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1. INTRODUCTION 

Population ageing is increasing rapidly in many countries. Based on the forecasts 

until 2060, it appears that countries such as Poland, Greece, Portugal, Slovakia, 

Slovenia and Spain will be ageing at the fastest pace while Italy will remain one of 

the countries with the oldest populations (OECD 2019).  

Population ageing indicates that pension expenditures tend to increase and the 

future pensions tend generally to be lower. According to forecasts from 2019 made 

for OECD countries, the full-career replacement rate would fall by an average of 

around 6%among people who retired about 15 years ago and employees just entering 

the labour market. It was also predicted that in the case of Poland the future 

replacement rate from mandatory pension schemes would be one of the lowest in the 
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OECD countries, i.e. 35% or 27% of previous net earnings for young men and 

women entering the labour market in 2018. 

According to the 2019 forecasts, those entering the labour market in 2018 are 

expected to spend, on average, 34% of their adult life in retirement compared with 

32% for those currently retiring, assuming that adult life expectancy is measured 

from the age of 20 and subject to surviving until retirement age, and taking into 

account the increase in the normal retirement age in some countries. In Poland the 

respective proportions were estimated as 28.6% and 32.9%, respectively (OECD 

2019). Based on the old-age to working-age ratio, the Polish population is currently 

younger than the average in the OECD countries, but the ageing process is 

proceeding rapidly, thus this ratio is expected to exceed the average. 

Unfortunately, the COVID‑19 pandemic that broke out in 2020 disrupted labour 

markets around the world. The lockdowns and workplace closures have reduced 

individuals’ wages and incomes, and resulted in their lower capability to contribute 

to retirement savings plans. Therefore, the OECD forecasts made in 2019 now seem 

to need a revision. 

The current extraordinary situation requires a continuous adjustment of the 

pension systems to the demographic and economic changes. In recent decades, many 

developed countries have started reforms of their pension systems in response to the 

progressing population ageing, e.g. by expanding pension coverage, enhancing work 

incentives, extending flexible retirement options, encouraging private pension 

savings, expanding the coverage of mandatory pensions and establishing a higher 

retirement age, although the latter solution has been often recognised in some 

countries as controversial. 

Currently, due to political and social pressure, pension reforms have lost their 

momentum in some countries, which is manifested in the failure to implement some 

of the measures previously set, e.g. in Slovakia, Italy, the Netherlands (limiting the 

increase in the retirement age or expanding early-retirement options), Spain 

(suspending the adjustment of pension benefits with demographic changes), Italy, 

and Portugal (easing early-retirement conditions). In Poland, the decision to increase 

the retirement age to 67 for both men and women by 2020 and 2040, respectively, 

was withdrawn in 2017, returning to the age of 65 for men and 60 for women. Thus, 

the gender gap in the normal retirement age, i.e. the difference between the 

retirement age for men and women, has been maintained. 

The purpose of the paper was to assess the future pension annuities by modelling 

the assumed evolution of mortality in Poland with the well-known Lee-Carter model. 

The author created the so-called dynamic mortality tables used for valuing pensions 

annuities, which the pension funds are expected to provide. Such mortality tables 

include both the future changes in mortality and mortality experience relevant to the 

given population. 
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2. PENSION PLANS IN POLAND 

Pension schemes vary among countries and involve a number of different 

programmes. The funded defined contribution plans (FDC) are mandatory for future 

retirees in some OECD countries. In these schemes payments affect each individual 

account. The accumulation of premiums and returns on investment is usually 

converted into a monthly retirement upon retirement. 

Up to 1998, the pension system in Poland was a fully pay-as-you-go 

(redistributive) system. The main idea was based on the so-called intergenerational 

agreement to cover current benefits from current contributions. However, this system 

became unstable as a result – among others – of the limited economic activity of the 

population. Retirement privileges, early retirements and a growing unemployment 

rate resulted in an increase in the number of people at the post-working age in 

relation to the working age population. In order to guarantee the solvency of the 

system, the amount of obligatory social security contributions was gradually 

increased from 15.5% in 1981 to 45% in 1998. However, despite this, the 

contributions were not sufficient to cover current benefits, because at the same time 

unfavourable demographic changes accelerated (a decrease in fertility and mortality, 

an increase in life expectancy). 

In 1999, the old system was replaced by a three-pillar pension system to meet 

challenges of the ageing society. The first pillar was a mandatory system based on a 

defined contribution system (NDC) managed by the Social Insurance Institution 

(ZUS). This was a public pay-as-you-go system with individual accounts that applied 

a hypothetical rate of return to contributions made. Every participant had a virtual 

account, which contained all contributions made over her/his working life. At 

retirement, the accumulated notional capital was converted into a monthly pension 

using a formula based on life expectancy. The second pillar took the form of Open 

Pension Funds (OPF), a type of the funded defined contribution plans (FDC). 

Portfolio regulations imposed certain restrictions on investments made by OFEs. The 

third pillar consisted of voluntary occupational retirement provision accounts (PPE). 

These were FDC plans with limited tax incentives. If an employer established a PPE, 

it was obliged to pay contributions for its staff. Employees could make additional 

contributions that supplemented those of the employer, and could not be withdrawn 

before reaching retirement age. Compared to the OPFs, the PPEs also had more 

investment possibilities. 

In 2004, the institution of individual retirement accounts (IKE) was introduced, 

followed by individual retirement security accounts, and by employee capital plans. 

On January 1, 2013, the gradual increase in the retirement age for men and women 

to  the same level of 67 years was implemented. These provisions were withdrawn 

in 2017 under social and political pressure. 
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In 2014, 51.5% of participation units accumulated in OFE were redeemed by the 

Polish parliament. In addition, the so-called safety slider was implemented, 

according to which the entire pension benefit is paid by ZUS together with benefits 

from the pay-as-you-go part, calculating them in the same way as before. In order to 

eliminate the problem related to the redemption of participation units of an OFE 

member during a possible downturn in the financial markets, the process of 

transferring funds was extended over time, i.e. ten years before the OFE member 

reaches retirement age, the process of monthly redemption of participation units on 

his/her account begins. Upon reaching retirement age, the OFE member has no units 

in OFE, but only funds in the sub-account in ZUS. During this period, ZUS also does 

not transfer contributions to the OFE. 

Thus, the pay-as-you-go system is currently dominant, supplemented with funds 

accumulated in open pension funds. It is planned that in the near future funds from 

OFEs will be transferred to private individual retirement accounts. The law on this 

matter is pending approval by the Polish parliament, as its enactment was suspended 

due to the pandemic. 

3. MODIFICATION OF THE LEE-CARTER MORTALITY MODEL 

Mortality tables are needed for valuing pension annuities. Such tables can account 

only for the differences in mortality by age (static tables), or can additionally account 

for the evolution of mortality over time (dynamic tables). 

Dynamic mortality tables are usually based on some assumptions on mortality 

rates and their predictions in order to sufficiently account for future improvements 

in mortality. Two components must be assessed in order to develop such tables: the 

current level of mortality and its expected trend, i.e. the mortality improvement since 

mortality tends in general to decline. The level of mortality is usually assessed based 

on e.g. 3 recent years of mortality experience for a specified population. To assess 

mortality improvement, significantly more data is needed and therefore it is more 

challenging. The general population mortality data are used as inputs to formal 

mortality projection models. Once mortality forecasts are made, they can be applied 

to create a mortality table at any future point in time. 

In general, two groups of mortality prediction models are considered in the 

literature. The first group, which is the widest one, comprises static models, i.e. the 

log-odds function of the death probability or mortality rates are expressed in 

analytical forms that could be linear or nonlinear functions of age. The second group 

includes extrapolative models, where the probability of death or mortality rates are 

expressed as nonlinear functions of age and calendar time. In both types of models 

there are additionally some scalar parameters that have to be estimated. 
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One of the popular extrapolative models was proposed by Lee and Carter (1992). 

It includes two risk factors, i.e. age and time, and uses matrix decomposition to 

extract a set of age-related parameters, and time-varying indices which are then used 

for forecasting. In other words, the log-central age-specific mortality rates 

( )lnxt xy m t=  for individuals at age x  (age x  is rounded to an integer) in year t  is 

estimated by three parameters 
xa ,

xb , , tk  where
xa can be interpreted as the mean 

mortality at age x , tk  is the time trend parameter, and xb  modulates the influence of 

the time trend at the given age x . The Lee-Carter model (LC) has the form: 

 ( )ln ,     0,1, , ,     1,2, ., ,x x x t xtm t a b k x X t T= + + =  =   (1) 

or equivalently 

 ( )  exp ,     0,1, , ,     1,2, ., ,x x x t xtm t a b k x X t T= + + =  =   (2) 

where X  is an upper age limit,  xa  and  xb  are sets of some constants that are 

different for different age groups x , and  tk  is a set of time components viewed as 

a discrete-time stochastic process. 

Terms xt  represent random errors reflecting particular age-specific influences 

not captured by the model. It is assumed that xt  are independent random variables, 

normally distributed with the mean equal 0 and common variance 2 . In practice, 

this homoscedasticity assumption is often violated, since the variance of the random 

term is not evenly distributed among age groups. Some of the differences in the 

variability can be explained by the cohort effect, however, this effect was not 

included in the LC model. 

Model (1) is fitted to the central age-specific death rates 

  ( )
( )

( )
1000

x

x

x

D t
m t

N t
= , (3) 

where ( )xD t  denotes the number of deaths observed at age x  and time  t , and ( )xN t  

is the midyear population at age x  in year  t . 

Model (1) or (2) is undetermined without additional constraints. Let us assume, 

for instance, that we have an empirical data matrix of logarithms of specific mortality 

rates, i.e. a matrix with elements ( )lnxt xy m t=  in the body, where 0,1,...,x X=

denotes the age group (matrix rows), whereas 1,2,...,t T=  are calendar years (matrix 

columns). Let model (1) be valid for a set of parameters { xa }, { xb }, 0,1,...,x X=  

and { tk }, 1,2,..., .t T=  It is easy to verify that for any constant c and the set of 

parameters { x xa cb− }, {bx}, {  tk c+ } or { xa }, { xcb }, { /tk c }, model (1) also 
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holds. Hence, parameters 
 tk  are determined to the transformation tk c+  or / ,tk c  

parameters 
xb  are determined to the multiplicative constant, whereas parameters 

xa  

– to the additive constant. 

To ensure the unique parameters of model (1), it is necessary to define certain 

additional constraints. To this end, Lee and Carter assumed that the sum of 

parameters xb  for all age groups (indexed by ages x) equals 1, whereas the sum of 

parameters  tk  (indexed by  t ) equals 0. Thus, in the standard LC model, parameters 

xb and  tk are assumed to satisfy the following constraints: 

 
0

1,     x

x

X

b
=

=  (4) 

and 

 
1

0.
T

t

t

k
=

=  (5) 

In the original methodology, the Singular Value Decomposition (SVD) is used 

to estimate parameters ,  ,x x ta b k  (see e.g. Good (1969) for more details). Therefore, 

the author’s  proposal was to impose additional constraints allowing to simplify the 

estimation of the LC model parameters without using the SVD method. The 

additional restrictions take the form: 

 ( )
1 1

,
T T

xt x x t

t t

y a b k
= =

= +   (6) 

 ( )
0 0
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X X

xt x x t

x x
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= =

= +   (7) 

 ( )
0 0

.
X X

t xt t x x t

x x

k y k a b k
= =

= +   (8) 

The LC model with its attendant constraints (6) to (8) was called the Modified 

Lee-Carter Model (MLC). In other words, the MLC model is defined as the origin 

LC model (1) with constraints (4) and (5), but it is supplemented with additional 

three constraints (6) to (8). It follows from (6) and (5) that 

 ( )
1

1
ln ,

T

x x

t

a m t
T =

=   (9) 

from (7) and (4) there is 
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 ( )
0
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X
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=

= −  (10) 

while from (8) and (5) we get 

 1

2
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t xtt
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k y
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=

=



 (11) 

Under these constraints, parameters xa describe the age pattern of mortality 

averaged over time, parameters  tk  describe the effects of the calendar time t on 

a change in the mortality, whereas xb  are the regression coefficient representing the 

mean change of mortality rates xty  in response to unit change of component
   .tk  

The Lee-Carter methodology and the subsequent modifications were broadly 

discussed in the literature, e.g. Carter (1996), Lee (2000), Alho (2000), Tuljapurkaret 

al. (2000), Booth et al. (2002), Brouhns et al. (2002a,b), Renshaw, Haberman 

(2003a,b,c), Li et al. (2004), Lundström, Qvist (2004), Brouhns et al. (2005), Koissi 

et al. (2006), Denuit, Dhaene (2007), Rossa (2011), Haberman, Renshaw (2012), 

Danesi et al. (2015). 

4. MORTALITY FORECASTING 

Let us note that parameters xa  and xb  in model (1) are constant in time, which 

means that estimates of the parameters, once derived, can be used in the future. The 

mortality forecasts can be obtained by modelling kt as a time series. The forecasts 

concerning the forecasted values of  ,tk  together with the estimates of parameters 

xa  and xb  allow for, based on model (1), forecasting mortality, and more 

specifically, forecasting the log-central deaths rates ( )ln xm t  for  t T . 

As proposed by Lee and Carter (1992), finding the values of  tk for 1,2,...,t T=  

provides a starting point for modelling a time series { tk } as a random walk with drift 

that can be described using the formula 

 1 ,t t tk c k −= + +  (12) 

where c  stands for a constant (a drift), and t  is an error term with normal 

distribution with the mean 0 and a finite variance. 

The estimator of drift c has the form 

 1 .ˆ
1

Tk k
c

T

−
=

−
 (13) 
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Its variance estimator is given by the formula 

 ( )
22

1

2

1
.

1

T

t t

t

k k c
T

 −

=

= − −
−
  (14)  

Estimation of constant c allows making forecasts of  tk  for t T . Inserted in 

model (1), together with estimates of parameters 
xa  and 

xb , they allow to make 

forecasts of future log-central mortality rates, and consequently, of future mortality 

rates using formula (2), i.e. 

 ( )  exp , x x x tm t a b k= +  (15) 

where ( ) ,   1, 2,  xm t t T T= + +   denote the forecasted mortality rates based on 

forecasted components 
tk  for t T  derived from the random walk model (12). 

Next, it was possible to estimate other parameters of the mortality table, e.g. the 

probability of death during a year for individuals attaining age x in year t or inversely 

− the probability that an individual aged x at time t will survive the next year (the 

survival probability). These two parameters are often denoted as ( ) ( ),   ,x xq t p t  

respectively, where ( ) ( )1   .x xp t q t= −  

Assuming the so-called linear interpolation model (e.g. Rossa (2011), pp. 50−55), 

the approximate relation between ( )xq t  and cohort mortality rate ( )xm t  is as follows 

 ( )
( )

( )

2
. 

2

x

x

x

m t
q t

m t


+
 (16) 

Another important parameter is the remaining life expectancy for individuals 

aged x in year ,t  regarded as the additional number of years on average an individual 

of a given age x can expect to live; life expectancy is usually denoted as ( ).xe t  

It is worth noting that there is a significant distinction between period and cohort 

life expectancy. The period approach does not account for changes in mortality 

beyond the year under study. For instance, the period life expectancy at age x in is 

calculated on the basis of the survival probabilities px(t) of individuals at ages 

,  1, 2,x x x+ +   in the same year t. In such an approach, life expectancy can be 

calculated directly from one period life table without accounting for projections. 

However, because longevity tends to improve with time, period life expectancies 

systematically underestimate the actual expected lifetime, whereas cohort life 

expectancy is calculated taking into account improvements in mortality. For 

instance, the cohort life expectancy for an individual at age x is calculated based on 

the survival probability at age x in current year t, at age 1x +  in year   1t + , at age 
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2x +  in year 2t +  etc. However, such calculations require making projections of 

future probabilities ( )x kp t k+ +  for subsequent years 1,   2, .t t+ +   in the future. 

This is possible usually by using a prediction model. 

Thus life expectancy can be expressed as 

 ( ) ( )
1

0.5 ,x k x

k

e t p t


=

= +  (17) 

where 

 ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

, for period approach,

 
1 , for cohort approach.

x x x k

k x

x x x k

p t p t p t

p t

p t p t p t k

+ +

+ +

 


= 
 +  +

 (18) 

5. ESTIMATION OF THE MLC AND LC MODELS FOR POLAND 

One can estimate parameters , , x x ta b k  of the LC model (1) with constraints (4) 

and (5) using the SVD method, as well as the analogous parameters of the MLC. 

Using the extended set of constraints (4) to (8) for this model, the estimates of 

parameters , , x x ta b k  can be derived directly from formulas (9) to (11).  

In this section, the estimation of the MLC and LC models was based on the 

historical mortality data for the period 1965–2020, taken from the database of the 

Polish Central Statistical Office (stat.gov.pl). 

The input data are annual probabilities of death transformed to mortality rates 

based on the approximate relation (16) between ( )xq t  and ( )xm t . Furthermore, it 

was assumed that mortality rates are additionally multiplied by 1000, i.e. 

 ( )
( )

( )

2
1000,

2

x

x

x

q t
m t

q t


−
 (19) 

where ( )xq t is the probability that an individual aged  x  will die within one year. 

Estimates of parameters xa  for ages 0,1, ,100x =   obtained by means of the LC 

and MLC models were the same, and are presented in Figure 1. Estimates of xb  in 

both approaches differ very slightly, as illustrated in Figures 2 and 3. More 

pronounced, but still small differences, can be seen when comparing estimates of 

parameters tk  in both models (Figures 4 and 5). The forecasts of tk  up to 2040 from 

the random walk model (12) are also added in Figures 4 and 5. 
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Fig. 1. Estimates of ax for 𝑥[0,100] from both the MLC and LC models − fitting based on the 

period life tables for 1965–2020. 

Source: elaborated by the author. 

 

Fig. 2. Estimates of bx for 𝑥[0,100] from the MLC model − fitting based on the period life tables 

for the period 1965–2020. 

Source: elaborated by the author. 

-0.01

0.00

0.01

0.02

0.03

0.04

0 20 40 60 80 100
Age x

males females



 MODIFICATION OF THE LEE-CARTER MORTALITY MODEL AND ITS APPLICATION… 103 

 

Fig. 3. Estimates of bx for 𝑥 [0,100] from the LC model − fitting based on the period life tables 

for the period 1965–2020. 

Source: elaborated by the author. 

 

Fig. 4. Estimates of kt from the MLC model for the period 1965–2020 and their 2021–2040 forecasts 

− fitting based on the period life tables 

Source: elaborated by the author. 
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Fig. 5. Estimates of kt from the LC model for the period 1965–2020 and their 2021–2040 forecasts 

− fitting based on the period life tables  

Source: elaborated by the author. 
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seen that that the rates for young and older males are more sensitive to temporal 

changes in mortality than analogous rates for females. The reverse relation applies 

to the remaining age groups. 

The curves illustrating time series of tk  in Figures 4 (model MLC) and 5 (model 

LC), are generally declining both for males and females, with the decline being faster 

in case of the subpopulation of women, except for the years 1989-1990 (the 

economic transformation and the health crisis in Poland) and 2020 (the first year of 

the COVID-19 pandemic), when significant upward shifts of both curves can be 

observed. Note that estimates of tk  obtained with the use of the MLC model are 

slightly different from the results obtained with the standard singular value 

decomposition (SVD) used in the LC method. Estimates of age-related parameters 

,x xa b  and the forecasts of time-related parameters tk  were used next to forecast 

mortality rates for t T . The forecasts are based on formula (15). 

6. CALCULATIONS OF OLD-AGE PENSION BENEFITS 

According to the current regulations in Poland (Act of 17 December 1998 on 

pensions and disability pensions from the Social Insurance Fund – Journal of Laws 

of 2017, item 1383 as amended), the old-age pension benefit is the equivalent of the 

amount resulting from dividing the pension capital by the remaining lifetime 

expectancy. Thus, pension benefit K  was calculated according to the simple 

formula 

   ,)  (  xK C te=  (20) 

where C is the amount of the indexed pension capital, and ex(t) is the remaining 

expected lifetime at age x  at which the person intends to retire. 

Formula (20) is used by the Social Insurance Institution (ZUS) to determine 

the amount of the pension benefits in Poland. It shows that benefit B is proportional 

to the amount of accumulated capital C, and inversely proportional to expected 

remaining lifetime ex(t) at retirement age x. The pension benefit grows with the 

amount of pension contributions, so the longer the person works, the greater his/her 

benefit. On the other hand, the higher the age of retirement, the shorter the remaining 

expected lifetime and thus, again the higher his/her benefit. 

The amount of pension capital C consists of: 

− the pension contributions recorded on the individual’s account indexed by the 

end of the month preceding the month from which the pension is due, 

− the indexed initial capital calculated for the period before 1999, 

− in the case of individuals who joined open pension funds, the amount of funds 

recorded on their sub-accounts. 
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The remaining expected lifetimes ex(t) are also called lifetime expectancies. They 

are published annually by the Central Statistical Office (GUS) in a table which is the 

basis for calculating pension benefits for applications submitted from April 1 to March 

31 of the following calendar year. Lifetime expectancies are determined jointly for men 

and women on the basis of the mortality data recorded in the previous year. The joint 

determination of these parameters for both sexes means that when determining the 

amount of benefits, some funds are shifted from people living on average shorter to 

those living on average longer. This is called intra-generation solidarity. 

Table 1 reveals the life expectancies for both sexes, derived by means of the same 

method that is used by the Central Statistical Office (see Trwanie życia, 2021). The 

body of the table demonstrates the lifetime expectancy in months for a person retiring 

at a certain age. The age at which a person intends to retire is expressed in completed 

years and months, specified in the first column of the table (in completed years, i.e. 

30, 31, ..., 90) and in the head of the table (in completed months: 0, 1, ..., 11).  

The values included in the body of Table 1 can be interpreted as expected 

remaining lifetimes of a hypothetical generation of people which at birth was 

100 000 individuals, assuming that during the life of this hypothetical generation, 

the risk of death in each age group would be the same as in the given calendar year 

(in this study – 2020). 

Table 1 

Lifetime expectancies ( )xe t  in Poland derived from the 2020 mortality data (both sexes) 

Age 0 1 2 3 4 5 6 7 8 9 10 11 

30 568.1 567.2 566.2 565.2 564.3 563.3 562.4 561.4 560.5 559.5 558.5 557.6 

31 556.6 555.7 554.7 553.7 552.8 551.8 550.9 549.9 549.0 548.0 547.0 546.1 

32 545.1 544.2 543.2 542.3 541.3 540.3 539.4 538.4 537.5 536.5 535.6 534.6 

33 533.7 532.7 531.8 530.8 529.9 528.9 527.9 527.0 526.0 525.1 524.1 523.2 

34 522.2 521.3 520.3 519.4 518.4 517.5 516.5 515.6 514.6 513.7 512.7 511.8 

35 510.8 509.9 508.9 508.0 507.0 506.1 505.2 504.2 503.3 502.3 501.4 500.4 

36 499.5 498.5 497.6 496.6 495.7 494.8 493.8 492.9 491.9 491.0 490.0 489.1 

37 488.1 487.2 486.3 485.3 484.4 483.4 482.5 481.6 480.6 479.7 478.7 477.8 

38 476.9 475.9 475.0 474.0 473.1 472.2 471.2 470.3 469.4 468.4 467.5 466.5 

39 465.6 464.7 463.7 462.8 461.9 460.9 460.0 459.1 458.1 457.2 456.3 455.3 

40 454.4 453.5 452.5 451.6 450.7 449.7 448.8 447.9 446.9 446.0 445.1 444.2 

41 443.2 442.3 441.4 440.4 439.5 438.6 437.7 436.7 435.8 434.9 434.0 433.0 

42 432.1 431.2 430.3 429.3 428.4 427.5 426.6 425.7 424.7 423.8 422.9 422.0 

43 421.0 420.1 419.2 418.3 417.4 416.5 415.5 414.6 413.7 412.8 411.9 411.0 

44 410.0 409.1 408.2 407.3 406.4 405.5 404.6 403.7 402.7 401.8 400.9 400.0 

45 399.1 398.2 397.3 396.4 395.5 394.6 393.7 392.8 391.9 391.0 390.1 389.2 

46 388.2 387.4 386.5 385.6 384.7 383.8 382.9 382.0 381.1 380.2 379.3 378.4 

47 377.5 376.6 375.7 374.8 373.9 373.0 372.1 371.3 370.4 369.5 368.6 367.7 

48 366.8 365.9 365.0 364.2 363.3 362.4 361.5 360.6 359.8 358.9 358.0 357.1 

49 356.2 355.3 354.5 353.6 352.7 351.9 351.0 350.1 349.2 348.4 347.5 346.6 

50 345.7 344.9 344.0 343.2 342.3 341.4 340.6 339.7 338.8 338.0 337.1 336.2 
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Age 0 1 2 3 4 5 6 7 8 9 10 11 

51 335.4 334.5 333.7 332.8 332.0 331.1 330.3 329.4 328.6 327.7 326.9 326.0 

52 325.1 324.3 323.5 322.6 321.8 320.9 320.1 319.2 318.4 317.6 316.7 315.9 

53 315.0 314.2 313.3 312.5 311.7 310.8 310.0 309.2 308.3 307.5 306.7 305.8 

54 305.0 304.2 303.4 302.5 301.7 300.9 300.1 299.2 298.4 297.6 296.8 295.9 

55 295.1 294.3 293.5 292.7 291.9 291.0 290.2 289.4 288.6 287.8 287.0 286.2 

56 285.3 284.5 283.7 282.9 282.1 281.3 280.5 279.7 278.9 278.1 277.3 276.5 

57 275.7 274.9 274.1 273.3 272.6 271.8 271.0 270.2 269.4 268.6 267.8 267.0 

58 266.2 265.4 264.7 263.9 263.1 262.3 261.6 260.8 260.0 259.2 258.4 257.7 

59 256.9 256.1 255.4 254.6 253.8 253.1 252.3 251.5 250.8 250.0 249.2 248.5 

60 247.7 247.0 246.2 245.5 244.7 244.0 243.2 242.5 241.7 240.9 240.2 239.4 

61 238.7 238.0 237.2 236.5 235.7 235.0 234.3 233.5 232.8 232.1 231.3 230.6 

62 229.8 229.1 228.4 227.7 227.0 226.2 225.5 224.8 224.1 223.3 222.6 221.9 

63 221.2 220.5 219.7 219.0 218.3 217.6 216.9 216.2 215.5 214.8 214.1 213.4 

64 212.6 211.9 211.3 210.6 209.9 209.2 208.5 207.8 207.1 206.4 205.7 205.0 

65 204.3 203.6 202.9 202.2 201.6 200.9 200.2 199.5 198.8 198.1 197.5 196.8 

66 196.1 195.4 194.7 194.1 193.4 192.7 192.1 191.4 190.7 190.1 189.4 188.7 

67 188.0 187.4 186.7 186.1 185.4 184.8 184.1 183.4 182.8 182.1 181.5 180.8 

68 180.1 179.5 178.9 178.2 177.6 176.9 176.3 175.6 175.0 174.3 173.7 173.0 

69 172.4 171.8 171.1 170.5 169.9 169.2 168.6 168.0 167.3 166.7 166.1 165.4 

70 164.8 164.2 163.5 162.9 162.3 161.7 161.0 160.4 159.8 159.2 158.5 157.9 

71 157.3 156.7 156.1 155.5 154.9 154.2 153.6 153.0 152.4 151.8 151.2 150.6 

72 149.9 149.3 148.7 148.1 147.5 146.9 146.3 145.7 145.1 144.5 143.9 143.3 

73 142.7 142.1 141.6 141.0 140.4 139.8 139.2 138.6 138.0 137.4 136.8 136.2 

74 135.6 135.1 134.5 133.9 133.3 132.8 132.2 131.6 131.0 130.4 129.9 129.3 

75 128.7 128.1 127.6 127.0 126.5 125.9 125.3 124.8 124.2 123.6 123.1 122.5 

76 121.9 121.4 120.8 120.3 119.7 119.2 118.6 118.1 117.5 116.9 116.4 115.8 

77 115.3 114.7 114.2 113.7 113.1 112.6 112.0 111.5 111.0 110.4 109.9 109.3 

78 108.8 108.3 107.8 107.2 106.7 106.2 105.7 105.1 104.6 104.1 103.6 103.0 

79 102.5 102.0 101.5 101.0 100.5 100.0 99.4 98.9 98.4 97.9 97.4 96.9 

80 96.4 95.9 95.4 94.9 94.4 93.9 93.4 92.9 92.5 92.0 91.5 91.0 

81 90.5 90.0 89.5 89.1 88.6 88.1 87.6 87.2 86.7 86.2 85.7 85.3 

82 84.8 84.4 83.9 83.4 83.0 82.5 82.1 81.6 81.2 80.7 80.3 79.8 

83 79.4 79.0 78.5 78.1 77.7 77.2 76.8 76.4 75.9 75.5 75.1 74.7 

84 74.2 73.8 73.4 73.0 72.6 72.2 71.8 71.4 71.0 70.6 70.2 69.8 

85 69.4 69.0 68.6 68.2 67.8 67.5 67.1 66.7 66.3 66.0 65.6 65.2 

86 64.8 64.5 64.1 63.7 63.4 63.0 62.7 62.3 62.0 61.6 61.3 60.9 

87 60.6 60.3 59.9 59.6 59.2 58.9 58.6 58.2 57.9 57.6 57.3 57.0 

88 56.7 56.3 56.0 55.7 55.4 55.0 54.7 54.4 54.1 53.8 53.5 53.3 

89 53.0 52.7 52.4 52.1 51.8 51.5 51.2 50.9 50.6 50.3 50.1 49.8 

90 49.6 49.3 49.0 48.7 48.4 48.1 47.9 47.6 47.3 47.1 46.9 46.6 

Source: elaborated by the author based on the 2020 life tables published by GUS (stat.gov.pl). 

However, in the context of the pandemic that started in 2020 and continued in 

2021, the basic assumption (namely that the mortality pattern will remain the same 

in the future at the level observed in 2020) seems to be unrealistic. In this case, it 

would be rather reasonable to assume that during the pandemic period, the age-

specific mortality rates remain increased, and then decline (at some specific pace) to 
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a level that is consistent with the overall trend observed in the pre-pandemic years. 

This approach requires employing a mortality model that can forecast the post-

pandemic mortality rates. In this study, the MLC model was used. 

Table 2 

Lifetime expectancies ex(t) (both sexes) derived via the MLC model – the adjusted dynamic approach 

Age 0 1 2 3 4 5 6 7 8 9 10 11 

65 231.0 230.4 229.7 229.1 228.4 227.8 227.1 226.5 225.8 225.2 224.5 223.9 

66 223.2 222.6 221.9 221.3 220.6 220.0 219.4 218.7 218.1 217.4 216.8 216.1 

67 215.5 214.8 214.2 213.6 212.9 212.3 211.6 211.0 210.3 209.7 209.1 208.4 

68 207.8 207.1 206.5 205.8 205.2 204.6 203.9 203.3 202.6 202.0 201.3 200.7 

69 200.0 199.4 198.8 198.1 197.5 196.8 196.2 195.5 194.9 194.2 193.6 192.9 

70 192.3 191.7 191.0 190.4 189.7 189.1 188.4 187.8 187.1 186.5 185.8 185.2 

71 184.5 183.9 183.3 182.6 182.0 181.3 180.7 180.0 179.4 178.7 178.1 177.4 

72 176.8 176.2 175.5 174.9 174.3 173.6 173.0 172.3 171.7 171.0 170.4 169.8 

73 169.1 168.5 167.9 167.2 166.6 166.0 165.3 164.7 164.1 163.4 162.8 162.2 

74 161.5 160.9 160.3 159.7 159.0 158.4 157.8 157.2 156.5 155.9 155.3 154.7 

75 154.0 153.4 152.8 152.2 151.6 151.0 150.3 149.7 149.1 148.5 147.9 147.3 

76 146.6 146.0 145.4 144.8 144.2 143.6 143.0 142.4 141.8 141.2 140.6 140.0 

77 139.4 138.8 138.2 137.6 137.0 136.4 135.9 135.3 134.7 134.1 133.5 132.9 

78 132.3 131.7 131.2 130.6 130.0 129.4 128.8 128.3 127.7 127.1 126.5 126.0 

79 125.4 124.8 124.3 123.7 123.1 122.6 122.0 121.4 120.9 120.3 119.8 119.2 

80 118.6 118.1 117.5 117.0 116.5 115.9 115.4 114.8 114.3 113.7 113.2 112.6 

81 112.1 111.6 111.0 110.5 110.0 109.5 108.9 108.4 107.9 107.4 106.8 106.3 

82 105.8 105.3 104.8 104.2 103.7 103.2 102.7 102.2 101.7 101.2 100.7 100.2 

83 99.7 99.2 98.7 98.2 97.7 97.2 96.7 96.2 95.7 95.3 94.8 94.3 

84 93.8 93.3 92.8 92.4 91.9 91.4 90.9 90.5 90.0 89.5 89.1 88.6 

85 88.1 87.7 87.2 86.7 86.3 85.8 85.4 84.9 84.5 84.0 83.6 83.1 

86 82.7 82.2 81.8 81.3 80.9 80.4 80.0 79.6 79.1 78.7 78.3 77.8 

87 77.4 76.9 76.5 76.1 75.7 75.2 74.8 74.4 74.0 73.5 73.1 72.7 

88 72.3 71.9 71.5 71.0 70.6 70.2 69.8 69.4 69.0 68.6 68.2 67.8 

89 67.4 67.0 66.6 66.2 65.8 65.4 65.0 64.6 64.2 63.8 63.4 63.0 

90 62.6 62.2 61.8 61.4 61.1 60.7 60.3 59.9 59.5 59.1 58.8 58.4 

91 58.0 57.7 57.3 56.9 56.5 56.1 55.8 55.4 55.0 54.7 54.3 54.0 

92 53.6 53.3 52.9 52.5 52.2 51.8 51.4 51.1 50.7 50.4 50.1 49.7 

93 49.4 49.0 48.7 48.3 48.0 47.6 47.3 47.0 46.6 46.3 46.0 45.7 

94 45.4 45.0 44.7 44.3 44.0 43.7 43.3 43.0 42.7 42.4 42.1 41.8 

95 41.5 41.2 40.9 40.6 40.2 39.9 39.6 39.3 39.1 38.8 38.5 38.2 

96 38.0 37.7 37.4 37.1 36.8 36.5 36.2 36.0 35.7 35.5 35.2 35.0 

97 34.8 34.5 34.2 33.9 33.6 33.4 33.1 32.9 32.7 32.5 32.3 32.1 

98 31.9 31.6 31.4 31.1 30.9 30.6 30.4 30.2 30.0 29.8 29.7 29.5 

99 29.4 29.2 28.9 28.7 28.4 28.2 28.0 27.8 27.7 27.5 27.4 27.3 

100 27.3 27.0 26.8 26.5 26.3 26.1 25.9 25.8 25.6 25.5 25.4 25.4 

Source: elaborated by the author. 

Table 2 shows lifetime expectancies xe  for    65, 66, 67, ..., 100x=  determined 

under some revised assumptions. In particular, the increased age-specific mortality 
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rates in the 2020–2022 period were set at the level observed in 2020, and for the 

post-pandemic years forecasted mortality rates were adopted, based on the overall 

mortality trend extrapolated from the pre-pandemic 1965–2019 period using the 

MLC model. Such an approach was called the adjusted dynamic approach as 

opposed to the static approach used by the Central Statistical Office. It can be noted 

that the life expectancies estimated in this way are significantly higher than the life 

expectancies for the relevant ages obtained using the static approach. 

7. MONTHLY LIFE ANNUITIES 

The author considered here the amount of a retirement benefit to be paid out by 

a private pension provider to a person aged x years in the form of a life annuity. To 

determine the amount of monthly payments, the study used an actuarial formula 

employed to calculate the present value of the life annuity payable at the beginning 

of each month (see e.g. Skałba (2002)). 

Hence, assuming that life annuity is paid out m  times within a year (for the 

monthly payments m =12), at the beginning of each subperiod the length of which is 

given by 1 / m of a year, with the instalment amount being 1 / m PLN, so that the 

total annual amount due will be 1 PLN. This is the so-called normalised case, also 

assuming that the last payment is effected at the beginning of the subperiod in which 

the pensioner dies. 

Let ( )T x  be a non-negative random variable representing the remaining lifetime 

of a person aged  x , while ( ) ( )*T x T x=     is the integer part of ( ) T x , while 
( )m

S

denote the rounded-up part of the recipient’s last year of life with an accuracy of 

1 / m  subperiod. 

Note that 
( )m

S  is a discrete random variable taking values from the set 

 
1 2 1

, , , ,1
m

m m m

− 
 

 
. (21) 

The present value 
( )m

Y  of the payments is a random variable, which can be 

defined with the following formula: 

 
( ) ( ) ( )*1 2 1

1
1 ,

m
T x S

m m m mY
m

  
+ − 

= + + ++ 
 

 (22) 

where ( )1/ 1 i = +  is the discount rate and i  is an average rate of return calculated 

for several periods. 
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The formula for the sum of a geometric series is the following 

 0 1 2 1  1 
.

1

m
m q

aq aq aq aq a
q

− −
+ + ++ =

−
 (23) 

The variable 
( )m

Y  can be expressed as 

 ( )

( ) ( )*0 1 2 1
1 1 1 1

1
.

m
mT x mS

m m m m mY
m

   

+ − 
       
 = + + ++       
        
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 (24) 

Thus, based on (24) 
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Then the author calculated the expected value of 
( )m

Y   denoted as 
( )m

xa . Assuming 

that ( )*T x  and 
( )m

S  are independent, 
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 (26) 

The expected value 
( )( )

* 1
 

T x


+
E  represents the present value of a benefit (equal 

1 PLN), payable at the end of year of death. In other words, it is an actuarial value 

of infinite life insurance on being 1 PLN, payable at the end of the year of death. In 

the actuarial notation, it is denoted by xA . This value is equal to 

 ( )( )
* 1 1

0

,
T x k

x k x x k

k

A p q 


+ +

+

=

= =E   (27) 

where probabilities 

 ( )( ) ( )( ),    1 .k x x kp P T x k q P T x k+=  = +   (28) 

denote, respectively, the probability of surviving k  consecutive years giving 

survival to x , and the probability of dying within a year giving survival to x k+ . 
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The second expected value, 
( )

( )1
m

S −
E , can be determined assuming that variable 

( )m
S  takes values from the set (21) with identical probabilities, equal 1/m. Then 
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1 1 11

1
1

1
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1 1 1 1 1 1
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or after straightforward transformation 
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
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Formulae (27) and (30), together with (26) and probabilities (28), allow for 

calculating the expected value 
( )m

xa  (also 
(12)

xa ). 

Let K  denote the amount of funds accumulated at the OPF by a person retiring 

at age  x , B  denote the monthly pension annuity (benefit) that a pensioner receives 

from the annuity provider. Assume that pension amount B  is derived from the 

following equation, related to the present value of the life annuity paid monthly in 

advance (Szumlicz (2007)) 

 ( ) (12)12 1 ,xK B a= −  (31) 

where   is a share of charges for the annuity provider. 

8. SCENARIOS OF PENSION BENEFIT CALCULATIONS 

To compare the amounts of monthly benefits of a retiring person, two different 

formulas (20) and (31) were considered. In order to derive benefit amount K  using 

life annuity formula (31), it was necessary to find probabilities (28), next the 

actuarial value of life annuity 
(12)

xa  defined in (26), and finally benefit K  given in 

(31). In this study, the revised assumptions were adopted to compute probabilities 

(28) (see the adjusted dynamic approach described in the previous section). The 

results obtained (option I) were then compared with those obtained via formula (20). 

Assume the following input data: 

• the retirement age in completed years 65.0x =  years; 

• the calendar year at retirement – 2020; 

• the pension capital    500, 000C =  or 600, 000  or 700, 000  PLN; 

• the share of charge 3%;=  

• the rate of return 2%i =  or 7% . 
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The benefits derived from formula (20) were obtained in two ways, i.e. by assuming 

the static approach based on the period life tables (option II), or the dynamic approach 

using the MLC model (option III). The results are shown in Table 3. 

Table 3 

Values of pension benefits (in PLN, both sexes) – options I, II, III 

Option no. 
500,000=C  600,000C =  700,000=C  

i = 2% i = 7% i = 2% i = 7% i = 2% i = 7% 

I 1096 2940 1315 3528 1535 4117 

II 2448 2937 3427 

III 2164 2597 3030 

Source: elaborated by the author. 

CONCLUSIONS 

The obtained results reveal substantial variations in the pension benefits 

calculated using different approaches, and indicate that lower values of monthly 

payments are provided through using the dynamic approach in the calculations 

(option III), instead of the static one (option II).When using the life annuity approach 

(option I), the results clearly differ depending mainly on the value of the rate of 

return In the case of a low rate of return, the resulting annuities are very low. 

The illustrative results presented in this study show that calculating the benefits 

based on the period life tables (option II) may expose the pension provider to a risk 

of the considerable overestimation of payments, and thus may cause difficulties with 

covering future liabilities. From this point of view, option III is recommended. 

It is also worth noting that even though gender is a distinct determinant of 

different benefits, in practice the pension benefits are calculated using the common 

life tables for both sexes. This means that the pension benefits are overestimated for 

women and underestimated for males. 
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