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DECISION-MAKER’S PREFERENCES FOR MODELING 
MULTIPLE OBJECTIVE STOCHASTIC LINEAR  

PROGRAMMING PROBLEMS 

A method has been suggested which solves a multiobjective stochastic linear programming prob-
lem with normal multivariate distributions in accordance with the minimum-risk criterion. The ap-
proach to the problem uses the concept of satisfaction functions for the explicit integration of the pref-
erences of the decision-maker for different achievement level of each objective. Thereafter, a nonlinear 
deterministic equivalent problem is formulated and solved by the bisection method. Numerical exam-
ples with two and three objectives are given for illustration. The solutions obtained by this method are 
compared with the solutions given by other approaches. 

Keywords: multiobjective programming, stochastic programming, nonlinear programming, satisfaction 
function 

1. Introduction 

Multiobjective stochastic linear programming (MOSLP) is an appropriate tool to 
model concrete, real-life problems in several domains. Such a class of problems includes 
water use planning [10, 13], mineral blending [21], manufacturing systems in production 
planning situation [18], investment and energy resources planning [31, 35] and multi-prod-
uct batch plant design [36] to mention a few. Among the applications of MOSLP in portfolio 
selection, we can mention the recent works of Shing and Nagasawa [27], Ogryczak [26], 
Ben Abdelaziz et al. [11], Aouni et al. [4], Boswarva and Aouni [12]. Despite the purely 
mathematical nature of many works in this field [2, 7–9, 14–16, 28], several technical 
methods for solving MOSLP problems have been developed. 
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Goicoechea et al. [19] develop a method called the probabilistic trade-off develop-
ment method (PROTRADE). It treats a problem with general distributions for random 
coefficients of linear objectives but its use requires the assessment of multi-attribute 
utility function which limits its area of application. Stancu-Minasian [29] offers a se-
quential method for solving the multiple minimum risk problem. For contexts of prac-
tical scenarios on objectives and some constraints, Teghem et al. [32] propose the 
STRANGE method where uncertainty in the constraints is taken into account by a recourse 
approach. For multiple criteria framework with a discrete number of states of nature, Klein 
et al. [20] develop an interactive method with recourse using a two-stage mathematical 
programming model. Urli and Nadeau [34] propose a scenarios approach where the 
probabilities of scenarios are incompletely specified. Muñoz and Ruiz [25] present an 
interactive algorithm for stochastic multiobjective problems with continuous random 
variables. This method combines the concept of probability efficiency for stochastic 
problems with the reference point philosophy for deterministic multiobjective problems. 
The decision-maker expresses her/his references by dividing the variation range of each 
objective into intervals, and by setting the desired probability for each objective to 
achieve values belonging to each interval. Luque et al. [22] suggest the synchronous 
reference point-based interactive method for a class of MOSLP problems where only 
the objective functions are random. There are also some methods designed for mul-
tiobjective stochastic integer linear programming (MOSILP) problems. The reader may 
refer, for example, to Teghem et al. [33], Abbas and Bellahcene [1], Amrouche and 
Moulay [3], Chaabane and Mebrek [17] for further research in this field. 

In both theoretical or applied works, the issues including randomness are usually 
transformed into deterministic problems. There are five criteria for such transformation: 
expected value, minimum variance, expected value standard deviation, maximum prob-
ability or minimum risk and Kataoka. The first three criteria are often used in applied 
works but they are not very risky. However, the application of minimum risk and Kataoka 
criteria requires the collaboration of the decision-maker who has to fix an aspiration 
level for each stochastic objective. For instance, this is the situation when the expected 
value and the expected value-standard deviation of the objective function are considered 
not to be a good measure of criteria. Therefore, modelling with minimal risk and 
Kataoka criteria is of great interest to the scientific management. These criteria 
offer good solutions in terms of probability. 

Wishing to explore this area and make a modest contribution, we focus on 
a MOSLP problem with normal multivariate distributions where the minimum risk cri-
terion is used for transformation to deterministic. First, satisfaction functions [23] are 
introduced to explicitly integrate the decision-maker’s preferences for different achieve-
ment level of each objective. Thereafter, a nonlinear programming problem is formu-
lated and an efficient solution method based on the bisection method [5] developed to 
obtain its optimal solution. 
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2. Problem statement 

Let us consider the multiobjective stochastic linear programming problem formu-
lated as: 

 

1 2min( , , ..., )

subject to 

, 0

t t t
qC x C x C x

Ax b x 
  (1) 

where x is an n-dimensional decision variable column vector, A  is an m×n coefficient 

matrix and b an m-dimensional column vector. The set  , 0nS x Ax b x     is 

nonempty and compact in .n  We assume that each vector Ck  has a multivariate nor-

mal distribution with mean kC and covariance matrix .kV  

Substituting the minimisation of the stochastic objective functions for the maximi-
sation of the probability that each objective is less than a certain permissible level uk 
leads us to so-called multiple minimum risk problem with levels 1 2, , ..., .qu u u  

 

1 1 1 1

2 2 2 2

max ( , )

max ( , )

max ( , )

subject to

, 0

t

t

t
q q q q

P x u Pr C x u

P x u Pr C x u

P x u Pr C x u

Ax b x

   
   

   

 

  (2) 

Definition 1 [30]. x S   is an 1 2, , ..., qu u u  minimum-risk solution for problem (1) 

if it is Pareto optimal to the problem (2). 

Since each component kjC  of kC  occurs according to a normal distribution, kC x  is 

also normally distributed with mean kC x  and variance .t
kx V x  Thereby, each objective 

function in (2) is rewritten as follows: 

Pr Pr
t

t k k k k k k
k k t t t

k k k

C x C x u C x u C x
C x u

x V x x V x x V x


                   
 

where ( )   is the distribution function of the standard normal distribution. 
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From this transformation, problem (2) is naturally reduced to the following deter-
ministic multiobjective programming problem: 

 

max ( , ) , 1, ...,

subject to

, 0

t
k k

k k t
k

u C x
P x u k q

x V x

Ax b x


   
 
 

 
  (3) 

whose Pareto optimal solutions are defined according to the following well-known def-
inition (see, for example [24]. 

Definition 2. x S   is Pareto optimal for problem (3) if and only if there does not 
exist another x S  such that ( , ) ( , )k k k kP x u P x u  for all 1, ...,k q  and ( , )k kP x u

( , )k kP x u  for at least one k. 

Since  is an increasing function, a possible way to find efficient solutions to prob-
lem (3) is to solve the nonlinear multiobjective fractional problem whose objective func-

tions are ( ) ( )/ , 1, ..., .t t
k k k kf x u C x x V x k q    However, finding efficient solutions 

for such problems is complicated enough because of the square root. Therefore, to over-
come this difficulty, we use satisfaction functions to introduce explicitly the decision-
maker’s preferences for different achievement level of each objective and formulate 
a satisfaction model that can be easily solved by the bisection method. 

3. The satisfaction model 

We assume that the decision-maker can fix achievement probabilities (target values) 

minkP  and maxkP  for each objective function ( , ).k kP x u  These probabilities are used to 

construct the satisfaction functions k  as follows: 

   
max

min max

min

1 if ( , )  

( , ) ( , ) if ( , )

0 if ( , )

k k k

k k k k k k k k k k

k k k

P x u P

P x u g P x u P P x u P

P x u P






  
 

 

where kg  is a monotonously increasing function of ( , ).k kP x u  
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Fig. 1. Shape of the satisfaction function 

Through the satisfaction functions, the decision-maker may explicitly express his/her 
preferences with regards to the deviations associated with the target values fixed for each 
objective. This satisfaction function means that the decision-maker is entirely satisfied when 
the objective function ( , )k kP x u  is more than max ,kP  partially satisfied if ( , )k kP x u  is be-

tween minkP  and maxkP  but she/he is not satisfied if ( , )k kP x u  is less than min .kP  The satis-

faction functions k  are strictly increasing and continuous with respect to ( , ).k kP x u  

Using these satisfaction functions, we formulate the following model which max-
imizes the smaller degree of satisfaction: 

 

 max min ( , ) , 1, ...,

subject to

, 0

k k kP x u k q

Ax b x

 

 
 (4) 

Problem (4) is referred to as the Chebyshev problem. Then, according to the general 
result in Miettinen [24], at least one of the optimal solutions of problem (4) is Pareto 
optimal for problem (3) and if problem (4) has a unique optimal solution, then; it is 
automatically Pareto optimal to problem (3). 

Setting h = mink(Pk(x, uk)) be the minimum value of all the functions k(Pk(x, uk)), for 
k = 1, ..., q, problem (4) is reformulated as  

  

max

subject to

( , ) , 1, ...,

0, 0 1

k k k

h

P x u h k q

Ax b

x h

  


  

 (5) 

The first constraints in (5) can be rewritten as: 
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   
1

1

1 1

( , ) ( , )

( , ) ( )

( )

( )

k k k k k k

k k k

t
k k

kt
k

t t
k k k k

P x u h g P x u h

P x u g h

u C x
g h

x V x

C x g h x V x u











 

  

 

   
 
 

    

 

Thus, problem (5) is reduced to the following non-linear problem: 

 1 1

max

subject to

( ) , 1, ...,

0, 0 1

t t
k k k k

h

C x g h x V x u k q

Ax b

x h

      


  

 (6) 

For simplicity, we use linear satisfaction functions of the form 

 

max

min
min max

max min

min

1 if ( , )

( , )
if ( , )( , )

0 if ( , )

k k k

k k k
k k k kk k k

k k

k k k

P x u P

P x u P
P P x u PP x u

P P

P x u P




    
 

 

In this case, the numbers 1( )kg h  are determined as follows: 

Let  0,1y  an arbitrary value of  ( , )k k kP x u , then; 

    1( , ) ( , ) ( , ) ( )k k k k k k k k kP x u y g P x u y P x u g y       

On the other hand, 

  min
max min min

max min

( , )
( , ) ( , ) ( )k k k

k k k k k k k k
k k

P x u P
g P x u y y P x u y P P P

P P


      

  

This implies that 

1
max min min( ) ( , ) ( )k k k k k kg y P x u y P P P      

In particular, 1
max min min( ) ( , ) ( ) .k k k k k kg h P x u h P P P      
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4. The proposed solution method 

Problem (6) is non-convex, it is, in general, difficult to solve it directly. However, 
if the value of h is fixed in the interval  0,1 ,  solving problem (6) is equivalent to de-

termining a feasible solution x  in the set 

 1 1( ) , 1, ..., , , 0n t t
h k k k kD x C x g h x V x u k q Ax b x  

           

The numbers 1 1( )kg h      are assumed to be positive for a fixed value of the var-

iable h in the interval  0,1  in order to guarantee the achievement of the objective func-

tions with probabilities at least equal to 1/2. So, an immediate consequence of this as-

sumption is that the constraint functions 1 1( , ) ( )t t
k k k k kf x h u C x g h x V x          

are convex with respect to x  and min max0.5 1k kP P   . 

Proposition 1. If 1 20 1,h h    then 
1 2

.h hD D  

Proof: From the increasing of kg  and 1 20 1h h   , it holds that 1 1
1 2( ) ( )k kg h g h   

and 1 1 1 1
1 2( ) ( ) .k kg h g h            This means that 1 2( , ) ( , )k kf x h f x h  for any .x S  

It results that 
1 2h hD D for any 1 2,h h  such that 1 20 1h h   . 

From Proposition 1, we can solve problem (6) using the following algorithm which 
exploits the bisection method: 
 
Step 1. Set 0ah  , 1bh  , 0 ,ah h    a small and positive value. 

Step 2. Set ( )/2.t a bh h h   

Step 3. Evaluate 1 1( ) .k tg h      

Step 4. Solve the system in .hD  

Step 5. If the feasible solution does not exist, set b th h  and return to Step 2; 

 If the feasible solution exists, set a th h  and return to Step 2; 

 If the feasible solution exists and 1 ,t th h   tx  is the optimal solution of 

 problem (6). 

Illustrative example 

Let us consider the following bi-objective problem: 
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1 1 1

2 2 2

1 2

1 2

1 2

1 2

max ( , ) Pr 20 000

max ( , ) Pr 3000

subject to

1.5 7.5 240

2.5 2.5 105

17.5 10 295

0, 0

t

t

P x u C x

P x u C x

x x

x x

x x

x x

   
   

 
  

 
 

 

where 1C  and 2C  follow normal distributions with means 1C = (920, 210) and 2C  = (117, 

55) and variances 

 1 2

4 2.5 5.2 0.3
,

2.5 9 0.3 7
V V

   
       

  

respectively, 1min 0.95,P  1max 0.98,P  2 min 0.85,P  2 max 0.96,P   0.0003.   

 
1 1

1 1
1 1 1 1 1

1 1

1 if ( , ) 0.98

( , ) 0.95
( , ) if 0.95 ( , ) 0.98

0.03
0 if ( , ) 0.95

P x u

P x u
P x u P x u

P x u




   

 

 

 
2 2

2 2
2 2 2 2 2

2 2

1 if ( , ) 0.96

( , ) 0.85
( , ) if 0.85 ( , ) 0.96

0.11
0 if ( , ) 0.85

P x u

P x u
P x u P x u

P x u




   

 

 

Knowing that 1 1 1 1 1 1( , ) Pr Pr ,t tP x u C x u C x u             the deterministic prob-

lem of the form (6) to be solved is: 

1 2 2
1 2 1 1 2 2

1 2 2
1 2 1 1 2 2

max

subject to

920 120 (0.03 0.95) 4 5 9 20 000

117 55 (0.11 0.85) 5.2 0.6 7 3000

h

x x h x x x x

x x h x x x x









     

     
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1 2

1 2

1 2

1 2

1.5 7.5 240

2.5 2.5 105

17.5 10 295

0, 0, 0 1

x x

x x

x x

x x h

 
  

 
   

 

For solving the nonlinear system in Dh, we have used the LINGO software. The 
optimal solution is (x1, x2) = (20.43475, 6.260814). 

By applying the method of Bellahcene and Marthon [6], we find 1 2( , )x x  = (20.4253, 

6.24423) and 

1 1 1( , ) Pr 20 000 0.98875tP x u C x      

2 2 2( , ) Pr 3000 0.99097tP x u C x      

Let now consider the example given by Bellahcene and Marthon [6]: 

1

2

3

1 2

1 2

1 2

1 2

max Pr 82 830

max Pr 5280

max Pr 16 100

subject to

2.5 7.5 240

0.125 0.125 5

17.5 10 595

0, 0

t

t

t

C x

C x

C x

x x

x x

x x

x x

  
  
  

 
 
 
 

 

where, 1 2,C C  and 3C  are random vectors that follow normal distributions with respec-

tive means 1 11 12( , ) (2350,1600)C C C  , 2 21 22( , ) (120,100)C C C  , 3 31 32( , )C C C  

(430, 300) and positive definite variance-covariance matrices: 

1

33.64 0.98
,

0.98 5.29
V

 
  
 

   2

44.89 0.76
,

0.76 3.61
V

 
   

  3

6.76 0

0 1.44
V

 
  
 

 

We find that, the optimal solution of the deterministic problem is 1 2( , ) (26, 14).x x   

Its corresponding probabilities of achieving goals are given by: 
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1 2 3Pr 82 830 0.99, Pr 5280 0.99, Pr 16 100 0.99t t tC x C x C x                 

The application of the bisection method with 1min 0.96,P  1max 0.99,P  2 min 0.85,P   

2 max 0.99,P   3 min 0.95,P  3 max 0.99P  gives us 1 2( , ) (25.9998, 14.0011).x x    

5. Conclusion 

A decision making method for solving a MOSLP problem where several probabili-
ties are minimised is proposed. The problem is reformulated into a deterministic multi-
objective problem introducing chance constraints based on the stochastic programming 
approach. The resulting goals are quantified by eliciting the corresponding satisfaction 
functions for permissible levels. The satisfactory solution is easily obtained by applying 
the bisection method. The usefulness and the simplicity of the developed method are 
shown through its application to problems with two and three objectives functions. In 
order to test the efficiency of this method, we compare it with the Bellahcene and Mar-
thon method in terms of probability. We find that the two methods produce the same 
solutions. The unique difference between these two methods is that in the Bellahcene 
and Marthon method we first find the optimal solution, and then we find the probabili-
ties of achieving goals. In the bisection method, we first fix the desired probabilities of 
achieving goals, and then we find the optimal solution. As to future work, we are work-
ing on determining which method is speeder. 
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