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Abstract: A systematic approach to measure the differences 
between Mohr-Coulomb (MC) and Drucker-Prager (DP) shear 
strength criteria used commonly in soil and rock mechanics 
is presented. It is shown that the DP criterion generates a 
shear strength between 0.6 and 3 times the MC strength, 
for the same friction angle and cohesion parameters. The 
appropriate conditions for obtaining equal shear strengths 
are given. Moreover, some new DP failure surfaces are 
proposed which minimize the differences relative to the 
MC predictions. The equivalence of the DP and MC criteria 
under plane strain conditions is also examined.
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1  Introduction
In soil and rock mechanics, the Mohr-Coulomb (MC) 
shear strength criterion, along with its parameters, 
namely friction angle and cohesion, is treated as a 
kind of standard and reference concept for other shear 
strength criteria. This is due to the fact, that it fits well the 
experimental data, where asymmetric strength response 
in triaxial compression (TXC) and triaxial extension (TXE) 
tests is observed. Moreover, the MC criterion parameters 
have clear engineering interpretation and they are 
typically obtained in most geotechnical laboratories. On 
the other hand the MC concept discards the influence of 
the intermediate principal stress on the shear strength 
of the material, whereas this influence is visible when 
true triaxial testing is performed [1, 9]. Additionally, the 
MC failure surface, defined in the principal stress space, 
contains sharp edges, which introduces some difficulties 

in the implementation of the criterion for numerical 
analysis purposes. These shortcomings are often opposed 
to the straightforward implementation of the smooth 
failure functions, with Drucker-Prager (DP) criterion being 
one of such examples [2, 7].

Of continuous interest to researchers is the question 
regarding how the different shear strength critera used in 
engineering and computational practice compare to the 
reference MC predictions. For this purpose, a concept of 
equivalent friction angle is usually used [3, 5, 6, 8]. This 
angle is defined as the friction angle of the MC surface 
that would pass through the particular stress point given 
by the shear strength criterion under consideration. 
Its variations with the changing stress state and the 
parameters of the criterion being compared are then 
analysed.

In this paper, another approach is used. Instead of 
defining and analysing the equivalent friction angle, the 
shear strengths predicted by the MC and DP criteria are 
compared directly. In case of these particular criteria, 
an analytical formula can be derived for this purpose. 
To the knowledge of the author, such a formula has 
not been published explicitly yet. From this result, it is 
deduced that the DP criterion generates shear strength 
between 0.6 and 3 times the MC strength, for the same 
friction angle and cohesion parameters. The appropriate 
conditions for obtaining equal strengths for both criteria 
are also analysed. Additionally, some new DP failure 
surfaces that minimize differences with MC criterion are 
proposed.

2  Basic notation
Let us assume that the principal stresses in the isotropic 
material are given by 
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where ϕ is the friction angle and c is the material cohesion. 
It is quite obvious that the failure shear stress qMC does 
not depend on θ, which means also that the intermediate 
stress σ2 does not influence material shear strength. On 
the other hand the DP condition is usually expressed via 
the following relation:
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where α and k are parameters of this criterion. Inserting 
Eqs. (12), (13) and (16) into Eq. (18) the expression for 
the failure shear stress in the DP condition is derived as 
following:
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Clearly, the derived values of α and k depend on the Lode 
angle, so they are not constant for constants ϕ and c, but 
rely also on the intermediate principal stress σ2.

4  Differences between MC and DP 
criteria
Let us consider now that α and k have been established 
for some fixed Lode angle, say θ0, and inserted back to the 
DP criterion definition, namely Eq. (19). This will lead us, 
after some not very tedious algebraic transformations, to 
the  following relation:
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The DP shear strength can be then represented by the MC 
strength multiplied by a parameter A dependent on the 
friction angle ϕ and the following two Lode angles: θ0, for 
which the DP parameters have been established, and θ, 
representing the current stress state.

Clearly if A = 1,  then the DP and MC criteria are 
equivalent. This will occur in two cases: firstly if θ=θ0 
- which is quite obvious, and secondly if the following 
condition holds:

(24)
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One can note that Eq. (24) can be considered as a measure 
of equivalent friction angle (Griffiths 1990) for the DP 
condition when θ0 and θ are given.

Further analysis of A shows that A>1, i.e. qDP>qMC,  
when one of the following occurs:
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on the friction angle, i.e.           , it is observed that the inequality      √    ( (  
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These variability considerations are presented compactly 
in Figure 1.

In computational practice some specific values of θ0 
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 is obtained and the DP yield 
surface inscribes the MC envelope. However, any other θ0 
can reasonably be used (see Section 5 for examples). Table 
1 shows the expressions for A along with its minimum, 
maximum and average values for these typical θ0 choices. 
Additionally, in Figure 2, the distribution of deviation 
of A from unity is presented. One can observe, that for   
θ0 = 30∘

 the Drucker-Prager shear strength is always greater 
(or equal) to the Mohr-Coulomb strength and it is exactly 
opposite for 
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takes the value 3.0 and is achieved for                        , whereas the overall 
minimum is equal to 0.6 and is achieved for                        . Thus, in general, 
the following inequality is valid: 

                 
what means that Drucker-Prager shear strength cannot be lower then 0.6 and greater than 
3.0 times its Mohr-Coulomb counterpart. 
Expressions for coefficient   and its minimum, maximum and average for selected values of    
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which means that the DP shear strength cannot be lower 
then 0.6 and greater than 3.0 times its MC counterpart.

5  Average difference between DP 
and MC vs. the DP parameters
An average value of the coefficient A in terms of θ0 can be 
expressed as follows:

(30)
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Unfortunately the explicit formula for the 

integral defined by Eq. (30) seems to be impossible 
to be given, thus the integration has to be done 
numerically. Indeed, when A is integrated over 
the whole range of variability of θ and ϕ, i.e. for   
Ω=[-30∘, 30∘]×[0∘, 90∘], then it reaches unity at θ0=4.22∘ and 

Table 1: Expressions for coefficient A and its minimum, maximum and average values for the selected values of θ0 parameter.
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it attains its minimum at  θ0=-19.35∘ (see Figure 3). These θ0 
values can be treated as possible choices for establishing 
parameters of the DP criterion, especially when the best 
overall agreement with the MC shear strength is expected. 
See Table 1 and Figure 2 for more details about these θ0 
values.

However, one can also investigate other integration 
ranges for A, matching specific material properties and 
loading scenarios. For example in the case of natural 
sandy and gravelly soils the friction angle varies usually 
between 30∘ and 45∘. If the compressive loading of such 
soil is assumed, i.e. θ∈⟨0∘,30∘⟩, then the condition 
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Figure 2: Deviation of coefficient A from unity for selected θ0  values with respect to Lode angle θ and friction angle ϕ.



168    Marek Wojciechowski

will be obtained at  θ0=-15.5∘, which is quite different from 
the previous result (see Figure 3).

This way the general method for obtaining the DP 
parameters that best fit the material behaviour and 
loading data is obtained.

6  A note on plane strain conditions
Elasto-plastic material models are often accompanied 
by plane strain conditions, which allow for dimension 
reduction from 3D to 2D. In this case, the in-plane principal 
stresses s1, s3 are used to compute the principal out-of-
plane s2 stress via the following relation:

(31)
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where ν is the Poisson ratio of the material. When the plastic 
flow occurs, it is very common to assume ν=0.5. Following 
the notation from Section 2 this choice corresponds to 
assuming the Lode angle θ=0∘ (or b=0.5 or a=0). In this 
specific case, the DP criterion become fully equivalent 
to the MC criterion, independently on the friction angle 
of the material, if only θ0=0∘ is taken for fitting α and k 
parameters (see upper right graph in Figure 2). However, 
the validity of assuming the apparent Poisson ratio equal 
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disappear in plane strain conditions and the general 3D 
Drucker-Prager criterion has to be considered.

7  Summary and conclusions
In this paper the formula relating material shear strength 
predictions generated by the MC and the DP criteria is 
derived and analysed. This relation is of the form qDP=AqMC, 
where A depends on the friction angle ϕ, Lode angle θ0  
for which the DP coefficients have been derived and Lode 
angle θ describing the current stress state. It should be 
also noted that A does not depend on the cohesion of the 
material. The variability considerations of this relation are 
summarized as follows:
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• for        the DP strength is always greater or equal to the MC strength and it is 
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• in case of plane strain conditions the MC and DP criteria are equivalent if the Poisson 
ratio in plastic zones is taken as 0.5 and the DP parameters are established with 
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However the extreme values are obtained for friction angle      , which is rather seldom 
observed, and for the maximum possible discrepancy between    and   values (equal to 
   ). Unfortunately, even for more realistic friction angles, i.e. for      , the interval 
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for fitting Drucker-Prager criterion parameters, unless it is really known that the 
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The approach used in the paper might become a useful strategy for comparing also other 
shear strength criteria to MC predictions. However, the linear relation of the explicit form 
given by equations ([eq:DPMC]) and ([eq:A]) might be simply not possible to be obtained in 
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Deviation of   coefficient from unity for selected    values with respect to Lode angle   and 
friction angle  . 

Average difference between DP and MC vs. Drucker-Prager 
parameters 
An average value of the coefficient   in terms of    can be expressed as: 

      
 
 ∫ ∫             

  
  

where           is the chosen integration area. It would be of interest to look for such 
values of    for which    , i.e. the difference between MC and DP criteria vanishes, in this 
average sense. Another possibly interesting    point would be located at minimum of  . 
Unfortunately the explicit formula for integral ([eq:barA]) seems to be impossible to be 
given, thus the integration have to be done numerically. Indeed, when   is integrated over 
the whole range of variability of   and  , i.e. for                      , then it reaches 
unity at          and it attains its minimum at            (see figure [fig:integral]). 
These    values can be treated as possible choices for establishing parameters of DP 
criterion, especially when the best overall agreement with MC shear strength is expected. 
See table [tab:A] and figure [fig:A] for more details about these    values. 
However, one can investigate also other integration ranges for  , matching specific material 
properties and loading scenarios. For example in case of natural sandy and gravelly soils 
the friction angle varies usually in between     to    . If the compressive loading of such 
soil is assumed, i.e.           , then the condition     will be obtained at         , 
which is quite different from previous result (see again figure [fig:integral]). 
This way the general method for obtaining the DP parameters which fit best the material 
behaviour and loading data is obtained. 

 with respect to the θ0 angle for different integration areas Ω.
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 – the new DP failure surfaces, minimizing the average 
discrepancy with the MC failure surface, can be pro-
posed using the average value of A; for example 
for θ0=4.22∘ and for [θ]×[ϕ]=[-30∘, 30∘]×[0∘, 90∘]  the 
average of A takes the value 1,

 – in case of plane strain conditions the MC and DP crite-
ria are equivalent, if the Poisson ratio in plastic zones 
is taken as 0.5 and the DP parameters are established 
with θ0=0∘, otherwise this equivalence disappears.

The interval of variability of A value, i.e. A∈⟨0.6,3⟩  can 
be considered as surprisingly wide. However the extreme 
values are obtained for friction angle ϕ=90∘, which is 
rather seldom observed, and for the maximum possible 
discrepancy between θ0 and θ values (equal to 60∘). 
Unfortunately, even for more realistic friction angles, i.e. 
for  ϕ≤45∘, the interval  A∈⟨0.68, 1.89⟩ is obtained, which 
is obviously narrower, but still significant. It seems that 
the key for achieving best overall agreement between the 
MC and DP predictions is the proper choice of θ0 value. 
Indeed, quite good agreement is obtained for θ0=0∘, where 
the maximum difference between θ0 and θ is equal to 
30∘ (see Figure 2). For this θ0 choice and for ϕ∈⟨0∘, 90∘⟩ 
and θ∈⟨-30∘, 30∘⟩ the interval A∈⟨0.67, 1.22⟩ is obtained. 
Furthermore, if we constrain the possible friction angles 
to ϕ≤45∘ then this interval reduces to A∈⟨0.72, 1.09⟩. Even 
better agreement, in the average sense, is possible to be 
achieved by means of the procedure described in Section 5,  
if only the variability ranges of the friction and Lode 
angles can be reasonably estimated for the problem 
under consideration. The value θ0=4.22∘ is recommended 
for the most general case of ϕ and θ variability. For the 
reduced range of the friction angle, the value  θ0=7.92∘ can 
be used instead. It is generally discouraged to use in the 
computations the limiting values of Lode angle (θ0=-30∘,  
θ0=30∘) for fitting DP criterion parameters, unless it is 
really known that the considered loading conditions will 
be close to the triaxial extension or compression case.

The approach used in the paper may become a useful 
strategy for comparing also other shear strength criteria 
to the MC predictions. However, the linear relation of the 
explicit form given by Eqs. (22) and (23) might be simply 
impossible to be obtained in other cases and some more 
sophisticated functions should be investigated.
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