
RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS  No. 147

Advanced Information Technologies for Management – AITM 2010	 2010

Radosław Rudek
Wrocław University of Economics, Wrocław, Poland
e-mail: radoslaw.rudek@ue.wroc.pl

METAHEURISTIC ALGORITHMS
FOR OPTIMIZATION OF VARYING EFFICIENCY
PRODUCTION SYSTEMS

Abstract: In this paper, we analyse a schedule management problem in production systems
with varying efficiency caused by the learning effect. The measurable result of learning is
that the time required to produce a single item decreases as more units are produced. First,
we provide a short historical review on the discussed issue and present different approaches
to model the learning effect in the scheduling context. Since the considered problem seems to
be NP-hard, we design and implement fast heuristics and metaheuristic algorithms which are
based on simulated annealing, tabu search and genetic algorithms. Numerical evaluation of
their efficiency is provided.

Keywords: scheduling, learning effect, heuristic.

1. Introduction

In practice the efficiency of manufacturing, industrial and other real-life systems
is seldom constant since it is often affected by the learning effect. The measurable
result of learning is that time required to produce a single item decreases as more
similar units are produced. For the first time a quantitative relation between learning
variables was described by Wright in 1936 on the examples known from the aircraft
industry [Wright 1936]. He stated that the unit processing time decreases 20% with
every redoubling of the output, that is called the 80% hypothesis. In general, the
Wright’s function, called learning curve, describes the time p(v) required to produce
the v-th unit of the same product as follows:

() ,p v pvα= (1)

where p is the time required to produce the first unit and α is a learning index (slope of
the learning curve) that depends on the learning rate LR, i.e., α = log2LR. The learning
rate is defined as the rate of each redoubling the output, i.e., LR = p(2v)/p(v). For the

Księga1.indb 232 2011-04-08 11:50:39

Metaheuristic algorithms for optimization of varying efficiency production systems	 233

80% hypothesis the learning index is calculated as follows α = log20.8 = –0.322. The
function (1) is often called log-linear learning curve.

One of the main factors that persuaded practitioners to the analysis of learning
in aircraft industry was the high cost of airplanes [Kerzner 1998]. Furthermore, in
the 1940s USA War Production Board used the methodology proposed by Wright to
estimate the number of airplanes that can be produce for a given complement of men
and machines [Roberts 1983].

The other studies on the learning effect proved its significant impact on
productivity in manufacturing systems specialized in Hi-Tech electronic equipment
[Adler, Clark 1991], memory chips and circuit boards [Webb 1994], electronic
guidance systems [Kerzner 1998] and in many others (e.g. [Carlson, Rowe 1976;
Cochran 1960; Holzer, Riahi-Belkaoui 1986; Jaber, Bonney 1999; Lien, Rasch 2001;
Yelle 1979]).

However, the investigations also revealed that some systems are more precisely
described by other characteristics (learning curves), e.g., S-shaped [Jaber, Bonney
1999], Stanford-B [Garg, Milliman 1961] or DeJong [Dejong 1957]. For more details
concerning different learning curves see also [Holzer, Riahi-Belkaoui 1986; Lien,
Rasch 2001; Yelle 1979].

The concept proposed by Wright allows to estimate the time parameters of
a production changed by learning, however, it does not take into consideration the
utilization of learning to improve system performances. It follows from the fact that
(1) assumes the processing time p is identical for each product. Nevertheless, in
many manufacturing and industrial systems the produced items are similar but not
identical. It was emphasized by Biskup [1999], who assumed that for the given group
of n items to be produced each of them can be different (however similar). Therefore
based on (1), the time pj(v) required to processed job (product) j (j = 1, ..., n) if it is
performed as the v-th in a production sequence is given as follows:

() ,j jp v p vα= j = 1, ..., n, v = 1, ..., n, (2)

where pj is the normal processing time of job (item) j if it is processed as the first one
(i.e., a human worker is not learnt to produce the given group of items).

Model (2) revealed that production time-objectives can be managed by sequence
(schedule) of produced items by rational utilization of the learning effect. Instantly
this direction of research has attracted particular attention of operational research
and decision science community and find many followers in scheduling domain. It
results from the fact that the application of learning models to describe industrial
processes and on their basis to construct efficient management strategies can improve
a production schedule and increase productivity (i.e., profit).

Although model (2) has a strong practical background (see [Yelle 1979]) it
neglects the processing times of already performed jobs. Therefore, if human
interactions have a significant impact on job processing times then the processing

Księga1.indb 233 2011-04-08 11:50:39

234	 Radosław Rudek

time of each performed job is added to the worker experience and improves his
efficiency [Biskup 2008]. Such real-life settings are covered by the model proposed
by Kuo and Yang [2006], where the processing time of job j if it processed as the v-th
in a sequence is given as follows:

 1

[]
1

() 1 ,
v

j j l
l

p v p p
α−

=

 
= + 

 
∑ (3)

where

 1

[]
1

v

l
l

p
−

=
∑ is the sum of the normal processing times of jobs preceded job j and p[l]

is the normal processing time of a job scheduled in the l-th position in a sequence.
Whereas model (2) assumes that learning is a result of processing independent

operations like setting up machines, model (3) takes into consideration that
experience gained by the worker is related with the normal (nominal) time required
to process a job. To jobs represented by this model belong: offset printing (running
the press itself is a highly complicated and error-prone process), assembling highly
customized products, the production of high-end electric tools, maintenance of
airplanes, pimping cars, etc. [Biskup 2008]. For survey on scheduling problems with
the learning effect see [Biskup 2008] and [Janiak, Rudek 2009].

For the practical reasons production scheduling usually focus on the minimization
of the following time-objectives: the maximum completion time, the maximum
lateness, the sum of the weighted completion times, the number of late jobs and the
sum of the weighted tardiness. In this paper, we focus on determining a schedule
of jobs for a processor that learns according to model (3) and the objective is to
minimize the sum of the weighted completion times. Since the considered problem
seems to be NP-hard, it is highly unlikely to find an optimal algorithm that
solves it in a reasonable time. Therefore, in this paper, we focus on designing and
implementation of approximation methods, i.e., fast heuristics and first and foremost
metaheuristic algorithms that are based on simulated annealing [Kirkpatrick et al.
1983], tabu search [Glover, Laguna 1997] and genetic algorithms [Holland 1975;
Michalewicz 1996].

The remainder of this paper is organized as follows. The next section contains
problem formulation. In Section 3 solution algorithms are presented, whereas the
numerical verification of their efficiency is provided subsequently. The last section
concludes the paper.

2. Problem formulation

In this section, we express the discussed production problem in the scheduling
context. A human worker is identified with a processor and the items (e.g., raw
materials, semi-finished products) which he has to process (e.g., to machine or to
assemble a final product) are called jobs.

Księga1.indb 234 2011-04-08 11:50:39

Metaheuristic algorithms for optimization of varying efficiency production systems	 235

Let J = {1, ..., j, ..., n} denote the set of n jobs that have to be performed by
the processor. By the practical reason it is assumed the processor performs jobs
without preemptions, otherwise for instance a renewed calibration of a lathe machine
is required or even a semi-finished product can be damaged. We also assume that
there are no precedence constraints between jobs, e.g., the order of machining
raw materials on a lathe or processing semi-finished product can be performed in
an arbitrary order. Moreover, we assume that jobs are continuously available for
processing (e.g., machining, assembling). Finally, each job j is characterized by its
weight parameter wj (priority) and the function (learning curve) pj(v) describing its
processing time according to (3).

Let π = 〈π(1), π(2), ..., π(i), ..., π(n)〉 denote the sequence/schedule of jobs (i.e.,
permutation of the elements of the set J), where π (i) is the index of a job processed
in position i in this sequence. By Π we will denote the set of all such permutations.
For the given sequence (permutation) π ∈ Π, we can easily determine the completion
time Cπ(i) of a job placed in the i-th position in π from the following formulae:

1

() () () ()
1 1 1

() 1 .
i i l

i l l k
l l k

C p l p p
α

π π π π

−

= = =

 
= = + 

 
∑ ∑ ∑ (4)

On this basis, we formulate the sum of weighted completion times (the total
weighted completion times) being a function of the schedule π:

() ()

1
() .

n

i i
i

TWC w Cπ ππ
=

= ∑ (5)

The objective is to find such a schedule (i.e., sequence) π of jobs performed
by the processor that minimizes the total weighted completion time criterion (5).
Formally the optimal schedule π∗∈Π for the considered minimization objective is
defined as follows

{ }* arg min () .TWC
π

π π
∈Π

= (6)

For convenience, we will denote the considered problem by TWC.
In the further part of this paper, we will provide algorithms that solve the

formulated problem.

3. Solution algorithms

The considered problem seems to be NP-hard, however, no formal proof has been
provided in the scientific literature. Therefore, it is highly unlikely to find an optimal
algorithm for the problem that solves it in a reasonable time for the number of jobs that
occurs in practice (i.e., hundreds). Hence in this section, we construct approximation
algorithms with low computational complexity. Namely, fast heuristics and

Księga1.indb 235 2011-04-08 11:50:40

236	 Radosław Rudek

metaheuristic algorithms which are based on the popular and efficient optimization
methods: simulated annealing [Kirkpatrick et al. 1983], tabu search [Glover, Laguna
1997] and genetic algorithms [Holland 1975; Michalewicz 1996].

3.1. Heuristics SWPT and NEH

First, we define a construction algorithm called Shortest Weighted Processing Times
(SWPT), since it schedules the jobs according to the non-decreasing order of their
coefficient pj/wj. SWPT was proved in [Jackson 1955] to be optimal for a problem
with constant job processing times that from the perspective of this paper is a special
case of the problem TWC with constant job processing times (i.e., α = 0). The
complexity of SWPT is O(nlog n).

The second algorithm is based on the NEH algorithm presented in [Nawaz et al.
1983]. Its complexity is O(n3). Formal definition of NEH is presented in Figure 1.

Figure 1. NEH algorithm

Source: based on [Nawaz et al. 1983].

3.2. Simulated annealing

Simulated annealing (SA) [Kirkpatrick et al. 1983] is based on the metallurgical
process. In the given implementation of SA let TWC(π)is the criterion value for
the permutation π . The algorithm starts with an initial solution π initial and generates
in each iteration i a new permutation π ′ that is based on the current solution π by
interchanging of two random jobs in π. This new solution π ′ replaces π (i.e., π = π ′)
with the following probability

 (') ()(, ',) min 1,exp ,TWC TWCP T
T

π π
π π

 − = −  
  

(7)

where T is the temperature that decreases in a logarithmical manner

Księga1.indb 236 2011-04-08 11:50:40

Metaheuristic algorithms for optimization of varying efficiency production systems	 237

,

1
TT

Tλ
=

+
(8)

and the values of the initial temperature T0 and of the parameter λ are chosen
empirically. The stopping condition of SA is the number of Iterations, thus, its
overall computational complexity is O(Iterations ⋅ n). The formal definition of SA
is given in Figure 2.

Figure 2. Simulated annealing (SA) based on

Source: [Kirkpatrick et al. 1983].

3.3. Tabu search

Tabu search (TS) algorithm [Glover, Laguna 1997] uses local search with a short term
memory, called tabu list, which stores forbidden moves, hence allows TS to escape
from local minima. In the implemented algorithm move is defined as the insertion
of a job being in position j in a sequence into position v. The applied tabu list stores
pairs (j, v) of forbidden moves. If (j, v) is in the tabu list, then for any sequence
the insertion of a job from position j into position v is forbidden. The tabu list is
organized as FIFO (First In First Out), thereby, if the list is full then the new pair (j,
v) is added at its beginning overriding the previous pair occupying this position. The
computational complexity of the applied TS is O(Iterations ⋅ (TabuList + n)⋅n2),
where TabuList  is the size of the tabu list. The formal definition of TS is given in
Figure 3.

Księga1.indb 237 2011-04-08 11:50:41

238	 Radosław Rudek

Figure 3. Tabu search (TS)

Source: based on [Glover, Laguna 1997].

3.4. Genetic algorithm

Genetic algorithms (GA) [Holland 1975] are inspired by nature, namely evolution.
GA starts with a set of initial solutions Πpopulation called population, from which
a subset Πparents is chosen that is called parents. The solutions from the set parents
are crossed to obtain a new set of solution Πchildren called children. The solutions
from this set can be further changed with probability Pmutation that is called mutation.
The last step is to select a new population (solutions) of size Πpopulation from the set
Πparents ∪ Πchildren.

In the considered implementation of GA the initial population is provided by
swap operations on the initial permutation πinitial. The set of parents is drawn from
population and a new population (from the old population and children) is chosen
according to the greedy strategy that select solutions with the lowest criterion
values. Mutation is implemented as a swapping of two random jobs. The best found
solution is always in Πpopulation. The computational complexity of the implemented
GA is O(Iterations ⋅ (Πpopulation + Πchildren) ⋅ n). Formal definition of GA is given
in Figure 4.

Księga1.indb 238 2011-04-08 11:50:41

Metaheuristic algorithms for optimization of varying efficiency production systems	 239

Figure 4. Genetic algorithm (GA)

Source: based on [Holland 1975].

4. Numerical experiments

The aim of the numerical experiments is to verify the effectiveness of the proposed
algorithms. The algorithms were coded in C++ and simulations were run on PC,
Intel® Core™2 Duo Processor E4500 and 2GB RAM.

The proposed algorithms are evaluated for the following problem sizes
n = {10, 25, 50, 100}. For each value of n, 100 random instances were generated
from the uniform distribution in the following ranges of parameters: pj ∈ [1, 10] (or
pj ∈ [1, 20]) and wj ∈ [1, 5]; for all jobs α = –0.322.

Values of the parameters of the algorithms are chosen empirically as follows:
(SA) –– Iterations = 100 000, T0 = 1 000 000 and λ = 0.01;
(TS) –– Iterations = 50, |TabuList| = 5;
(GA) –– Iterations = 200, Πpopulation= 160, Πparents = 120 and Pmutation = 0.005.
The initial solution for SA, TS and GA is random (i.e., a natural permutation),

but if it is provided by NEH algorithm (which initial permutation is determined by
SWPT), then these algorithms are denoted by SAN, TSN and GAN, respectively.

Each algorithm A ∈ {SWPT, NEH, SA, SAN, TS, TSN, GA, GAN} is evaluated
– for each instance I – according to the relative error δA(I) that is calculated in the
following way:

*

*
() ()() 100%,

()

A
I I

A
I

TWC TWCI
TWC
π π

δ
π

−
= ⋅ (9)

where
 ()A

ITWC π denotes the criterion value provided by algorithm A for instance
I and *()ITWC π is the optimal solution (if n = 10) or the best known solution (if
n = {25, 50, 100}) of instance I provided by the considered algorithms.

Księga1.indb 239 2011-04-08 11:50:41

240	 Radosław Rudek

The results concerning mean and maximum relative errors provided by the
analysed algorithms and their mean running times are presented in Tables 1 and 2,
respectively.

Table 1. Mean and maximum (in square brackets) relative errors of algorithms and number of instances
(in round brackets) for which each algorithm provided the best criterion value
(the best results are emphasized)

n pj SWPT NEH SA SAN TS TSN GA GAN

10

[1, 10]
1.07
[8.33]
(40)

0.45
[6.36]
(62)

0
[0]
(100)

0
[0]
(100)

0
[0]
(100)

0.00
[0.00]
(100)

10.77
[28.84]
(0)

0.45
[6.36]
(62)

[1, 20]
1.35
[13.23]
(29)

0.73
[13.23]
(53)

0
[0]
(100)

0
[0]
(100)

0
[0]
(100)

0.00
[0.00]
(100)

11.75
[32.09]
(0)

0.61
[5.64]
(53)

25

[1, 10]
0.33
[1.71]
(5)

0.15
[1.70]
(27)

0
[0]
(100)

0
[0]
(100)

0
[0]
(100)

0.00
[0.00]
(100)

27.70
[45.78]
(0)

0.15
[1.70]
(27)

[1, 20]
0.47
[4.54]
(1)

0.25
[4.31]
(10)

0
[0]
(100)

0
[0]
(100)

0
[0]
(100)

0.00
[0.00]
(100)

30.80
[71.14]
(0)

0.25
[4.31]
(10)

50

[1, 10]
0.13
[0.66]
(0)

0.06
[0.52]
(9)

 <0.001
[0.01]
(85)

<0.001
[0.01]
(86)

0
[0]
(100)

0.00
[0.00]
(100)

35.81
[58.17]
(0)

0.06
[0.52]
(9)

[1, 20]
0.15
[0.74]
(0)

0.09
[0.74]
(3)

<0.001
[0.01]
(81)

<0.001
[0.01]
(85)

<0.001
[0.01]
(94)

0.00
[0.00]
(100)

40.22
[57.73]
(0)

0.09
[0.74]
(3)

75

[1, 10]
0.06
[0.53]
(0)

0.02
[0.13]
(23)

0.011
[0.04]
(5)

0.007
[0.04]
(23)

0.58
[1.34]
(0)

0.00
[0.00]
(100)

39.44
[53.99]
(0)

0.02
[0.13]
(23)

[1, 20]
0.09
[0.66]
(0)

0.04
[0.34]
(1)

0.017
[0.04]
(3)

0.012
[0.04]
(3)

0.60
[1.55]
(0)

0.00
[0.00]
(100)

43.90
[59.48]
(0)

0.04
[0.34]
(1)

100

[1, 10]
0.04
[0.17]
(0)

0.01
[0.15]
(23)

0.03
[0.10]
(0)

0.01
[0.05]
(23)

2.78
[4.76]
(0)

0.00
[0.00]
(100)

42.17
[52.29]
(0)

0.01
[0.15]
(23)

[1, 20]
0.06
[0.26]
(0)

0.03
[0.26]
(0)

0.04
[0.10]
(0)

0.02
[0.07]
(0)

2.94
[5.82]
(0)

0.00
[0.00]
(100)

46.24
[57.85]
(0)

0.03
[0.26]
(0)

Księga1.indb 240 2011-04-08 11:50:42

Metaheuristic algorithms for optimization of varying efficiency production systems	 241

Table 2. Mean running times of the algorithms [s] (<0.001 means that the measured values
are lower than 1 ms)

n SWPT NEH SA TS GA
10 <0.001 <0.001 0.77 0.04 0.81
25 <0.001 <0.001 1.43 0.45 1.57
50 <0.001 0.02 2.52 3.18 3.38
75 <0.001 0.06 3.59 10.23 5.87

100 <0.001 0.14 4.64 23.54 9.05

The results presented in Tables 1 and 2 revealed the constructed heuristics provide
solutions with very low relative error. It is worth noticing the good performances of
SWPT, which maximal error does not exceed 13.5% and mean is lower than 1.4%. It
constitutes an initial solution for NEH and metaheuristics.

On the other hand among the algorithms SA, TS, GA that start with natural
permutation as the initial solution the lowest relative errors are provided by TS if
n is not greater than 50. However, for greater instances SA is better, since having
Iterations = 100 000, it escapes from local minima more efficiently than TS with
relatively low number of iterations, i.e., Iterations = 50.

The influence of relatively good initial solutions (provided by SWPT and NEH)
for SA is first of all visible in the number of instances for which SAN reach the best
found solution. However, the influence of good initial solutions is crucial for TS,
since it allows TS for a better start. It can be observed that TSN has found the best
solutions in the all experiments, whereas SAN for n = 100 reach the best criterion
only 23 times in 100 simulations. The worst results are received by GA and GAN
only few times improved the initial results provided by SWPT+NEH. Thereby, the
presented implementation of GA is inefficient for the considered problem.

The lowest running time characterizes TS for n not greater than 25 and then SA
is even 5 times better (for n = 100). It results strictly from the complexity of these
algorithms that is determined in Section 3.

Finally, the values of pj have a marginal impact on the relative errors and they do
not affect the running times of algorithms.

5. Conclusions

In this paper, we constructed, implemented and evaluated heuristic and metaheuristic
solution algorithms for the minimization of the sum of the weighted completion
times with the learning effect.

The numerical analysis revealed that the proposed algorithms are characterized
with very low relative error in reference to the optimal solution that did not exceed
13.5% for the simplest SWPT and it was always optimal for the best algorithm
TSN. The running times of the algorithms are reasonable and even for the most

Księga1.indb 241 2011-04-08 11:50:42

242	 Radosław Rudek

efficient TSN they were about 24 s for 100 jobs. The experiments also showed that
the presented implementation of GA is inefficient for the considered problem.

Our future work will focus on decreasing the complexity of NEH and TS as well
as on the improvement of GA.

References

Adler P.S., Clark K.B. (1991), Behind the learning curve: A sketch of the learning process, Management
Science, Vol. 37, pp. 267-281.

Biskup D. (1999), Single-machine scheduling with learning considerations, European Journal of
Operational Research, Vol. 115, pp. 173-178.

Biskup D. (2008), A state-of-the-art review on scheduling with learning effects, European Journal of
Operational Research, Vol. 188, pp. 315-329.

Carlson J.G., Rowe R.G. (1976), How much does forgetting cost?, Industrial Engineering, Vol. 8,
pp. 40-47.

Cochran E.B. (1960), New concepts of the learning curve, The Journal of Industrial Engineering,
Vol. 11, pp. 317-327.

Dejong J.R. (1957), The effects of increasing skill on cycle time and its consequences for time stan-
dards, Ergonomics, Vol. 1, pp. 51-60.

Garg A., Milliman P. (1961), The aircraft progress curve modified for design changes, Journal of Indus-
trial Engineering, Vol. 12, pp. 23-27.

Glover F., Laguna M. (1997), Tabu Search, Kluwer, Norwell, MA.
Holland J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press,

Ann Arbor, MI.
Holzer H.P., Riahi-Belkaoui A. (1986), The Learning Curve: A Management Accounting Tool, Quorum

Books, Westport, CT.
Jaber Y.M., Bonney M. (1999), The economic manufacture/order quantity (EMQ/EOQ) and the learn-

ing curve: Past, present, and future, International Journal of Production Economics, Vol. 59,
pp. 93-102.

Jackson J.R. (1955), Scheduling a Production Line to Minimize Maximum Tardiness, Research Report
43, Management Sciences Research Project, UCLA, Los Angeles.

Janiak A., Rudek R. (2009), Experience based approach to scheduling problems with the learning ef-
fect, IEEE Transactions on Systems, Man, and Cybernetics – Part A, Vol. 39, pp. 344-357.

Kerzner H. (1998), Project Management: A System Approach to Planning, Scheduling, and Control-
ling, John Wiley & Sons, New York.

Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983), Optimization by simulated annealing, Science, Vol. 220,
pp. 671-680.

Kuo W.-H., Yang D.-L. (2006), Minimizing the total completion time in a single-machine schedul-
ing problem with a time-dependent learning effect, European Journal of Operational Research,
Vol. 174, pp. 1184-1190.

Lien T.K., Rasch F.O. (2001), Hybrid automatic-manual assembly systems, Annals of the CIRP, Vol. 50,
pp. 21-24.

Michalewicz Z. (1996), Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag,
New York.

Nawaz M., Enscore E.E. Jr., Ham I.A. (1983), A heuristic algorithm for m-machine, n-jobs flow-shop
sequencing problem, OMEGA International Journal of Management Science, Vol. 11, pp. 91-95.

Księga1.indb 242 2011-04-08 11:50:42

Metaheuristic algorithms for optimization of varying efficiency production systems	 243

Roberts P. (1983), A theory of the learning process, Journal of the Operational Research Society,
Vol. 34, pp. 71-79.

Webb G.K. (1994), Integrated circuit (IC) pricing, High Technology Management Research, Vol. 5,
pp. 247-260.

Wright T.P. (1936), Factors affecting the cost of airplanes, Journal of Aeronautical Sciences, Vol. 3,
pp. 122-128.

Yelle L.E. (1979), The learning curve: Historical review and comprehensive study, Decision Science,
Vol. 10, pp. 302-328.

ALGORYTMY METAHEURYSTYCZNE W OPTYMALIZACJI
SYSTEMÓW PRODUKCYJNYCH O ZMIENNEJ EFEKTYWNOŚCI

Streszczenie: W pracy analizowano problem harmonogramowania występujący w sys-
temach produkcyjnych o zmiennej efektywności spowodowanej efektem uczenia. Mierzal-
nym rezultatem tego zjawiska jest skrócenie czasów potrzebnych do wykonania określonych
produktów. W pierwszej kolejności dokonano krótkiego przeglądu literatury dotyczącego
problemów harmonogramowania z efektem uczenia. Następnie zaprojektowano szybkie me-
tody heurystyczne i metaheurystyczne oparte na symulowanym wyżarzaniu, poszukiwaniu
z zakazami oraz algorytmach genetycznych. Ponadto przeprowadzono analizę numeryczną
ich efektywności.

Księga1.indb 243 2011-04-08 11:50:42

	METAHEURISTIC ALGORITHMSFOR OPTIMIZATION OF VARYING EFFICIENCY PRODUCTION SYSTEMS
	1. Introduction
	2. Problem formulation
	3. Solution algorithms
	3.1. Heuristics SWPT and NEH
	3.2. Simulated annealing
	3.3. Tabu search
	3.4. Genetic algorithm

	4. Numerical experiments
	5. Conclusions
	References

