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Abstract: In this study, firstly, the behavior of a high 
steel frame equipped with tuned mass damper (TMD) 
due to several seismic records is investigated considering 
the structural and seismic uncertainties. Then, machine 
learning methods including artificial neural networks 
(ANN), decision tree (DT), Naïve Bayes (NB) and support 
vector machines (SVM) are used to predict the behavior 
of the structure. Results showed that among the machine 
learning models, SVM with Gaussian kernel has better 
performance since it is capable of predicting the drift of 
stories and the failure probability with R2 value equal to 
0.99. Furthermore, results of feature selection algorithms 
revealed that when using TMD in high steel structures, 
seismic uncertainties have greater influences on drift 
of stories in comparison with structural uncertainties. 
Findings of this study can be used in design and 
probabilistic analysis of high steel frames equipped with 
TMDs.

Keywords: Failure analysis; supervised machine 
learning; feature selection; tuned mass damper.

1  Introduction
Mass damper systems consist of three components: 
internal mass, internal spring and damper, which are 
dynamically placed with a degree of freedom above the 
structure. When the structure vibrates, the system also 
begins to vibrate with a phase opposite to the vibrating 

frequency, and its inertial forces will deplete the structure 
vibrations (Soto and Adeli, 2013).

Hundreds of research studies have been carried out on 
mass dampers (Marano et al., 2010; Giaralis and Taflanidis, 
2018; Wang et al., 2019). Most of these studies are related 
to the parametric study of the effect of the damper on 
the behavior of the structure, or the determination of the 
location and characteristics of the optimal mass damper 
to achieve the maximum reduction in seismic response.

Bekdaş and Nigdeli (2011) have proposed the 
optimum parameters of tuned mass dampers (TMD) under 
seismic excitations. Harmony search (HS), a metaheuristic 
optimization method, which has been successfully 
applied for several engineering problems, is revised for 
tuning passive mass dampers.  In another study, Chey et 
al. (2010) investigated the seismic performance attributes 
of multi-story passive and semi-active tuned mass damper 
(PTMD and SATMD) building systems for 12-story moment 
resisting frames modelled as “10+2” stories and “8+4” 
stories. Segmented upper portion of the stories are isolated 
as a tuned mass, and a passive viscous damper or semi-
active resettable device is adopted as energy dissipation 
strategy.  Results showed that large SATMD systems can 
effectively manage seismic response for multi-degree-of 
freedom systems across a broad range of ground motions 
in comparison to passive solutions.

Mohebbi et al. (2013) proposed genetic algorithm 
(GA) for designing optimal multiple tuned mass damper 
(MTMD) to mitigate the seismic response of structures 
based on defining an optimization problem, which 
considers the parameters of tuned mass damper (TMD) 
as variables and minimization of maximum structural 
response as an objective function.

By investigating previous studies in the field of TMD, 
only a few probabilistic studies have been carried out in 
this area. One of these studies is reported by Debbarma and 
Debnath (2013), where they have investigated the optimal 
mass-damper design due to the uncertainties of damper 
characteristics. Their research included the optimization 
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of frequency and TMD damping characteristics with 
respect to the uncertain parameters of the system. In order 
to find the optimal values of TMD parameters based on the 
rules of random vibration, the maximum displacement of 
a three-story structure is considered as the target.

Giaralis and Taflanidis (2018) considered an optimum 
tuned mass‐damper‐inerter (TMDI) design framework 
accommodating the mass‐amplification and higher‐
modes‐damping, while accounting for parametric 
uncertainty to the host structure properties, modelled as 
a linear multi degree of freedom system. TMDI couples 
the classical TMD with an inerter, a two‐terminal device 
resisting the relative acceleration of its terminals in 
judicial topologies. Although they showed that the TMDI 
achieves enhanced structural performance and robustness 
to building and excitation uncertainties compared to 
same mass/weight TMDs, further probabilistic analysis is 
required to reveal the actual performance of TMDIs.

Wang et al. (2019) introduced a self‐adjustable 
variable pendulum tuned mass damper (SAVP‐TMD). 
On the basis of the acceleration ratio between TMD and 
primary structure, they showed that SAVP‐TMD can retune 
itself by varying the length of the pendulum according 
to the improved acceleration ratio‐based adjustment 
algorithm. However, they verified their proposed system 
on a five‐story structure and not on a tall frame.

In order to achieve the most acceptable accuracy of 
modelling especially for high steel structures, the effects 
of uncertainties should be considered efficiently in the 
calculations. This uncertainty ultimately leads to an 
uncertainty in the evaluation of seismic response of the 
structure (Deierlein et al., 2010). In order to evaluate 
the behavior of structures in recent years, statistical and 
probabilistic methods have been used to quantify the 
possibility of failure (Farrokhi and Rahini, 2017).

Due to the recent developments in inexpensive 
computers and processing equipment, machine learning 
has become an applicable solution in pattern recognition 
and nonlinear modelling of big data (Michalski et al., 
2013; Massah and Asefpour Vakilian, 2019). Statistical 
regression models provide a mathematical equation to 
calculate the dependent variable of a sample by having 
the input features. Machine learning methods can learn 
a database including hundreds of input features and 
corresponding dependent variables (in this situation, they 
are called “targets”) of a number of samples to predict the 
target of a new sample having its input features (Ahmad 
et al., 2014). Hundreds of machine learning algorithms 
have been developed for engineering problems, which 
can be implemented in programming environments such 
as MATLAB, Python, and so on.

The objective of this study was: a) to investigate the 
behavior of a high steel frame equipped with tuned mass 
damper (TMD) due to several seismic records considering 
the structural and seismic uncertainties, and b) to study 
the performance of different supervised machine learning 
algorithms in prediction of the behavior of the structure.

2  Materials and methods

2.1  Structure modelling

A two-dimensional 20-story steel frame consisting of 4 
five-meter openings was modelled in this study (Figure 
1). The regulations used for steel construction standards, 
loading and seismic rules were based on Section 10 of 
National Building Regulations of Iran, Section 6 of the 
National Building Regulations of Iran, and the 2800 
Regulations (third edition), respectively. The 20-story 
frame was designed using the SAP2000 program and the 
sections were logically selected. The values   of dead and 
dynamic loads of stories and roofs are presented in Table 
1. The characteristics of the structure are shown in Table 
2. Mathematical modelling and analysis of similar tall 
structures towards different loadings and ground motions 
can be found in literature (Krishnan, 2007; Muto and 
Krishnan, 2011).

The design is carried out in several steps, so selecting 
the sections was close to the optimal conditions in terms 
of the amount of tensions and lateral displacement 
of the structure. Therefore, the effects of each type of 
components on the overall behavior of the structure can 
be properly and comprehensively analyzed. The elements 
used in the structure model were beams and columns; for 
columns, rectangular cans made of steel sheets, and for 
beams, IPEs were considered. It should be noted that the 
compression of all sections used in the structure such as 
cans was ensured.

2.2  TMD modelling

In order to investigate the effectiveness of the vibration-
absorbing devices on steel moment-resisting frames 
under seismic loads, a TMD was considered on the top 
story of the structure during the simulation. TMD was 
added to the primary structure to absorb the energy of the 
applied excitation achieving a reduction in the damage of 
the structural elements and improve the performance of 
the structure (Soto et al., 2013).
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Since the mass ratio, which is defined as the ratio of 
the TMD mass to mass of the structure, is generally chosen 
between 1% and 10% in designing TMDs (Pozos-Estrada 
and Hong, 2015), TMD mass was considered equal to 2% 
of the total mass of the studied frame. Structural stiffness 
was also considered in a way so that the period of TMD 
was similar with the first mode of the structure (Vickery 
et al., 2001). The characteristic parameters of TMD was 
calculated based on the method proposed in Sadek et al. 
(1997). In this method, for a given mass ratio, the stiffness 
of the TMD spring (k) and the viscous damping coefficient 
of the damper (c) are calculated using Equations (1) and 
(2), respectively:

2
TMDmk ω= (1)

(2)

where m in the mass of TMD, ωTMD is the circular 
frequency of TMD, and ξ is the damping ratio of TMD and 
is calculated using Equation (3):
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where Φ is the component of the first mode of TMD, β is 
the damping ratio of the structure, and μ is the mass ratio 
(Sadek et al., 1997).

2.3  Incremental dynamic analysis algorithm

Nonlinear dynamic analysis was used to achieve the 
statistical parameters in failure capacity. This analysis is 
usually performed to measure the midrange capacities and 
standard deviation of failure ratios. Gravitational loads for 
analysis are different from designing gravitational loads 
and are determined by the summation of dead weight 
and 20% of the dynamic weight. Nonlinear dynamic 
response of the considered frame for a set of previously 
reported earthquakes using incremental dynamic analysis 
(IDA) is calculated to the extent that the structure will be 
unstable or reaches the desired performance level. To 
carry out this kind of analysis, the structure should be 
excited by an earthquake record. One of the usual ways 
is to initially excite the structure under an earthquake 

Figure 1: Studied 20-story steel structure.

Table 1: Dead and dynamic loads of stories and roofs.

Dead load (kg.m-2) Dynamic load (kg.m-2)

Stories 1250 500

Roof 1125 375

Table 2: Characteristics of the structure.

Feature Value

Height of structure (m) 60

Period of structure (s) 1.7247

Coefficient of reflection 0.9023

Coefficient of importance 1

Coefficient of behavior 7.5

Acceleration scheme 0.35

Coefficient of earthquake 0.0421
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with a maximum acceleration of 0.1 g (g = 9.8 m.s-2) and 
add 0.1 g to the maximum acceleration at each step. Peak 
ground acceleration (PGA) was changed from 1 to 10 m.s-2 
to investigate the seismic uncertainties, whilst material 
yield strength was changed between 222 and 260 MPa 
with 2 MPa steps during the experiments to study the 
effects of structural uncertainties. The reason for such a 
range is that the yield strength of the steel wide flange 
beam, which was selected for the structure simulation, is 
ca. 240 MPa.

The flowchart of IDA analysis carried out in this study 
is shown in Figure 2. For analysis, OpenSees and MATLAB 
software have been used in a loop. Initially, using a code 
written in MATLAB, a sub-procedure was created in 
the Tcl environment containing the earthquake record 
information. Then, considering that the created model in 
OpenSees should be modified for each IDA, modification 
was done automatically using MATLAB using iterative 
loops.

In order to facilitate the construction of sections, two 
sub-programs were used in the Tcl environment, one of 
which for constructing the columns and the other one 
for I-beams. The code written in OpenSees performed an 
IDA analysis on the structure at each run, and wrote out 
the output in text files. Upon completion of the analysis, 
the outputs were processed again using MATLAB and IDA 
results were plotted. 

2.4  Machine learning modelling

In this study, machine learning was used to predict story 
drifts in different PGAs and uncertainties in the material 
yield strength of the structure. In this situation, story drift 
was considered as the target, while seismic and structural 
uncertainties were the input features.

By having the database, decision tree (DT), random 
forest (RF), Levenberg-Marquardt back-propagation 
artificial neural networks (ANN), support vector machine 
(SVM), least-square support vector machine (LSSVM) and 
Naïve Bayes (NB) machine learning models were used for 
the prediction of story drifts. 

Different types of DT modeling including iterative 
dichotomiser 3 (ID3), statistical model (C4.5), 
classification and regression tree (CART), chi-squared 
automatic interaction detection (CHAID) and multivariate 
adaptive regression splines (MARS) were used for nitrate 
determination (Singh and Gupta, 2014). 

One of the important parameters of the artificial 
neural network that significantly affects the performance 
of this model is the network architecture, that is, the size 

of network hidden layer (Asefpour Vakilian and Massah, 
2018). The size of the hidden layer varied from 2 to 10 with 
2 nodes step to obtain the optimum network. 

SVM and LSSVM models have two parameters 
including kernel type and kernel parameter that affect 
the performance of the model (Basak et al., 2007). 
Three kernel types including polynomial (f = (γxxo)3), 
radial basis function (f = exp(-γ(x-xo)2)) and sigmoid (f = 
tanh(γxxo)) were considered for modeling, where f is the 
kernel function, γ is the kernel parameter, x is a train or 
test sample in the modeling hyperplane, and xo is the 
origin point in the hyperplane (Basak et al., 2007).

The algorithms of the machine learning methods were 
implemented using a code written in MATLAB R2016b 
programming environment (Mathworks, Massachusetts, 
United States). 

To investigate the performance of the machine 
learning methods, 5-fold cross-validation was used for 
training and testing. The first step in machine learning 
modeling is data normalization. Targets were normalized 

Figure 2: Incremental dynamic analysis algorithm.
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using Equation (4) to make it possible to compare the error 
parameters of the models. Equation (4) maps all values for 
each feature and the target between 0 and 1.

minmax
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where xn is a sample’s target value after normalization, 
xo is the raw target value, and xmin and xmax are the 
lowest and highest targets in all samples, respectively. 
The performance of the models was evaluated based 
on the mean square error (MSE) and the coefficient 
of determination (R2) using Equations (5) and (6), 
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where xm is the measured value of story drift in the dataset 
and xp is the predicted story drift using machine learning. 
The lower MSE and higher R2, the better the performance 
of the machine learning model is.

2.5  Feature selection algorithms

Feature selection (i.e., variable selection) is generally 
one of the fundamental problems in machine learning 
and pattern recognition. In recent years, according to 
new emergences in computer applications, datasets 
with thousands of features have been created (Liu et al., 
2002). However, most of the features in these datasets are 
irrelevant or redundant, which result in low efficiency 
and even over-fitting of the learning algorithms (Sun et 
al., 2012). Therefore, feature selection has become one 
of the most active research areas to solve this problem. 
The essential idea of feature selection is to detect the 
irrelevant and redundant features from data sets as many 
as possible. Feature selection in machine learning aims 
to find a good feature subset which produces higher 
classification accuracy (Guyon and Elisseeff, 2003). 

Several approaches are employed in feature selection, 
such as genetic algorithm (Huang et al., 2007), simulated 
annealing (Lin et al., 2008), SVM (Moustakidis et al., 2010) 

and boosting method (Liu et al., 2009), which they can 
typically fall into three categories: embedded, wrapper 
and filter methods. In this study, Relieff algorithm, t-test, 
sequential feature selection (SFS) and class separability 
criteria (CSC) were used to score the effects of structural 
and seismic uncertainties on the prediction of story drifts 
during seismic loadings.

2.6  Seismic records

In this study, several earthquake records with 
characteristics shown in Table 3 were selected for IDA 
analysis in order to create a dataset that was used later in 
machine learning and feature selection.

3  Results and discussion

3.1  IDA results

After processing the data obtained from OpenSees in 
MATLAB using the flowchart shown in Figure 2, the IDA 
data were extracted, as shown in Figure 3 for the first, 
fifth, tenth, fifteenth, and twentieth stories of a 20-story 
structure. Figure 3 illustrates the IDA plots for the 
Northridge event in Castaic – Old Ridge Route station. 
The IDA results for other seismic events and stations were 
obtained similarly for creating the dataset.

 The drift of each story is considered as the relative 
displacement with regard to the upper and lower stories, 
except the first story that I reported with regard to the 
upper story. Figure 3 shows that by increasing the PGA, 
relative displacement of the stories has increased in 
general. However, its increasing trend is not similar for 
all the stories. When not using TMD in the structure, for 
the tenth story of the structure, relative displacement was 
initially increased with increasing the PGA, but for the 
largest PGA, this relative displacement decreased. This 
can be attributed to the natural period of the structure, 
earthquakes and their impact. It is also observed that when 
the TMD has not been used in the structure, the largest 
relative displacement belongs to the tenth story (46 % for 
PGA = 9 m.s-2), followed by the fifteenth story (20 % for 
PGA = 10 m.s-2). In severe seismic loads, the input energy 
to the structure is increased and a bigger part of the energy 
is dissipated due to the creating plastic deformations.

These deformations are due to the formation of local 
plastic joints in the structure, which itself increases 
the energy dissipation in the system (Kappos and 
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Papanikolaou, 2016). As a result, a large amount of 
earthquake input energy to the building is dissipated due 
to local degradation in the lateral reinforcement of the 
structure, so that if it is not taken into consideration, it 
can ultimately lead to the collapse of the structure.

Figure 3 reveals that using TMD in the studied structure 
has significantly reduced the story drifts in all first, fifth, 
tenth, fifteenth and twentieth stories of the structure. 
This was predictable (Bekdaş and Nigdeli, 2011; Soto and 
Adeli, 2013) since TMD can prevent structural damages 
and improve their performance during the earthquakes 
by absorbing the input energy to the structure (Li and 
Huo, 2010). According to Figure 3, when using TMD in 
the structure, the largest relative displacement belongs to 
the fifteenth story (11% for PGA = 8 m.s-2), followed by the 
fifteenth story (10.3% for PGA = 9 m.s-2).

3.2  Performance of machine learning 
algorithms

Results of the prediction of story drifts using supervised 
models are presented in Table 4. Training and testing 
performances of each model are shown as MSE and 
R2. Since the MSE values of the models are calculated 
considering the normalized values of the samples’ label, 
it will be possible to compare the performance of these 
models. The MSE of the k-NN model is presented for k = 
1, 2, 3, 4 and 5. The least value of normalized MSE was 
obtained using the first nearest neighbor (1-NN) model 
and its values were 0.036 and 0.049 for training and 
testing, respectively, which are not desirable for accurate 
prediction of target in geotechnical engineering.

Performance of different types of DT model is also 
shown in Table 4. Results show that the C4.5 model had 
acceptable performance as compared with the other DT 
methods. Although its training MSE was 0.020, the testing 
performance of this model was greater than 0.01. MSE of 

Table 3: Studied earthquake records and their characteristics.

Event Year Magnitude Radius (km) Station

Cape Mendocino 1992 7.1 23.6 Fortuna – Fortuna Blvd

Cape Mendocino 1992 7.1 18.5 Rio Dell Overpass – FF

Duzce 1999 7.1 15.6 Lamont

Northridge 1994 6.7 23.9 N Faring Rd

Northridge 1994 6.7 29.5 N Fletcher Dr

Loma Prieta 1989 6.9 19.9 Gilory Array #6

Loma Prieta 1989 6.9 21.4 Anderson Dam (Downst)

Loma Prieta 1989 6.9 21.4 Anderson Dam (Abut)

Loma Prieta 1989 6.9 22.3 Coyote Lake Dam

Northridge 1994 6.7 22.6 Castaic – Old Ridge Route

Northridge 1994 6.7 31.3 LA – Baldwin Hills

Northridge 1994 6.7 20.8 Beverly Hills – 12520 Mulhol

Northridge 1994 6.7 24.0 Big Tujunga, Angeles Nat F

Northridge 1994 6.7 25.7 LA – Century City C C North 

Northridge 1994 6.7 23.7 LA – Chalon Rd

Northridge 1994 6.7 17.7 Sunland – Mt Gleason Ave

Northridge 1994 6.7 20.0 Burbank – Howard Rd

Northridge 1994 6.7 25.7 Hollywood – Willoughby A

Northridge 1994 6.7 24.5 Vasquez Rocks Park

San Fernando 1971 6.6 24.9 Castaic – Old Ridge Route
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Figure 3: IDA analysis of the (a,b) first, (c,d) fifth, (e,f) tenth, (g,h) fifteenth, and (i,j) twentieth story of the 20-story structure (a,c,e,g,i) not 
equipped with TMD, and (b,d,f,h,j) equipped with TMD
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RF model in the prediction of SPR was obtained 0.033 and 
0.048 for training and testing, respectively. 

One of the important parameters of ANN, which 
significantly affects its performance, is the network 
architecture, that is, the size of network hidden layer. In 
this study, the architecture of the network was 4-n-1 (four 
nodes in the input layer and one node in the output layer). 
The size of hidden layer varied from 2 to 20 with 2 nodes 
steps to obtain the optimum network. Results showed 
that 4-12-1 architecture had the highest performance in 
comparison with the other network architectures. Study of 
the performance of different neural network architectures 
indicates that there is no specific trend between the 
number of hidden layer neurons and the performance 
of the network, especially in engineering problems 
(Hashemi et al., 2014). SVM model with Gaussian kernel 
and kernel parameter C = 30 resulted in an acceptable 
error in regression training and testing. For this type 
of SVM, training and testing normalized MSE were 
0.008 and 0.010, respectively. These values showed the 
promising performance of SVM in the prediction of SPR. 

Finally, training and testing performance of NB model was 
obtained as 0.041 and 0.063, respectively.

Table 4 also shows R2 values of the machine learning 
methods for training and testing procedures. As shown in 
the table, SVM had the highest R2 values for both training 
and testing procedures. The R2 values brought in the 
table enables us to compare the performance of machine 
learning models with available statistical models. 
According to the obtained results, it seems that by using 
SVM, which is a conventional machine learning model 
(Massah and Asefpour Vakilian, 2019), geotechnical 
engineers can simply predict the IDA analysis results 
having PGA and yield strength at each story of a high 
steel frame with acceptable performance. In spite of 
complex and time-consuming methods of IDA analysis, 
which usually requires several hours to run on available 
computers, intelligent regression methods can result 
in proper prediction of drifts in lower than three or four 
seconds. 

 

 
(i)                                                                             (j) 

Figure 3. IDA analysis of the (a,b) first, (c,d) fifth, (e,f) tenth, (g,h) fifteenth, and (i,j) 

twentieth story of the 20-story structure (a,c,e,g,i) not equipped with TMD, and (b,d,f,h,j) 

equipped with TMD  

3.2. Performance of machine learning algorithms 

Results of the prediction of story drifts using supervised models are presented in Table 

4. Training and testing performances of each model are shown as MSE and R2. Since the MSE 

values of the models are calculated considering the normalized values of the samples’ label, it 

will be possible to compare the performance of these models. The MSE of the k-NN model is 

presented for k = 1, 2, 3, 4 and 5. The least value of normalized MSE was obtained using the 

first nearest neighbor (1-NN) model and its values were 0.036 and 0.049 for training and 

testing, respectively, which are not desirable for accurate prediction of target in geotechnical 

engineering. 

Performance of different types of DT model is also shown in Table 4. Results show that 

the C4.5 model had acceptable performance as compared with the other DT methods. Although 
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3.3  Results of feature selection

Table 5 shows the results of sensitivity analysis and 
feature selection. The scores indicating the importance 
of structural and seismic uncertainties in predicting the 
results of the IDA obtained from each feature selection 
method is given in such a way that the highest score is 
equal to 1 and the other scores are expressed between 0 
and 1. According to this table, the yield strength compared 
to the maximum acceleration of the earthquake had 
lower effects on IDA. This suggests that in comparison 
with the structural uncertainty, seismic uncertainty has a 
larger contribution to the changes in the results of IDA. 
It should be noted that the story number parameter also 
has a significant effect on the drifts, so that predicting IDA 
only with the maximum acceleration of the earthquake, 

regardless of the story number in the studied structure 
leads to a large error in the prediction. The results 
obtained from different methods of feature selection are 
similar. For example, Table 5 shows that, in general, the 
effects of structural and seismic uncertainty in predicting 
the results of IDA and the story drift on the fifteenth floor 
of the structure reaches its maximum value, in which the 
seismic uncertainty has higher effects than structural 
uncertainty.

Seismic risk for structures has been defined in many 
ways, ranging from the probability of experiencing a 
certain ground motion intensity, to the probability of 
experiencing a certain level of structural response, 
to the probability of experiencing failure in a critical 
failure mode, to the probability of system failure which 
is the ultimate consequence of failure in a number of 

Table 4: Performance evaluation of different models in prediction of the story drifts (parameters of each model are demonstrated in the text).

Regression 
model

Parameters Normalized MSE R2

Train Test Train Test

k-NN k = 1 
k = 2
k = 3
k = 4
k = 5

0.036
0.036
0.040
0.049
0.045

0.049
0.050
0.053
0.068
0.066

0.932
0.932
0.912
0.863
0.886

0.855
0.849
0.830
0.725
0.740

DT type = ID3
type = C4.5
type = CART
type = CHAID
type = MARS

0.022
0.020
0.025
0.043
0.049

0.038
0.033
0.042
0.060
0.056

0.988
0.994
0.978
0.897
0.863

0.918
0.942
0.896
0.783
0.810

RF - 0.033 0.048 0.946 0.862

ANN hidden layer size = 2
hidden layer size = 4
hidden layer size = 6
hidden layer size = 8
hidden layer size = 10
hidden layer size = 12
hidden layer size = 14
hidden layer size = 16
hidden layer size = 18
hidden layer size = 20

0.050
0.040
0.039
0.046
0.039
0.030
0.037
0.042
0.051
0.050

0.066
0.059
0.054
0.070
0.052
0.049
0.058
0.061
0.067
0.058

0.857
0.912
0.917
0.880
0.917
0.959
0.927
0.902
0.851
0.857

0.740
0.790
0.824
0.710
0.837
0.855
0.797
0.776
0.732
0.797

SVM kernel type = linear, C = 10
kernel type = linear, C = 20
kernel type = linear, C = 30
kernel type = Gaussian, C = 10
kernel type = Gaussian, C = 20
kernel type = Gaussian, C = 30
kernel type = RBF, C = 10
kernel type = RBF, C = 20
kernel type = RBF, C = 30

0.019
0.022
0.021
0.018
0.017
0.008
0.030
0.028
0.029

0.029
0.031
0.035
0.026
0.025
0.010
0.038
0.046
0.046

0.998
0.988
0.991
0.995
0.995
0.999
0.959
0.966
0.962

0.960
0.951
0.933
0.972
0.976
0.993
0.918
0.873
0.873

NB - 0.041 0.063 0.907 0.762
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interdependent subsystems comprising a functional 
system. Although Table 5 reveals that seismic uncertainty 
can be more effective on IDA analysis results compared 
with structural uncertainty, the table shows that structural 
uncertainty is also a matter of great importance in accurate 
behavior analysis of high steel frames and geotechnical 
and earthquake engineers should always consider this 
type of uncertainty during their designings. 

4  Conclusions
In this study, the probability of failure of steel structures 
equipped with TMD is firstly investigated considering 
seismic and structural uncertainties and then, the 
performance of several machine learning algorithms is 
investigated in the prediction of the structure’s behavior. 
For this purpose, a 20-story steel structure was modeled, 
and then the results of IDA for several seismic records 
were studied. Results of this study show that SVM with 
Gaussian kernel has better performance since it is capable 
of predicting the drift of stories of the studied structure 
with R2 value equal to 0.99. Furthermore, results of feature 
selection algorithms reveal that when using TMD in 
high steel structures, seismic uncertainties have greater 
influences on drift of stories in comparison with structural 
uncertainties.
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