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Abstract: This article deals with the vibrations of a 
nonprismatic thin-walled beam with an open cross 
section and any geometrical parameters. The thin-walled 
beam model presented in this article was described using 
the membrane shell theory, whilst the equations were 
derived based on the Vlasov theory assumptions. The 
model is a generalisation of the model presented by Wilde 
(1968) in ‘The torsion of thin-walled bars with variable 
cross-section’, Archives of Mechanics, 4, 20, pp. 431–443. 
The Hamilton principle was used to derive equations 
describing the vibrations of the beam. The equations 
were derived relative to an arbitrary rectilinear reference 
axis, taking into account the curving of the beam axis and 
the axis formed by the shear centres of the beam cross 
sections. In most works known to the present authors, the 
equations describing the nonprismatic thin-walled beam 
vibration problem do not take into account the effects 
stemming from the curving (the inclination of the walls of 
the thin-walledcross section towards to the beam axis) of 
the analysed systems. The recurrence algorithm described 
in Lewanowicz’s work (1976) ‘Construction of a recurrence 
relation of the lowest order for coefficients of the 
Gegenbauer series’, Applicationes Mathematicae, XV(3), 
pp. 345–396, was used to solve the derived equations 
with variable coefficients. The obtained solutions of the 
equations have the form of series relative to Legendre 
polynomials. A numerical example dealing with the free 
vibrations of the beam was solved to verify the model and 
the effectiveness of the presented solution method. The 
results were compared with the results yielded by finite 
elements method (FEM).

Keywords: thin-walled; free vibrations; nonprismatic; 
Legendre polynomials.

1  Introduction
The problem of the free vibrations of nonprismatic thin-
walled beam systems is interesting for two reasons. The 
first reason is the need to describe more precisely and 
solve this mathematically difficult problem that, except 
for special cases, has no closed analytical solutions. The 
second reason is practical and stems from the necessity to 
rationally shape and economically design contemporary 
civil engineering structures built from thin-walled beams 
with variable geometrical and material parameters.

The problems relating to thin-walled beam systems 
have been studied by many authors. As the literature on 
this subject is very extensive, only the research works that 
have been published in the recent years are presented 
here. Eisenberger (1997). Torsional vibrations of open 
and variable cross-section bars. Thin-Walled Structures. 
28(3-4), 269-278. analysed the torsional free vibrations of 
a nonprismatic I-beam. Using the classical power series to 
approximate the sought functions, he determined the free 
vibration frequencies with and without the warping effect 
taken into account. On the basis of Vlasov’s theory of thin-
walled systems, Ambrosini et al. (2000). A modified Vlasov 
theory for dynamic analysis of thin-walled and variable 
open section beams. Engineering Structures. 22(8), 890-900. 
DOI: 0.1016/S0141-0296(99)00043-7. presented equations 
describing the vibrations of a nonprismatic thin-walled 
beam with an open cross section, which take into account 
the effects of shear flexibility and rotatory inertia in the 
stress resultants. The same beam model was used by F. de 
Borbón and Ambrosini (2010). On free vibration analysis of 
thin-walled beams axially loaded. Thin-Walled Structures. 
48(12), 915-920. DOI: 10.1016/j.tws.2010.06.002. to solve the 
free vibration problem with the influence of the static axial 
forces taken into account. The derived equations were 
solved using the method referred to as the state variables 
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approach. The eigenproblem was also analysed by Arpaci 
and Bozdag (2002). On free vibration analysis of thin-
walled beams with nonsymmetrical open cross-sections. 
Computers and Structures. 80(7-8), 691-695. The subject 
of the considerations was the vibrations of a prismatic 
beam with any cross section. The problem was solved 
analytically. The problem of the free vibrations of I-girders 
with intermediate bracings was analysed by Nguyen et al. 
(2011). Natural frequency for torsional vibration of simply 
supported steel I-girders with intermediate bracings. 
Thin-Walled Structures. 49(4), 534-542. DOI: 10.1016/j.
tws.2010.12.001. Using trigonometric functions for 
approximation, they obtained a closed solution. Heyligerin 
(2015). Elasticity-based free vibration of anisotropic thin-
walled beams. Thin-Walled Structures. 95:73-87. DOI: 
10.1016/j.tws.2015.06.014. analysed the eigenproblem of 
prismatic thin-walled beams with, respectively, an open 
and a closed cross sections, taking into account anisotropy 
features. The derived equations were solved using the Ritz 
method, whilst polynomials and trigonometric functions 
were used to approximate the sought functions. Dynamic 
equations of the equilibrium of nonprismatic thin-
walled beams with, respectively, an open and a closed 
cross sections were derived using Hamilton’s principle 
by Chang-New Chen (1998). Variational derivation of the 
dynamic equilibrium equations of nonprismatic thin-
walled beams defined on an arbitrary coordinate system. 
Mechanics of Structures and Machines. 26(2),219-237. The 
equations were derived relative to an arbitrarily adopted 
axis, assuming the rotation of the cross sections relative 
to this axis. The obtained equilibrium equations and the 
boundary conditions are strongly conjugated. The problem 
of the warping of I-bars nonsymmetric in their cross section 
was solved by Mohri et al. in Mohri, F., Brouki, A. & Roth, 
J. C. (2003). Theoretical and numerical stability analyses 
of unrestrained, mono-symmetric thin-walled beams. 
Journal of Constructional Steel Research. 59(1), 63-90., 
where the effect of the load application point on the critical 
load value was investigated. The derived equations were 
solved using the Ritz method and the Galerkin method and 
trigonometric functions for approximation. The warping 
problem was also considered by Asgarian et al. (2013). 
Lateral-torsional buckling of tapered thin-walled beams 
with arbitrary cross-sections. Thin-Walled Structures. 62,96-
108. DOI: 10.1016/j. tws.2012.06.007. who used Hamilton’s 
principle to derive general equations of equilibrium 
describing a nonprismatic beam under the assumption that 
the beam cross section rotates relative to the centre of shear. 
The obtained differential equations were solved using the 
classical power series for approximation. Warping and free 
vibrations were also the subject of work [20] by Soltani et 

al. The same authors (2014b). Finite element method for 
stability and free vibration analyses of non-prismatic thin-
walled beams. Thin-Walled Structures. 82, 245- 261. DOI: 
10.1016/j.tws.2014.04.012. formulated a nonprismatic thin-
walled finite element. In order to determine the exact shape 
functions, they used the method described previously 
in Asgarian, B., Soltani, M. & Mohri, F. (2013). Lateral-
torsional buckling of tapered thin-walled beams with 
arbitrary cross-sections. Thin-Walled Structures. 62,96-
108. and [20]. The formulated finite elements were used 
to analyse the eigenproblem and the stability problem for 
nonprismatic beams with any cross section. Similar to the 
previous works, the results were compared with the ones 
obtained using finite elements method (FEM). The works 
by Machado and Cortínez Mohri (2005). Non-linear model 
for stability of thin-walled composite beams with shear 
deformation. Thin-Walled Structures. 43(10),1615-1645. 
DOI: 10.1016/j.tws.2005.06.008. and Mohri et al. Mohri, F., 
Damil, N. & Ferry, M. P. (2008). Large torsion finite element 
model for thin-walled beams. Computers and Structures. 
86(7-8), 671-683. DOI: 10.1016/j.compstruc.2007.07.007. 
are examples of the application of nonlinear analysis to 
thin-walled beam stability problems. In Machado, S. P. 
& Cortínez, V. H. (2005). Non-linear model for stability 
of thin-walled composite beams with shear deformation. 
Thin-Walled Structures. 43(10),1615-1645., the stability 
problem, including the behaviour after stability loss 
(buckling), was analysed for composite thin-walled beams 
with, respectively, an open and a closed cross sections. 
The nonlinear system of equations was solved by means 
of the incremental Newton-Raphson method. In Mohri, F., 
Damil, N. & Ferry, M. P. (2008). Large torsion finite element 
model for thin-walled beams. Computers and Structures. 
86(7-8), 671-683., a nonlinear finite element with two 
joints and seven degrees of freedom was formulated and 
used to analyse the post-buckling behaviour of a thin-
walled beam. The nonlinear equations stemming from 
this problem were solved using the iterative-incremental 
Newton-Raphson method. Extensive literature on the 
vibrations and stability of thin-walled beams can be found 
in, amongst others, the already cited work Asgarian, B., 
Soltani, M. & Mohri, F. (2013). Lateral-torsional buckling 
of tapered thin-walled beams with arbitrary cross-sections. 
Thin-Walled Structures. 62,96-108..

The subject of this article is the problem of the free 
vibrations of a nonprismatic monosymmetric beam with 
any parameters described using the membrane shell theory 
and the Vlasov theory assumptions. The beam model 
presented here is a generalisation of the model found in 
Wilde’s article [22]. The generalisation consisted in taken 
into account the curving of the axis formed by the shear 
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centres of the beam cross sections. In most works on the 
vibrations of thin-walled beams known to the present 
authors, the equations describing this problem do not take 
into account the effects stemming from the curvilinear form 
of the beam axis and the axis defined by the shear centres. 
The Hamilton principle was used to derive equations 
describing the vibrations of the beam. In this article, the 
equations describing the vibrations of the beam were 
derived relative to an arbitrary rectilinear reference axis 
and the effects stemming from the curvilinear form of the 
axes were taken into account in the equations.

An approximation method using Legendre’s 
orthogonal polynomials (a special type of the Gegenbauer 
polynomials) for approximation was used to solve 
the obtained differential equations. This method, 
presented by Lewanowicz in, amongst others, work [9], 
so far has not been applied to this kind of problems. It 
is a generalisation of the method of approximating the 
solution of the Chebyshev series of the first kind [see 
Paszkowski Paszkowski, S. (1975). Numerical applications 
of Chebyshev polynomials. Warsaw: PWN; (in Polish).) 
and used by the present authors in earlier articles Ruta, P. 
& Szybiński, J. (2014). Nonlinear analysis of nonprismatic 
Timoshenko beam for different geometric nonlinearity 
models. International Journal of Mechanical Sciences. 101-
102, 349-362. DOI: 10.1016/j. ijmecsci.2015.07.020. In the 
case of the free vibration problem, this method reduces 
the system of ordinary differential equations to an infinite 
system of algebraic equations.

A calculation example is provided to verify the derived 
equations and illustrate the capabilities of the presented 
method. In the example, the eigenproblem of a beam 
with a linearly variable web height is solved. Two static 
schemes were considered: (1) a cantilever beam and (2) 
a clamped-clamped beam. The effect of omitting certain 
parameters connected with the variability of the beam 
geometry was examined. The obtained eigenfrequencies 
were compared with the results yielded by FEM (Abaqus 
and SOFiSTiK).

2  Problem formulation
The subject of the considerations is the problem of 
the spatial free vibrations of an arbitrarily supported, 
nonprismatic, thin-walled beam.

2.1  Description of model

The description of the model presented in this article 
is based on the membrane shell theory and the Vlasov 
assumptions used in the theory of thin-walled systems. 
The model is a generalisation of the model described by 
Wilde in [22]. The generalisation consists in taken into 
account the fact that the coordinates defining the position 
of the shear centres form a curvilinear axis and depend 
on the coordinate describing the position of the analyzed 
cross section. Also the beam axis is curvilinear. As a 
nomenclature different from that of Wilde’s work [22] is 
used in this article, the excerpts from the original work 
quoted in this section have been modified using the new 
nomenclature.

The displacement equations used here were derived 
relative to a rectilinear reference axis and to the system 
of coordinates x, y, z (Fig. 2). At this stage, no additional 
simplifying assumptions concerning the beam’s geometry 
(e.g. symmetry) were adopted.

The vector describing the location of a point on the 
central surface of the shell is expressed using the formula

(1)

Figure 1: Static scheme of considered system.
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Figure 2: Coordinate system and local basis vectors for nonprismatic 
thin-walled beam.
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where ex, ey, ez, are the versors of the cartesian coordinate 
system basis.

The vectors of the covariant basis of the system of 
coordinates (t, s, n), determined on the central surface of 
the shell are defined as follows:

(2)

where 
Coordinate  describes the arc length and so  

.
Therefore, one can introduce the following denotations 

y,s=cosα, z,s=sinα, where α is the angle included between 
the positive part of axis y and the tangent to the cross 
section when t=const. The third unit vector of the local 
basis defines the following relation:

(3)

where . Thus the matrix for the 
transformation of the Cartesian coordinate system basis 
to the covariant local basis of the system defined on the 
central surface is given by the formula

(4)

For the local coordinate system tied to the central surface, 
the covariant surface metric tensor is expressed using the 
following formula:

(5)

where 
The covariant metric tensor assumes the following 

form:

(6)

In general, the defined surface local coordinate system 
is not orthogonal. On the basis of the system defined 
earlier, one can define an orthogonal coordinate system 
as follows:

(7)

From the above relations, it follows that versor aT lies in 
the plane tangent to the surface. Therefore, the vector 

is defined as aT = α1at + α2as. The values of coefficients 
α1 and α2 were calculated from the relation aT ⊥ aS, |aT | 
= 1. Ultimately, the matrix for the transformation of local 
coordinate system as, at to a system of orthogonal vectors 
aS, aT lying on the surface tangent to the central surface of 
the shell is defined using the formula

(8)

and the inverse matrix has the form

. (9)

Let us assume that the centre lines of the beam cross 
sections undergo deformation only in the direction 
consistent with the direction of the longitudinal axis x 
(the so-called rigid cross section hypothesis). This leads 
to the following equation describing the displacement of 
an arbitrary point of the thin-walled beam:

(10)

where θ(t) is the angle of rotation relative to the axis 
marked out by the points whose coordinates (Cy(t), Cz(t)) 
define the centre of shear, uy(t), uz(t) are the components of 
the displacements of the cross section in the shear centre 
measured along the axis of the global coordinate system 
and ux(t,s) is the measure of the displacements of the 
cross section along axis x, taking into account wrappings 
relative to plane x = const.
The linear components of the deformation tensor are 
expressed using the formula

(11)

Figure 3: Description of displacements for cross section.
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Hence,

(12)

The physical deformations are expressed using the 
formula

(13)

Using formula (9), one gets

(14)
 

According to the Vlasov assumption, strain γTS=0. Thus 
it follows from formula (14) that also strain γts=0. This 
assumption ultimately leads to the following relation:

(15)

Integrating both sides of equation (15) over variable s and 
taking into account the fact that on the right side of this 
equality, only functions z and y depend on s, one gets

(16)

where u0x=u0x(t) is an integration constant independent of 
variable s and ω = ω(t,s) is a sectorial coordinate described 
by the following relation:

(17)

Then performing the differentiation of function ux (16) 
over variable t, one gets

(18)

Substituting ux,t into formula (12)1 defining γtt, and taking 
into account the fact that t = x, ultimately, one gets

(19)

where

(20).

The dependences between strains and stresses are defined 
using the formula

(21)

where , 
ν is the Poisson ratio, E is Young’s 

modulus, g is the wall thickness and εαβ is the Ricci tensor.
In the considered case, relation (21), after taking into 
account the fact that γxs = γss = 0 is, comes down to

(22)

Let us consider cross-sectional forces acting in cross 
section x = const. The force vector defining the membrane 
forces was determined from the relation

(23)

where na is a covariant element of the unit vector normal 
to the plane and perpendicular to the line tangent to the 
cross section. Thus n is equal to aT, and so the following 
equalities hold: . Hence,

(24)

In order to find component t acting along axis x, one 
projects vector t onto axis x by scalar multiplying it by 
vector ex. Ultimately, one gets

(25)

where  expresses the so-called reduced 
thickness.
The internal forces are defined using the formulas

(26)

where integration is performed over the contour of the 
cross section. Substituting relation (25) into formula (26) 
and performing the integrations, one gets the following 
formulas for the cross-sectional forces (under the 
assumption that the considered beam is monosymmetric 
and that axis z is the symmetry axis of the cross sections):
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(27)

where

(28)

In order to simplify the notation in formula (28), 
denotation , in which g* is reduced thickness 

, was used.

2.2  Displacement equations

In order to derive displacement equations describing the 
vibration problem for a thin-walled beam, we shall use the 
Hamilton principle

(29)

where US  is the potential energy of the elastic deformation 
(the linear part) and UM is the kinetic energy of the system.
The potential energy of the elastic deformation is 
expressed using the formula

(30)

where GIs is the stiffness in the Saint Venant torsion. 
Considering the relations

(31)

the potential energy of the system can be presented in the 
form

              (32)

where . Taking relation (12) into 
account in formula (32), one gets

(33)

The kinetic energy is expressed using the formula

(34)

where  are velocities of an arbitrary point of the 
cross section and . After 
substituting relation (10) into formula (34) and performing 
transformations, one gets the following final form of the 
equation for the kinetic energy of the system:

(35)
where

(36)

Parameter dA’ in formula (36) is defined using the formula

(37)

Using Hamilton’s principle (29), one gets the following 
system of displacement equations describing the thin-
walled beam vibration problem:

    (38)

(39)
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(40)

(41)

and associated with the system of differential equations 
(38)–(41), equations determining the boundary conditions,

(42)

where ,

(43)

where

 
(44)

where

(45)

where

,

   (46)

where 
.

3  Problem solution
Solutions  of the system of differential 
equations (38)–(41) will be sought as expansions of the 
functions into series relative to the Legendre polynomials 
[8]

(47)

where  are the Legendre polynomials defined using 
the formula

(48)

or using the following recurrence formula:

(49)

Legendre polynomials  are a special kind of 
Gegenbauer polynomials  and dependence 

 holds between them.
Let us use the following theorem, derived and 

presented by Lewanowicz in, amongst others, [9], to 
determine the coefficients of series (47). This theorem 
describes the method of determining the solutions of 
differential equations (in the form of the Gegenbauer 
series) with variable coefficients.

Theorem: If the function f satisfies a linear differential 
equation of order n > 0 .

(50)

and

(51)

and functions  have 
specific Gegenbauer series coefficients, then for each 
integral k, the following identity holds true:

 (52)

where ϱijm (k) are functions of integral variable k.

(53)

(54)
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(55)

and ak [h] is the kth coefficient of the expansion of 
the function h(x) into a series relative to Gegenbauer 
polynomials  (a proof of this theorem can 
be found in [9]). As already mentioned, in a special case, 
when λ = 1 ⁄ 2, the Gegenbauer polynomials become 
Legendre polynomials .

Expansion coefficients ck[Qi(x) f(x)] of the function 
product Qi(x) f(x) are calculated from the formula 
given below ([9]), assuming that matrices Qi(x) contain 
exclusively polynomials. If this assumption is not satisfied, 
one should beforehand apply an appropriate polynomial 
approximation to matrices Qi(x). For λ = 1 ⁄ 2,

   (56)

where

  

(57)

When calculating coefficients with negative subscripts, 
the following relations are also used if 2λ = m is a non-
negative integer.

(58)

The problem of free vibrations described by equations 
(38)–(41) can be described by the following matrix 
differential equation of the fourth order:

(59)

In the considered problem, matrices Pi occurring in 
formula (59) assume the following form:

(60)

where the elements of the matrices are defined using 
formulas

(61)

(62)

 (63)

 (64)

(65)

 (66)

(67)
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(68)

In the case of the fourth order (n = 4) differential 
equation, infinite system of equations (52) describing 
the interdependences between the coefficients of the 
expansion of sought function ,  
is defined using the formula

(69)

where λ = 1 ⁄ 2 .
The system, satisfied at k ≥ 4, should be completed 

with 14 equations describing boundary conditions. In 
order to formulate the conditions, the following relations 
defining the values of the Legendre’ polynomials and their 
derivatives in points x=±1 are used:

    (70)

Exemplary equations describing boundary condition 
 have the form

.
(71)

4  Calculation example
In order to illustrate the proposed method as well as to 
verify it and show its effectiveness, a numerical example 
is provided. In the example, the eigenproblem was solved 
using Legendre polynomials for approximation. The 
sought functions were approximated with 15 series terms. 
The Wolfram Mathematica 10 [23] software was used for 
the calculations.

4.1  Example

Nonprismatic monosymmetric I-beams with a linearly 
variable web height are analysed. Two static systems, that 
is, a clamped-clamped beam and a cantilever beam, are 
considered. The diagrams of the beams and the dimensions 
of their cross sections are shown in Fig. 4. The material 
parameters of the beams are  

.
Formula (28) derived in this article was used to 

calculate the geometrical characteristics of the cross 
section. Various size of approximation base was used for 
checking the convergence of the presented method. The 
sought functions (47) were approximated with 10, 15 and 
20 series terms. The obtained results are presented in 
Tables 1 and 2.

In order to verify the model and the effectiveness of 
the presented method of solving the derived equations, 
the considered problem was solved using FEM. The 
Abaqus program, in which 0.02 m × 0.02 m rectangular 
shell elements were adopted for the calculations, and the 
SOFiSTiK program, in which the beams were solved using 
thin-walled beam elements with 7 degrees of freedom 
(DOFs), were used for the calculations. In the SOFiSTiK 
calculations, various numbers of elements were used. 
The beams were divided into 20, 25 and 50 elements. The 
obtained results for the above two cases and the results 
yielded by FEM are presented in Tables 1 and 2.

In the case of the solutions obtained using the shell 
elements (Abaqus), ‘additional’ local effects, consisting 
in local deformations of the medium, appear in the 
eigenforms corresponding to higher frequencies. In the 
tables, the forms are denoted as lf - ‘local form’.

To examine the impact of considering the so-called 
reduced thickness  in definition of the 
geometric property of an area, the calculations were done 
in two ways: (1) the characteristics were calculated from 
formulas (28), that is, using reduced thickness g*, and (2) 
assuming that β=0, that is, g*=g. By analysing the two cases, 
it was possible to evaluate the influence of the simplified 
method of determining the cross-sectional characteristics 
on the eigenfrequency values. Moreover, the influence 
of the generalisation introduced into the model (versus 
the Wilde model) to take into account the variability in 
the location of the shear centres in the cross sections, 
described by functions , was examined. For 
this purpose, calculations for the Wilde model were 
also performed (see [22]), omitting the components in 
which derivatives  appear as 
factors in all the derived formulas. In the calaculations, 

 (in the case of monosymmetric cross 
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sections, Cy(x)≡0) was assumed. The approximation with 
15 series terms was used in comparative calculations. The 
obtained results are presented in Tables 3 and 4.

5  Conclusions
The following conclusions can be drawn from the results 
presented in the examples:

 – using the proposed method, one can solve problems 
relating to the dynamics of nonprismatic thin-walled 

beams with any geometry parameters. Numerical 
examples show that the method is highly accurate 
and efficient. Only approximation with 15 series terms 
for each calculated function has to be used to obtain 
sufficient results (60 series terms for all functions). 
In case of FEM, the total number of finite elements 
required for analysis is circa 25. It equals 175 degrees 
of freedom. Moreover, the presented semi-analytical 
method is useful for further calculation which is 
difficult in case of FEM.

Figure 4: Analysed beams and dimensions of their cross sections.

Table 1: Eigenfrequencies in case of clamped-clamped support (C-C) [Hz].

Mode number Paper
dim = 10

Paper
dim = 15

Paper
dim = 20

FEM SOFiSTiK
beam element 7DOF
d = 20

FEM SOFiSTiK
beam element 7DOF
d = 25

FEM SOFiSTiK
beam element 7DOF
d = 50

FEM Abaqus
shell elements 
(quad)

1 10.17 10.15 10.15 10.17 10.16 10.15 10.05

2 18.43 18.39 18.39 17.93 17.92 17.89 18.18

3 26.70 26.68 26.68 26.83 26.75 26.64 26.11

4 48.69 48.70 48.69 47.62 47.45 47.20 46.79 (lf)

5 52.71 50.72 50.72 49.49 49.41 49.31 48.18

6 53.11 52.92 52.92 51.86 51.57 51.17 49.32

7 90.71 82.42 82.34 83.58 82.66 81.43 67.38 (lf)

8 96.80 93.59 93.59 94.05 93.45 92.64 85.73 (lf)
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 – in the considered free vibration problem, the adoption 
of the simplified way of determining the geometrical 
characteristics of the cross section has no significant 

effect on the values of the eigenfrequencies of the 
considered systems;

 – the differences between the eigenfrequency values 
determined using, respectively, the Wilde model 
and the generalised model are not significantly large 
(for the first eight eigenfrequencies, they amount to 
0–1.6% for the clamped-clamped beam and to 0–3.8% 
for the clamped-free beam). A more detailed analysis 
shows that the omission of the derivatives of functions 
Cz(x), Cy(x) generates the largest differences in the 
case of the frequencies corresponding to the forms 
in which torsion dominates. One can expect that for 
beams with any cross section (no monosymmetry), 
the differences will probably be larger.
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