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Abstract: Two models of vibrations of the Euler–Bernoulli 
beam under a moving force, based on two different 
versions of the nonlocal gradient theory of elasticity, 
namely, the Eringen model, in which the strain is a function 
of stress gradient, and the nonlocal model, in which 
the stress is a function of strains gradient, were studied 
and compared. A dynamic response of a finite, simply 
supported beam under a moving force was evaluated. The 
force is moving along the beam with a constant velocity. 
Particular solutions in the form of an infinite series and 
some solutions in a closed form as well as the numerical 
results were presented.  

Keywords: vibration; beam; moving force; nonlocal 
elasticity.

1  Introduction
In the classical (local) theory of elasticity, the stress 
at a given point depends only on the strain at the same 
point. Many theories have been developed based on 
this assumption for various types of structures such as 
rods, beams, plates, and shells. In turn, the experiments 
associated with nanotechnology demonstrate that the 

local continuous theory cannot predict the behavior of 
nanoscale structures. In such structures, the size effect 
takes place, and for this reason, the nanomaterials are 
better described by nonlocal continuous theory. The theory 
of nonlocal continuous mechanics assumes that the stress 
at a particular point is a function of strains (stresses) at all 
points in the continuum. Nonlocal elasticity was initiated 
in articles [1-4]. In the past few years several problems have 
been solved using nonlocal continuous elasticity theory, 
in particular problems connected with the buckling 
and vibration of beams [5-19]. A dynamic response of 
the nanotube subjected to a moving nanoparticle is an 
interesting and important problem. The vibration of 
different types of nanostructures, such as nanotubes, 
double-walled carbon nanotubes, and nanoplates, under a 
moving load are considered in articles [20-29]. The problem 
of molecular modeling in nanostructured materials have 
been considered, among others, in the articles [30, 31]. 
To describe the impact of small-sized nonlocal properties 
of materials in the dynamics of the abovementioned 
nanostructures, the stress gradient model is most often 
used, although the strain gradient model is also used. 
It is worth remembering that in experimental studies, 
strain but not stress are measured. Hence, it follows that 
comparative theoretical and numerical studies should be 
conducted simultaneously for both gradient models.

In this article, we study and compare two models 
of vibration of the Euler–Bernoulli beam under a 
moving force based on two different gradient versions 
of the nonlocal theory of elasticity, namely, the nonlocal 
Eringen’s model, in which the strain is a function of stress 
gradient, and the nonlocal Aifantis’s model, in which 
the stress is a function of strains gradient. A comparative 
analysis of the integral stress-driven model versus strain-
driven model is presented in the article [33]. We study 
the dynamic response of a finite, simply supported beam 
under a moving force. The force is moving along the beam 
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with a constant velocity. We will present the particular 
solutions in the form of an infinite series and some 
solutions in a closed form. We also present the numerical 
results. The presented theoretical solutions and numerical 
results can be used in the dynamic analysis of nanotube 
structures under the excitation of a moving nanoparticle 
with a weight of mg modeled by a moving constant force 
P= mg  Moreover, the movement of a nanovehicle on the 
nanobeam can be modeled using a moving force. In the 
recent years, intensive theoretical and experimental 
research in the field of nanotechnology has been carried 
out. The progress in the technology of nanodevices such 
as nanovehicles is presented, among others, in articles 
[32,33].  This progress in nanotechnology generates similar 
problems as observed in civil and mechanical engineering 
structures loaded with a moving load [34]. 

The outline of the article is given as follows: in Section 
2, the dynamic equation of the Euler–Bernoulli beam 
subordinate, according to the stress gradient model, is 
derived. In Section 3, the vibration of the Euler–Bernoulli 
beam under a force moving with a constant velocity is 
considered. The classical solution has the form of an 
infinite series. In this section, it has been shown that the 
aperiodic part of the solution can also be presented in 
a closed form instead of in an infinite series. In Section 
4, the dynamic response because of the force moving on 
the Euler–Bernoulli beam, based on the strain gradient 
nonlocal elasticity model, is considered. In Section 5, the 
comparative numerical analysis of the dynamic response 
of the beam because of the moving force for two nonlocal 
models of the Euler–Bernoulli beam is presented. Finally, 
conclusions and comments are drawn in Section 6. 

2  Vibrations of the Euler–Bernoulli 
beam using the stress gradient 
model – Eringen’s nonlocal model
In the well-known nonlocal elasticity theory proposed 
by Eringen [4], the nonlocal constitutive relationship is 
defined as
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where E  is Young’s modulus.  

Using Eq. (2) and the well-known relationship between the strain and the transverse deflection of the 
Euler–Bernoulli beam, 
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where I  is the moment of inertia and M  is the resultant bending moment, which is defined by 
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By considering the equilibrium of an infinitesimal element of length dx  and by applying D’Alembert’s 
principle, the equilibrium equation takes the following form: 
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where ),( txp  is the load process, ρ is the material density, and A  is the cross-sectional area. 

Let us consider a beam of finite length L simply supported on both ends.  

Considering the set of differential equations (4) and (6), the boundary conditions for a simply supported 
beam have the following form: 

,0),(),0( == tLwtw  (7) 
.0),(),0( == tLMtM  (8) 

After combining Eqs. (4) and (6), one obtains a differential equation that describes the vibration of the 
beam in the following form: 
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In this case, the boundary conditions have the following forms: 
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The boundary condition (11) requires some comment. This is correct in a simply supported 
beam according to the classical theory of elasticity. In the Eringen model, it is not fulfilled for 
various loads [see (40)]. It is widely accepted in dynamic issues because of the possibility of 
presenting a solution in the form of a Fourier series. Some additional comment on this problem 
is given in the final conclusions. 

 
3. Vibrations of the beam under a moving force – the stress gradient model 
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Instead of solving Eq. (16), it is convenient to solve the set of the two equations (14) and (15). In the 
latter case, we obtain both the solution for the vertical displacement and the bending moment. 
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Figure 1: Beam under moving force.
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The functions ),( TwA ξ  and ),( TM A ξ  describe aperiodic vibrations and satisfy the nonhomogeneous 
differential equations. (14) and (15). These functions do not satisfy the initial conditions of motion (19). 
The functions ),( TwS ξ  and ),( TM S ξ  correspond to free vibrations of the beam and satisfy the 

homogeneous differential equations (14), (15), and ),0( =P  and together with the aperiodic functions, 

the initial conditions of motion are satisfied. Now we will present the aperiodic solutions ),( TwA ξ and 

),( TM A ξ given by expressions (29) and (31) in closed analytical form. 

Let us notice an important fact that these functions are not only solutions to the system of partial 
differential equations (14) and (15) but also to the system of ordinary equations (see [41-43]) 
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The functions ),( TwA ξ  and ),( TM A ξ  describe aperiodic vibrations and satisfy the nonhomogeneous 
differential equations. (14) and (15). These functions do not satisfy the initial conditions of motion (19). 
The functions ),( TwS ξ  and ),( TM S ξ  correspond to free vibrations of the beam and satisfy the 

homogeneous differential equations (14), (15), and ),0( =P  and together with the aperiodic functions, 

the initial conditions of motion are satisfied. Now we will present the aperiodic solutions ),( TwA ξ and 

),( TM A ξ given by expressions (29) and (31) in closed analytical form. 

Let us notice an important fact that these functions are not only solutions to the system of partial 
differential equations (14) and (15) but also to the system of ordinary equations (see [41-43]) 
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equations. (14) and (15). These functions do not satisfy the 
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and ),( TM S ξ  correspond to free vibrations of the beam 
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(14), (15), and ),0( =P  and together with the aperiodic 
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for the boundary conditions (17) and (18).
The variable T in Eq. (36) is the only parameter that 

describes the location of the moving force on the beam. 
After solving the set of Eqs. (35) and (36) using, for 
example, the Laplace transformation, we can obtain the 
functions wA(ξ,T) and MA(ξ,T) in a closed form instead of 
in a series. The closed form of the solutions depends on 
the velocity of the moving force.
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In the case of 

obtain the functions wA(ξ,T) and MA(ξ,T) in a closed form instead of in a series. The closed form of the 
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Let us assume that the beam is loaded in a static way by a force in the point  .0ξ  In this case, the 
displacement of the beam and the bending moment have the following form: 
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 

4. The strain gradient nonlocal elasticity model 

Let us return again to the relationship between stresses and strains. In this case, we assume for a 
one-dimensional system the strain gradient model in the form of (see [36]-[39])  
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After introducing the dimensionless variable (13) and assuming that the load process is a point force 
moving with the constant velocity (12), the above equation can be presented in the following form: 
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 

4. The strain gradient nonlocal elasticity model 
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one-dimensional system the strain gradient model in the form of (see [36]-[39])  

εδσ )1( 2

2
2

x
E

∂
∂

−= ,   (49) 

where the constant δ represents nonlocal effects. 

Taking into account Eq. (49), the relation between the bending moment ),( txM  and the beam 

displacement ),( txw  has the form  

].),(),([),( 4

4
2

2

2

x
txw

x
txwEItxM

∂
∂

−
∂

∂
−= δ    

(50) 

Taking into account equilibrium equation (6), the equation of motion for the strain gradient nonlocal 
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The above solutions enable the dynamic effects caused by 
the movement of force when the beam is loaded statically 
and dynamically to be analyzed.
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Let us return again to the relationship between stresses 
and strains. In this case, we assume for a one-dimensional 
system the strain gradient model in the form of (see [36]-
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 
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one-dimensional system the strain gradient model in the form of (see [36]-[39])  
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where the constant δ represents nonlocal effects. 
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Taking into account equilibrium equation (6), the equation of motion for the strain gradient nonlocal 
Euler–Bernoulli beam model has the following form: 
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After introducing the dimensionless variable (13) and assuming that the load process is a point force 
moving with the constant velocity (12), the above equation can be presented in the following form: 
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 

4. The strain gradient nonlocal elasticity model 

Let us return again to the relationship between stresses and strains. In this case, we assume for a 
one-dimensional system the strain gradient model in the form of (see [36]-[39])  
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where the constant δ represents nonlocal effects. 

Taking into account Eq. (49), the relation between the bending moment ),( txM  and the beam 
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Taking into account equilibrium equation (6), the equation of motion for the strain gradient nonlocal 
Euler–Bernoulli beam model has the following form: 
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After introducing the dimensionless variable (13) and assuming that the load process is a point force 
moving with the constant velocity (12), the above equation can be presented in the following form: 
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After introducing the dimensionless variable (13) and 
assuming that the load process is a point force moving 
with the constant velocity (12), the above equation can be 
presented in the following form:
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The above solutions enable the dynamic effects caused by the movement of force when the beam is 
loaded statically and dynamically to be analyzed. 

4. The strain gradient nonlocal elasticity model 

Let us return again to the relationship between stresses and strains. In this case, we assume for a 
one-dimensional system the strain gradient model in the form of (see [36]-[39])  
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where the constant δ represents nonlocal effects. 

Taking into account Eq. (49), the relation between the bending moment ),( txM  and the beam 

displacement ),( txw  has the form  
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Taking into account equilibrium equation (6), the equation of motion for the strain gradient nonlocal 
Euler–Bernoulli beam model has the following form: 
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After introducing the dimensionless variable (13) and assuming that the load process is a point force 
moving with the constant velocity (12), the above equation can be presented in the following form: 
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For a simply supported beam, the boundary conditions 
have the following form:
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The above partial differential equation (51) is of the sixth 
order and requires six boundary conditions. Compliance 
with dependencies (54) and (55) allows meeting (satisfy) 
the boundary condition (8) by taking into account that the 
bending moment determined by formula (50) contains the 
second- and fourth-order derivative of beam displacement.

The solution of Eq. (52) for the boundary conditions 
(53)–(55) is assumed to be in the form of a sine series 
(12), and after substituting into Eq. (30) and using the 
orthogonality method, we obtain a set of uncoupled 
equations
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Let us assume as was the case in Section 3 that the beam is loaded in a static way with a force at the 
point .0ξ  In this case, the displacement of the beam and the bending moment have the following form: 
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By comparing the solutions presenting the form of the series for two models, it is easy to notice that, in 
the strain gradient model, the series converge faster than that in case of the stress gradient model. 
 
 

5. Numerical results 

The deflection and the bending moment for the two models of beams considered in the article, 
namely, the Eringen nonlocal model and the strain gradient model, were compared. The analysis 
was carried in the dimensionless variables for different parameters gη , which describe the ratio 
of the force velocity to wave velocity, and also for different parameters ,eµ ,sµ  which present 
nonlocal material properties. The slenderness of the beam is assumed to be equal to .30=λ  
The displacement and the bending moment of the beam are shown in Figures 2–7 when the 
force is in the center of the span of the beam ).5.0( =T  Figures 8–13 depict vibrations of the 
beam in the middle cross section, in the case of when the beam is excited by a moving force. In 
the figures, you can see various forms of the beam’s vibrations. The form of these vibrations 
depends on whether the force moves at a velocity smaller or greater than the critical velocity. 
Using Table 1, we can determine whether the force’s velocity is less / ,( )e s crη η<  than or greater 

/ ,( )e s crη η>  than the critical velocity. Notice that when the force velocity is greater than the 
critical velocity, the displacement of the beam occurs only because of the moving force (Figs. 
4, 6, 10, and 12). As can be seen from Table 1, the critical velocities for the stress gradient 
model are clearly smaller than those for the strain gradient model. 
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5  Numerical results
The deflection and the bending moment for the two models 
of beams considered in the article, namely, the Eringen 
nonlocal model and the strain gradient model, were 
compared. The analysis was carried in the dimensionless 
variables for different parameters gη , which describe 
the ratio of the force velocity to wave velocity, and also 
for different parameters ,eµ ,sµ  which present nonlocal 
material properties. The slenderness of the beam is 
assumed to be equal to l = 30. The displacement and the 
bending moment of the beam are shown in Figures 2–7 
when the force is in the center of the span of the beam 
(T = 0.5). Figures 8–13 depict vibrations of the beam in 
the middle cross section, in the case of when the beam 
is excited by a moving force. In the figures, you can see 

Table 1: Relation for nonlocal material properties me, ms and the 
ratio of  the critical force velocity to wave velocity.
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Fig. 2 Stress gradient model. Displacement and bending moment of the beam for 0.5T = , 0.01gη = . 

Figure 2 shows the displacement and the bending moment for the stress gradient model. As shown in 
Table 1, the force is moving at a velocity smaller than the critical velocity. 

e sµ µ=  ,
,

e cr
e cr

g

v
v

η =  ,
,

s cr
s cr

g

v
v

η =  

0.2 0.0886 0.124 
0.4 0.0652 0.168 
0.6 0.0489 0.224 

                        

 
 

Fig. 2 Stress gradient model. Displacement and bending moment of the beam for 0.5T = , 0.01gη = . 

Figure 2 shows the displacement and the bending moment for the stress gradient model. As shown in 
Table 1, the force is moving at a velocity smaller than the critical velocity. 

e sµ µ=  ,
,

e cr
e cr

g

v
v

η =  ,
,

s cr
s cr

g

v
v

η =  

0.2 0.0886 0.124 
0.4 0.0652 0.168 
0.6 0.0489 0.224 

                        

 
 

Fig. 2 Stress gradient model. Displacement and bending moment of the beam for 0.5T = , 0.01gη = . 

Figure 2 shows the displacement and the bending moment for the stress gradient model. As shown in 
Table 1, the force is moving at a velocity smaller than the critical velocity. 

0.2 0.0886 0.124

0.4 0.0652 0.168

0.6 0.0489 0.224

Figure 2: Stress gradient model. Displacement and bending moment 
of the beam for 0.5T = , 0.01gη = .

Figure 3: Strain gradient model. Displacement and bending moment 
of the beam for 0.5T = , 0.01gη = .
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Figure 4: Stress gradient model. Displacement and bending moment 
of the beam for 0.5T = , 0.05gη = .

Figure 5: Strain gradient model. Displacement and bending moment 
of the beam for 5.0=T , .05.0=gη 001.

Figure 6: Stress gradient model. Displacement and bending moment 
of the beam for 0.5T = , 0.10gη = .

Figure 7: Strain gradient model. Displacement and bending moment 
of the beam for 0.5T = , 0.10gη = .
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various forms of the beam’s vibrations. The form of these 
vibrations depends on whether the force moves at a 
velocity smaller or greater than the critical velocity. Using 
Table 1, we can determine whether the force’s velocity is 
less / ,( )e s crη η<  than or greater / ,( )e s crη η>  than the critical 
velocity. Notice that when the force velocity is greater than 
the critical velocity, the displacement of the beam occurs 
only because of the moving force (Figs. 4, 6, 10, and 12). 
As can be seen from Table 1, the critical velocities for the 
stress gradient model are clearly smaller than those for 
the strain gradient model.

Figure 2 shows the displacement and the bending 
moment for the stress gradient model. As shown in Table 
1, the force is moving at a velocity smaller than the critical 
velocity.

Figure 3 shows the displacement and the bending 
moment for the strain gradient model. As shown in Table 
1, the force is moving at a velocity smaller than the critical 
velocity.

Figure 4 shows the displacement and the bending 
moment for the stress gradient model. In the case of

0.2eµ = , the force is moving at a velocity smaller than 
the critical velocity; if 0.4eµ = , the velocity of the force is 
slightly smaller than the critical speed; and when 0.6eµ = ,  
it is slightly higher than the critical velocity. Let us notice 
that the bending moment changes the sign if 0.4eµ =  or 

0.6eµ = .

Figure 8: Stress gradient model. Vibrations of the beam in the 
middle cross section if 0.01gη = .

Figure 9: Strain gradient model. Vibrations of the beam in the 
middle cross section if 0.01gη = .

Figure 10: Stress gradient model. Vibrations of the beam in the 
middle cross-section if  0.05gη = .

 

Figure 11: Strain gradient model. Vibrations of the beam in the 
middle cross-section if 0.05gη = .
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Figure 5 shows the displacement and the bending moment 
for the strain gradient model. As shown in Table 1, the force 
is moving at a velocity smaller than the critical velocity.

Figure 6 shows the displacement and the bending 
moment for the stress gradient model. In all cases, the force 
is moving at a velocity higher than the critical velocity. 
Let us notice that the bending moment changes the sign. 
In the case 0.4eµ =  or 0.6eµ = , the beam displacement 
occurs only after the moving force.

Figure 7 shows the displacement and the bending 
moment for the strain gradient model. As shown in Table 
1, the force is moving at a velocity smaller than the critical 
velocity.

As shown in Table 1, the force is moving at a velocity 
smaller than the critical velocity.

As shown in Table 1, the force is moving at a velocity 
smaller than the critical velocity.

In the case 0.2eµ = , the force is moving at a velocity 
smaller than the critical velocity; if 0.4eµ = , the velocity 
of the force is slightly higher than the critical speed, and 
when 0.6eµ = , it is higher than the critical velocity. In 
the last case (for )6.0=eµ , the beam displacement in the 
middle of the span occurs only after the force passes this 
point.

As shown in Table 1, the force is moving at a velocity 
smaller than the critical velocity.

As shown in Table 1, the force is moving at a velocity 
higher than the critical velocity.

As shown in Table 1, the force is moving at a velocity 
smaller than the critical velocity.

6  Discussion and Conclusions 
We considered the dynamic response of a finite, simply 
supported Euler–Bernoulli beam loaded by a force moving 
with a constant velocity based on two different gradient 
nonlocal elasticity models. Both in the Eringen model, 
in which the strain is a function of gradient stresses, and 
in the nonlocal model, in which the stress is a function 
of gradient strain, the theoretical solution for the beam 
displacements and the bending moments were obtained 
in the form of the sine series. For Eringen’s model, the 
particular integral was also obtained in a closed form. 
The convergence of the series in the gradient stress model 
(Eringen’s model) is much weaker than that in the gradient 
strain model. This is due to the fact that Eringen’s natural 
frequencies are lower than those of the gradient strain 
model. It means that the stiffness of the beam in the stress 
gradient model is lower than that in the strain gradient 
model. Moreover, the critical velocity in the gradient stress 
model is smaller than that in the gradient strain model. In 
the case of a stress gradient model, it was a bit difficult 
to determine the bending moment. This is due to the fact 
that it cannot be determined directly from formula (4) 
and also from the fact that the solution determining the 
bending moments is poorly convergent. These difficulties 
were overcome by solving the system of two differential 
equations (14) and (15) instead of Eq. (16) and using the 
closed solution for aperiodic vibrations. There is also a 
second reason for which the solution was determined from 
the system of Eqs. (14) and (15) and not the fourth-order 
differential equation (16). This approach to the problem 

Figure 12: Stress gradient model. Vibrations of the beam in the 
middle cross section if 0.10gη = . 

Figure 13: Strain gradient model. Vibrations of the beam in the 
middle cross-section if  0.10gη = . 
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allowed to present a solution for both displacement and 
bending moment in the form of the sine Fourier series. 
The boundary condition (11) requires some comment (see 
also [38]).Taking into account the dependencies (4) and 
(8), it follows that for a simply supported beam at both its 
ends, the displacement gradient is equal to the bending 
moment gradient and does not have to be zero in the 
general loading case. In a special case, when the beam 
is subjected to static action, concentrated force condition 
(11) is met. Therefore, assuming boundary condition (11) in 
the problem under consideration has some justification. 
The presented closed form solutions have an important 
meaning in the case when we consider the bending 
moment or shear force in the beam, particularly in the 
vicinity of the load point. The differential equation in the 
gradient strain model, which describes the vibration of the 
Euler–Bernoulli beam, is of the sixth order. For this reason, 
we need six boundary conditions instead of four, and it is 
more difficult to obtain the closed solution for a particular 
integral than for the stress gradient model and local 
elasticity model. It is worth emphasizing the significant 
difference between the two considered beam models. 
In the nonlocal stress model, the given strain at a given 
point generates the stresses with nonlocal distribution. 
In the second model, the stress at a given point generates 
the nonlocal deformations. In the numerical analysis, 
dimensionless parameters were used, such as the ratio of 
the force velocity to the wave propagation velocity, or the 
ratio of the parameter determining the non-local material 
properties to the beam span. 

It is worth mentioning that in the stress gradient 
model in the beam, displacement curve discontinuity 
appears in the point of the concentrated load. This is 
due to the fact that in Eq. (16) apart from the Dirac delta 
function, the gradient of this delta also occurs. The 
second derivative of the Dirac delta function in the Euler–
Bernoulli beam models is the angular dislocation of the 
displacement. It is the explanation for the discontinuity of 
the curve. For this model, the form of the closed solution 
depends on whether the speed of movement of the force 
is less than a certain limit value )(

lµe

gv
v <  or greater )(

lµe

gv
v > .  

A similar situation occurs in the case of string vibrations 
[42], the Timoshenko beam [41], and the sandwich beam 
[43], where the solution depends on whether the speed of 
force is lower or higher than the speed of propagation of 
the wave. Such a wave effect does not occur for the local 
elasticity Euler–Bernoulli beam model [41].

The obtained results for the analyzed gradient models 
differ in both quantitative and qualitative terms. As shown 
in [44], a similar situation occurs in the case of stationary 
stochastic vibrations of the beam. For stochastic excitation 

in the case of the stress gradient model, the nonlocal 
effect also depends on the load distribution along the 
beam. It is important whether the load is distributed 
over the entire length of the beam or is in the form of a 
concentrated force. As can be seen, the solutions in both 
models depend not only on the mechanical and structural 
properties of the materials but also on the dimensions of 
the beam (slenderness of the beam).

To sum up, the most important original elements of 
the presented work are:

	– In the Eringen model, beam displacements 
(vibrations) and bending moments were determined 
from the system of equations (14) and (15) in the 
form of the sum of series rather than fourth-order 
differential equation, avoiding ambiguity associated 
with boundary conditions (11), and closed solutions 
were determined allowing to take into account the 
peculiarities of bending moments diagrams (“peak” 
in the place of concentrated force) and shear force 
(jump in the same place),

	– By deriving partial differential equations in the strain 
gradient model, solutions were determined in the 
form of sine Fourier series.

Critical velocities of the moving force were determined 
for both models and numerical analysis was carried out, 
emphasizing whether the force velocity is lower or higher 
than the critical velocity.

The presented problem of vibrations of the Euler–
Bernoulli beam caused by a moving force can be 
generalized by adopting more complex gradient models, 
for example, by combining the two models adopted in the 
work or by adopting a higher-order gradient model (see 
also [37-39]).

References
[1]	 A. C. Eringen, Nonlocal polar elastic continua, International 

Journal of Engineering Science 1972; 10: 1-16.
[2]	 A. C. Eringen, Linear theory of nonlocal elasticity and 

dispersion of plane waves, International Journal of Engineering 
Science 1972; 5: 425-435.

[3]	 A. C. Eringen, D. G. B. Edelen, On nonlocal elasticity, 
International Journal of Engineering Science 1972; 3: 233-248.

[4]	 A. C. Eringen, On differential-equations of nonlocal elasticity 
and solutions of screw dislocation and surface waves, Journal 
of Applied Physics 1983; 9: 4703-4710.

[5]	 M. Aydogdu, Axial vibration of the nanorods with the nonlocal 
continuum rod model, Physica  
E Low-dimensional Systems Nanostructures 2009; 41(5): 861-
864.



Vibrations Of The Euler–Bernoulli Beam Under A Moving Force Based On Various Versions Of Gradient ...    317

[6]	 M. Danesh, A. Farajpour, M. Mohammadi, Axial vibration 
analysis of a tapered nanorod based on nonlocal elasticity 
theory and differential quadrature method , Mechanics 
Research Communications 2012; 39 (1): 23-27.

[7]	 Z. X. Huang, Nonlocal effects of longitudinal vibration in 
nanorod with internal long range interactions, International 
Journal of Solid and Structures 2012; 49: 2150-2154.

[8]	 M. Aydogdu, M. Arda, Force vibration of nanorods using 
nonlocal elasticity, Advances in Nano Research 2016; 4: (4): 
265-279.

[9]	 J. Peddieson, G. R. Buchanan, R. P. McNitt, Application of 
nonlocal continuum models to nanotechnology, International 
Journal of Engineering Science 2003; 41: 305-312.

[10]	 J. N. Reddy, Nonlocal theories for bending, buckling and 
vibration of beam, International Journal of Engineering Science 
2007; 45: 288-307.

[11]	 R. Ansari, R. Gholami, H. Rouchi, Vibration analysis of single-
walled carbon nanotubes using gradient elasticity theories, 
Composites: Part B 2012; 43: 2985-2989.

[12]	 M. Aydogdu, A general nonlocal beam theory: Its application 
to nanobeam bending, buckling and vibration, Physica E 2009; 
41: 1651-1655.

[13]	 D. Karličić, T. Murmu, S. Adhikari, M. McCarthy, Non-local 
Structural Mechanics 2016; WILEY.

[14]	 H. Askes, E. C. Aifantis, Gradient elasticity and flexural wave 
dispersion in carbon nanotubes, Physical Review B: Condensed 
Matter and Materials Physics 2009; 80: 1955412.

[15]	 D. Karličić, P. Kozić, R. Pavlović, Flexural vibration and buckling 
analysis of single-walled carbon nanotubes using different 
gradient elasticity theories based on Reddy and Huu-Tai 
formulations, Journal of Theoretical and Applied Mechanics, 
2015; 53 (1): 217-233.

[16]	 R. Rafie, R. M. Moghadam, On the modeling of carbon 
nanotubes: A critical review, Composites: Part B 2014; 56: 435-
449.

[17]	 S. I. Yengejeh, S. A. Kazami, A. Ӧchsner, Advances in 
mechanical analysis of structurally and atomically modified 
carbon nanotubes and degenerated nanostructures: A review, 
Composites Part B 2016; 86: 95-107.

[18]	 S. Gopalakrishnan, S. Narendar, Wave Propagation in 
Nanostructures 2013; Springer.

[19]	 Elishakoff  I., Carbon Nanotubes and Nanosensors: Vibration, 
Buckling and Balistic Impact, ISTE, London and John Wiley & 
Sons, New York, 2012.

[20]	 K. Kiani, B. Mehri, Assessment of nanotube structures under a 
moving nanoparticle using nonlocal beam theories, Journal of 
Sound and Vibration 2010;329 (11): 2241–2264.

[21]	 K. Kiani, Application of nonlocal beam models to double 
walled carbon nanotubes under a moving nanoparticle. Part I: 
theoretical formulations, Acta Mechanica 2011; 216: 165–195.

 [22]	K. Kiani, Application of nonlocal beam models to double-
walled carbon nanotubes under a moving nanoparticle. Part II: 
parametric study, Acta Mechanica 2011; 216: 197–206.

 [23]	K. Kiani, Longitudinal and transverse vibration of  a single-
walled carbon nanotube subjected to a moving nanoparticle 
accounting for both nonlocal and inertial effects, Physica E: 
Low-dimensional Systems and Nanostructures 2010; 42 (9): 
2391–2401.

 [24]	K. Kiani, A. Nikkhoo, B. Mehri, Prediction capabilities of 
classical and shear deformable beam theories excited by 

a moving mass, Journal of Sound and Vibration 2009; 320: 
632–648. 

[25]	 K. Kiani, Small-scale effect on the vibration of thin nanoplates 
subjected to a moving nanoparticle via nonlocal continuum 
theory, Journal of Sound and Vibration 2011; 330; 4896-4914.

[26]	 M. Şimşek, Vibration analysis of a single-walled carbon 
nanotube under action of a moving harmonic load based on 
nonlocal elasticity theory, Physica E 2010; 43: 182-191.

[27]	 S.A.H. Hosseini, O. Rahmani, Exact solution for axial and 
transverse dynamic response of functionally graded nanobeam 
under moving constant load based on nonlocal elasticity 
theory, Meccanica 2017, 52: 1441-1457.

[28]	 M. Pourseifi, O. Rahmami, S.A.H. Hoseini, Active vibration 
control of nanotube structures under a moving nanoparticle 
based on the nonlocal continuum theories, Meccanica 2015; 50 
(5):1351-1369.

[29]	 B. Mehri, A. Davar, O. Rahmani, Dynamic Green function 
solution of beams under a moving load with different boundary 
conditions, Scientia Iranica 2009; 16 (3): 273-279.

[30]	 G. Szefer, D. Jasińska, Continuum molecular modelling of 
nanostructured materials, 2010, 189-201, in Alberts (eds.) 
Continuous Media with Microstructure, Springer, Berlin, 
Heidelberg.

[31]	 G. Szefer, Molecular modeling of stresses and deformations 
in nanostructured materials, International Journal of Applied 
Mathematics and Computer Science, 2004; 14 (4): 541-548.

[32]	 Y. Shirai, J.F. Morin, T. Sasaki, J.M. Guerrero, J.M. Recent 
progress on nanovehicles, Chemical Society Reviews 2006; 35 
(11): 1043-1055.

[33]	 R. Lipowsky, S. Klumpp, “Life is motion”: multiscale motility 
of molecular motors, Physica A- Statistical Mechanics and its 
Applications 2005; 352 (1): 53-112.

[34]	 L. Fryba, Vibration of Solids and Structures under Moving 
Loads, Telford, London, 1999.

[35]	 G. Romano, R. Barretta, Stress-driven versus strain-driven 
nonlocal integral model for elastic nano-beams, Composite 
Part B: Engineering 2017; 114: 184-188.

[36]	 E.C. Aifantis, On the role of gradients in the localization of 
deformation and fracture, International Journal of Engineering 
Science, 1992, 30, 1279-1299.

[37]	 E.C. Aifantis, Gradient deformation models at nano, micro, and 
macro scales, Journal of Engineering Materials and Technology, 
ASCE, 1999, 121, April, 189-202.

[38]	 E.C. Aifantis, On the gradient approach- Relation to Eringen’s 
nonlocal theory, International Journal of Engineering Science 
2011; 49: 1367-1377.

[39]	 C.W. Lim, G. Zhang, J.N. Reddy, A higher-order nonlocal 
elasticity and strain gradient theory and its applications in 
wave propagation, Journal of the Mechanics and Physics of 
Solids, 2015, 78, 298-313.

[40]	 J. Fernandez-Saez, R. Zaera, J.A. Loya, J.N. Reddy, Bending of 
Euler-Bernoulli beams using Eringen’s integral formulation: A 
paradox resolved, International Journal of Engineering Science 
2016; 99: 107-116.

[41]	 P. Śniady, Dynamic response of a Timoshenko beam to a 
moving force, Journal of Applied Mechanics, ASME 2008; 75: 
024503-1-024503-4.

[40]	 J. Rusin, P. Śniady, P. Śniady, Vibrations of double-string 
complex system under moving force. Closed solutions, Journal 
of Sound and Vibration 2011; 330: 404-415.



318    Paweł Śniady et al.

[41]	 K. Misiurek, P. Śniady, Vibrations of sandwich beam due to a 
moving force, Composite Structures 2013; 104: 85-93.

[42]	 P. Śniady, M. Podwórna, R. Idzikowski, Stochastic vibrations 
of the Euler-Bernoulli beam based on various versions of the 
gradient nonlocal elasticity theory, Probabilistic Engineering 
Mechanics 2019; 56: 27-34.


