that, to be of use, a study had
to present results that end-users could readily
employ. For the purpose of data extraction, we
used the following descriptions.
– A finding provides knowledge about the topic

that an end-user might find useful in order
to gain knowledge about the topic2. However
it is not of such a nature, or accompanied by
such a degree of confidence, as to be able to

2In [10] we used the term “conclusion” rather than “finding”. Upon reflection, we felt that this could be ambiguous
in this context, and so have adopted the use of “finding” in this paper.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 15

Table 4. Core data extraction from systematic reviews

Item Description

1. Bibliographic information (title, authors, publication details).
2. Our scores for the DARE criteria. (As interpreted in Table 3).
3. Data about any quality assessment performed in the systematic review for the primary studies,

including details about any checklist used for this.
4. Details of how the quality scores from Item 3 were actually used in the systematic review.
5. The size and nature of the body of evidence used in the review (numbers and types of primary

study).
6. The context relating to the body of evidence: details of participant types, period covered by the

searching, search engines used, details of any manual searches, use of snowballing, number of studies
retained at each stage of inclusion/exclusion.

7. Any findings that are reported, or that could be derived from the later sections of the paper.
8. Any recommendations reported or that could be derived.

act as the source of explicit advice about good
or undesirable practice related to that topic.

– A recommendation provides an operationali-
sation of a finding that provides deeper under-
standing and that can be taken into consider-
ation when making decisions about practice.
So if possible, a recommendation should be
accompanied by some measure of its strength,
derived from the evidence available from the
systematic review.
Because the presence of these could only be de-

termined with certainty at the stage of data extrac-
tion, we accepted that some decisions about exclu-
sion would occur during data extraction. The data
extracted from each study is itemised in Table 4.

5. Conduct of the study

The study was conducted according to the plan,
and this section provides some details about the
procedures followed as well as the outcomes.

Because there was some overlap between the
set of systematic reviews selected for our earlier
study [9], for brevity when comparing the two
studies, we refer to that study as EPTS1 (Edu-
cation and Practice Tertiary Study 1), and refer
to this study as EPTS2.

5.1. Study identification

As the set of papers found by the three broad
tertiary studies was already determined, search-
ing was only necessary for the papers from the

five journals published in the period 2010–2015.
The manual search process was conducted by
one of the authors (DB) and involved reading
through the contents pages of the five journals
examining titles of papers, and where necessary,
also inspecting the abstracts.

To complement the manual search, an elec-
tronic search was also performed by an inde-
pendent researcher. This was undertaken in two
stages. In the first of these, covering the period
2010–2014, the Scopus digital library was used
to perform a forward citation analysis of six pa-
pers that discussed the principles of EBSE and
systematic reviews (listed in Table 5). This was
performed in April 2016. The papers identified
as being systematic reviews or mapping studies
and published in the five journals were compared
with the papers that had been found by man-
ual search. However, this identified a large num-
ber of false positives, and for papers published
in 2015, this problem became much greater. So
for the second stage (period) for 2015, Scopus
was searched using the terms: TITLE-ABS-KEY
(“systematic literature review” OR “systematic
review” OR “systematic mapping study” OR
“mapping study”) AND DOCTYPE (ar OR re)
AND PUBYEAR = 2015 AND (LIMIT TO (SUB-
JAREA, “COMP”)). The results from this were
sub-setted to select studies from each of the five
journals and the papers that were identified as
being mapping studies and systematic reviews
were compared with the papers found by the
manual search. This second search took place
in May 2016.

16 David Budgen et al.

Table 5. Papers used for forward citation analysis in Scopus

Title Reference

Evidence-Based Software Engineering [8]
Evidence-Based Software Engineering for Practitioners [30]
Procedures for Undertaking Systematic Reviews [31]
Guidelines for Performing Systematic Literature Reviews in Software Engineering [32]
Lessons from Applying the Systematic Literature Review Process within the Software Engi-
neering Domain

[33]

Systematic Review in Software Engineering [34]

The manual search identified 140 papers and
the electronic search added a further 16, giving
a total of 156 systematic reviews from searching
the journals. All studies were allocated an index
number, those from the broad tertiary studies
being numbered #1–120, and those from the
journals #121–276.

Our sources are described in Table 6. For ease
of reference, we have labelled these as Source-set1
and Source-set2. We have also indicated the num-
ber of papers obtained from each of these sources.

Table 6. Details of the sources used

Period Sources Count

2004–2009 TS1: Tertiary Study 1 [25] 20
(Source-set1) TS2: Tertiary Study 2 [26] 33

TS3: Tertiary Study 3 [27] 67

120

2010–2015 IEEE Transactions on
S/W Eng.

13

(Source-set2) Empirical Software Engi-
neering

10

Information and Software
Technology

97

Journal of Systems and
Software

31

Software Practice and Ex-
perience

5

156

5.2. The inclusion-exclusion process

The process of inclusion/exclusion was performed
in two stages. This was because the relevance of
the topic could be fairly easily determined from
the title and abstract, whereas determining the
availability of appropriate findings and recom-

mendations (Inc-3) did require that the complete
paper had to be read.

In the first stage the two criteria used were
whether or not a study was a systematic review,
published in a journal, that addressed a potentially
relevant topic (Inc-1 and Inc-2). The studies that
had earlier been included in EPTS1, published in
the period up to mid-2011 and described in [9],
had already been identified as meeting the second
criterion, and so the only action required was
to remove those published in conferences. Hence
a full selection process was only performed for the
studies with index values #146–276, which were
those published from mid-2011 onwards and hence
had not been used in EPTS1. This was performed
by all four authors, working in different pairings
that were allocated on a random basis. The only
exceptions were the papers for which two of us (DB
and PB) were authors, which were assessed by the
other two reviewers. If the reviewers were unable
to agree on exclusion of a paper, it was retained for
the second stage. Using the Fleiss’ Kappa [35] to as-
sess the level of rater agreement for this first stage,
as we were using multiple raters, produced a score
of 0.490, which indicates moderate agreement,
falling into the band of values usually considered
as being acceptable (“fair to good”) [36].

The second stage was combined with the pro-
cess of data extraction, which was based upon
the data extraction model described in Table 4.
This was applied to all of the reviews identified
from the first stage, and all data extractions were
performed by two members of the team, working
independently, who then resolved any differences
to produce an agreed dataset for a review.

Studies were only retained at this stage if we
could identify clear findings and/or recommenda-
tions that could be linked to the data extracted
as part of the systematic review (criterion Inc-3).

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 17

Source-set1

Source-set2

Tertiary Studies

TS1

TS2

TS3

120

156Manual search
+

Electronic check

Selection
performed
for EPTS1

Remove
conference

papers

Data
extraction
and further
check for
relevance

Dataset1

11
43 18

Selection
based on
potential

relevance

Data extraction
and further
check for
relevance

Dataset2

37
74

11

37

2004-2009

2010-2015

Figure 1. The overall selection process (TS1–TS3 are the three tertiary studies)

Some papers originally included in EPTS1 were
excluded in this stage, on the basis that they had
inadequate findings or recommendations. Figure 1
provides an overview of the overall process and
resulting numbers. We have referred to the reviews
selected from Source-set1 as Dataset1, and those
from Source-set2 as Dataset2.

Because identification of the findings and
recommendations from the systematic reviews
was often a complex process (elements of these
were apt to be spread around the final sections
of a paper), we performed a further check upon
the reliability of our interpretation. For each
systematic review we tried to contact the desig-
nated corresponding author by e-mail and asked
them to comment on our interpretation of the
outcomes.. Where this was no longer a valid
address, we then tried contacting any of the
authors for whom we could find a suitable e-mail
address. In only two cases were we unable to trace
any of the authors. We received 27 responses,
all of which were generally in agreement with
our interpretation, with 16 of them suggesting
changes of wording, with all of these being minor.

The final set used in this study (EPTS2) con-
tained 49 reports of systematic reviews, listed in
Appendix A. Because the data for one system-
atic review was used for two analyses (#54 and
#118), both of which met the inclusion criteria,
there were actually 48 sets of primary studies.

5.3. Quality assessment

An assessment against the DARE criteria, using
the interpretations provided in Table 3 was per-

formed as part of the process of data extraction,
and using the same randomly-allocated pairings
of reviewers.

5.4. Categorisation against the SEEK

To categorise the systematic reviews against the
SEEK two of the reviewers (DB and PB) per-
formed another analysis of the reviews after all of
the data extractions had been completed. Again,
our argument for doing this as a separate analysis,
as against performing it as part of data extraction,
was largely a matter of ensuring greater consis-
tency of interpretation. It was considered that
this would be more easily achieved if the whole
set of studies was categorised in a single process.

For each study we determined both the most
appropriate Knowledge Area (summarised in Ta-
ble 1) and also what we considered to be a suitable
assignment to the more detailed Knowledge Unit
within this. While for some studies the most appro-
priate KA and KU values were relatively obvious,
many did require quite extensive discussion to
determine an appropriate allocation as inevitably,
the topic of a systematic review and its findings
may well span more than one KA or KU. Indeed,
the nature of the findings may be more important
than the topic of the review in terms of determining
how it should most appropriately be categorised.

5.5. Further data extraction

As noted in Section 1, we have performed further
analyses of the 49 systematic reviews. These are
reported in [10] and [11] and involved some addi-

18 David Budgen et al.

Table 7. Additional data extraction from systematic reviews

Item Description

9. Whether and how any quality scores derived for the primary studies were used (if at all).
10. The form(s) of synthesis used in the study, and whether these classifications were made by the

authors of the systematic review or by us. Categories used were: meta-analysis, narrative synthesis,
meta-ethnography, grounded theory, cross-case analysis, thematic analysis, vote counting, and
“other”. The definitions of these were taken from [16].

11. The forms of primary studies used, where the primary studies were performed; who conducted
these, and who formed the participants (students or industry practitioners) or what sources of data
were used (industry or artificial).

tional data extractions. These were performed by
two of us (DB and PB) and are summarised in
Table 7. Some of this supplemental information is
included in Appendix B. We should note that for
both of these, the process of study selection was
as reported here. So, while they investigated fur-
ther questions about reporting and provenance,
their analyses were limited to providing answers
related to studies about software engineering
practice.

6. The findings – What knowledge is
available?

To present the outcomes from the process de-
scribed in the previous sections, we begin by
providing an overview of all of the studies. We
also look at some of the supplementary infor-
mation about these, with particularly regard to
such aspects as provenance. We then look at
the studies in more detail, and in particular,
present the findings and recommendations that
were extracted for each one. These are grouped
under the different SEEK headings, enabling us
to also comment on the extent of the available
knowledge for each heading.

6.1. Summary of the systematic reviews

As the total number of studies is quite large, we
have presented the summary of the findings for
the two datasets separately in Tables 8 and 9.
This is largely a convenience for presentation,
although it also helps distinguish the reviews
that were undertaken when the practices for sys-
tematic reviews in software engineering were less

well established. Both are described using the
same format. Each entry is described in terms
of its index number (#1–#276) as used in this
study, the period covered by the search in the
systematic review, its topic, and reference. The
tables also provide some of the key information
about each review: the SEEK Knowledge Area
(KA) it has been assigned to (the keys we use
were provided in Table 1); the DARE score we
derived for the study; the number of primary
studies that we could identify as being either
explicitly or implicitly conducted in an industry
setting or making use of industry participants;
and the total number of primary studies.

The issue of the provenance of the primary
studies is discussed in more detail in [11], where
we have categorised the context for the primary
studies used in each systematic review as far as we
were able, based upon the available information.
Two key points from this are worth repeating
here. The first is that for those systematic re-
views where we could not determine whether
some of the primary studies were explicitly or
implicitly conducted in an industrial setting, it is
highly probable that many of these were actually
industry-related, but the lack of detail meant that
we simply could not tell. The second point is that
what was considered to be an acceptable primary
study in terms of the inclusion/exclusion criteria
used in the review, and the way that these were
interpreted, did vary quite considerably. Some re-
views included a number of non-empirical reports
among the primary studies, as well as papers
that were classified as “opinion”, “experience”
and even “theory”. So while other characteristics
such as DARE scores might usefully be compared
across a set of systematic reviews, it is definitely

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 19

Table 8. Details of the systematic reviews included in this study: Dataset1 (2004–2009)

No. Period Topic and Citation SEEK DARE Primary
covered KA Studies

ind. total

52 unclear Motivations for adopting CMM-based SPI [37] FND 2.5 49 49
54 1980–6/2006 Motivation in software engineering [38] PRF 5.0 79

118 (as 54) Models of motivation [39] PRF (as 54) (79)
15 1992–2002 Capture-recapture in s/w inspections [40] VAV 1.5 1 25
66 1996–2007 Search-based non-functional testing [41] VAV 4.5 17 35
82 1969–2006 Regression test selection techniques [42] VAV 4.5 4 36
8 to 2006 Estimation of s/w development work effort [43] PRO 1.0 14 16

22 unclear Assessment of development cost uncertainty [44] PRO 2.5 40
39 1994–2005 Benefits of software reuse [45] PRO 3.5 11 11
50 1996–3/2006 SPI in small and medium s/w enterprises [46] PRO 4.0 45 45
84 to 2007 Effectiveness of pair programming [47] PRO 4.0 5 19

102 1995–2005 Managing risks in distributed s/w projects [48] PRO 2.5 72 72

not appropriate to make comparisons between
the numbers for each type of primary study as
reported by different systematic reviews.

The answer to RQ1 (which systematic reviews
produced findings relevant to teaching about
practice?) is provided by the entries in Tables 8
and 9. Overall, as indicated, we were able to iden-
tify 49 systematic reviews (from 276) that con-
tained findings considered to be of use in teaching
about software engineering. In the tables, the
systematic reviews have been grouped under the
SEEK Knowledge Areas, which also highlights
the uneven distribution of reviews across the
KAs. Table 10 gives the counts of the reviews
categorised under each KA. The large proportion
categorised as PRO arises in part because much
of what we do in software engineering involves
processes. Many of the systematic reviews can be
described as investigating “best practice”, where
this may relate to testing, design etc., and these
ended up being categorised as PRO wherever
we concluded that the emphasis was more upon
practice rather than the technology involved.

The answer to RQ2 (what guidance did each
systematic review provide?) is contained in the
fuller descriptions of the findings and recom-
mendations, together with their context, pro-
vided in Appendix B. As discussed earlier, we
observed that systematic reviews provide guid-
ance in a number of forms, largely depending
upon the research question being addressed by
the review. In Table 11 we identify those reviews

providing each of the three types of guidance
(experience, lists of factors, and comparisons).
Inevitably, the findings of reviews do not always
fall exactly into one of these categories, and so
we have only included the 35 systematic reviews
where we collectively felt that the findings mainly
fitted one category. What Table 11 does show
though is that few reviews provided compara-
tive findings. VAV was the only KA for which
there was more than one systematic review (3
from 5) providing comparative findings, largely
because these were comparing testing practices
that produced deterministic outcomes concerned
with whether or not a test was successful. (Many
aspects of software engineering, such as analy-
sis and design, address “ill-structured” problems
[83], and so rarely provide true-false results when
comparisons are being made.)

6.2. The findings and recommendations
for each review

In this subsection we present the material that
helps answer RQ2 (guidance “that could help
a student (or practitioner) to understand how to
make an effective choice or use of a technology
or practice”). For each review, we excluded any
findings that were related to research issues or
future developments. (Almost every systematic
review identifies a need for more and better pri-
mary studies.) Where possible, we have taken the
wording for the findings and recommendations

20 David Budgen et al.

Table 9. Details of the systematic reviews included in this study: Dataset2 (2010–2015)

No. Period Topic and Citation SEEK DARE Primary
covered KA Studies

ind. total

135 1980–2008 Antecedents to personnel’s intention to leave [49] PRF 3.0 72 72
246 2003–4/13 Newcomers on OSS projects [50] PRF 3.5 20 20
167 2006–2011 Evaluating cloud services [51] VAV 4.0 82 82
197 to 10/2011 Software fault prediction metrics [52] VAV 4.5 81 106
205 2000–2011 Test-Driven Development [53] VAV 4.5 22 41
252 2002–2013 Metrics in Agile/Lean development. [54] VAV 3.5 30 30
124 1970–2007 Characterising s/w architecture changes [55] DES 3.5 130
130 1997–2008 Aspect-oriented programming [56] DES 4.5 6 22
154 1995–2009 Software design patterns [57] DES 2.0 11 18
123 unclear Domain analysis tools [58] MAA 3.5 7 19
126 1989–2006 Does the TAM predict actual use? [59] MAA 5.0 79
146 2000–2010 Dependency analysis solutions [60] MAA 2.5 38 65
155 2000–2010 Fault prediction performance [61] MAA 4.5 35 36
134 to 3/2005 Elicitation techniques [22] REQ 5.0 7 32
161 1993–2011 Stakeholders for requirements elicitation [62] REQ 4.5 42 42
259 1992–2/14 Use case specifications research [63] REQ 4.0 27 119
219 to 2012 OO measures and quality [64] QUA 4.5 33 99
121 2000–2007 Global software engineering [21] PRO 3.0 37 56
138 to 2009 Measuring and predicting software productivity [65] PRO 4.5 25 38
150 to 6/2010 Agile product line engineering [66] PRO 3.5 14 39
157 to 2/2011 Test-Driven Development [67] PRO 4.0 10 37
160 to 4/2009 Reconciling software development methods [68] PRO 2.5 42 42
174 unclear Industrial use of software process simulation [69] PRO 3.5 87 87
175 to mid-2008 Selecting outsourcing vendors [70] PRO 3.5 77 77
193 to 7/2010 Social software for global software dev. [71] PRO 4.0 61 84
215 to 12/2013 Software development in start-ups [72] PRO 4.5 30 43
217 1997–2011 Influence of user participation [20] PRO 3.5 82 82
222 1990–2012 The Kanban approach [73] PRO 4.0 37 37
228 1997–1/08 Software process assessment [74] PRO 2.5 22 22
236 2001–2013 Global team dispersion [75] PRO 4.5 40 43
239 to 2011 Using CMMI with Agile [76] PRO 4.5 59 60
241 1980–2012 User-involvement and success [77] PRO 4.5 87 87
244 1990–2012 Development effort estimation [78] PRO 5.0 61 61
249 2002–10/12 User-centred agile development [79] PRO 4.5 26 83
260 to 5/15 Use of SE practices in science [80] PRO 2.5 43
268 1996–2/08 Product derivation support [81] PRO 2.0 118
276 1996–10/13 Adopting SPL [82] PRO 3.0 31 31

directly from the systematic reviews. One conse-
quence of this is that the findings from different
systematic reviews are apt to be formulated at
different levels of granularity. However, given
the heterogeneity of the reviews, we considered
that it was impractical to present the findings in
a uniform matter.

In reporting the findings, we have also pro-
vided information about their provenance, wher-

ever this was available. This information is pro-
vided to aid the reader to make some assess-
ment of the confidence that they might choose
to place in the findings. However, as noted ear-
lier, the variation in different reviews between
the way that primary study types were inter-
preted, as well as in the inclusion/exclusion cri-
teria used, means that this information should
only be treated as indicative.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 21

Table 10. Counts of reviews for each Knowledge Area

KA Topic Dataset 1 Dataset2 Total
(up to 2009) (2010–2015)

FND Fundamentals 1 – 1
PRF Professional Practice 2 2 4
VAV Verification and Validation 3 4 7
DES Design – 3 3
MAA Modelling and Analysis – 4 4
REQ Requirements Analysis/Specification – 3 3
QUA Software Quality – 1 1
PRO Software Process 6 20 26

Totals 12 37 49

Table 11. Forms of guidance provided by reviews

Type Systematic Reviews
FND PRF VAV DES MAA REQ QUA PRO

Experience – – #167,
#252

#124,
#154

#123,
#146 #259 – #39, #50, #174, #193, #222,

#239, #260, #102

Lists of Factors #52
#54,
#118,
#135

– – #155 – –
#160, #276, #84, #215, #236,
#241, #121, #244

Comparisons – –
#15,
#66,
#197

#130 – #134 #219 #8

The details for each systematic review are
provided in Appendix B. For each review we pro-
vide the following information (where available)
1. The main SEEK knowledge area and knowl-

edge unit identified as appropriate.
2. The title of the systematic review.
3. Citation details.
4. The DARE score, reported on a scale of 0–5.
5. Any information available that might provide

an assessment of the strength of evidence for
the findings. Where possible, we report this
for each finding.

6. The number of primary studies. Where pos-
sible, we included the following additional
information:
– The count of primary studies that we

could explicitly identify as being con-
ducted in an industry setting.

– The count of primary studies that were
implicitly conducted in an industry set-
ting, based upon comments in the text.

– The count of primary studies conducted
in an “academic” setting (such as experi-

ments that used student participants).
7. The form(s) of synthesis used in the study,

noting that some did use more than one form
to answer different research questions. (We
did not attempt to classify the forms of syn-
thesis used in the earlier studies (Dataset1).)

8. The findings from the study.
9. The recommendations from the study.
10. Information about any response from the

authors to our request for them to check the
accuracy of our extraction of the findings and
recommendations.
We have grouped the reviews according to

their assignment to SEEK Knowledge Areas.
For each review, we suggest the most rele-
vant Knowledge Area and Knowledge Unit, ac-
cepting that many reviews do not fit neatly
into the SEEK model. We have also noted
where there are Knowledge Units (other than
those dealing with issues such as “concepts”)
for which there are no systematic reviews,
in order to help illustrate the overall degree
of coverage.

22 David Budgen et al.

6.2.1. Findings – fundamentals (FND)

Perhaps not surprisingly, there is only one sys-
tematic review categorised under this heading.
The key details for this are provided in Table B1.
The reason for including this review under FND
was that we felt it best fitted the Knowledge
Unit engineering economics for software. (This
was the only heading for this KA that did not
address “foundations”.)

In this review, the conclusions about the rea-
sons for adopting SPI (Software Process Improve-
ment) largely reinforce the claims made in the
literature.

6.2.2. Findings – professional practice (PRF)

We classified four systematic reviews under
this heading, described in Tables B2, B3, B4
and B5. Two of these (#54 and #118) used
the same dataset, but performed quite differ-
ent analyses of the material. We were also un-
able to determine a specific Knowledge Unit
for those two analyses, due to the wide span
of issues that they address. There were no sys-
tematic reviews directly addressing the KUs
communications skills or professionalism, al-
though some other systematic reviews did in-
directly address issues related to team and group
communication.

The first two reviews (which share a dataset)
address issues around what motivates software
engineers and provide details of factors consid-
ered relevant. Study #135 is also related to staff
(de)motivation, providing a set of related recom-
mendations. The remaining study addresses the
role that group dynamics plays when participat-
ing in open source development.

6.2.3. Findings – software verification and
validation (VAV)

There were seven reviews included under this
heading. These are summarised in Tables B6–B12.
These reviews provide a set of findings that span
three of the four Knowledge Units making up the
VAV Knowledge Area. We have no reviews for
one KU, problem analysis and reporting.

These reviews span a range of issues. Most
are concerned with techniques for selecting or
evaluating tests (such as those used for regres-
sion testing) and provide rankings of different
approaches that are likely to be directly applica-
ble to practice.

6.2.4. Findings – software design (DES)

Software engineering can be considered as very
much a “design” discipline, with “design think-
ing” permeating many activities, including of
course, software design. However, the creative
element involved in designing also means that
this Knowledge Area forms a significant chal-
lenge for empirical studies. There are only three
systematic reviews in this group, summarised in
Tables B13–B15, although they do address three
separate Knowledge Units. KUs with no con-
tributions are design concepts, human-computer
interaction design and design evaluation.

None of the reviews offer very strong con-
clusions, and in the only one that offered more
specific guidance about design choices (#130),
it was noted that these were based upon a low
strength of evidence.

6.2.5. Findings – modelling and analysis (MAA)

The four systematic reviews under this heading
are all classified as belonging to the same Knowl-
edge Unit (types of models). Given that the other
two KUs address foundations and fundamentals,
this is perhaps not surprising. Tables B16–B19
provide a summary of these reviews.

The reviews span a range of issues including
model reliability (#126) and observations about
fault prediction (#155). Collectively they do pro-
vide helpful guidance about some specific models
that are used by software engineers.

6.2.6. Findings – requirements analysis and
specification (REQ)

The three systematic reviews addressing require-
ments, described in Tables B20–B22, cover two
of the four Knowledge Units making up the REQ
Knowledge Area. In particular, we have no re-

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 23

views that address the KU requirements valida-
tion.

All the reviews provide useful insight into the
approaches used in requirements engineering. Re-
view #134 particularly provides a useful rating
of different elicitation techniques, and all three
offer useful insight.

6.2.7. Findings – software quality (QUA)

There is only one systematic review categorised
under this heading. The key details for this are
provided in Table B23. This was categorised
against the KU product assurance, and there
were no reviews covering the KU process assur-
ance. The review does offer useful insight into
the relative merits of a range of object-oriented
measures.

6.2.8. Findings – software process (PRO)

By far the largest set of reviews fall into this
Knowledge Area (which does form something of
a “catch-all”). We have grouped these by Knowl-
edge Unit (KU), although we should note that
only three of the five knowledge units were cov-
ered. There were no reviews classified as con-
figuration management (PRO.cm) or evolution
processes and activities (PRO.evo). Table B24
onward provide the details for this set of reviews.

With so many reviews being classified as be-
longing to this KA, it is difficult to provide a con-
cise and general summary of what is useful for
practice and teaching. Many of the reviews clas-
sified against project planning and tracking offer
quite specific and detailed advice that is highly
relevant to both teaching and practice. In con-
trast, for process concepts many of the findings
tend to be more in the nature of observations,
with process implementation coming somewhere
between these. Overall though, this set of reviews
do provide a fertile source of experience for others
to draw upon.

7. Discussion

We first consider what the outcomes from our
study tell us about the knowledge available from

this set of systematic reviews, and what the limita-
tions on this knowledge are. We go on to consider
how this knowledge might be used to inform teach-
ing (and hence in the longer term, practice) by
looking at how such knowledge is used in other dis-
ciplines, and hence what lessons might be learned.
We then consider the threats to validity for this
study, since we need to determine how trustworthy
our findings are, both in terms of the selection of
the systematic reviews, and also the findings and
recommendations that we extracted from them.
Finally, we consider how such knowledge can be
gathered more effectively and completely in the
future, and in particular, how it might be possible
to avoid having to do this retrospectively (and
laboriously), as in this tertiary study.

7.1. How good is the knowledge available
from systematic reviews?

In answering RQ1, we can identify 49 (out of 276)
systematic reviews that provide knowledge about
software engineering practice and hence might be
used to support teaching about software engineer-
ing. The systematic reviews that we identified also
span a range of topics when matched against the
SEEK, although they are not evenly distributed
between the Knowledge Areas. The extent, qual-
ity, and form of the knowledge is also unevenly
distributed, with some reviews providing find-
ings that provide quite useful information about
practice, while others are rather less specific.

In addition, few reviews provided any indi-
cation of the strength of evidence available to
support their findings from the primary studies.
Examination of the 49 reviews shows that only two
of them (#130 and #239) made use of the GRADE
approach to assess the strength of evidence for
their findings [84], as recommended in [23]. A few
of the others (#008, #022, #039, #197, #215) did
also make assessments through unspecified means.
Where provided, such assessments tend to indicate
a strength of evidence for recommendations as
being “low” (#130 and #239) or “modest” (#008).
However, as noted in the revised guidelines on
conducting systematic reviews in software engi-
neering [29], empirical software engineers “must
often make do with much weaker forms of study”
(than those working in other disciplines).

24 David Budgen et al.

It is also worth noting that some of the more
qualitative reviews, such as those identifying “fac-
tors relevant to the adoption of X”, are unsuited
to the use of an approach such as GRADE. A num-
ber of these did provide tables that listed and
enumerated the primary studies that identified
a particular factor as being significant, with ex-
amples of this occurring in #54, #161 and #205.

To address this question, we have identified
the set of systematic reviews which we consider
offer both useful and usable guidance about prac-
tice. To select these, each of the authors was
asked to rate each review, using the information
presented in Appendix B, and assigning one of
the following values to it.

“y” if the review was one that could be read-
ily used as an example when teaching;
“p” for reviews that might be used;
“x” if the review should not be used as an
example.
In performing the rating, each author was

asked to consider the following three factors.
1. The usefulness of the review: such that its

outcomes relate to a reasonably “mainstream”
topic that might be included in an introduc-
tory course on software engineering.

2. The usability of the review’s findings, whereby
these can provide some element of guidance
about what a software engineer might be ad-
vised to do in practice.

3. The quality of the review, largely based upon
the DARE score. It was suggested that a score
of ≥ 3.5 would be acceptable, while also bear-
ing in mind that earlier reviews often had less
conventional reporting structures.

Each review was considered on its own merit,
and there was no constraint upon how many
reviews could be given a particular rating. (The
number of “y” ratings employed ranged between
10 and 17.)

Since our teaching experiences stemmed from
teaching different courses and we had different
interests within software engineering, we did not
expect to obtain close agreement from this process.
So a “score” for each review was computed by as-
signing each “y” to a value of 1.0, a “p” as 0.5, and
an “x” as 0.0, and then summing the four values.

Table 12 shows the index values for the
top-scoring reviews that emerged from this pro-

cess. We have also indicated the type of knowledge
provided by these reviews, where a single value
was available, and provided a summary of their
findings together with a reference to the Table in
the appendix where further details can be found.
While not too much weight should be placed upon
this relatively informal exercise, it is interesting
to note the predominance of reviews categorised
as VAV and PRO, as well as of reviews with
more “structured” findings in the form of lists
or comparisons. It does also indicate that, while
all 49 reviews were considered relevant enough
to be included in the tertiary study, few of them
achieved this quite basic quality threshold for the
three criteria, with “good” studies available for
only a few Knowledge Areas.

So, to answer the question posed in the head-
ing for the subsection (and RQ2), we can con-
clude that while suitable evidence-based material
is becoming available for use by teachers, only
a rather disappointingly small proportion of sys-
tematic reviews appear to have findings that can
readily be used.

However, there is one quite important caveat
that should be mentioned here. In the above
exercise we only considered direct use of this
material in teaching on introductory courses, en-
hancing what is covered in the textbooks. There
are however other ways of using this knowledge,
such as in course design (for example, using the
findings on the unsuitability of design patterns
for use by novices to determine how this topic
would be covered in a course). There is also scope
to use the findings differently on more advanced
courses, including postgraduate ones, or with
individual student projects. All of the 49 reviews
are viewed as having findings that are potentially
useful, but these may need to be used in different
ways. We address this issue further in the next
sub-section.

7.2. Using the findings to support
teaching and practice

Having identified a set of systematic reviews that
contain knowledge that is useful for teaching and
practice, this raises the question of how to use
this material? To help answer this we looked at
how other disciplines make use of such material.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 25

Table 12. Findings considered most useful and usable

Score Review KA.KU Table Knowledge Summary

4.0

#134 REQ.er B20 comparison

Examines knowledge elicitation techniques. Unstruc-
tured interviews generally perform as well as or
better than other forms such as introspective tech-
niques when considering effectiveness, efficiency and
completeness.

#236 PRO.imp B40 list of factors

Assesses impact of global dispersion for development
process and product quality. Lists key effects and
recommends issues to consider for such projects.

3.5

#197 VAV.fnd B10 comparison
Assesses different metrics for their usefulness in
fault prediction. Recommendations relate to project
characteristics.

#84 PRO.imp B34 list of factors Provides guidance on when to employ pair program-
ming.

#241 PRO.imp B42 list of factors
Analyses how far system success is related to user
involvement in development and the forms that this
takes.

3.0

#82 VAV.tst B8 Assesses the effectiveness of test selection techniques
for regression testing.

#205 VAV.fnd B11 Examines studies of test-driven development
(TDD).

#39 PRO.con B24 experience Identifies the benefits of software reuse based upon
its use in industrial studies.

#217 PRO.imp B38
Looks at the consequences of user participation and
involvement (UPI) in terms of project success in
industry projects.

Studies in education and healthcare have in-
vestigated how students and practitioners under-
stand and engage with the findings from em-
pirical research. This is relevant for software
engineering, since using the material from this
study would require familiarity with evaluation
practices and empirical studies.

In education, a ‘rapid evidence review’ inves-
tigated what is known about effective approaches
to school and teacher engagement with evidence
[85]. The report points out that knowledge mobil-
isation, the process of making research findings
more accessible and usable requires a supportive
infrastructure, including collaborations between
researchers and teaching professionals, interme-
diaries to translate evidence into tools and pro-
fessional bodies that provide leadership on the
use of evidence in education. Also, the review

suggests that evidence needs to be contextualised
and presented in clear and structured summaries
of effective approaches. This point is also made
by Goldacre3, who emphasises the need for better
support for the dissemination of research findings,
as well as by others, in relation to evidence based
healthcare, where structured abstracts and plain
language summaries are advocated [86, 87].

As well as learning the skills necessary to
acquire, appraise and apply evidence, students
and trainees can also benefit from acquiring an
awareness of ways to use this knowledge to bring
about change at the organisational level [88].
A discussion of this is beyond the scope of this
paper, however, desirable skills might include be-
ing able to identify where changes to guidelines
or to established practice are needed and where
change would be worthwhile.

3https://www.gov.uk/government/news/building-evidence-into-education

https://www.gov.uk/government/news/building-evidence-into-education

26 David Budgen et al.

The importance of leadership in enhancing
engagement with, and use of, research findings
is also a key message from a recent study on
evidence-informed teaching practice, published
by the UK’s Department of Education [89].

Viewed overall though, there seems to be little
guidance available on how to provide advice for
teachers about using empirical material such as
the knowledge-set from these systematic reviews
to support the way that software engineering
is taught. Clearly, as such knowledge accumu-
lates, this will present an increasingly important
pedagogical research question to be pursued.

7.3. Limitations of this study

We can identify a number of limitations upon the
outcomes from our tertiary study that stem from
the way that we performed the various elements
of the study. We discuss these here, together
with any factors that may help to alleviate their
effects.
1. One limitation is the way that we selected

the secondary studies (Dataset1 + Dataset2).
Since we were performing a mapping study,
we did not attempt to find all of the sys-
tematic reviews that were published during
the period covered by our tertiary study, and
confined ourselves to those reviews identified
in the three broad tertiary studies and then
the five software engineering journals, while
explicitly excluding any studies published as
conference papers. We did however conduct
a broad electronic search as a check that we
were not missing any significant source of sys-
tematic reviews, and we should observe that
eight of the 11 reviews included in Dataset1
were published in the five journals that we
used in the later part of the search.
Since we were investigating the use of system-
atic reviews in teaching, there was the pos-
sibility that relevant reviews could be found
in educational journals related to software
topics. A check of the papers published in
ACM Transactions on Computer Education
(TOCE) and IEEE Transactions on Educa-
tion (ToE) for the period 2004–2018 inclusive,
identified only five systematic reviews. All of

these were addressing pedagogical knowledge
rather than “topic’ knowledge and we could
not identify any papers related to the use of
evidence-based material in teaching.

2. In our original research protocol we selected
a cut-off date for inclusion as the end of 2015.
Because the processes of inclusion/exclusion
and data extraction were complicated by the
heterogenous nature of the selected set of
systematic reviews, and as changes in circum-
stances also meant that two members of the
team would not be available for this task, we
felt that we could not ensure that any ex-
tension would be consistent with the original
study, particularly regarding the interpreta-
tion for Inc-2 and Inc-3. As explained in §1 we
also performed and published two other anal-
yses on this dataset, further delaying the pro-
duction of this paper. There is therefore the
possibility that in the time following our cut-off
date and submitting this paper, there may
have been some changes in the way that system-
atic reviews have been reported, and obviously,
new topics will have been covered. Informally,
based upon our experiences over this period re-
viewing systematic reviews as well as perform-
ing some informal monitoring of journal con-
tents, we have not observed any developments
that would have significantly affected our find-
ings. It is also possible that the balance of sys-
tematic reviews across the SEEK KAs might
have changed. However, topics such as design
and requirements elicitation still continue to
present some real challenges to conducting rig-
orous primary studies [90], limiting the scope
to perform systematic reviews for those KAs.

3. When calculating the DARE score for a review,
our definition in Table 3 does not address the
question of whether or not the search con-
ducted by the reviewers was adequate for the
purpose of the systematic review. While it
would be desirable to make such an assessment,
we did not feel our knowledge about the re-
search areas related to the review topics would
allow us to do this in a consistent manner.

4. The selection process that we used to iden-
tify relevant systematic reviews did require
an element of human interpretation, includ-

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 27

ing for inclusion criterion Inc-2 (relevance to
introductory teaching). We drew upon our
experience of teaching software engineering to
determine whether a review addressed a suit-
able topic, as well as using randomly allo-
cated pairs of team members for all aspects
of this part of the process, and discussing our
decisions.

5. Further interpretation was required for the
purpose of identifying the findings and recom-
mendations embodied in a review (criterion
Inc-3). The quality of reporting did not al-
ways assist with this [10], so as a check, we did
seek to consult the original authors wherever
possible. We received responses from approx-
imately half of these, with no-one suggesting
other than minor rewording or clarification,
which suggests that we managed to perform
this task fairly well.

6. Our supplementary data extractions were per-
formed by two of the authors, partly to ensure
consistency of interpretation. For our inter-
pretation of the synthesis methods adopted
in the 49 systematic reviews, we were able to
check a proportion of our decisions against
a baseline study [16].

7. For categorisation of the studies against the
SEEK we again used two members of the
team, to provide consistency in our alloca-
tions. Since many systematic reviews span
different knowledge areas, this is very much
an issue of interpretation, and we would cer-
tainly advise anyone seeking knowledge about
a topic to check that whether it appears as an
element in other studies (particularly those
categorised as PRO).

8. Our informal assessment of how “useful” re-
views were (summarised in Table 12) used
a simple ranking procedure as described in
Section 7.1. However, our individual assess-
ments, as indicated by the different numbers
of “y” rankings used by each assessor, were
inevitably influenced both by our own teach-
ing experience (as we note) and also possibly
by our familiarity with the topics of specific
reviews.

9. We were unable to obtain assessments of the
strength of evidence for the findings from

most of the reviews. Where an assessment was
available, the findings were generally rated
as being based on low or moderate strength
of evidence.

Hence there may be some variation in consistency
between different elements of our overall dataset,
particularly as regards the confidence that we can
place in the findings from each systematic review.

7.4. The way ahead?

Conducting a tertiary study of this form requires
quite extensive interpretation of the reported
findings from a heterogeneous set of systematic
reviews. So an obvious question is whether this
knowledge, assuming it is considered to be useful
to the community, can be extracted from the re-
ports of systematic reviews by other (and better)
means in the future. In particular it would be
better if this avoided the need to perform studies
such as this one that involve retrospective analy-
sis, both because the distance from the original
study means that much of the knowledge about
how it was done may not be available, and also
because the original systematic reviewers can be
expected to possess greater expertise about the
topic of a review, as well as being better able to
assess the quality of the evidence [90].

A relatively simple and efficacious mecha-
nism for enabling this does exist, and is already
used in other disciplines [91]. In healthcare re-
search where the needs of policy-making may
go alongside those of practice, this consists of
requiring that a systematic review and its find-
ings are reported as a set of documents with
different lengths and levels of abstraction, in
order to meet different needs. The Canadian
Health Services Research Foundation describe
this as a 1-3-25 format, consisting of: a one-page
summary of “take-home” messages; a three-page
executive summary; and a more detailed report.
Like any such mechanism this is not infallible
of course, and as Oliver and Dickson comment:
“some teams were better than others at producing
a policy-friendly report” [92].

Adapting this model to the needs of soft-
ware engineering appears to be quite feasible. At
its most simple, it would consist of requiring,

28 David Budgen et al.

as a condition of publication, that authors also
provide a one-page summary of their findings,
worded in a form that made them readily accessi-
ble to practitioners and students, and including
an estimate of the strength of the supporting
evidence. Appendix A provides two examples of
a one-page summary to illustrate this concept.
The first is a summary of this tertiary study,
while the second is a summary of a systematic
review from our set of 49, for which one of us
was an author (#154). When used for healthcare
reviews, the single page often consists of a brief
summary of the purpose of a study followed by
a set of bullets that summarise the key findings,
and we have largely adopted this model. However,
for teaching purposes this may need to be supple-
mented by a more effective visual structure such
as the one proposed for evidence briefings [93],
and our choice of layout has also been influenced
by that model.

There are obviously a number of practical
issues to address in creating such a mechanism
(including obtaining the cooperation of journal
editors). It would require reporting guidelines for
authors (we already have a set of these in [10]);
a means of checking that the summary was ap-
propriate; and (preferably) some central means of
indexing the summaries. But in exchange, adopt-
ing such a system has the potential to make it likely
that future reviews had findings that were trans-
lated for practice by the people most familiar with
the material. Prospective reviewers would also be
able to check more easily if there was an existing
systematic review addressing their planned topic.

8. Reflections and conclusions

Our tertiary mapping study identified 49 system-
atic reviews, published in the period 2004–2015,
that contained findings and recommendations
considered to be useful for teaching about soft-
ware engineering (RQ1). Within these, we were
able to identify a smaller number that did provide
guidance and information that could be used to
help make “effective choices” (RQ2).

However, it is evident that useful findings are
available from only a small proportion of the

published systematic reviews that we surveyed.
There may be many reasons why this is so: one of
which may simply be that in software engineering
the role of the systematic review has so far been
mainly to be used as a tool to aid research and to
provide a useful training exercise and preparation
for PhD students.

This underlying emphasis upon research may
also explain many of the quality issues that have
been identified regarding the conduct and report-
ing of systematic reviews in software engineering.
Some may well arise because there is therefore
no requirement to report to an external sponsor,
others because the reviews are sometimes con-
ducted by relatively inexperienced researchers.
In contrast, other disciplines tend to use informa-
tion specialists to undertake much of the work
involved in searching and selecting material [15].

Following on from these conclusions, empiri-
cal researchers and others might wish to consider
how researchers can better provide information
about the outcomes from systematic reviews, so
that this is of greater use to others. From this
study, and from the other analyses we have per-
formed upon our data, we can suggest three mech-
anisms that could contribute towards achieving
this aim.
1. Providing better reporting of the conduct of

a systematic review. In our analysis of report-
ing quality [10] we identify 12 lessons about
reporting, and suggest a checklist that should
be used by reviewers (and authors). Better
reporting can help to establish the provenance
for the findings from a review, and so help
justify its publication.

2. Facilitating better reporting of the findings
from a study. In part this overlaps with item 1
above, in that the reporting of a review should
make its findings clear. This was only the
case for fewer than one in five of the 276 sys-
tematic reviews that we examined, and even
for the 49 included in the final set, we often
found it difficult to extract the findings and
recommendations, as these were sometimes
spread over different sections of a paper. In
addition, as discussed in the previous section,
making the provision of a summary of findings
a pre-requisite for publication will also help

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 29

to make the findings more widely and readily
available to others. This is clearly a concern
that is also shared by other disciplines, hence
the emphasis upon such mechanisms as the
1-3-25 model.

3. Creating the means to provide effective cu-
racy of the knowledge about and from sys-
tematic reviews, particularly as the number
of these increases. As a newcomer to the use
of systematic reviews, software engineering
has so far not embraced the idea of creat-
ing anything equivalent to the Cochrane and
Campbell collaborations that oversee and fa-
cilitate the conduct of systematic reviews in
clinical medicine and social science respec-
tively. These bodies play a number of roles,
including providing public information about
relevant findings from systematic reviews.
We see the first two mechanisms as needing

to be adopted in collaboration with those jour-
nals that publish systematic reviews. And all
three may need the involvement of the profes-
sional bodies. What is clear from our findings
though, is that without such interventions, sys-
tematic reviews in software engineering will very
likely remain a tool used mainly for academic
research rather than, as in other disciplines, form-
ing a valuable (and valued) source of knowledge
for software developers, teachers, and researchers.

Acknowledgements

Our thanks to Professor Barbara Kitchenham for
advice and observations, as well as for conducting
independent electronic searching for publications
that we might have missed. We would like to
thank the authors of the systematic reviews we
studied, especially those who were good enough
to check the accuracy of our extracted conclu-
sions and to pass comment on these. We are also
grateful to Professor Steve Higgins for inform-
ing us about current ideas about evidence-based
teaching in education. We also thank the anony-
mous reviewers for their comments and added
insight.

References

[1] P. Naur and B. Randell, Eds., Software Engi-
neering: Report on a Conference Sponsored by
the NATO Science Committee. NATO, 1968.

[2] P. Bourque and R.E. Fairley, Eds., Guide to the
Software Engineering Body of Knowledge (SWE-
BOK(R)): Version 3.0, 3rd ed. IEEE Computer
Society Press, 2014.

[3] M. Ardis, D. Budgen, G.W. Hislop, J. Offutt,
M. Sebern, and W. Visser, “SE2014: Curriculum
Guidelines for undergraduate degree programs in
software engineering,” IEEE Computer, Novem-
ber 2015, pp. 106–109.

[4] B. Kitchenham, D. Budgen, P. Brereton,
M. Turner, S. Charters, and S. Linkman,
“Large-Scale Software Engineering Questions –
expert opinion or empirical evidence?” IET Soft-
ware, Vol. 1, No. 5, 2007, pp. 161–171.

[5] P. Devanbu, T. Zimmermann, and C. Bird, “Be-
lief and evidence in empirical software engineer-
ing,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE).
ACM Press, 2016, pp. 108–119.

[6] E.M. Rogers, Diffusion of Innovations, 5th ed.
Free Press, New York, 2003.

[7] C. Theisen, M. Dunaiski, L. Williams, and
W. Visser, “Software engineering research at the
international conference on software engineer-
ing in 2016,” ACM Software Engineering Notes,
Vol. 42, No. 4, 2017, pp. 1–10.

[8] B. Kitchenham, T. Dyb̊a, and M. Jørgensen,
“Evidence-based software engineering,” in Pro-
ceedings of the 26th International Conference on
Software Engineering (ICSE). IEEE Computer
Society Press, 2004, pp. 273–281.

[9] D. Budgen, S. Drummond, P. Brereton, and
N. Holland, “What scope is there for adopt-
ing evidence-informed teaching in software en-
gineering?” in Proceedings of the 34th Inter-
national Conference on Software Engineering
(ICSE). IEEE Computer Society Press, 2012,
pp. 1205–1214.

[10] D. Budgen, P. Brereton, S. Drummond, and
N. Williams, “Reporting systematic reviews:
Some lessons from a tertiary study,” Informa-
tion and Software Technology, Vol. 95, 2018,
pp. 62–74. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584916303548

[11] D. Budgen, P. Brereton, N. Williams, and
S. Drummond, “The contribution that empirical
studies performed in industry make to the findings

http://www.sciencedirect.com/science/article/pii/S0950584916303548
http://www.sciencedirect.com/science/article/pii/S0950584916303548

30 David Budgen et al.

of systematic reviews: A tertiary study,” Infor-
mation and Software Technology, Vol. 94, 2018,
pp. 234–244. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584917303798

[12] J. Gurevitch, J. Koricheva, S. Nakagawa, and
G. Stewart, “Meta-analysis and the science
of research synthesis,” Nature, Vol. 555, 2018,
pp. 175–182.

[13] E. Barends and D.M. Rousseau, Evidence-Based
Management: How to use evidence to make better
organizational decisions. Kogan Page, 2018.

[14] M. Petticrew and H. Roberts, Systematic Re-
views in the Social Sciences A Practical Guide.
Blackwell Publishing, 2006.

[15] A. Booth, D. Papaioannou, and A. Sutton, Sys-
tematic Approaches to a Successful Literature
Review. Sage Publications, Ltd., 2012.

[16] D.S. Cruzes and T. Dyb̊a, “Research synthesis
in software engineering: A tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 5,
2011, pp. 440–455.

[17] S. Martinez-Fernandez, P.S.M. dos Santos,
G.P. Ayala, X. Franch, and G.H. Travassos, “Ag-
gregating empirical evidence about the benefits
and drawbacks of software reference architec-
tures,” in Proceedings of 2015 the Conference on
Empirical Software Engineering and Measure-
ment, 2015, pp. 154–163.

[18] D. Budgen, J. Bailey, M. Turner, B. Kitchenham,
P. Brereton, and S. Charters, “Cross-domain in-
vestigation of empirical practices,” IET Software,
Vol. 3, No. 5, 2009, pp. 410–421, eASE special
section.

[19] T.V. Ribeiro, J. Massollar, and G.H. Travassos,
“Challenges and pitfalls on surveying evidence in
the software engineering technical literature: an
exploratory study with novices,” Empirical Soft-
ware Engineering, Vol. 23, 2018, pp. 1594–1663.

[20] U. Abelein and B. Paech, “Understanding the
influence of user participation and involvement
on system success – A systematic mapping study,”
Empirical Software Engineering, Vol. 20, 2015,
pp. 28–81.

[21] D. Smite, C. Wohlin, T. Gorschek, and R. Feldt,
“Empirical evidence in global software engineer-
ing: a systematic review,” Empirical Software
Engineering, Vol. 15, 2010, pp. 91–118.

[22] O. Dieste and N. Juristo, “Systematic review and
aggregation of empirical studies on elicitation
techniques,” IEEE Transactions on Software En-
gineering, Vol. 37, No. 2, 2011, pp. 283–304.

[23] T. Dyb̊a and T. Dingsøyr, “Strength of evi-
dence in systematic reviews in software engineer-
ing,” in Proceedings of International Symposium

on Empirical Software Engineering and Metrics
(ESEM), 2008, pp. 178–187.

[24] M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-
nology evaluations,” Empirical Software Engi-
neering, Vol. 16, 2011, pp. 365–395.

[25] B. Kitchenham, P. Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman, “System-
atic literature reviews in software engineering
– a systematic literature review,” Information
and Software Technology, Vol. 51, No. 1, 2009,
pp. 7–15.

[26] B. Kitchenham, R. Pretorius, D. Budgen, P. Br-
ereton, M. Turner, M. Niazi, and S. Linkman,
“Systematic literature reviews in software engi-
neering – a tertiary study,” Information and
Software Technology, Vol. 52, 2010, pp. 792–805.

[27] F.Q. da Silva, A.L. Santos, S. Soares,
A.C.C. França, C.V. Monteiro, and F.F. Maciel,
“Six years of systematic literature reviews in soft-
ware engineering: An updated tertiary study,”
Information and Software Technology, Vol. 53,
No. 9, 2011, pp. 899–913.

[28] M. Leitner and S. Rinderle-Ma, “A systematic
review on security in process-aware information
systems,” Information and Software Technology,
Vol. 56, No. 3, 2014, pp. 273–293.

[29] B.A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-Based Software Engineering and Sys-
tematic Reviews, Innovations in Software Engi-
neering and Software Development. CRC Press,
2015.

[30] T. Dyb̊a, B. Kitchenham, and M. Jörgensen,
“Evidence-based software engineering for practi-
tioners,” IEEE Software, Vol. 22, No. 1, 2005,
pp. 58–65.

[31] B. Kitchenham, “Procedures for undertaking sys-
tematic reviews,” Joint Technical Report Keele
and Durham Universities, Tech. Rep., 2004.

[32] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University and Durham
University Joint Report, Tech. Rep., 2007.

[33] P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from ap-
plying the systematic literature review process
within the software engineering domain,” Jour-
nal of Systems and Software, Vol. 80, No. 4, 2007,
pp. 571–583.

[34] J. Biolchini, P. Mian, A. Natali, and G. Travas-
sos, “Systematic review in software engineering,”
COPPE/UFRJ, Tech. Rep. ES679/05, 2005.

[35] J.L. Fleiss, “Measuring nominal scale agree-
ment among many raters,” Psychological Bul-
letin, Vol. 76, 1971, pp. 378–382.

http://www.sciencedirect.com/science/article/pii/S0950584917303798
http://www.sciencedirect.com/science/article/pii/S0950584917303798

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 31

[36] M. Banerjee, M. Capozzoli, L. McSweeney, and
D. Sinha, “Beyond kappa: A review of inter-
rater agreement measures,” Canadian Journal
of Statistics, Vol. 27, No. 1, 1999, pp. 3–23.

[37] M. Staples and M. Niazi, “Systematic re-
view of organizational motivations for adopt-
ing CMM-based SPI,” Information and Software
Technology, Vol. 50, 2008, pp. 605–620.

[38] S. Beecham, N. Baddoo, T. Hall, H. Robinson,
and H. Sharp, “Motivation in software engineer-
ing: A systematic literature review,” Information
and Software Technology, Vol. 50, No. 9–10, 2008,
pp. 860–878.

[39] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and
H. Robinson, “Models of motivation in software
engineering,” Information and Software Technol-
ogy, Vol. 51, 2009, pp. 219–233.

[40] H. Petersson, T. Thelin, P. Runeson, and
C. Wohlin, “Capture-recapture in software in-
spections after 10 years research – theory, evalu-
ation and application,” Journal of Systems and
Software, Vol. 72, 2004, pp. 249–264.

[41] W. Azfal, R. Torkar, and R. Feldt, “A systematic
review of search-based testing for non-functional
system properties,” Information and Software
Technology, Vol. 51, 2009, pp. 957–976.

[42] E. Engström, P. Runeson, and M. Skoglund,
“A systematic review on regression test selection
techniques,” Information and Software Technol-
ogy, Vol. 52, 2010, pp. 14–30.

[43] M. Jørgensen, “Forecasting of software develop-
ment work effort: Evidence on expert judgement
and formal models,” Int. Journal of Forecasting,
Vol. 23, No. 3, 2007, pp. 449–462.

[44] M. Jørgensen, “Evidence-based guidelines for
assessment of software development cost uncer-
tainty,” IEEE Transactions on Software Engi-
neering, Vol. 31, No. 11, 2005, pp. 942–954.

[45] P. Mohagheghi and R. Conradi, “Quality, pro-
ductivity and economic benefits of software reuse:
A review of industrial studies,” Empirical Soft-
ware Engineering, Vol. 12, 2007, pp. 471–516.

[46] F.J. Pino, F. Garcia, and M. Piattini, “Software
process improvement in small and medium soft-
ware enterprises: A systematic review,” Software
Quality Journal, Vol. 16, 2008, pp. 237–261.

[47] J. Hannay, T. Dyb̊a, E. Arisholm, and D. Sjøberg,
“The effectiveness of pair programming. A meta
analysis,” Information and Software Technology,
Vol. 51, No. 7, 2009, pp. 1110–1122.

[48] J.S. Persson, L. Mathiassen, J. Boeg, T.S. Mad-
sen, and F. Steinson, “Managing risks in dis-
tributed software projects: An integrative frame-
work,” IEEE Transactions on Engineering Man-
agement, Vol. 56, No. 3, 2009, pp. 508–532.

[49] A.H. Ghapanchi and A. Aurum, “Antecedents
to IT personnel’s intentions to leave: A system-
atic literature review,” Journal of Systems and
Software, Vol. 84, 2011, pp. 238–249.

[50] I. Steinmacher, M.A.G. Silva, M.A. Gerosa, and
D.F. Redmiles, “A systematic literature review
on the barriers faced by newcomers to open
source software projects,” Information and Soft-
ware Technology, Vol. 59, No. 67-85, 2015.

[51] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint,
“On evaluating commercial cloud services: A sys-
tematic review,” Journal of Systems and Soft-
ware, Vol. 86, 2013, pp. 2371–2393.

[52] D. Radjenović, M. Heričko, R. Torkar, and
A. Živkovič, “Software fault prediction met-
rics: A systematic literature review,” Informa-
tion and Software Technology, Vol. 55, 2013,
pp. 1397–1418.

[53] H. Munir, M. Moayyed, and K. Peterson, “Con-
sidering rigor and relevance when evaluating test
driven development: A systematic review,” Infor-
mation and Software Technology, Vol. 56, 2014,
pp. 375–394.

[54] E. Kupiainen, M.V. Mäntylä, and J. Itkonen,
“Using metrics in agile and lean software de-
velopment – a systematic literature review of
industrial studies,” Information and Software
Technology, Vol. 62, 2015, pp. 143–163.

[55] B.J. Williams and J.C. Carver, “Characteriz-
ing software architecture changes: A systematic
review,” Information and Software Technology,
Vol. 52, No. 1, 2010, pp. 31–51.

[56] M.S. Ali, M.A. Babar, L. Chen, and K.J. Stol,
“A systematic review of comparative evidence
of aspect-oriented programming,” Information
and Software Technology, Vol. 52, No. 9, 2010,
pp. 871–887.

[57] C. Zhang and D. Budgen, “What do we know
about the effectiveness of software design pat-
terns?” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 5, 2012, pp. 1213–1231.

[58] L.B. Lisboa, V.C. Garcia, D. Lucrédio,
E.S. de Almeida, S.R. de Lemos Meira, and
R.P. de Mattos Fortes, “A systematic review
of domain analysis tools,” Information and Soft-
ware Technology, Vol. 52, No. 1, 2010, pp. 1–13.

[59] M. Turner, B. Kitchenham, P. Brereton, S. Char-
ters, and D. Budgen, “Does the technology ac-
ceptance model predict actual use? A system-
atic literature review,” Information and Software
Technology, Vol. 52, No. 5, 2010, pp. 463–479.

[60] T.B.C. Arias, P. van der Spek, and P. Avgeriou,
“A practice-driven systematic review of depen-
dency analysis solutions,” Empirical Software
Engineering, Vol. 16, 2011, pp. 544–586.

32 David Budgen et al.

[61] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, “A systematic literature review on
fault prediction performance in software engi-
neering,” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 6, 2012, pp. 1276–1304.

[62] C. Pacheco and I. Garcia, “A systematic litera-
ture review of stakeholder identification methods
in requirements elicitation,” Journal of Systems
and Software, Vol. 85, 2012, pp. 2171–2181.

[63] S. Tiwari and A. Gupta, “A systematic litera-
ture review of use case specifications research,”
Information and Software Technology, Vol. 67,
2015, pp. 128–158.

[64] R. Jabangwe, J. Borstler, D. Smite, and
C. Wohlin, “Empirical evidence on the link be-
tween object-oriented measures and external
quality attributes: a systematic literature review,”
Empirical Software Engineering, Vol. 20, 2015,
pp. 640–693.

[65] K. Peterson, “Measuring and predicting soft-
ware productivity: A systematic map and review,”
Information and Software Technology, Vol. 53,
2011, pp. 317–343.

[66] J. Dı́az, J. Pérez, P.P. Alarcón, and J. Garbajosa,
“Agile product line engineering – A systematic
literature review,” Software – Practice and Ex-
perience, Vol. 41, 2011, pp. 921–941.

[67] Y. Rafique and V. Misic, “The effects of
test-driven development on external quality and
productivity: A meta-analysis,” IEEE Transac-
tions on Software Engineering, Vol. 39, No. 6,
2013.

[68] A.M. Magdaleno, C.M.L. Werner, and
R.M. de Araujo, “Reconciling software de-
velopment models: A quasi-systematic review,”
Journal of Systems and Software, Vol. 85, 2012,
pp. 351–369.

[69] N.B. Ali, K. Peterson, and C. Wohlin, “A sys-
tematic literature review on the industrial use of
software process simulation,” Journal of Systems
and Software, Vol. 97, 2014, pp. 65–85.

[70] S.U. Khan, M. Niazi, and R. Ahmad, “Barriers
in the selection of offshore software development
oursourcing vendors: An exploratory study using
a systematic literature review,” Information and
Software Technology, Vol. 53, 2011, pp. 693–706.

[71] R. Giuffrida and Y. Dittrich, “Empirical studies
on the use of social software in global software
development – A systematic mapping study,”
Information and Software Technology, Vol. 55,
2013, pp. 1143–1164.

[72] N. Paternoster, C. Giardino, M. Unterkalm-
steiner, and T. Gorschek, “Software development

in startup companies: A systematic mapping
study,” Information and Software Technology,
Vol. 56, 2014, pp. 1200–1218.

[73] O. Al-Baik and J. Miller, “The Kanban approach
between agility and leanness: a systematic re-
view,” Empirical Software Engineering, Vol. 20,
2015, pp. 1861–1897.

[74] M. Zarour, A. Abran, J.M. Desharnais, and
A. Alarifi, “An investigation into the best prac-
tices for the successful design and implementa-
tion of lightweight software process assessment
methods: A systematic literature review,” Jour-
nal of Systems and Software, Vol. 101, 2015,
pp. 180–192.

[75] A. Nguyen-Duc, D.S. Cruzes, and R. Conradi,
“The impact of global dispersion on coordina-
tion, team performance and software quality – A
systematic literature review,” Information and
Software Technology, Vol. 57, 2015, pp. 277–294.

[76] F.S. Silva, F.S.F. Soares, A.L. Peres,
I.M. de Azevedo, A.P.L.F. Vasconcelos,
F.K. Kamei, and S.R. de Lemos Meira, “Using
CMMI together with agile software development:
A systematic review,” Information and Software
Technology, Vol. 58, No. 20-43, 2015.

[77] M. Bano and D. Zowghi, “A systematic review
on the relationship between user involvement
and system success,” Information and Software
Technology, Vol. 58, No. 148-169, 2015.

[78] A. Idri, F.A. Amazal, and A. Abran, “Anal-
ogy-based software development effort estima-
tion: A systematic mapping and review,” Infor-
mation and Software Technology, Vol. 58, 2015,
pp. 206–230.

[79] M. Brhel, H. Meth, A. Maedche, and K. Werder,
“Exploring principles of user-centered agile soft-
ware development: A literature review,” Infor-
mation and Software Technology, Vol. 61, 2015,
pp. 163–181.

[80] D. Heaton and J.C. Carver, “Claims about the
use of software engineering practices in science:
A systematic literature review,” Information and
Software Technology, Vol. 67, 2015, pp. 207–219.

[81] R. Rabiser, P. Grunbacher, and D. Dhungana,
“Requirements for product derivation support:
Results from a systematic literature review and
an expert survey,” Information and Software
Technology, Vol. 52, 2010, pp. 324–346.

[82] E. Tüzün, B. Tekinerdogan, M.E. Kalender, and
S. Bilgen, “Empirical evaluation of a decision
support model for adopting software product line
engineering,” Information and Software Technol-
ogy, Vol. 60, 2015, pp. 77–101.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 33

[83] H.A. Simon, “The structure of ill-structured
problems,” Artificial Intelligence, Vol. 4, 1973,
pp. 181–201.

[84] G.H. Guyatt, A.D. Oxman, G.E. Vist,
R. Kunz, Y. Falck-Ytter, P. Alonso-Coello,
and H.J. Schünemann, “GRADE: an emerging
consensus on rating quality of evidence and
strength of recommendations,” British Medical
Journal, Vol. 336, 2008, pp. 924–926.

[85] J. Nelson and C. O’Beirne, “Using evidence in
the classroom: What works and why?” National
Foundation for Educational Research (NFER),
Tech. Rep., 2014.

[86] S. Hopewell, A. Aisinga, and M. Clarke, “Bet-
ter reporting of randomized trials in biomedi-
cal journal and conference abstracts,” Journal
of Information Science, Vol. 34, No. 2, 2008,
pp. 162–173.

[87] S.E. Rosenbaum, C. Glenton, and A.D. Oxman,
“Summary-of-findings tables in Cochrane reviews
improved understanding and rapid retrieval of
key information,” Journal of Clinical Epidemiol-
ogy, Vol. 63, 2010, pp. 620–626.

[88] S. Malick, K. Das, and K.S. Khan, “Tips for
teaching evidence-based medicine in a clini-
cal setting: Lessons from adult learning the-
ory,” Journal of the Royal Society of Medicine,
Vol. 101, No. 11, 2008, pp. 536–543.

[89] M. Coldwell, T. Greany, S. Higgins, C. Brown,
B. Maxwell, B. Stiell, L. Stoll, B. Willis, and
H. Burns, “Evidence-informed teaching: an eval-
uation of progress in England,” Department for
Education, Tech. Rep., 2017.

[90] C.L. Goues, C. Jaspan, I. Ozkaya, M. Shaw, and
K.T. Stolee, “Bridging the Gap: From research
to practical advice,” IEEE Software, Vol. 35,
No. 5, 2018, pp. 50–57.

[91] J. Lavis, G. Permanand, A. Oxman, S. Lewin,
and A. Fredheim, “SUPPORT tools for
evidence-informed health policy-making (STP)
13: Preparing and using policy briefs to support
evidence-informed policymaking,” Health Re-
search Policy and Systems, Vol. 7, 2009, p. S13.

[92] S. Oliver and K. Dickson, “Policy-relevant sys-
tematic reviews to strengthen health systems:
models and mechanisms to support their produc-
tion,” Evidence and Policy, Vol. 12, No. 2, 2016,
pp. 235–259.

[93] B. Cartaxo, G. Pinto, E. Vieira, and S. Soares,
“Evidence Briefings: Towards a medium to trans-
fer knowledge from systematic reviews to practi-
tioners,” in Proceedings of the 2016 Conference
on Empirical Software Engineering and Measure-
ment (ESEM), 2016, pp. 1–10.

34 David Budgen et al.

Appendix A. Examples of a one-page summary

What support do systematic reviews
provide for evidence-informed teaching
about software engineering practice?--
Implications & Messages

Implications

Systematic reviews provide a rigorous way of
gathering together evidence obtained from
empirical studies. Since 2004 systematic reviews
have been used quite extensively by software
engineering researchers to examine a range of
software engineering practices and the use of
different technologies.

The findings from a systematic review provide
objective and unbiased knowledge about using a
practice, that can underpin advice to practitioners,
teachers and students, and which can help them
assess the likely benefits of adopting it in a
particular context.

Key Messages

● Systematic reviews can provide useful guidance for practice and for teaching about
practice that can take a range of forms, including:

 a digest of the experiences of others (for example, related to adopting a new
practice such as agile development);

 a checklist of the factors that should be considered when thinking of adopting a
new practice or technique;

 comparisons between different options, such as occur when identifying the most
dependably effective practice to use for requirements elicitation.

● Much of the guidance and knowledge provided by the systematic reviews was derived
from primary studies that involved observing how practising software engineers
performed tasks 'in the field'.

● Researchers need to provide their findings in a more 'end-user-friendly' form (such as
by using a one-page summary like this one) that also explains what the implications of
the findings are. This will help teachers, students and practitioners to identify those
messages that are useful to them.

● A characteristic of software engineering is that, unlike other disciplines, topics for study
using a systematic review are chosen by researchers themselves, rather than being
selected to meet the needs of practitioners, policy-makers or funding agencies.

● There is a need to provide readily-available indexing of the findings from systematic
reviews to assist end-users with finding material that they need. This would also help
researchers to identify where new systematic reviews, or updating of existing ones,
would be useful. We suggest that this is a role that the professional bodies such as
ACM could assist with, working in collaboration with journal editors.

Characteristics of our
systematic review

From 276 candidate systematic
reviews published up to the end
of 2015 we selected 49 that
provide knowledge that we
considered useful for teaching
and practice. For each of these
we describe:
● the topic;
● The number of primary

studies used (and the types
of these, when known);

● how the outcomes from the
primary studies were
synthesised;

● key findings relevant to
teaching and practice.

Figure A1. Example 1, summarising this tertiary study

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 35

What do we know about the Effectiveness
of Software Design Patterns?

Implications

Object-oriented design patterns offer a mechanism
for transferring experience about useful design
structures (knowledge schemas). Our study sought
to determine how extensively the popular GoF
(Gang of Four) patterns have been studied
empirically, and what might be learned from these
studies. It also looked at the consequences that
might arise from using patterns when designing
software applications.

Activities such as software design pose a challenge
for empirical studies because of their creative
nature. Partly because of this, only a small number
of studies involving design patterns were available.
In turn, these could only provide limited guidance
about the usefulness of the relatively few patterns
that have been the subject of multiple studies, and
were unable to provide clear guidance about when
it is appropriate to make use of specific design
patterns.

Key Messages

With regard to the effective use of OO design patterns:
● There is reasonably good support for the claim that using patterns can provide a

vocabulary that improves communication between developers and maintainers, at least,
when the way that the patterns have been used in the design is well-documented.

● There is no support for any claims that using patterns help novices learn about how to
design applications.

● It appears likely that the successful use of patterns is highly dependent upon both the
nature of individual patterns and the experience of the developers concerned. Simply
using patterns does not ensure good design, they have to be used appropriately.

And for the studies themselves:
● The primary studies that were available mainly focused upon studying the ease with

which applications created using patterns could be understood and modified, and only a
few examined issues related to the use of patterns to create new software.

● Many of the experimental studies used students as participants, which may well be
inappropriate, and overall the variations observed in the findings may arise because of
the complications of having a large number of confounding factors.

● We recommend that future empirical studies focus upon studying the use of specific
patterns, and avoid making use of student participants or asking participants to perform
small-scale tasks. We also suggest that case studies may be more suitable vehicles for
exploring the complex cognitive issues involved in using patterns.

Characteristics of our
systematic review

Our study identified 10 papers
(from 611 candidates) that
described 11 experimental
studies about the use of OO
design patterns described by
the GoF. A further seven
informal observational studies
were used to help interpret their
findings. We noted that:
● Only Composite, Observer

and Visitor had been
studied fairly extensively.

● Few other patterns had
been studied in more than
two primary studies.

● Eight of the 23 GoF patterns
had not been the subject of
any empirical evaluation.

● Case studies appear to
provide greater insight than
formal experiments.

Figure A2. Example 2, summarising paper #154

36 David Budgen et al.

Appendix B. The findings and recommendations from the reviews

Table B1. Details for Review categorised as FND: #52

Characteristic Values

1. Knowledge Unit FND.ec (Engineering Economics for software)
2. Title Systematic Review of Organizational Motivations for Adopting CMM-based SPI
3. Citation [37]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Gives counts of studies that identify different reasons.)
6. #Primary Studies 49 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Organisations adopted CMM based SPI mainly to improve product quality

and project performance but also to improve process management.
2. Satisfying customers was not a common reason for adopting CMM-based SPI.
3. The two most common process related reasons for adopting SPI were to make
processes more visible and measurable.

9. Recommendations None
10. Author Response The authors observed that meeting “customer demands” in the form of contrac-

tual requirement was a fairly major reason for adoption, rather than “customer
satisfaction”. They also observed that providing assurance for customers through
high ratings was a legitimate reason for recommending the adoption of CMM(I).

Table B2. Details for Reviews categorised as PRF: #54

Characteristic Values

1. Knowledge Unit (no specific KU)
2. Title Motivation in Software Engineering: A systematic literature review
3. Citation [38]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (Lists studies identifying specific motivators.)
6. #Primary Studies 79 (not described)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. The most frequently cited motivators relate to the “need to identify with the

task” (clear goals, personal interest, understanding the purpose of a task, how
it fits with the whole, job satisfaction, and working on an identifiable piece of
quality work). Having a clear career path and a variety of tasks is also found
motivating.
2. Learning, exploring new techniques and problem solving appear to be moti-
vating aspects of SE.
3. Indicators of demotivation were mainly turnover and absenteeism.
4. Key de-motivators are poor working conditions and lack of resources

9. Recommendations None
10. Author Response None

Table B3. Details for Reviews categorised as PRF: #118

Characteristic Values

1. Knowledge Unit (no specific KU)

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 37

Table B3 continued

Characteristic Values

2. Title Models of motivation in software engineering
3. Citation [39]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (See note for #54.)
6. #Primary Studies Same as #54 above.
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. A list of 21 motivators is provided in the paper.

2. A new model of motivation in SE (the MOCC model) is presented using the
results from the review reported in detail in paper #54)

9. Recommendations None
10. Author Response None

Table B4. Details for Reviews categorised as PRF: #135

Characteristic Values

1. Knowledge Unit PRF.psy (Group dynamics and psychology)
2. Title Antecedents to IT personnel’s intentions to leave: A systematic literature review
3. Citation [49]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 72 (all implicitly using industry participants)
7. Synthesis used Thematic Analysis
8. Findings “Publications reviewed suggest that male IT workers are more likely to leave

an organisation than their female counterparts. Younger employees also appear
more inclined to leave (mainly due to lower job satisfaction) compared to their
older counterparts). Importantly, higher educated IT professionals are more
likely to leave a company because of low job satisfaction. Additionally, married
IT practitioners as well as those with a lower organisational tenure have a lower
tendency to leave an organisation. IT managers can use these insights to assist
with their recruitment decisions and employee retention initiatives.”

9. Recommendations 1. To overcome role ambiguity and role conflict, managers should: a. communicate
clearly and provide clear and precise information about what they expect from
their IT professionals. b. make sure that their personnel have the required training
and knowledge to carry out their jobs well. c. allow their IT professionals to
know the intent of and reasons for doing a specific task. d. better design and
define tasks so that the start and end of each task is clear. e. clearly define
the sequence in which sub-tasks are carried out. 6. determine task priorities
associated with the job.
2. To overcome perceived workload demands managers should maintain an aware-
ness of the workloads of their high valued IT professionals. Direct face-to-face
communications has been reported as the most effective means of overcoming
this problem.
3. IT managers should be conscious of the benefits of enhanced employee
autonomy because lack of autonomy can lead to turnover decision through work
exhaustion. Managers should provide IT professionals with enough autonomy
and flexibility to reduce exhaustion they might feel because of the structure
of their work and should design IT roles that offer enough freedom for IT
professional to be innovative and pursue their own thoughts and ideas.
(plus five other recommendations, omitted for reasons of space)

38 David Budgen et al.

Table B4 continued

Characteristic Values

10. Author Response None

Table B5. Details for Reviews categorised as PRF: #246

Characteristic Values

1. Knowledge Unit PRF.psy (Group dynamics and psychology)
2. Title A systematic literature review on the barriers faced by newcomers to open

source software projects
3. Citation [50]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made. (Lists studies identifying specific barriers.)
6. #Primary Studies 20 (implicitly drawn from industry)
7. Synthesis used Grounded Theory
8. Findings 1. For projects, improvement in community receptivity and more appropriate

collaborative environments for OSS development can result in better support
for newcomers.
2. “Keeping the code simple and the documentation organized and up-to-date
could potentially increase the odds of receiving contributions from newcomers.”

9. Recommendations “..newcomers that wish to contribute must have a blend of domain knowledge,
technical skills, and social interaction, which can increase the odds of a successful
joining. The interactions are driven by artifacts that reflect the technical and
domain expertise. It is the result of these interactions that will allow both
newcomers and developers to perceive the level and possibly lack of background
that hinders effective contributions to the project.”

10. Author Response None

Table B6. Details for Reviews categorised as VAV: #15

Characteristic Values

1. Knowledge Unit VAV.rev (Reviews and static analysis)
2. Title Capture-recapture in software inspections after 10 years research – theory,

evaluation and application
3. Citation [40]
4. DARE Score 1.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 25 (1 explicitly from industry, the others not identified)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Most estimators underestimate.

2. Mh-JK (Jackknife) is the best estimator for software inspections.
3. Mh-JK is appropriate to use for 4 reviewers and more.
4. DPM is the best curve fitting method.
5. Capture-recapture estimators can be used together with perspective-based
reasoning (PBR).

9. Recommendations None
10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 39

Table B7. Details for Reviews categorised as VAV: #66

Characteristic Values

1. Knowledge Unit VAV.tst (Testing)
2. Title A systematic review of search-based testing for non-functional system properties
3. Citation [41]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 35 (17 explicitly from industry; 18 academic)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. For performance, genetic algorithms (GAs) consistently outperform random

and statistical testing in a wide variety of situations, producing comparatively
longer execution times faster and also finding new bounds on best case execution
times.
2. GAs were also able to perform better than human testers, and where this
failed to occur, it could be attributed to the complexity of the test objects
inhibiting evolutionary testability.

9. Recommendations None
10. Author Response None

Table B8. Details for Reviews categorised as VAV: #82

Characteristic Values

1. Knowledge Unit VAV.tst (Testing)
2. Title A systematic review on regression test selection techniques
3. Citation [42]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 36 (4 explicitly from industry; 32 not stated)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. The minimization technique is the most efficient in reducing time and/or

number of test cases to run. However this is an unsafe technique and all but
one of six studies report significant losses in fault detection.
2. DejaVu (Rothermel and Harrold) is the most efficient safe technique for
reducing test cases. However, analysis time for this is shown to be too long
(exceeding the time for rerunning all test cases) in early experiments, although
in later ones (using different subject programs) it is shown to be good.
3. Regression test selection techniques have to be tailored to specific situations
e.g. initially based on the classification of techniques.

9. Recommendations None
10. Author Response None

Table B9. Details for Reviews categorised as VAV: #167

Characteristic Values

1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title On evaluating commercial Cloud services: A systematic review
3. Citation [51]
4. DARE Score 4.0

40 David Budgen et al.

Table B9 continued

Characteristic Values

5. Strength of Evidence No assessment was made.
6. #Primary Studies 82 (all implicitly from industry)
7. Synthesis used Could not be identified
8. Findings 1. Existing evaluations have used a large number of metrics to measure perfor-

mance as well as cost.
2. There is still a lack of metrics for evaluating Cloud elasticity.
3. There are still no metrics that can be used to assess security.

9. Recommendations None
10. Author Response The authors suggest a further finding is:

4. Various traditional benchmarks have been employed to evaluate performance
of Cloud services.

Table B10. Details for Reviews categorised as VAV: #197

Characteristic Values

1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Software fault prediction metrics: A systematic literature review
3. Citation [52]
4. DARE Score 4.5
5. Strength of Evidence An informal assessment was provided.
6. #Primary Studies 106 (81 explicitly from industry; 25 academic studies)
7. Synthesis used Vote Counting
8. Findings 1. Cyclomatic complexity was fairly effective in large and OO environments.

Although not effective in all categories, the overall effectiveness was estimated
as moderate.
2. Halstead’s metrics were ineffective when compared with other metrics and
were estimated as inappropriate for software fault prediction.
3. The most frequently used and most successful among the OO metrics were
the CK metrics. From these, COB, WMC and RFC were effective across all
groups. LCOM is not not very successful at finding faults, DIT and NOC were
reported as untrustworthy.
4. OO and process metrics are more successful at fault prediction than traditional
size and complexity metrics.
5. Source code metrics do not perform well in finding post-release faults.
6. Process metrics were found to be successful at finding post-release faults.
7. Size measures like LOC metrics are simple and easy to extract; but as with
complexity metrics, have only limited predictive capabilities. They are partly
successful at ranking the most fault prone modules, not the most reliable or
successful metrics.

9. Recommendations 1. Industry practitioners looking for effective and reliable process metrics should
consider code churn, the number of changes, the age of a module and the change
set size metrics.
2. Not all OO metrics are good predictors of faults. NOC and DIT are unreliable
and should not be used in fault prediction models.
3. Industry practitioners looking for effective and reliable process metrics (in
large post-release systems) could also try static code metrics (e.g. CBO, RFC
and WMC) but should keep in mind that they have some limitations in highly
iterative and agile development environments.

10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 41

Table B11. Details for Reviews categorised as VAV: #205

Characteristic Values

1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Considering rigor and relevance when evaluating test driven development: A sys-

tematic review
3. Citation [53]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 41 (22 explicitly from industry; 19 academic studies)
7. Synthesis used Vote Counting
8. Findings 1. Studies with high rigour and relevance indicate that practitioners wanting to

adopt TDD will improve their code quality and at the same time maintain or
reduce their productivity levels.
2. Studies with high rigour and relevance indicate that practitioners wanting to
adopt TDD will reduce complexity and at the same time maintain or reduce
their productivity levels.
3. Studies with high relevance and low rigour suggest that there is a poten-
tial to increase external quality, but at the expense of development time and
productivity.

9. Recommendations None
10. Author Response None

Table B12. Details for Reviews categorised as VAV: #252

Characteristic Values

1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Using metrics in Agile and Lean Software Development – A systematic literature

review of industrial studies
3. Citation [54]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 30 (all explicitly from industry)
7. Synthesis used Thematic Analysis
8. Findings 1. The targets of measurement are the product and the process, but not the

people.
2. Documentation is not measured, instead the focus is on the actual product
and features.
3. The use of metrics can motivate people and change the way that people
behave in terms of which issues they pay attention to.
4. Industrial agile teams use situative metrics based on need.
5. Defect counts and customer satisfaction are two of the four high influence
metrics (after velocity and effort estimate), although not directly recommended
by Lean or Agile methods.
6. Areas where metrics are used are sprint and project planning, sprint and
project progress tracking, understanding and improving quality, fixing software
process problems and motivating people - so not dissimilar to use in plan driven.

9. Recommendations None
10. Author Response None

42 David Budgen et al.

Table B13. Details for Review categorised as DES: #124

Characteristic Values

1. Knowledge Unit DES.ar (Architectural design)
2. Title Characterising software architecture changes: A systematic review
3. Citation [55]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 130 (not stated)
7. Synthesis used Thematic Analysis
8. Findings The Software Architecture Change Characterization Scheme (SACCS) was

developed as a result of the review and can (could?) be used to assist developers
and maintainers in assessing the potential impact of a proposed change and
deciding whether it is feasible to implement the change. Where the change is
crucial the scheme will (could?) help generate consensus on how to approach
change implementation and provide an indication of the difficulty.

9. Recommendations None
10. Author Response The authors reviewed our analysis and agreed with it.

Table B14. Details for Review categorised as DES: #130

Characteristic Values

1. Knowledge Unit DES.str (Design strategies)
2. Title A systematic review of comparative evidence of aspect-oriented programming
3. Citation [56]
4. DARE Score 4.5
5. Strength of Evidence The GRADE system was used. Overall the current strength of evidence about

benefits and limitations of AOP approaches compared to non-AOP approaches
is low.

6. #Primary Studies 22 (6 implicitly industry studies, 16 academic studies)
7. Synthesis used Narrative synthesis + Vote counting
8. Findings 1. Overall AOP provides improvement over non-AOP based solutions.

2. AOP has a positive effect on performance (within contexts similar to those
used in the evaluations).
3. In larger systems where concern scattering and tangling is expected to be
widespread, introducing aspects is likely to significantly reduce the number of
lines of code.
4. AOP has a positive effect on modularity (but context of use should be carefully
assessed).
5. AOP has the potential to develop evolvable and maintainable software.

9. Recommendations None
10. Author Response None

Table B15. Details for Review categorised as DES: #154

Characteristic Values

1. Knowledge Unit DES.dd (Detailed design)
2. Title What do we know about the Effectiveness of Software Design Patterns?
3. Citation [57]

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 43

Table B15 continued

Characteristic Values

4. DARE Score 2.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 18 (11 industrial and 7 academic studies)
7. Synthesis used Narrative Synthesis
8. Findings Patterns do not appear to help novices learn about design.
9. Recommendations None

10. Author Response The authors reviewed our analysis and agreed with it.

Table B16. Details for Review categorised as MAA: #123

Characteristic Values

1. Knowledge Unit MAA.tm (Types of models)
2. Title A Systematic review of domain analysis tools
3. Citation [58]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 19 (7 are implicitly industry studies, 12 are academic studies)
7. Synthesis used Could not be determined.
8. Findings 1. No tools support all functionalities of a specific process.

2. The majority of the analysed tools have similar functionalities.
3. The majority of tools are still being developed and used in an academic
environment.
4. The documentation function is being explored more in the more recent tools
investigated.
5. The domain analysis process without tool support can lead to an unsuccessful
result but the use of any tool will not necessarily lead to an effective result.

9. Recommendations None
10. Author Response The authors observe that a finding could be to categorize functionalities as

essential, important and low.

Table B17. Details for Review categorised as MAA: #126

Characteristic Values

1. Knowledge Unit MAA.tm (Types of models)
2. Title Does the technology acceptance model predict actual use?
3. Citation [59]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 79 (type not reported)
7. Synthesis used Vote counting
8. Findings Perceived usefulness (PU) and perceived ease of use (PEU) are less likely than

behavioural intention (BI) to be correlated with actual use.
9. Recommendations None

10. Author Response None

44 David Budgen et al.

Table B18. Details for Review categorised as MAA: #146

Characteristic Values

1. Knowledge Unit MAA.tm (Types of models)
2. Title A practice-driven systematic review of dependency analysis solutions
3. Citation [60]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 65 (38 explicit industry, 27 not specified)
7. Synthesis used Narrative Synthesis
8. Findings 1. Source-code based solutions identify dependencies through code constructs

such as function calls and shared variables. Approaches that use this concrete
evidence have a high degree of accuracy when it comes to the dependencies they
identify, which makes them very reliable and very attractive for practitioners
as the resulting information is very tangible. However, they are less suited to
analyzing runtime system behaviour.
2. Solutions using diagrammatic and semi-formal descriptions are more appealing
for practitioners following architecture-driven approaches. Practitioners find
these solutions useful to describe dependency information at an architecture
level. However, for an efficient application of these solutions, it is necessary to
keep up-to-date and synchronize the system requirements, design, and imple-
mentation.
3. Solutions using run-time and configuration information are applicable in
practice due to two main characteristics. First, these solutions are non-intrusive
with respect to the development activities. Often, in a research setting, the
overhead and maintenance cost of an infrastructure to collect data for dependency
analysis is overlooked, whereas practitioners are more concerned about the
cost and overhead of maintaining a reliable and up-to-date instrumentation of
their system. This is even more important, in heterogeneous situations where
multi-vendor components are used and instrumentation cannot be inserted into
the system because of security, licensing, lack of knowledge, or other technical
constraints. Second, although these solutions are limited by their coverage and
links to the system source code, practitioners consider these solutions valid
approximations, especially for problem-driven approaches.

9. Recommendations None
10. Author Response None

Table B19. Details for Review categorised as MAA: #155

Characteristic Values

1. Knowledge Unit MAA.tm (Types of models)
2. Title A Systematic Literature Review on Fault Prediction Performance in Software

Engineering
3. Citation [61]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 36 (35 explicit industry, 1 academic study)
7. Synthesis used Thematic Analysis
8. Findings 1. Models that work well tend to be built in a context where the systems are

large.
2. In terms of context, there is no evidence to suggest that the maturity of
systems or language used is related to predictive performance

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 45

Table B19 continued

Characteristic Values

3. It may be more difficult to build reliable prediction models for some application
domains (e.g. embedded systems).
4. The independent variables used by predictive models that work well seem to
be sets of metrics.
5. Models that use KLOC perform no worse than where only single sets of other
static code metrics are used.
6. The spam filtering technique based on source code performs relatively well.
7. Models that perform well tend to use simple, easy to use modeling techniques
such as Näıve Bayes or Logical Regression. More complex modeling techniques
such as SVM tend to be used by models which perform relatively less well.
8. Successful models tend to be trained on large datasets which have a relatively
high proportion of faulty units.
9. Successful models tend to use a large range of metrics on which feature
selection was implied.
10. For successful models, default parameters for the modelling technique were
adjusted to ensure the technique would perform effectively.

9. Recommendations None
10. Author Response Agreed with our extracted findings.

Table B20. Details for Reviews categorised as REQ: #134

Characteristic Values

1. Knowledge Unit REQ.er (Eliciting requirements)
2. Title Systematic Review and Aggregation of Empirical Studies on Elicitation Tech-

niques
3. Citation [22]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 32 (7 explicit industry; 7 academic; 18 unclear)
7. Synthesis used Vote counting
8. Findings 1. Unstructured interviews (although it is reasonable to assume that the same ap-

plies to structured interviews) are equally as or more effective than introspective
technique (such as protocol analysis) and sorting techniques.
2. Unstructured interviews (although it is reasonable to assume that the same
applies to structured interviews) output more complete information than intro-
spective technique (such as protocol analysis), sorting techniques and Laddering.
3. Unstructured interviews (although it is reasonable to assume that the same
applies to structured interviews) are less efficient than sorting techniques and
Laddering but as efficient as introspective techniques (such as protocol analysis).
4. The introspective techniques (such as protocol analysis) are the worst of all the
tested techniques in all the dimensions (effectiveness, efficiency, completeness)
and are outperformed by unstructured interviews (although it is reasonable to
assume that the same applies to structured interviews), and sorting techniques
and Laddering.
5. Laddering is preferable to sorting techniques (as well as introspection tech-
niques).

9. Recommendations None
10. Author Response None

46 David Budgen et al.

Table B21. Details for Reviews categorised as REQ: #161

Characteristic Values

1. Knowledge Unit REQ.er (Eliciting requirements)
2. Title A systematic literature review of stakeholder identification methods in require-

ments elicitation
3. Citation [62]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers addressing specific practices and issues.)
6. #Primary Studies 42 (all implicitly industry)
7. Synthesis used Thematic Analysis
8. Findings None
9. Recommendations 1. Assign appropriate roles to stakeholders through analysis of skills, behaviors

in group dynamics and personality tests.
2. Establish constructive interaction between all stakeholders and between
stakeholders and the system.
3. Classify requirements elicited from stakeholders according to an evaluation of
their priorities in the project

10. Author Response The authors agreed with our interpretation.

Table B22. Details for Reviews categorised as REQ: #259

Characteristic Values

1. Knowledge Unit REQ.rsd (Requirements specification and documentation)
2. Title A systematic literature review of use case specifications research
3. Citation [63]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made. (Lists papers addressing specific issues.)
6. #Primary Studies 119 (27 explicit industry; 11 academic; 81 unclear)
7. Synthesis used Could not be identified.
8. Findings 1. Use case specifications were typically employed in two perspectives: document-

ing the functional requirements (typically using informal tabular or paragraph
style formats); and for generating the lower-level software artifacts by using
greater formalism to support a model-transformation process.
2. Use cases have evolved from paragraph format textual descriptions to a more
formal keyword-oriented format for facilitating automated information retrieval.
3. Use cases have been applied and used in almost all the software development
life cycle activities. However, knowledge about their applicability in planning
and estimation and maintenance phases is limited, due to the limited number of
published studies.

9. Recommendations None
10. Author Response The authors suggested some rewording of the third conclusion (incorporated).

Table B23. Details for Review categorised as QUA: #219

Characteristic Values

1. Knowledge Unit QUA.pda (Product assurance)
2. Title Empirical evidence on the link between object-oriented measures and external

quality attributes: a systematic literature review

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 47

Table B23 continued

Characteristic Values

3. Citation [64]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 99 (33 are implicitly from industry; 5 academic; and 61 could not be classified)
7. Synthesis used Vote counting
8. Findings 1. Measures for complexity, cohesion, coupling and size show better consistency

in their relationship with reliability and maintainability attributes across the
primary studies than inheritance.
2. Measures that quantify inheritance properties show poor links to reliability
and maintainability.

9. Recommendations None
10. Author Response The authors observed that for the second conclusion, the poor showing of the

inheritance measures might have stemmed from confounding factors in the
primary studies.

Table B24. Details for Review categorised as PRO: #39

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Quality, productivity and economic benefits of software reuse: a review of

industrial studies
3. Citation [45]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 11 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Defect, error or fault density is significantly reduced.

2. Rework effort is significantly reduced.
3. Apparent productivity improves significantly.

9. Recommendations None
10. Author Response None

Table B25. Details for Review categorised as PRO: #50

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Software process improvement in small and medium software enterprises: a sys-

tematic review
3. Citation [46]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 45 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings It is difficult to successfully apply formal SPI programmes which use models

such as CMM to SMEs.
9. Recommendations None

10. Author Response None

48 David Budgen et al.

Table B26. Details for Review categorised as PRO: #138

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Measuring and predicting software productivity: a systematic map and review
3. Citation [65]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 38 (25 explicit industry, 13 academic)
7. Synthesis used Narrative Synthesis
8. Findings 1. The variety of model forms means that strong recommendations cannot be

provided. However, the studies did not come to conclusions that contradicted
each other.
2. Simulation overall provided promising results.
3. Time-series analysis/statistical process control also shows good results in
identifying sharp shifts in process performance as well as shifts due to changes
in the process.
4. To be able to give a recommendation on the predictive accuracy of regression
for software productivity, the model should be built on a sub-set of data points
and then used to predict the remaining data points. Thereafter the difference
between prediction and actual values should be observed and measured.

9. Recommendations 1. When using univariate models it is important to be aware of high variances
and difficulties when comparing productivities. Hence it is important to carefully
document the context to be able to compare between products. Comparison
should not be on productivity value alone and it is recommended that a scatter
diagram be produced based on inputs and outputs to assure comparability of
projects with respect to size.
2. When comparing projects it should be made clear what output and input
consists of, for example, which lines are included in LOC measures.
3. When possible, use multivariate analysis when data is available, as throughout
the software process many outputs are produced. Otherwise, productivity is
biased towards one measure (eg LOC).
4. Managers need to be aware of validity threats present in the measures when
conducting a comparison. Data should be interpreted with care and awareness
of possible bias and noise in the data arising from measurement error.
5. No generic prediction model can be recommended as studies do not clearly
agree on what are the predictors for software productivity. In fact, the predictors
might differ between contexts. Hence companies need to identify and test
predictors relevant to their context.

10. Author Response The authors identify the following additional finding.
5. Data envelopment analysis is promising as it supports multivariate productiv-
ity measures, and allows identification of reference projects to which inefficient
projects should be compared. This helps with identifying projects from which
one can learn, and that are similar, so that evidence may be transferable.

Table B27. Details for Review categorised as PRO: #157

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title The Effects of Test-Driven Development on External Quality and Productivity:

A Meta-Analysis

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 49

Table B27 continued

Characteristic Values

3. Citation [67]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 37 (10 explicit industry; 23 academic; 4 unclear)
7. Synthesis used Meta-analysis
8. Findings Use of TDD can result in a small improvement in quality (implicit).
9. Recommendations None

10. Author Response None

Table B28. Details for Review categorised as PRO: #160

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Reconciling software development models: A quasi-systematic review
3. Citation [68]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 42 (all implicit industry studies)
7. Synthesis used Thematic analysis
8. Findings 1. Three different levels of reconciliation are found: organisational, group and

process.
2. Main opportunities for reconciliation are derived from collaboration and code
availability.
3. There is a diversity of challenges – most salient is overcoming barriers to
culture change.

9. Recommendations None
10. Author Response Our findings were confirmed by the authors.

Table B29. Details for Review categorised as PRO: #174

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title A systematic literature review on the industrial use of software process simulation
3. Citation [69]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 87 (all implicit industry studies)
7. Synthesis used Could not be determined
8. Findings No evidence of widespread adoption and impact of SPSM research on industry.
9. Recommendations When using software process simulation models for scientific purposes, need to

be sure that the appropriate steps with respect to model validity checking have
been conducted, and do not rely upon a single simulation run.

10. Author Response We have used a slight rewording of the recommendation suggested by the
authors.

50 David Budgen et al.

Table B30. Details for Review categorised as PRO: #228

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title An investigation into the best practices for the successful design and imple-

mentation of lightweight software process assessment methods: A systematic
literature review

3. Citation [74]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Lists papers identifying successful practices.)
6. #Primary Studies 22 (all explicit industry studies)
7. Synthesis used Thematic analysis
8. Findings A set of 38 best practices has been collected and classified into five main areas:

method, supportive tool, procedure, documentation and user best practices.
9. Recommendations The paper has identified a set of best practices to support and inform designers

and assessors for software process assessment.
10. Author Response We have used some rewording suggested by the authors.

Table B31. Details for Review categorised as PRO: #249

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Exploring principles of user-centred agile software development: A literature

review
3. Citation [79]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Provides counts of papers identifying issues related

to principles.)
6. #Primary Studies 83 (26 implicit industry studies, 57 that could not be classified)
7. Synthesis used Content analysis
8. Findings None
9. Recommendations 1. User-centered agile software development should be based on separated

product discovery and product creation phases.
2. In user-centered agile approaches, design and development should proceed in
parallel interwoven tracks.
3. In user-centered agile approaches, tangible and up-to-date artifacts should be
used to document and communicate product and design concepts, and should
be accessible to all involved stakeholders.

10. Author Response None

Table B32. Details for Review categorised as PRO: #268

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Requirements for product derivation support: Results from a systematic litera-

ture review and an expert survey
3. Citation [81]
4. DARE Score 2.0
5. Strength of Evidence No assessment was made.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 51

Table B32 continued

Characteristic Values

6. #Primary Studies 118 (unclassified as no details provided)
7. Synthesis used Narrative synthesis
8. Findings Systematic Review followed by expert survey identified the following six require-

ments for product derivation support:
1. automated and interactive variability resolution
2. adaptability and extensibility
3. application requirements management support
4. flexible and user-specific visualisations of variability
5. end-user guidance
6. project management support

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

Table B33. Details for Review categorised as PRO: #276

Characteristic Values

1. Knowledge Unit PRO.con (Process Concepts)
2. Title Empirical evaluation of a decision support model for adopting software product

line engineering
3. Citation [82]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made. (Lists papers identifying relevant factors.)
6. #Primary Studies 31 (all implicit industry)
7. Synthesis used Thematic Analysis + Vote Counting
8. Findings 1. The study identifies 25 factors that should be considered when investigat-

ing adoption of SPLE (e.g. business motivation, market potential, software
architecture competence).
In all, 39 questions that might be asked and 312 rules that could be applied are
developed. Rules include recommendations and strategies (but only one example
provided)

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

Table B34. Details for Review categorised as PRO: #84

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The effectiveness of pair programming: A meta-analysis
3. Citation [47]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 19 (5 explicit industry and 14 academic studies)
7. Synthesis used Meta-analysis
8. Findings None

52 David Budgen et al.

Table B34 continued

Characteristic Values

9. Recommendations If you do not know the seniority or skill levels of your programmers, but do
have a feel for task complexity, then employ PP either when task complexity is
low and time is of the essence, or when task complexity is high and correctness
is important.

10. Author Response The authors agreed with our extracted recommendations.

Table B35. Details for Review categorised as PRO: #150

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Agile product line engineering – a systematic literature review
3. Citation [66]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 39 (14 explicit industry and 25 not specified)
7. Synthesis used Narrative synthesis
8. Findings 1. If software product line (SPL) developers do not have enough knowledge to

completely perform the domain engineering (DE), agile software development
(ASD) may facilitate the elicitation of further knowledge.
2. Trade-offs between SPLE and ASD provide the opportunity to apply the agile
product line engineering (APLE) approach to a wider variety of projects than
those served by only applying ASD or SPL methods.
3. When anticipated changes cannot be predicted and the product life cycle is
not known, it would be advantageous to use an incremental approach such as
APLE.
4. Agile processes may facilitate fast feedback cycles between requirements
engineering (RE), development and field trial in innovative business.

9. Recommendations None
10. Author Response The authors agreed with our extracted findings and observed that Table VII in

their paper does implicitly provide some recommendations for practice.

Table B36. Details for Review categorised as PRO: #193

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Empirical studies on the use of social software in global software development –

A systematic mapping study
3. Citation [71]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 84 (61 explicit industry and 23 academic studies)
7. Synthesis used Narrative synthesis
8. Findings 1. Social Networking sites help identify experts and provide awareness of people’s

expertise.
2. It is necessary to develop structures, rules, good practices and agreements for
using SoSo in a work context and on a project basis.

9. Recommendations None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 53

Table B36 continued

Characteristic Values

10. Author Response None

Table B37. Details for Review categorised as PRO: #215

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Software development in startup companies: A systematic mapping study
3. Citation [72]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers identifying factors.)
6. #Primary Studies 43 (30 implicit industry and 13 that could not be classified)
7. Synthesis used Thematic analysis
8. Findings 1. Light-weight methodologies to obtain flexibility in choosing tailored practices,

and reactiveness to change the product according to business strategies is a useful
process management practice in startups.
2. Fast releases to build a prototype in an evolutionary fashion and quickly learn
from the users’ feedback to address the uncertainty of the market is a useful
process management practice in startups.
3. The use of well-known frameworks able to provide fast changeability of the
product in its refactoring activities is a useful design and architectural practice
in startups.
4. The use of existing components, leveraging third party code reinforcing ability
to scale the product is a useful design and architectural practice in startups.
5. The use of ongoing customer acceptance with the use of focus groups of early
adopters, which aims to determine the fitness of the product for the market is
a useful quality assurance practice in startups.
(plus six further conclusions)

9. Recommendations None
10. Author Response The authors agreed with our interpretation.

Table B38. Details for Review categorised as PRO: #217

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Understanding the Influence of User Participation and Involvement on System

Success – A Systematic Mapping Study
3. Citation [20]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 82 (all implicit industry)
7. Synthesis used Meta-analysis
8. Findings 1. “Given the vast amount of positive correlations, we can conclude that, even

though the results are not completely consistent, the amount of studies with
positive correlations of the various aspects of UPI on system success provides
evidence of a robust and transferable effect.”
2. Most studies with negative correlations from aspects of UPI on system success
were published more than 10 years ago.

54 David Budgen et al.

Table B38 continued

Characteristic Values

3. UPI has a positive effect on user satisfaction and system use.
9. Recommendations None

10. Author Response The authors suggested some revisions which were partly adopted.

Table B39. Details for Review categorised as PRO: #222

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The Kanban approach, between agility and leanness: a systematic review
3. Citation [73]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made. (Lists papers identifying relevant benefits.)
6. #Primary Studies 37 (all implicit industry)
7. Synthesis used Case survey
8. Findings 1. There is a lack of of details and guidelines on how the Kanban approach can

be used by IT organisations.
2. The Kanban board is an efficient visualisation tool.

9. Recommendations Discuss Kanban elements together, based on the five pillars of the lean approach,
to minimize the risk of evolving contradictory elements and to facilitate establish-
ing guidelines and instructions on how to set up the Kanban approach, to give
practitioners an overall framework that increases the likelihood of successfully
implementing the Kanban approach in IT organisations.

10. Author Response None

Table B40. Details for Review categorised as PRO: #236

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The impact of global dispersion on coordination, team performance and software

quality – A systematic literature review
3. Citation [75]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Provides counts of studies addressing factors.)
6. #Primary Studies 43 (40 explicit industry and 3 academic)
7. Synthesis used Thematic analysis + Vote counting
8. Findings 1. The impact of each dispersion dimension on project outcomes is mediated by

a different set of coordination issues in GSD.
2. A distributed task takes a longer time to communicate and resolve than
a co-located task does in GSD.
3. Temporal dispersion has a positive impact on objective team performance
while it has a negative impact on perceived team performance in GSD.
4. Geographical dispersion has a negative impact on software quality, at both
file and project level in GSD.
5. Temporal dispersion has a negative impact on software quality, at both file
and project level in GSD.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 55

Table B40 continued

Characteristic Values

9. Recommendations 1. Managers should be aware of the influence of dispersion dimension at different
organisational levels. At the individual level, lack of face-to-face interaction
and working in different time zones affects directly and negatively a developer’s
work. At the team and project level, the negative influences of these dispersion
dimensions might be underestimated in considering different goals and priorities.
This issue must be taken into account when aligning the objective of individuals
and teams with organizational goals.
2. Decisions on which coordination mechanisms to use should depend on the
current dispersion context setting, the current team coordination technology
and practices, and prioritized type of interdependencies. Our summary shows
that communication and shared artifacts should be used together as needed and
a defined process should be adopted at the team and organizational levels.

10. Author Response The authors agreed with our extracted findings.

Table B41. Details for Review categorised as PRO: #239

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Using CMMI together with agile software development: A systematic review
3. Citation [76]
4. DARE Score 4.5
5. Strength of Evidence Use of GRADE. Strength of evidence considered to be low for all findings.
6. #Primary Studies 60 (59 explicit industry and 1 academic)
7. Synthesis used Thematic analysis
8. Findings 1. Agile methodologies have been used by companies to enhance their efforts

to reach levels 2 and 3 of CMMI, with reports of applying agile practices to
achieve level 5.
2. Agile methodologies alone are not sufficient to achieve the level required, it
being necessary to resort to additional practices.
3. Organisations should seek to ensure that how CMMI and agile can be combined
is understood and undertaken by those involved.

9. Recommendations None
10. Author Response None

Table B42. Details for Review categorised as PRO: #241

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title A systematic review on the relationship between user involvement and system

success
3. Citation [77]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers identifying specific benefits.)
6. #Primary Studies 87 (all implicit industry)
7. Synthesis used Thematic analysis + Vote counting

56 David Budgen et al.

Table B42 continued

Characteristic Values

8. Findings 1. Identification of the right type of users who will be involved, and who will
participate, are important factors according to the literature, but the review
did not find enough empirical evidence about this to confirm it.
2. The perspective of user involvement is one of the most important factors.
Analysis identified five major perspectives for user involvement: psychological,
managerial, methodological, political, and cultural.
3. User involvement takes different forms for development of different types of
system.
4. User satisfaction leads to system success (the top cited factor).
5. To achieve benefits in methodological and psychological perspectives, user
involvement in the requirements phases seems to be most effective.
6. To achieve benefits for political and cultural perspectives, users need to be
involved in the design and implementation phases.

9. Recommendations None
10. Author Response The authors provided some comments which we have used to modify the findings.

Table B43. Details for Review categorised as PRO: #260

Characteristic Values

1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Claims about the use of software engineering practices in science: A systematic

literature review
3. Citation [80]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Lists papers addressing specific issues.)
6. #Primary Studies 43 (all academic)
7. Synthesis used Thematic analysis
8. Findings 1. Scientific software developers benefit from using a wide range of testing

practices from software engineering.
2. Open-source is especially useful to scientific software developers.
3. Documentation is a necessary enabler of software quality.
4. Version control software is necessary for research groups with more than one
developer.
(Note: These were the conclusions with strongest supporting evidence.)

9. Recommendations None
10. Author Response The authors provided some comments which we have used to modify the findings.

Table B44. Details for Review categorised as PRO: #8

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Forecasting of software development work effort: Evidence on expert judgement

and formal models
3. Citation [43]
4. DARE Score 1.0
5. Strength of Evidence Informally estimated as “modest”.
6. #Primary Studies 16 (14 explicit industry and 2 academic studies)

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 57

Table B44 continued

Characteristic Values

7. Synthesis used (Synthesis was not assessed for Dataset1)
8. Findings 1. The review does not support the view that we should replace expert judgement

with models.
2. The review does not support the view that software estimation models are
useless..
3. Models failed to systematically perform better than the experts when esti-
mating.
4. Two conditions for producing more accurate expert judgement-based effort
seem to be that the models are not calibrated to the organization using them,
and that the experts possess important contextual information not included in
the formal models and apply it efficiently.
5. The use of models, either alone or in combination with expert judgement,
may be particularly useful when i) there are situational biases that are believed
to lead to a strong bias towards overoptimism; ii) the amount of contextual
information possessed by experts is low; and iii) the models are calibrated to
the organization using them.

9. Recommendations It is best to use a combination of models and experts when estimating the level
of effort required to complete software development tasks.

10. Author Response None

Table B45. Details for Review categorised as PRO: #22

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Evidence-Based Guidelines for Assessment of Software Development Cost Un-

certainty
3. Citation [44]
4. DARE Score 2.5
5. Strength of Evidence An assessment was made for each guideline, identifying supporting papers.
6. #Primary Studies 40 (none could be classified)
7. Synthesis used (Synthesis was not assessed for Dataset1)
8. Findings None
9. Recommendations 1. Do not rely solely on unaided, Intuition-based processes. (Strong evidence.)

2. Do not replace expert judgement with formal models. (Medium evidence.)
3. Apply structured and explicit judgement-based processes. (Strong evidence.
4. Apply strategies based on an outside view of the project. (Medium evidence.)
5. Use motivational mechanisms with care and only if it is likely that more effort
leads to improved assessments. (Medium evidence.)
6. Frame the assessment problem to fit the structure of the uncertainty relevant
information and the assessment process. (Medium evidence.)

10. Author Response None

Table B46. Details for Review categorised as PRO: #102

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Managing risks in distributed software projects: An integrative framework

58 David Budgen et al.

Table B46 continued

Characteristic Values

3. Citation [48]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 72 (implicit industry studies)
7. Synthesis used (Synthesis was not assessed for Dataset1)
8. Findings 1. Built framework demonstrating complex nature of risks in GDSP and offers

concepts and heuristics that practitioners can use to assess and control the risks
they face in specific projects. Can be used by project managers.
2. Provides a useful vocabulary.

9. Recommendations 1. Revisit risk management regularly during project lifetime.
2. Practitioners are advised to go through the steps of risk assessment, risk
control and risk management planning.

10. Author Response None

Table B47. Details for Review categorised as PRO: #121

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Empirical evidence in global software engineering: A systematic review
3. Citation [21]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 56 (37 explicit industry studies, 16 academic, 3 not stated)
7. Synthesis used Narrative synthesis
8. Findings 1. Trust, cohesiveness and effective teamwork can be achieved through F2F

meetings, temporal colocation and exchange visits - but entail extra costs.
2. Greater awareness and process transparency can be achieved through the use
of a centralised repository and common configuration management tool support
- but requires overcoming heterogeneity.
3. Trust and cohesiveness can be improved through effective and frequent
synchronous communications – but entail extra costs.
4. Effective communications can be achieved if infrastructure is reliable and
communications media are rich.
5. Effective teamwork can be achieved through synchronous interaction – but
requires temporal proximity .
6. Effective teamwork can be achieved through task distribution based on
architectural decoupling and low dependencies across remote locations – but
requires full transition of parts of the work.
7. Early feedback and capability evaluation can be achieved through the use of
incremental short-cycle development – but requires frequent and transparent
communications.
There is still no recipe for successful and efficient performance in globally
distributed software engineering.

9. Recommendations None
10. Author Response The authors observe that since key practices that help minimise risk require

additional investments, global collaboration might not be suitable for companies
that enter global projects to reduce costs.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 59

Table B48. Details for Review categorised as PRO: #175

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Barriers in the selection of offshore software development outsourcing vendors:

An exploratory study using a systematic literature review
3. Citation [70]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made. (Provides counts of papers identifying specific barriers.)
6. #Primary Studies 77 (All explicit industry studies)
7. Synthesis used Thematic analysis
8. Findings 1. Barriers vary with organisation size. These are summarised in Table 7 of their

paper. The one common barrier is “language and cultural barriers”.
2. Viewed over two decades, different barriers have “risen” and “fallen” in
importance.

9. Recommendations 1. Outsourcing vendors should focus on the identified barriers in order to have
a positive impact on outsourcing clients and to win outsourcing contracts:
language and cultural barriers.
2. Vendors should focus on the barriers identified in order to have a posi-
tive impact on outsourcing clients and to win outsourcing contracts: country
instability.
3. Vendors should focus on the barrier identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts: lack of project
management.
4. Vendors should focus on the barriers identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts: lack of protection
for IPR.
5. Vendors should focus on the barriers identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts:lack of technical
capability.

10. Author Response The authors agreed with our extracted data.

Table B49. Details for Review categorised as PRO: #244

Characteristic Values

1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Analogy-based software development effort estimation: A systematic mapping

and review
3. Citation [78]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (Lists studies identifying specific factors.)
6. #Primary Studies 61 (all were explicitly industrial)
7. Synthesis used Narrative synthesis
8. Findings 1. ASEE methods tend to yield acceptable estimates.

2. ASEE methods outperform regression based methods.
3. ASEE methods outperform ANN based methods.
4. ASEE methods outperform DT based methods.
5. One ASEE technique alone may not be the best estimation method in all
contexts. However, in any context, an appropriate effort estimation model can
be built by combining an ASEE technique with other techniques to overcome
the weaknesses.”

60 David Budgen et al.

Table B49 continued

Characteristic Values

6. The results suggest overall that the estimation accuracy of ASEE methods is
improved when used in combination with other techniques, especially FL and
GA. As has been found, SM improves the accuracy of ASEE techniques much
less than the other techniques. This suggests that using ML rather than non ML
techniques in combination with analogy would be preferable, in particular, fuzzy
logic, genetic algorithms, the model tree, and the collaborative filtering. The
limited number of studies on ASEE methods combined with these techniques
may account for these inconclusive results.
7. Taking into consideration the number of evaluations and based on the median
of the MMRE, MT is the technique that improves the accuracy of ASEE
methods the most (59.42% improvement), followed by CF combined with RSA
(51.85%) and LSR (41.03%). Based on the median of the MdMRE, MT has the
greatest impact (67.75%), followed by FL combined with GRA (40.80%) and GA
(37.93%). Based on the arithmetic median of Pred(25), ASEE techniques are
improved the most by MT (129.01% improvement), followed by CF (108.33%)
and GA (100.00%).
8. Results suggest overall that all the techniques listed in Section 3.5 improve
the estimation accuracy of ASEE methods, especially GA and FL, which are
supported by 4 studies each. There is much less improvement in the accuracy of
ASEE techniques when combined with SM.

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

	Introduction
	The evidence-based paradigm and software engineering
	The nature of software engineering knowledge
	The nature of the knowledge provided from systematic reviews
	Categorising software engineering knowledge

	Research method
	Scope of the study
	The inclusion/exclusion criteria
	Searching for systematic reviews
	Quality assessment
	Data extraction

	Conduct of the study
	Study identification
	The inclusion-exclusion process
	Quality assessment
	Categorisation against the SEEK
	Further data extraction

	The findings – What knowledge is available?
	Summary of the systematic reviews
	The findings and recommendations for each review
	Findings – fundamentals (FND)
	Findings – professional practice (PRF)
	Findings – software verification and validation (VAV)
	Findings – software design (DES)
	Findings – modelling and analysis (MAA)
	Findings – requirements analysis and specification (REQ)
	Findings – software quality (QUA)
	Findings – software process (PRO)

	Discussion
	How good is the knowledge available from systematic reviews?
	Using the findings to support teaching and practice
	Limitations of this study
	The way ahead?

	Reflections and conclusions
	Acknowledgements
	References

	Examples of a one-page summary
	The findings and recommendations from the reviews

