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Under the Basel III and Basel IV accords, risk model validation remains based on the VaR 
measure. According to the industry practice, VaR backtesting procedures rely on two likelihood 
ratio tests, which, in light of the academic research, have been criticized for their unsatisfactory 
power. This paper aims to show the differences between VaR model evaluation based on the 
standard likelihood ratio approach and backtesting by means of other econometric methods 
applicable to the binary VaR failure process. The author decomposed the model evaluation into 
testing the unconditional coverage, replaced the likelihood ratio with a normal statistic, and in 
the next stage in order to verify the conditional coverage, employed the Ljung-Box statistic. 
The study experimentally confirmed the superiority of the proposed procedures over the 
industry standards. The main contribution, however, is the empirical study designed to 
demonstrate the practical differences in risk analysis attributable to the choice of the backtesting 
method. Using data on leading stock market indexes, from various periods, the author showed 
that the practical conclusions from backtesting diverge markedly due to the test choice. The 
proposed, more powerful tests, contrary to the standard procedures, allowed for distinguishing 
distinct models of index behaviour connected with undergoing the financial crises.
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1. INTRODUCTION

Value-at-Risk (VaR) owes its popularity as a risk measure to both business 
practice and international supervisory rules. In the context of business routines, 
its constantly widening range of applications stems from the practical 
advantages, like the straightforward interpretation and applicability to complex 
portfolios. Following the industry practice, the international system of risk 
measurement standards was based on VaR in the 1990s (Basel 1996), shortly 
after the original inception of this measure by J. P. Morgan (1994). Although 
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the reform of the supervisory rules, undertaken in 2012 by the Basel Committee 
of Banking Supervision (Basel 2016, 2017) has involved a movement from 
VaR to the ES (Expected Shortfall) measure, the procedures of risk model 
evaluation remain based on VaR. This necessitates a discussion on VaR testing 
rules and gives an incentive to investigate the statistical properties of relevant 
methods.

The VaR testing framework is based on a binary variable indicating VaR 
violations. Under the correct risk model this variable is required to follow the 
iid Bernoulli process. The iid Bernoulli property is commonly split into the 
postulates of the unconditional and conditional coverage property. The first 
postulate refers to the overall VaR failure rate and means that the number of 
violations should match the assumed VaR tolerance level, while the conditional 
coverage property requires the independence of violations. The extensive 
toolkit for verifying these two postulates, separately or jointly, involves testing 
the parameters of the Bernoulli process (Kupiec 1995), using the transition 
probabilities of the binary Markov chain (Christoffersen 1998), regressing 
VaR failures on their lagged values (Engle and Manganelli 2004), checking 
the unpredictability of the durations between VaR failures (Christoffersen, 
Pelletier 2004, Candelon et al. 2011) or using the spectral theory (Berkowitz 
et al. 2011, Gordy and McNeil 2018). The one-level VaR backtesting 
procedures were extended into checking the fit of the density function 
(Berkowitz 2001), the truncated density function (Crnkovic and Drachman 
1997) or multi-level VaR testing (Hurlin and Tokpavi 2007, Colletaz et al. 
2013, Kratz et al. 2018). Among these propositions, two tests, formulated 
within the likelihood ratio (LR) framework, have won wide recognition in the 
industry. These are the Kupiec test (Kupiec 1995), which checks the 
unconditional failure rate, and Christoffersen’s Markov test (Christoffersen 
1998), aimed at capturing the serial dependence in failures. Developed 
specifically for the purposes of risk management, these tests offer the advantage 
of a convenient, straightforward implementation to real-life processes. These 
popular approaches, however, have been repeatedly criticized with respect to 
their statistical properties (Lopez 1999, Christoffersen and Pelletier 2004, 
Berkowitz et al. 2011, Pajhede 2017).

In view of practical aspects, like the straightforward implementation and 
computational efficiency, the study explored the possibilities of backtesting 
VaR through standard econometric methods, applicable to the Bernoulli 
sequence and independence testing. Building on the results of Malecka (2018), 
the author refrained from using methods developed specifically for the 
purposes of risk management. Exploiting the properties of the Bernoulli 
distribution, the binomial distribution and its convergence to the normal one, 
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the study applied a normal statistic to checking the unconditional coverage 
property. To enhance the power properties in the conditional coverage testing, 
the author employed the Ljung-Box statistic (Ljung and Box 1978). This used 
the fact that the Ljung-Box test has the power against linear alternatives of any 
order, which corresponds to dependencies in the GARCH processes, with  
a slow decay of correlation.

The aim of the paper was to evaluate the capacity of the above-mentioned, 
well-established econometric methods as risk management tools, in relation to 
the popular VaR-dedicated tests. For this purpose the Monte Carlo technique 
was employed, and an empirical investigation of the methods was performed. 
The Monte Carlo study was designed to reflect the typical VaR failure setting. 
To achieve this, the study used two types of experiments. In the first type, 
correlated VaR violations were generated by employing the GARCH-class 
models with the specification that enables explicit indication of the volatility 
clustering. Therefore it was possible to study the power of the tests as  
a function of a controlled parameter of a return distribution. However, the 
explicit control over the parameter that represents volatility clustering, limits 
the range of applicable data generating processes. Therefore this type of 
experiment was followed by the second type, where the priority was to closely 
reflect the real-life financial processes. The second set of experiments stepped 
away from the exact control over the volatility clustering and, instead, used 
the ARMA and N-GARCH-based data generating processes with the Student 
t-distribution and parameters based on empirical data. In accordance with the 
Basel framework, the study provided the results for VaR coverage levels 1% 
and 2.5%, in this way extending the earlier research on backtesting VaR 
through classical econometric methods, which treated only 5% VaR (Malecka 
2018). The author experimentally showed that the proposed approach 
outperforms the standard LR tests both in terms of the accuracy, understood as 
a test size, and in terms of ability to detect incorrect risk models, understood 
as a test power. The main contribution is, however, abroad empirical study, 
which exploits and illustrates the results of the Monte Carlo simulations. The 
research was designed to show the differences in risk analysis that result from 
the choice of a backtesting procedure. To this end, three leading stock market 
indexes were utilised, for which the standard LR and the proposed methods 
were subsequently applied. To provide a relevant scenario for assessing the 
capacity of risk management tools, all the backtesting procedures were 
implemented to evaluate twelve mainstream market risk models in various 
periods, under diverse volatility conditions. The results demonstrate that the 
proposed tests, compared to the popular LR approach, provide a more 
insightful view of market behaviour. They allow to choose models suitable for 
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predicting risk under various volatility regimes and thus characterize the 
market specificity. Contrary to the standard procedures, they distinguish two 
distinct patterns of the market behaviour, connected with undergoing the 
financial crises.

The paper proceeds as follows. Section 2 sets the notation and provides the 
details of the compared tests. Section 3 gives the comparative evaluation of 
their properties through the Monte Carlo experiments, based on the GARCH 
processes. Section 4 empirically illustrates the differences in the outcomes of 
real data analysis, resulting from the choice of testing procedure.

2. TESTING UNCONDITIONAL  
AND CONDITIONAL VaR COVERAGE

The VaR model evaluation framework is based on a binary process 
indicating VaR failures. Assuming that Rt is the random return from a portfolio, 
with the continuous distribution function FRt

, and VaR is its p-quantile, 
1( ) = ( )p t Rt

VaR R F p− , the failure process is defined as:

 { < ( )}= 1 .t R VaR Rt p t
I  (1)

The quantile order p is referred to as the VaR tolerance level. Under the 
correct VaR model, the It process is required to be the iid Bernoulli process 
with the parameter p, i.e. ( ).

iid

tI B p

 The iid Bernoulli condition may be 
decomposed into the postulate of unconditional coverage, referring to the 
unconditional probability of failure p, and the postulate of conditional 
coverage, requiring independence of failures.

The industry standard to test the unconditional coverage property is the 
Kupiec test (Kupiec 1995), which assumes the identical, independent Bernoulli 
distribution 1( )

iid

tI B π

 and checks the p1 parameter: 0 1: =H pπ . The 
parameter value is estimated through the empirical rate of violations 1

1ˆ = ,T
T

π  
where T1 is the number of violations and T is the number of observations. The 
H0 restriction is checked through the likelihood ratio statistic:
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01
1 1

(1 )= 2log ,
ˆ ˆ(1 )

TT

uc TT

p pLR
π π

−
−

−
 (2)

Where 0 1=T T T− . With one parameter restriction, the likelihood ratio 
LRUC, under the null, has the asymptotic 2

(1)χ  distribution.
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Under the above assumptions, the T1 statistic, as the sum of iid Bernoulli 
variables: 1 =1

= ,T
tt

T I∑  has the binomial distribution 1 1( , ),T B T π  which, 
provided that H0 restriction is satisfied, changes into 1 ( , ),T B T p , If the 
number of observations is large, by the Central Limit Theorem the binomial 
distribution converges to the normal one. Exploiting this fact, the unconditional 
coverage VaR test may also by conducted with the use of the continuous 
normal distribution. The test statistics Z takes the form:

 

1=
(1 )

T TpZ
Tp p

−
−

 (3)

and, under the null, has the asymptotic standard normal distribution (0,1).N

The unconditional coverage tests, relying on the iid assumption, consider 
only the overall rate of failures. The complete VaR backtesting procedure,  
as formulated in the conditional coverage postulate, requires also checking 
independence of failures. The standard approach to verifying the conditional 
coverage property is the Markov test (Christoffersen 1998), which embeds 
the failure process within the binary first-order Markov chain. The test  
is formulated in terms of single-step transition probabilities. The independence 
condition implies that the transition probabilities π01 and π11 are equal,  
where πij denotes the probability of the transition of It from state i to state j. 
The null 0 01 11: =H π π  is tested through the likelihood ratio statistic of the 
form:

 
01

1 1

01 00 1011
01 01 11 11

ˆ ˆ(1 )= 2log ,
ˆ ˆ ˆ ˆ(1 ) (1 )
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cc t t ttLR π π
π π π π

−
−

− −
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where 1
1

0 1

ˆ = T
T T

π
+

, 01
01

0

ˆ = T
T

π , 11
11

1

ˆ = T
T

π  and Tij is the empirical number of 

transitions from state i to state j. The likelihood ratio LRCC, under the null, has 
the asymptotic 2

(1)χ  distribution.

Relying on the single-step transition probabilities, the Markov test has 
only the potential to detect first-order dependencies. This deficiency may be 
made up for by employing the well-known econometric Ljung-Box test, which 
has the power against linear alternatives of any order. The application of the 
Ljung-Box test to a VaR failure process implies the null formulated in terms of 
correlation coefficients between VaR violations, 0 : = 0hH ρ , 1,2, ,h H= … , 
H < T. Then the test statistic has the following form:
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where ˆhρ  are sample autocorrelations of order h in the It process. Under the 
null, the LBH statistic has the 2

Hχ  distribution.

3. STATISTICAL PROPERTIES 
OF VaR BACKTESTING PROCEDURES

As a preview to the empirical analysis, a Monte Carlo study was used to 
assess the theoretical statistical properties of the examined tests in the context 
of the VaR model evaluation. The comparative study included the size and 
power properties, estimated as the proportion of rejections under the null and 
under the alternative, respectively. The size evaluation included significance 
levels 0.01, 0.05 and 0.1. For the power comparison, the study reported 
rejection frequencies at 0.05 level. The estimates of the statistical properties 
were computed over 10,000 Monte Carlo trials for sample sizes 100, 250, 500, 
750, and 10001.

With reference to the unconditional coverage property, the author compared 
the normal Z statistics, applied to a VaR failure series, to testing VaR models 
through the Kupiec LRUC test. In accordance to the conditional coverage property 
the author evaluated the properties of the Ljung-Box LBH in relation to the 
properties of the Markov-chain-based LRCC procedure, setting the autocorre-
lation order H = 5, which corresponds to one week of daily observations2.

The size study investigates test accuracy, understood as the compliance 
between the observed rejection frequency and the nominal significance level 
(Tables 1 and 2). Since the size assessment examines the test performance 
under the null, it requires data from the iid binary process with the correct 
failure probability. This was done through generating iid Bernoulli samples 
with the parameter π1, equal to the chosen VaR tolerance level. 

While the size results in the group of the unconditional coverage tests show 
minor differences between the compared methods, the discrepancies observed 
between the conditional coverage tests are much larger. Both unconditional 
tests – Z and LRUC – seem relatively accurate, however any differences that

1 All computations in this study are conducted with the use of the MATLAB software. 
2 The power of the LB test with respect to the choice of the autocorrelation order was studied 
by Berkowitz et al. (2011) and Pajhede (2017). Via simulations, Berkowitz et al. (2011) showed 
that the autocorrelation order H=5 outperforms H=1. In similar simulations, Pajhede (2017) 
argued that H=5 outperforms H=10. Using both these results, the author chose H=5.



 INDUSTRY STANDARD AND ECONOMETRIC STANDARD... 11

Table 1 

Size estimates of unconditional coverage VaR tests

Test Significance 
level

1% VaR 2.5% VaR
Sample size Sample size

100 250 500 750 1000 100 250 500 750 1000

LRUC

0.01 0.006 0.005 0.006 0.009 0.013 0.005 0.008 0.010 0.013 0.012
0.05 0.027 0.015 0.067 0.040 0.056 0.014 0.056 0.058 0.057 0.058
0.1 0.027 0.048 0.067 0.100 0.114 0.043 0.108 0.106 0.115 0.116

Z
0.01 0.017 0.014 0.006 0.016 0.010 0.012 0.009 0.011 0.010 0.010
0.05 0.078 0.044 0.038 0.061 0.038 0.043 0.039 0.055 0.046 0.055
0.1 0.078 0.109 0.108 0.098 0.107 0.043 0.101 0.106 0.097 0.098

Source: author’s own.

Table 2

Size estimates of conditional coverage VaR tests

Test Significance 
Level

1% VaR 2.5% VaR
Sample size Sample size

100 250 500 750 1000 100 250 500 750 1000
LRCC 

0.01 0.011 0.012 0.014 0.013 0.013 0.022 0.036 0.026 0.028 0.034
0.05 0.018 0.025 0.025 0.031 0.026 0.036 0.068 0.086 0.120 0.133
0.1 0.022 0.031 0.041 0.051 0.045 0.052 0.100 0.184 0.203 0.186

LB5 0.01 0.031 0.046 0.074 0.076 0.066 0.041 0.021 0.019 0.014 0.015
0.05 0.034 0.077 0.114 0.120 0.102 0.050 0.058 0.055 0.051 0.052
0.1 0.056 0.079 0.118 0.164 0.145 0.113 0.094 0.090 0.087 0.094

Source: author’s own.

appear suggest the superiority of the Z test over the standard Kupiec LRUC approach. The Z rejection frequencies seem accurate including all significance 
levels and both VaR coverage levels. They are also rather stable over the 
sample sizes, though the choice of the low-level VaR, like the ones considered, 
should clearly go with samples larger than 100 observations. The LRUC 
rejection frequencies, in turn, show that the LRUC distribution tends to diverge 
markedly from the theoretical likelihood ratio distribution. This is especially 
visible for 1% VaR and small sample sizes – for 1% VaR the convergence of 
LRUC rejection frequencies to the nominal significance levels seems to start 
only from 750 observations.

The differences between the compared conditional coverage tests – LB5 
and LRCC – are more pronounced. The results indicate that LB5 outperforms the 
conventional LRCC procedure. Especially for 2.5% VaR, the rejection 
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frequencies obtained for this test are clearly closer to the nominal significance, 
and they show signs of convergence to the desired levels with increasing the 
sample size. As opposed to this, the LRCC test tends to be oversized for large 
samples, with rejection frequencies exceeding the nominal test size more than 
twice. For 1% coverage the empirical rejection frequencies of both tests do not 
correspond to the assumed significance levels – the tests tend to under-reject 
(LRCC) or over-reject (LB5) correct risk models. Therefore, the results suggest 
that in order to ensure an accurate test level, it is advisable to perform the 
conditional coverage testing for 2.5% VaR. Moreover, to reduce the type I 
error it is advisable to replace the Markov-chain-based LR statistic with the 
Ljung-Box statistic.

The power study, aimed at evaluating the test’s ability to detect incorrect 
risk models, involved violation of the iid Bernoulli assumption. Relevant 
simulations were conducted in two stages, where the experiments subsequently 
violated unconditional and conditional coverage property. The false 
unconditional coverage was implemented through generating random 
Bernoulli numbers with the parameter π1 set to values different than the VaR 
tolerance of 1% or 2.5%. As this type of experiment is dedicated to checking 
the unconditional coverage property, it was called the uc experiment. In the 
second stage the underlying processes violated the conditional coverage 
property. This was implemented through two types of experiments, called the 
cc experiments. Both cc experiments were aimed at generating serially 
dependent VaR failures, however were done in two ways. In the first type of 
the cc experiment, the focus was on controlling the scale of violation of the 
conditional coverage property, hence this experiment type is referred to as 
theoretically-oriented. The second type of the cc experiment strived to be as 
close as possible to the real market conditions, so this experiment type is 
viewed as practically-oriented.

In the first cc experiment type, the focus is on the scale of violating the 
conditional coverage property, which, in this case, is the same as the distance 
from the null. The author wanted to control this distance and treat it as the 
experiment parameter, and then observe how the test power changes when 
manipulating this parameter. In such experiments one needs a way to measure 
how much the conditional coverage property is violated. To achieve this, the 
author resorted to the basic GARCH-normal model, where the scale of violating 
the conditional coverage property can be judged from the volatility clustering, 
which in turn, can be measured by the autocorrelation of the squared returns. 
The dependence of failures is achieved by using a constant VaR level, based on 
the unconditional distribution of the returns. In this variant of the experiment, 
the author chose the following specification of the GARCH model:
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In accordance with the idea behind this type of experiment, specification  
(6) allows for the analytical calculation of autocorrelations of the squared 
returns, enabling to study the power of the test as a function of a controlled 
parameter of a return distribution. Under (6), the first order autocorrelation of 
the squared returns ρ is given by

 
2

21 2
ρ α β

αβ β
=

− −
 , (7)

and the autocorrelations decline exponentially, with the decay factor α β+ . 
However, if the fourth moment of Zt is not finite, the autocorrelations are time-
varying. To prevent this, the model needs to satisfy the condition 

2 22 1( )α β α+ + < . This is ensured by fixing parameters ω and β at levels 0.01 
and 0.6, respectively, and setting ρ to 0.1, 0.3 and 0.5 in subsequent variants 
of the experiment. The α parameter is set to such a value that ensures the 
desired level of ρ. This one obtains the simulation experiment that enables to 
explicitly control the volatility clustering.

In the second type of the cc experiments, the study aimed at closely 
mimicking the real-life conditions. For this reason, the more complex GARCH 
specifications were chosen, which represent various possible features of the 
financial data. The focus was on checking the test performance in specific 
conditions like non-linearity, non-normality, getting close to non-stationarity  
(α β+  close to one), lack of the volatility clustering or the presence of the 
serial correlation in the mean equation instead of the variance equation. In the 
choice of the specific models matching the real data, the author followed 
previous studies by Berkowitz et al. (2011) and Du (2016), and used the 
following N-GARCH specification for the models, numbered from 1 to 4:
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with the parameters

(model 1) 
0.5469, 0.1552 0.7495

-0.245 3.808
, ,

, ,d
α βω

θ
= =

=
=

=  
(9)
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(model 2) 
0.2154, .0524, 0.9284,

0.5031, 3 3,
0

.318d
ω α β

θ
=

=
= =

=  
(10)

(model 3) 
0.2127, 0.0261, 0.8728

-0.9616, 6 117,
,

.9d
α β

θ
ω = = =

= =  
(11)

(model 4) 1.6532, 0.0723 0.9153
0.0928

, ,
, 4 ,.7017d

ω α β
θ

= = =
= =  

(12)

and the AR(2) return specification for the fifth model in this set of experiments:

(model 5) 
2

1 2= ,      (0,1),

0.5 0.3, 0.1.,
t t t t tR

b
aR bR Z Z N

a
σ

σ
− −+

=

+

==



 (13)

Generating data from the above processes required dispensing with the 
explicit control of the scale of the volatility clustering. Thus, the power 
estimates from these experiments cannot be compared to each other and 
cannot be assessed in relation to the distance from the null. The interpretation 
of their results can only rely on the fact that any of the above representations, 
combined with the constant VaR corresponding to the unconditional return 
distribution, produces the clusters of VaR failures.

The power results show that the test ability to detect incorrect VaR models 
differs considerably with respect to the VaR coverage (Tables 3 to 5). Testing 
based on 2.5% VaR seems possible even for samples of 250 observations, while 
inference based on 1% VaR appears feasible only for large samples. Recommen-
dable sample sizes, for such a low coverage level, start with 750 observations. 

Table 3

Power estimates of unconditional coverage VaR tests

Test π1

1% VaR
π1

2.5% VaR
Sample size Sample size

100 250 500 750 1000 100 250 500 750 1000
LRUC 0.1% 0.001 0.000 0.306 0.483 0.631 0.5% 0.002 0.362 0.904 0.976 0.994

0.5% 0.034 0.014 0.207 0.250 0.433 1.5% 0.025 0.085 0.375 0.426 0.561
2% 0.371 0.235 0.546 0.639 0.787 3.5% 0.290 0.179 0.308 0.388 0.452
3% 0.615 0.626 0.929 0.979 0.997 4.5% 0.475 0.459 0.730 0.869 0.932

Z 0.1% 0.906 0.782 0.908 0.992 0.997 0.5% 0.602 0.652 0.985 0.999 1.000
0.5% 0.627 0.283 0.289 0.485 0.440 1.5% 0.225 0.110 0.375 0.427 0.561
2% 0.457 0.395 0.543 0.731 0.781 3.5% 0.168 0.276 0.308 0.388 0.452
3% 0.633 0.764 0.929 0.979 0.997 4.5% 0.306 0.580 0.730 0.869 0.932

Source: author’s own.
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Table 4

Power estimates of conditional coverage VaR tests

Test ρ
1% VaR

ρ
2.5% VaR

Sample size Sample size
100 250 500 750 1000 100 250 500 750 1000

LRCC 0.1 0.131 0.164 0.205 0.259 0.266 0.1 0.099 0.153 0.109 0.147 0.161
0.3 0.242 0.400 0.543 0.638 0.714 0.3 0.278 0.395 0.462 0.607 0.708
0.5 0.499 0.548 0.675 0.774 0.863 0.5 0.381 0.411 0.635 0.775 0.874

LB5 0.1 0.120 0.189 0.334 0.374 0.407 0.1 0.125 0.229 0.319 0.384 0.438
0.3 0.337 0.455 0.718 0.820 0.889 0.3 0.302 0.571 0.800 0.898 0.948
0.5 0.467 0.601 0.813 0.920 0.965 0.5 0.446 0.696 0.905 0.968 0.987

Source: author’s own. 

Table 5

Power estimates of conditional coverage VaR tests

Test Model

1% VaR

Model

2.5% VaR

Sample size Sample size

100 250 500 750 1000 100 250 500 750 1000
LRCC 1 0.181 0.120 0.099 0.092 0.116 1 0.082 0.075 0.097 0.110 0.098

2 0.308 0.219 0.144 0.177 0.216 2 0.100 0.110 0.192 0.247 0.287
3 0.354 0.271 0.212 0.260 0.319 3 0.123 0.152 0.263 0.353 0.404
4 0.309 0.285 0.348 0.405 0.503 4 0.192 0.276 0.433 0.548 0.619
5 0.364 0.415 0.548 0.662 0.760 5 0.331 0.559 0.756 0.868 0.938

LB5 1 0.091 0.088 0.110 0.130 0.148 1 0.071 0.103 0.140 0.165 0.183
2 0.107 0.148 0.211 0.302 0.375 2 0.084 0.190 0.343 0.479 0.568
3 0.154 0.208 0.317 0.418 0.513 3 0.116 0.259 0.458 0.620 0.711
4 0.264 0.348 0.463 0.596 0.693 4 0.236 0.421 0.643 0.776 0.857
5 0.356 0.471 0.608 0.741 0.831 5 0.404 0.629 0.856 0.944 0.977

Source: author’s own. 

As in the size study, larger differences in the test quality are connected with 
testing the conditional coverage property rather than the unconditional 
coverage property. The relative assessment of the unconditional coverage tests 
– Z and LRUC (Table 3) – indicates that these tests are comparable in terms of 
their power. Any observed differences, however, indicate the Z normal statistic 
as the more powerful than the standard Kupiec LRUC approach.

The results from testing the conditional coverage by LB5 and LRCC show 
remarkable differences in the test quality. The LB5 test clearly outperforms the 
LRCC procedure in all cc experiments of type one (GARCH-normal-based, 
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with the volatility clustering controlled by ρ), with rejection frequencies often 
doubling those of LRCC (Table 4). In these experiments, the LB5 supremacy is 
most visible at short distance from the null. For example, in the 0.1 correlation 
experiment, the LB5 rejection frequencies tend to double or even triple 
(depending on the VaR level) those of LRCC. Further from the null, the LB5 
outperformance is most marked for small samples.

The above conclusions from the first set of the cc experiments were 
confirmed by the experiments of the second type (AR and N-GARCH-Student-
t-based). These experiments were designed with the aim of closely reflecting 
the real time series on the proviso of not having any parameter to control the 
volatility clustering. Therefore, the power results cannot be compared among 
the models, and there is no a priori knowledge of what power to expect for the 
specific data generating processes. What can be compared, however, is the 
rejection frequencies obtained for the standard LRCC and the proposed LB5 
(Table 5). In the vast majority of cases, the rejection frequencies of LB5 exceed 
those of LRCC. This regularity can be observed without any exception for the 
2.5% VaR level, which includes both the ARMA model and all N-GARCH 
Student-t data generating processes. For 1% VaR the only exceptions occur for 
the shortest series of 100 or 250 observations. The irregularities for 1% VaR 
and the shortest series can be explained by the small number of the observed 
VaR failures. For example, in the case of the 1% VaR and 100 observations, the 
expected number of VaR failures is 1. Such a low number of observations 
hinders any statistical inference. Thus for 1% VaR, finding patterns connected 
with statistical methods requires longer series3. Starting from 500 observations, 
as before, the LB5 test systematically outperforms the LRCC procedure. In 
summing up the results from both experiment variants, the LB5 test appears 
more effective than the standard approach.

4. BACKTESTING EMPIRICAL VaR FORECASTS

The empirical study, based on FTSE100, NIKKEI225 and S&P500 data, 
illustrates how the statistical properties of the examined tests translate into 
practical conclusions from the risk analysis. To this end, twelve leading time 
series models, used to forecast daily VaR, were evaluated subsequently by all the 
tests. The range of the models covered both parametric and non-parametric 
methods. Within the parametric framework, the basic constant variance models 

3 Due to the rarity of observed VaR failures when testing a low-level VaR, similar studies often 
use samples of at least 500 observations – see e.g. Angelidis et al. 2004, Escanciano and Olmo 
2011, Totić et al. 2011, Pajhede 2017, Patton et al. 2019.
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were followed by conditional variance models with various error term 
specifications. The study employed the normal distribution, the Student-t 
distribution as well as the Picks over Thresholds (POT) method (McNeil and 
Frey 2000), which, through the Extreme Value Theory, uses the Generalized 
Pareto Distribution (Balkema and de Haan 1974, Pickands 1975). The conditional 
variance was modelled through the GARCH-class processes (Bollerslev 1986). 
This ensures representation of the volatility clustering phenomenon. To allow 
also for an asymmetric volatility response, relating to upward and downward 
market trends, the asymmetric GJR-GARCH models were used (Glosten et al. 
1993). Within nonparametric methods the author employed the historical 
simulation model and the filtered historical simulation technique (Barone-Adesi 
et al. 1998), with filtering based on GARCH or GJR-GARCH model residuals.

The choice of the above models matched the aims of this study in the sense 
of evaluating a range of models, characterized by various levels of complexity 
and flexibility. As the study did not focus on finding the best fit to the time 
series, but on assessing the VaR tests, the author mainly needed the models 
that differ in their predictive ability. These models were applied as tools to 
generate a series of VaR forecasts, subsequently used to conduct the tests. The 
results regarding the quality of the models were treated in the study as 
complementary, while the key conclusions were based on the consistency 
among the tests, or the differences they showed in evaluating the VaR forecasts. 
For these reasons, the range of the time series model started with the most 
naive ones (like homoscedastic or the historical simulation models) and ended 
with the specifications regarded as flexible and showing high predictive ability 
(like the GJR-GARCH4 models with the t-distribution or the GJR-GARCH 
models combined with the distribution based on the Extreme Value Theory).

The FTSE100, NIKKEI225 and S&P500 data were chosen to represent 
financial returns because these indexes are commonly used in similar research, 
showing typical features of the financial market. Such choice allowed to use 
the results of previous research and to compare the conclusions. One of the 
extensive studies, including these indexes, was carried by Angelidis et al. 
(2004). Based on the period 1987-2002, with 484 models for each index and 
two VaR levels, they showed that the GARCH models are unquestionable 
leaders in predicting VaR, but the right model choice strongly depends on the 
market specificity. The only attainable general conclusion, not depending on 

4 The predictive ability of various time series models strongly depends on the underlying data, 
however the good performance of the GJR-GARCH model in comparison to other specifications, 
like the basic GARCH, fGARCH-TGARCH or EGARCH was shown in several studies (e.g. for 
the S&P data in Hung-Chun and Jui-Cheng 2010 and Bilyk et al. 2020).
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the particular market, was that the asymmetric models perform better than the 
others. This study was based on the standard Kupiec and Christoffersen 
procedure, so it was extended by including more powerful tests. Another 
similar study, based on the FTSE100 data from the 1997-2011 period, 
recommended the use of the GARCH-POT models that originated from the 
Extreme Value Theory (Totić et al. 2011). This study focused, however on 
testing only the unconditional coverage property. On the other hand, a recent 
study, which included the FTSE100, NIKKEI225 and S&P500 data from 1990 
till 2016, concentrated on testing the conditional coverage property (Patton et 
al. 2019). Although this study placed greater focus on ES as a measure of risk 
than VaR, it showed the better predictive ability of the nonparametric GARCH 
models (represented in this study by the FHS method) than that of the 
parametric ones. This study, however, did not consider the combination of the 
GARCH models with the POT method, as is done here, but placed emphasis 
on the GAS (Generalized Autoregressive Score) approach. What is important, 
it referred to the early Christoffersen’s VaR test, supporting the need to replace 
it with other testing methods.

As in majority of similar studies, the author’s empirical analysis was based 
on the daily close-to-close log returns. In order to mimic the real-life decision-
making process, where a standard sample of daily data covers a yearly period 
or its multiple, it was decided to perform the study on 4-year samples. As a 
result, there were around 1000 observations in each sample, which corresponds 
to the largest sample size examined in the simulation study. On the one hand 
this matches the risk management practice, and on the other, it provides a 
relatively wide range of data in one sample. Such a sample length also goes in 
line with other similar studies. For example, Angelidis et al. (2004), who put 
great emphasis on the sample choice, showing that best VaR predictions (for 
1% VaR and GARCH models with normal or Student-t innovations) are 
attainable from samples of 1000 observations. Another element of the business 
practice is to repeat the testing with a fixed frequency, such as weekly, monthly 
or yearly. The practical choice of the frequency depends on the potential 
impact of the risk exposure on the company operations. As an effect of the 
sample choice and the frequency choice, the real-life samples usually overlap 
and any changes in the market conditions can be observed from a series of 
subsequent samples. To follow this practice, this process was repeated for 
several samples of the same 4-year length, however moving the testing 
window in such a way that the neighbouring samples do not overlap. This 
allowed to cover a wider time range and obtain more diversified samples, 
deemed relevant for the purposes of checking the capacity of risk management 
tools. An important element of the sample choice was to rely on predefined 
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time intervals instead of using any statistical techniques of dividing the data 
into specific subperiods. This was important for two reasons. First, it served to 
assess the test’s ability of finding incorrect risk forecasts based on the pre-
established periods. Therefore some fixed data and a collection of risk models 
were needed, with a varied potential of matching these data. If a change in the 
volatility regime occurs, it is expected that the tests find the unsuitability of 
the applied risk models. Second, the aim was to follow the real-life procedures 
where the risk model testing is carried out periodically, usually based on 
calendar periods, without any a priori knowledge of shifts between the market 
regimes. Thus the author decided to use the samples: 2008-2011, 2012-2015, 
2016-2019. Such a subsample choice has the additional advantage of the 
oldest subsample going back as far as the subprime mortgage crisis of 2008, 
which gave the possibility to empirically evaluate the test performance in the 
extreme conditions experienced in the recent past. The standard choice of the 
intuitive periods corresponding to the calendar years resulted in limiting the 
time series to the end of 2019. However, in order to fully use the various 
market situations experienced recently, the study was extended to the middle 
of 2020, hence including one more sample of the same length as all the others. 
It partly overlaps with the 2016-2019 sample but differs from it substantially, 
as it covers the outbreak of the COVID-19 pandemic. The latter sample goes 
from the middle of 2016 to the middle of 2020. In this way the author obtained 
four samples, which seem highly diverse, as shown by the descriptive statistics 
(Table 6).

Table 6

Descriptive statistics of S&P500, FTSE100 and NIKKEI225 daily returns

Index Period Mean Std. 
deviation Minimum Maximum Skewness Kurtosis

FTSE100 2008-2011 -0.0001 0.016 -0.093 0.094 -0.06 8.20
2012-2015 0.0001 0.009 -0.048 0.035 -0.23 5.05
2016-2019 0.0002 0.008 -0.035 0.035 -0.16 5.35
Mid-2016 to mid-2020 -0.0001 0.010 -0.115 0.087 -1.61 26.67

NIKKEI225 2008-2011 -0.0006 0.0198 -0.1211 0.1323 -0.49 10.11
2012-2015 0.0008 0.0136 -0.0760 0.0743 -0.35 5.87
2016-2019 0.0002 0.0118 -0.0825 0.0691 -0.46 10.08
Mid-2016 to mid-2020 0.0004 0.0118 -0.0627 0.0773 -0.05 9.92

S&P500 2008-2011 -0.0002 0.0181 -0.0947 0.1096 -0.22 8.75
2012-2015 0.0005 0.0081 -0.0402 0.0383 -0.26 4.87
2016-2019 0.0004 0.0080 -0.0418 0.0484 -0.64 7.75
Mid-2016 to mid-2020 0.0004 0.0125 -0.1277 0.0897 -1.20 27.39

Source: author’s own.
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A common observation for all the indexes is that the first sample, 2008-
2011, including the subprime mortgage crisis and its spillover effects, clearly 
stands out. It represents the crisis-driven behaviour, which manifests itself in 
high volatility and excess kurtosis. The market crash resulted also in low 
means, extremely low minimums and relatively high maximums. For FTSE100 
and S&P500, such behaviour is also highly evident in the last sample, mid-
2016 to mid-2020, including the outbreak of the COVID-19 pandemic. For 
these two indexes the volatility, skewness and kurtosis went down in the 2012-
2015 and 2016-2019 samples, which therefore were initially regarded as 
representative for the usual market conditions. NIKKEI225 differs from the 
above observations in the sense that the COVID-19 sample does not stand out 
so clearly, and the preceding periods also show signs of the high volatility 
regime. This can be observed also from the NIKKEI225 time series plots, 
which show large volatility clusters not just in the neighbourhood of the 
subprime mortgage or the COVID-19 crises (Figure 1).

 
Fig. 1. S&P500, FTSE100 and NIKKEI225 values, returns and volatility

Source: author’s own.

The backtesting exercise performed for the three indexes was aimed at 
illustrating the differences in the conclusions from the risk analysis, attributable 
to the test choice. The p-values obtained for all examined stock market indexes 
(Tables 7 to 9) show that these differences are minor when testing unconditional 
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coverage property through LRUC and Z. On the other hand, testing conditional 
coverage by the means of LRCC and LB5 statistics reveals that the test choice 
markedly influences the outcomes. This conclusion is in line with the results 
of the simulation study.

Backtesting a risk model with respect to the unconditional coverage (LRUC and Z tests) informs whether the overall number of VaR violations produced 
by the examined model, corresponds to the assumed VaR tolerance level. The 
general picture from backtesting risk models by Z and LRUC is that both 
unconditional coverage tests provide comparable conclusions. There are

Table 7

p-values of VaR tests for FTSE100 index

VaR model
2008-2011 2012-2015

LRUC Z LRCC 
LB5 LRUC Z LRCC 

LB5

HS 0.607 0.301 0.001** 0.000** 0.497 0.253 0.010** 0.000**
GARCH-FHS 0.624 0.315 0.521 0.273 0.466 0.228 0.052* 0.023**
GJR-GARCH-FHS 0.624 0.315 0.521 0.273 0.466 0.228 0.052* 0.023**
Normal 0.000** 0.000** 0.017** 0.000** 0.267 0.126 0.076* 0.000**
GARCH-Normal 0.029** 0.010** 0.670 0.710 0.096* 0.040** 0.425 0.391
GJR-GARCH-Normal 0.007** 0.002** 0.660 0.404 0.195 0.089* 0.799 0.666
Student-t 0.000** 0.000** 0.039** 0.000** 0.195 0.089* 0.090* 0.000**
GARCH- Student-t 0.144 0.063* 0.789 0.416 0.195 0.089* 0.350 0.278
GJR-GARCH- Student-t 0.004** 0.001** 0.694 0.625 0.267 0.126 0.799 0.655
POT 0.001** 0.000** 0.002** 0.000** 0.025** 0.019** 0.211 0.000**
GARCH-POT 0.485 0.247 0.478 0.201 0.952 0.476 0.143 0.151
GJR-GARCH-POT 0.936 0.468 0.252 0.348 0.638 0.322 0.523 0.269

2016-2019 Mid-2016 to mid-2020

LRUC 
Z LRCC 

LB5 LRUC Z LRCC 
LB5

HS 0.735 0.369 0.119 0.116 0.082* 0.033** 0.005** 0.000**
GARCH-FHS 0.892 0.446 0.139 0.143 0.414 0.201 0.060* 0.019**
GJR-GARCH-FHS 0.892 0.446 0.139 0.143 0.414 0.201 0.060* 0.019**
Normal 0.302 0.144 0.067* 0.010** 0.005** 0.001** 0.023** 0.000**
GARCH-Normal 0.113 0.048** 0.398 0.684 0.055* 0.021** 0.159 0.327
GJR-GARCH-Normal 0.302 0.144 0.794 0.581 0.023** 0.007** 0.572 0.790
Student-t 0.113 0.048** 0.111 0.010** 0.001** 0.000** 0.051* 0.000**
GARCH- Student-t 0.515 0.253 0.743 0.649 0.119 0.051* 0.413 0.572
GJR-GARCH- Student-t 0.223 0.103 0.325 0.394 0.001** 0.000** 0.043** 0.103
POT 0.238 0.128 0.051* 0.000** 0.233 0.108 0.002** 0.000**
GARCH-POT 0.452 0.231 0.453 0.778 0.812 0.405 0.185 0.253
GJR-GARCH-POT 0.892 0.446 0.264 0.703 0.531 0.262 0.754 0.608

Source: author’s own.



22 M. MAŁECKA  

Table 8

p-values of VaR tests for NIKKEI225 index

VaR model
2008-2011 2012-2015

LRUC Z LRCC LB5 LRUC Z LRCC LB5

HS 0.365 0.176 0.008** 0.000** 0.371 0.179 0.057* 0.000**
GARCH-FHS 0.610 0.308 0.475 0.223 0.277 0.130 0.296 0.646
GJR-GARCH-FHS 0.610 0.308 0.475 0.223 0.277 0.130 0.296 0.646
Normal 0.027** 0.009** 0.042** 0.000** 0.043** 0.016** 0.157 0.000**
GARCH-Normal 0.027** 0.009** 0.510 0.002** 0.201 0.092* 0.083* 0.174
GJR-GARCH-Normal 0.010** 0.003** 0.592 0.560 0.201 0.092* 0.331 0.497
Student-t 0.001** 0.000** 0.139 0.000** 0.066** 0.026** 0.135 0.000**
GARCH- Student-t 0.096* 0.040** 0.389 0.089* 0.201 0.092* 0.083* 0.174
GJR-GARCH- Student-t 0.027** 0.009** 0.700 0.507 0.098* 0.041** 0.116 0.194
POT 0.027** 0.009** 0.001** 0.000** 0.615 0.304 0.038** 0.000**
GARCH-POT 0.753 0.375 0.165 0.005** 0.201 0.092** 0.083* 0.174
GJR-GARCH-POT 0.911 0.455 0.608 0.056* 0.201 0.092** 0.331 0.497

2016-2019 Mid-2016 to mid-2020

LRUC Z LRCC LB5 LRUC Z LRCC 
LB5

HS 0.792 0.397 0.113 0.000** 0.286 0.135 0.000** 0.000**
GARCH-FHS 0.593 0.293 0.714 0.876 0.492 0.241 0.759 0.999
GJR-GARCH-FHS 0.593 0.293 0.714 0.876 0.492 0.241 0.759 0.999
Normal 0.358 0.172 0.778 0.001** 0.071* 0.028** 0.001** 0.000**
GARCH-Normal 0.138 0.061* 0.798 0.847 0.150 0.066** 0.382 0.186
GJR-GARCH-Normal 0.593 0.293 0.714 0.779 0.622 0.308 0.727 0.867
Student-t 0.000** 0.000** 0.434 0.001** 0.000** 0.000** 0.004** 0.000**
GARCH- Student-t 0.138 0.061* 0.798 0.847 0.150 0.066* 0.382 0.186
GJR-GARCH- Student-t 0.096* 0.040** 0.781 0.856 0.150 0.066* 0.790 0.715
POT 0.185 0.102 0.336 0.363 0.172 0.096* 0.046** 0.000**
GARCH-POT 0.593 0.293 0.714 0.778 0.380 0.183 0.277 0.360
GJR-GARCH-POT 0.888 0.444 0.633 0.725 0.920 0.460 0.606 0.781

Source: author’s own.

however a few cases when Z rejects the models that LRUC allows, which 
suggests that the normal Z statistics proved more powerful at detecting 
incorrect models. Such cases happened for all three indexes, most often 
however for NIKKE225. A vivid example is the 2012-2015 NIKKEI225 
sample, where Z rejects nearly all parametric specifications, whereas LRUC 
admits most of them. In general, however, both tests point out similar models 
as acceptable for predicting risk for all three indexes. In particular, both tests 
classify the majority of parametric models, apart from those belonging to the 
POT class, as incorrect in the high volatility regime. This is especially evident
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Table 9

p-values of VaR tests for S&P500 index

VaR model
2008-2011 2012-2015

LRUC Z LRCC LB5 LRUC 
Z LRCC LB5

HS 0.003** 0.001** 0.100 0.000** 0.980 0.490 0.145 0.000**
GARCH-FHS 0.381 0.197 0.333 0.000** 0.708 0.352 0.194 0.216
GJR-GARCH-FHS 0.381 0.197 0.333 0.000** 0.708 0.352 0.194 0.216
Normal 0.000** 0.000** 0.241 0.000** 0.252 0.118 0.318 0.000**
GARCH-Normal 0.000** 0.000** 0.296 0.026** 0.129 0.056* 0.391 0.157
GJR-GARCH-Normal 0.000** 0.000** 0.224 0.339 0.129 0.056* 0.785 0.796
Student-t 0.000** 0.000** 0.002** 0.000** 0.000** 0.000** 0.431 0.019**
GARCH- Student-t 0.000** 0.000** 0.382 0.042** 0.339 0.162 0.284 0.087*
GJR-GARCH- Student-t 0.000** 0.000** 0.247 0.418 0.129 0.056* 0.785 0.796
POT 0.000** 0.000** 0.241 0.000** 0.001** 0.002** 0.004** 0.000**
GARCH-POT 0.457 0.223 0.182 0.006** 0.708 0.352 0.194 0.216
GJR-GARCH-POT 0.457 0.223 0.182 0.615 0.980 0.490 0.614 0.717

2016-2019 Mid-2016 to mid-2020

LRUC Z LRCC LB5 LRUC Z LRCC LB5

HS 0.512 0.251 0.243 0.000** 0.009** 0.002** 0.080* 0.000**
GARCH-FHS 0.944 0.472 0.646 0.000** 0.528 0.260 0.755 0.000**
GJR-GARCH-FHS 0.944 0.472 0.646 0.000** 0.528 0.260 0.755 0.000**
Normal 0.021** 0.007** 0.057* 0.000** 0.000** 0.000** 0.030** 0.000**
GARCH-Normal 0.789 0.394 0.187 0.017** 0.231 0.107 0.339 0.006**
GJR-GARCH-Normal 0.789 0.394 0.686 0.940 0.167 0.075* 0.376 0.574
Student-t 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 0.000**
GARCH- Student-t 0.789 0.394 0.187 0.017** 0.312 0.149 0.305 0.003**
GJR-GARCH- Student-t 0.159 0.071* 0.379 0.351 0.023** 0.007** 0.208 0.278
POT 0.300 0.142 0.000** 0.000** 0.003** 0.001** 0.000** 0.000**
GARCH-POT 0.896 0.448 0.603 0.012** 0.528 0.260 0.755 0.001**
GJR-GARCH-POT 0.590 0.298 0.517 0.785 0.808 0.403 0.684 0.604

Source: author’s own.

in 2008-2011 subprime mortgage crisis samples and, to a lesser extent, in the 
mid-2016 and mid-2020 COVID-19 samples. The admitted models in these 
highly volatile periods are based either on the nonparametric historical simulation 
method (HS or FHS class) or the POT method originating from the Extreme 
Value Theory. This shows that, when turbulences occur, the popular distributional 
assumptions of normality or Student-t innovations tend to produce an excessive 
number of VaR violations. In calmer samples, the correct overall failure rate is 
attainable by most of the methods. Yet, judging by the p-values, the FHS or POT 
models seem to perform best in terms of the unconditional coverage.
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The conditional coverage tests (LRCC and LB5) complement the overall VaR 
failure rate check by enquiring into the dependence of failures in time. The 
procedures dedicated to this property are often deemed critical to financial 
stability as they potentially prevent catastrophic losses from occurring in 
series. In light of the results of the conditional coverage tests, the choice 
among the constant-variance, conditional-variance or asymmetric conditional-
variance specifications turns out to be more important for forecasting risk than 
the distributional choice. First of all, the use of the GARCH-class models is 
indicated as crucial for preventing VaR failure dependence in time. Second, in 
some cases, the asymmetric GJR-GARCH models are strongly preferred. 
However, most importantly in view of the study’s goals, testing the conditional 
coverage property reveals substantial differences in the conclusions, 
attributable to the chosen testing method. 

For the FTSE100 index (Table 7) the LB5 test generally classifies GARCH-
class models as admissible. In the case of this index, the LB5 test does not 
distinguish between the standard GARCH and the GJR-GARCH models with 
volatility asymmetry. This shows that the potential differences in the market 
behaviour relating to upward and downward trends, do not impact on the 
FTSE100 risk forecasts. This result is stable across the samples, which 
indicates that although the model parameters may change, the volatility regime 
does not affect the general patterns of investors’ behaviour. Another conclusion 
is the preference towards the parametric models over the FHS ones, which is 
visible in two out of four samples. Compared to these outcomes, based on the 
LB5 procedure, the standard Markov LRCC test results seem more vague. In 
some cases the Markov test even fails to reject the most naive, constant-
variance models (the POT model in 2012-2015 and the Student-t model in 
2016-2019).

The LB5 p-values from testing the NIKKEI225 (Table 8) conditional 
coverage show a different pattern of market behaviour in comparison to the 
FTSE100 index. Contrary to FTSE100, the risk model choice for this index 
seems to be driven by volatility regimes. The LB5 test shows that in the 2008-
2011 market crash sample, only the narrow class of the GJR-GARCH models 
is capable of producing accurate risk forecasts. Thus only these models have 
the potential to prevent occurring large losses clustered in time during 
extremely volatile periods. In other samples which do not include such 
extraordinary price movements, the more general class of the GARCH models 
turns out to be sufficient for predicting risk. Since the volatility asymmetry 
component of the GJR models appears crucial only for times of crisis, it 
appears that the investors’ behaviour is influenced by the volatility regime. 
The high crisis-driven volatility appears to stimulate more violent reactions to 
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falling prices. This asymmetric volatility regime-specific effect is strong 
enough to affect the suitability of risk forecasting methods.

Similarly to the case of the FTSE100 index, backtesting the NIKKEI225 
risk forecasts through the standard Markov LRCC procedure provides a different 
picture than backtesting through LB5. In most cases the LRCC test is unable to 
point out any specific class of models. For the 2008-2011market crash sample 
it failed to reject the basic GARCH-class models, classified as incorrect by the 
LB5 statistic. For the two subsequent samples it admits most of the models, 
failing to specify any approach recommendable for predicting risk. In 
particular, for 2016-2019 all the models are admitted.

The results from testing the conditional coverage for S&P500 by LB5 are in 
line with those for NIKKEI225 (Table 9). In standard situations, as indicated 
by the 2012-2015 and 2016-2019 samples, the GARCH risk forecasts are 
sufficient to fulfil the requirement of the proper conditional coverage. 
However, to ensure that VaR violations are not serially correlated during the 
crises, the asymmetry volatility component needs to be taken into account. 
Thus the GJR-GARCH-class models are advisable for the 2008-2011 subprime 
mortgage crisis sample and the mid 2016 to mid-2020 COVID-19 sample. An 
additional observation for S&P500, which goes in line with the FTSE100 
results, is the preference towards the parametric specifications over the 
historical simulation-based methods. This is clear from all samples apart from 
the calmest 2012-2015 one. 

As previously, the S&P500 results are test-specific. The risk analysis based 
on the Markov LRCC statistic gives different conclusions. Under all volatility 
regimes it admits models from various classes, failing to characterize the 
market specificity.

The outcomes of the conditional coverage tests for all the indexes, 
combined with the initial results from testing unconditional coverage property, 
indicate that the GJR-GARCH-POT model performs best overall in terms of 
forecasting daily risk for stock prices. It seems most flexible as it is classified 
as accurate in light of both properties, for all indexes and under all volatility 
regimes. This most general result stays in line with the results of other similar 
studies that assessed VaR predictability for periods including major stock 
crashes (e.g. Angelidis et al. 2004, Totić et al. 2011). Referring to the study’s 
goals, an important fact is that this conclusion can be deduced only from the 
LB5 results, in particular not attainable by the Markov LRCC test.

With regard to the market specificity, the combined results from LB5 test 
for the three examined indexes allow for distinguishing two distinct patterns 
of investors’ behaviour connected with undergoing the financial crises. While 
in the London market, as judged by the FTSE100 index, ways of predicting 
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risk seem insensitive to the volatility regimes, the other markets appear to be 
strongly affected by the crises. According to the NIKKEI225 and S&P500 
results, in the crises conditions the general class of GARCH models needs to 
be narrowed to the models with the volatility asymmetry. Otherwise, the 
violations of VaR tend to cluster in time, which may result in large losses 
occurring one by one. Since the volatility asymmetry is essential for periods 
with extraordinary price movements, the financial crisis in the New York and 
Tokyo markets seems to affect investors’ behaviour in such a way that it 
stimulates violent reactions to downward price movements. A crucially 
important fact is that these conclusions about market specificity strongly 
depend on the backtesting method. The results demonstrate that, contrary to 
the LB5 autocorrelation test, the Markov LRCC test used commonly in the 
industry, fails to explain the individual nature of the markets.

SUMMARY AND CONCLUSIONS

The study dealt with the methods of evaluating risk forecasts. The author 
referred to the Basel framework, which recommends testing risk models based 
on the VaR measure, and inquired into the statistical properties of the VaR 
tests. In order to enhance their accuracy and efficiency, the study replaced 
standard risk-management-dedicated tests with other econometric methods 
applicable to the binary VaR failure process, and decomposed VaR model 
evaluation into testing the unconditional and conditional property. With 
respect to the verification of the unconditional coverage property, the study 
utilized the convergence of the binomial distribution to the normal one, while 
for the conditional coverage, it employed the Ljung-Box χ2 statistic. Therefore, 
it was proposed to use the well-established econometric methods instead of 
the methods developed specifically for the purposes of risk management.

In accordance to the Basel rules, the author examined the test properties on 
two low significance levels, and the simulations confirmed the superiority of 
the proposed procedures over the industry standards, in terms of their power. 
The results of the simulations were used in the empirical study, which 
demonstrated the advantages of the proposed approach. The study was 
designed with a view to showing the differences in the risk analysis attributable 
to the choice of the backtesting method. To provide a relevant setting for 
evaluating risk management tools, the study used data on three leading stock 
market indexes, various volatility regimes and twelve mainstream risk models 
to generate VaR forecasts. The application of the proposed methods to the VaR 
failure series provided evidence that more powerful tests, in comparison to the 
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standard risk management procedures, give a more insightful view of the 
market behaviour.

Contrary to the standard approach, the proposed procedures allowed for 
distinguishing models that best suit risk management in various market 
conditions. This, in turn, enabled to define market-specific patterns of 
investors’ behaviour connected with changing volatility conditions. Under 
usual conditions, the general class of GARCH models was pointed out as 
sufficient in terms of predicting risk. However, the inclusion of the financial 
crises into the sample implied the need for more specific methods. In the 
market crash periods only the narrow class of the nonparametric filtered 
historical simulation models or the POT models prevented risk underestimation. 
The requirement that the VaR failures should not group in time further 
narrowed the range of acceptable models only to those that combine the POT 
method with the GARCH volatility specification. Moreover, for the New York 
and Tokyo markets, judging by their leading indexes, the asymmetry volatility 
component was vital in the sense that it prevented clustering of extraordinary 
large losses. This indicated the GJR-GARCH-POT model as the most flexible, 
in the sense of being suitable for predicting risk in the widest variety of market 
conditions. A comparison of these results to the outcomes of the standard VaR 
testing procedure demonstrated that the proposed methods were more effective 
in detecting incorrect risk models. Two general implications follow from this 
comparison: first, the proposed tests better characterize the specificity of the 
market behaviour and second, more importantly, they have better potential to 
secure the stability of the institutions operating in the financial markets. Thus, 
the results motivated the author to recommend these methods for institutional 
risk management systems as a replacement for the usual LR-based procedures. 
Moreover, these conclusions may also be used as guidance by the supervisory 
bodies in creating recommendations for risk managers. 

The conclusions, formulated in the most general form, suggest the 
superiority of the well-established econometric methods over the standard risk 
management tools. In more detail, however, the main improvements were 
achieved by replacing the Markov-chain Christoffersen’s framework with the 
testing based on the LB statistic. The author treated this not only as an 
indication of the recommendable VaR testing approach, but also as guidance 
for further developments. Following the idea behind the LB statistic, one of 
the directions for future research may be to search for more advanced ways of 
using the autocorrelation function. Their potential may lie, among others, in 
employing the spectral theory which allows for utilizing the same information 
as included in autocorrelations, but modified by means of the Fourier transform. 
Such a transform, by using the same information in a different way, may 
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improve the power properties. The use of the spectral theory gives a wide 
range of possibilities connected with new testing statistics. Such an approach 
was proposed in the VaR testing context by Berkowitz et al. (2011), but has 
been studied so far only in a very limited scope, based on two chosen statistics. 
One more proposition of utilizing the autocorrelation function in testing VaR 
is the recent modification of the LB statistic by Miettinen et al. (2020). Unlike 
the basic LB test, this modification takes into account the presence of the 
volatility clustering. In this modification, the asymptotic variance of the test 
statistic is derived when assuming only the symmetry and finite fourth 
moments of the time series. When the time series has the volatility clustering, 
it introduces a multiplicative factor that helps to achieve the correct size of the 
test. Both this proposition and the one suggesting to utilize the spectral theory 
require extensive simulations and empirical verification, and thus are left for 
further research.

Another natural extension to this study is to verify the author’s propositions 
with the use of multivariate GARCH processes. Such processes, exactly as 
with the univariate ones, allow to predict VaR. Indeed, one of the key practical 
advantages of VaR as a risk measure is the straightforward way it can be 
computed for portfolios of assets or portfolios of indexes. As a consequence, 
testing multivariate VaR models proceeds in an analogous way to testing 
univariate ones. Up to now, several studies have been conducted to test 
accuracy of the multivariate models like VECH, BEKK, CCC-GARCH, DCC-
GARCH and asymmetric DCC-GARCH in the context of forecasting VaR 
(Morimoto and Kawasaki 2008, Caporin and McAleer 2014, Santos, Nogales 
and Ruiz 2013). These studies, however, were based on the standard risk 
management tests. Validating the multivariate models by means of the methods 
found relevant in the univariate case (and possibly other, improved tests based 
on autocorrelations) is an area viewed as an interesting subject for future 
studies.
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