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EFFECT OF WAVELET COMPRESSION  
OF HIGH FREQUENCY TIME SERIES  
ON THE QUALITY OF INFORMATION  
AND PREDICTION

Abstract: In recent times research work on the use of wavelet theory in data mining has increased 
significantly. In most cases, these works relate to specific applications. In this paper the general 
compression method of time series will be presented and adapted to financial time series analysis 
where dimensionality reduction is crucial. This hypothesis proposes that a double compression 
using Daubechies 4 wavelet does not significantly affect the quality of information carried by a 
time series. The reduction of dimensionality significantly affects the algorithmic complexity and 
improves its quality of prediction. In order to verify this hypothesis the highly frequent time 
series will be evaluated in terms of forecasting quality where future value is predicted only on 
the basis of the past quotations. In this project as a predictive algorithm we used ARAR due to 
its good results in forecasting of the real financial time series.
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1. Introduction

Empirical evidence shows that the dimensionality reduction not only significantly 
affects the computing time of the classifiers, but also the quality of classification 
results, whereas in Euclidean space increasing the number of dimensions diminishes 
the distance between vectors. This has particularly important impact on the process 
of clustering. The space of solutions that is divided into clusters has the same 
dimensionality as entering vectors. In the case of financial time series where data are 
taken from, for example, 60 recent observations, the space which the algorithm will 
have to share will be 60-dimensional. Clustering consists of assigning elements to 
the respective clusters by means of pre-defined metrics (for example, the Euclidean 
norm). With a large number of dimensions of difference between the nearest and 
farthest neighbour it becomes less important and it is a serious obstacle to partition 
the space into the significant clusters [Beyen et al. 1999]. Too many dimensions can 
also cause overlapping multidimensional clusters impeding effective classification.
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This hypothesis sets out to prove that double compression by Daubechies 4 
wavelet does not significantly affect the quality of information carried by a time se-
ries in comparison to the original, raw time series. In other words, the double wave-
let compression does not influence the deterioration of the time series, as the infor-
mation source. In the case of clustering where the computational complexity is 
exponential, proving such an assumption has a significant impact on the usefulness 
of the clustering algorithms. Taking also into account the reduction of distance be-
tween clusters in the Euclidean space with increasing dimensionality, this demon-
stration would positively influence the quality of the prediction of time series.

In this work the authors made use of discrete wavelet transform for lossless 
compression of time series; lossless in the sense of preservation of the same quality 
of information as an untreated time series. In various systems of time series analysis, 
such as predictive systems, classification systems, archiving systems, the possibility 
to assure the lossless compression is of great importance. In the next section of this 
paper the wavelet theory will be briefly presented and detailed later in the fourth 
section on Daubechies 4 wavelets. Then in section 3, the classification algorithm, 
ARAR, will be presented. In the section 5 the experiments will be described and 
selected time series. In the concluding part we have collected the results of empirical 
research on FOREX time series, which have been used to verify the hypothesis.

2. Discrete wavelet transform

Discrete wavelet transform, first described in [Mallat 1989], is very often applied in 
preliminary data analysis. With it one can reduce the number of dimensions of input 
vector to the target system, such as the classifier or predictive system, as well as 
remove some of the information considered as noise or data redundancies, in terms 
of Shannon’s lossless data compression [Shannon 1948]. In most cases, the signal or 
function can be better explored, described and processed, when it can be defined as 
a linear combination of the form: 

(1)
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Thus the defined space, spanned on the functions ψk, is called Hilbert space 
( )2L ℜ or the space of integrable squared functions. To recall, the real variable 

function ( )tf  belongs to the space ( )2L ℜ  if and only if ( )2f t it is integrable, that 
is, if:

(4)

with the metric described as:

(5)

A wavelet is defined as a real function ψ( ) ( )2u Ly ∈ ℜ  [Daubechies 1992] if the 
following constraints are satisfied:

(6)

The wavelet transform will be called a set of functions ψa,b, such as:

(7)

where a and b are scaling parameters, w(a) is the weighting function to ensure that the 
wavelet energy does not change with the change of scale, i.e.                                   .
In most cases, in formula (7) 1/2a− replaces w(a). Then the wavelet transform be-
comes: 

(8)

However, the formula is suitable only for continuous signals. In this paper, the 
input signal is discrete. To apply this transform it is necessary to sample the input 
signal. This will be done using a logarithmic discretization of scale a depending on 
the size of the step between the distances from the next parameter b. Such a discrete 
wavelet transform has the form:
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(10)

Distribution of entry signal is named multi-resolution signal [Mallat 1989]. 
Signal ( ) 2f t L∈  is decomposed into the constituents localized in the sub-spaces 
spanned on the scaling functions. The scaling function has the same form as the 
wavelet:

(11)

Signal belonging to the space 2L  can be defined by:

(12)

where approximation coefficients ,m nS are defined as follows: 

(13)

The procedures of ψ searching having φ are well defined in the literature 
[Daubechies 1992, chap. 5.1]. One possibility, described in [Daubechies 1992] and 
applied in our approach, consists of definition of wavelet function in the following 
way:

(14)

Signal included in the compliment of the sub-space spanned on wavelet functions 
can be computed from:

(15)

where the transform is defined as follows:
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Complete signal in 2L  can be obtained from the following expression:

(17)

Summing up, the signal is represented as the synthesis of approximation on a 
given level (12) and sum of details until a given level included (15). Approximations 
are a compressed time series that carry out the same information in terms of 
Shannon.
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3. Algorithm ARAR

The chosen algorithm ARAR is a modification of previous algorithm ARARMA 
[Newton, Parzen 1984]. Its characteristic is the application of memory-shortening 
transformation for each time series, and then fitting with a model ARMA [Brockwell, 
Davis 2002]. Suppose that we have to find in a given time series {Yt, t = 1, 2, …, n} 
its lengths of time dependency. There exist 3 possibilities:

1. D series {Yt} has a long time dependency.
2. W series {Yt} has a relatively long time dependency.
3. K series {Yt} is a short memory. 
If it is proven that the time series is of type D or W, then the transformation is 

executed until the time series becomes of type K. 
The specification below describes the algorithm of classification. 

ARAR description 
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4) ( )ˆ ˆ 0.93φ τ <  time series is a type  K. 
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where  and ( )ˆ 0γ ( )ˆ jρ , j=0, 1, 2, …, auto-covariance and auto-correlation  
of time series  {Yt}. 
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The above described algorithm will be applied for prediction and as a reference 
for comparison of source and compressed time-series.

4. Compression using Daubechies 4 wavelet

Daubechies wavelets are a family of orthogonal wavelets described in detail in 
[Daubechies 1992]. Wavelets, labelled D2-D20 (only the even index denotes nonzero 
coefficients of the scaling functions), are very often used, inter alia, because of very 
low computational complexity, that is ( )nΟ . Comparatively, a widely used Fast 
Fourier Transformation (FFT) has the computational complexity ( )logn nΟ ⋅ . 

In our project, the applied wavelet is D4 wavelet with four coefficients of scaling 
function. 

The scaling function for n = 4 can be defined as follows:

and its corresponding wavelet function:

Solving the above equation, assuming the orthogonality of wavelets, a normalizing 
parameter

1
2
−
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Decomposing the input signal into components, each one step gets rid of a certain 
amount of signal interferences. Given the space orthogonality, we can be sure that 
there is no redundancy and every detail will be eliminated once. The input signal can 
be represented as the sum of the following details with the last approximation. Signal 
decomposition is performed recursively using the formula for synthesizing 
approximation at a given level and the sum of details of the level inclusively. This is 
illustrated in Figure 1.

Figure 1. Time series decomposition 

Source: [Burrus 2001].

One may notice that n is successively doubled at each iteration; for m = 1 we 
have 2M/21 = N/2 approximation coefficients, for m = 2 there is 2M/22 = N/4. 
Decomposing a vector of 8 elements ( 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7, , , , , , ,S S S S S S S S ) after the  
first iteration a vector ( 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3, , , , , , ,S S S S T T T T ) is obtained, after the next  
( 2,0 2,1 2,0 2,1 1,0 1,1 1,2 1,3, , , , , , ,S S T T T T T T ), and so on. This imposes a constraint on the length of 
entry vector that must be a power of 2. Automatically, it returns the length of the 
compressed vector (after removing details) that is also a power of 2 as illustrated on 
Figure 2.

Figure 2. Schema of vector decomposition 

Source: [Burrus 2001].
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Below the source code of the compression algorithm is presented to show its 
simplicity and low algorithmic complexity.

Input parameters are the input vector to be subjected to transformation (with  
a length which is the power of two) and the number of approximation coefficients 
which are to be created from it (which is also the power of two). The result is an array 
of approximation and details. For example, if we introduce a time series

7,06,05,04,03,02,01,00,0 ,,,,,,, SSSSSSSS , and the second parameter 4, then the result will 
be a table of four approximations and four details: 1,0 1,1 1,2 1,3 1,0 1,1 1,2 1,3, , , , , , ,S S S S T T T T .

The wavelet D4 has been chosen because of its high-speed (low computational 
complexity) and the simplicity of implementation. In addition, it has been well 
studied in the literature from the viewpoint of its usefulness in the pre-processing 
efficiency of highly frequent time series.

5. Experiments

The tests have been carried out in two stages. In the first stage a single, randomly 
selected, financial time series was examined, extracted from the period of two 
months. The aim was to examine the different behaviour of financial time series. In 

Extract from the source code of discrete wavelet transformation  

public static double[] D4Transform(double[] input, int approximationSize) 
{ 
     double h0 = (1 + Math.Sqrt(3)) / 4 * Math.Sqrt(2); 
     double h1 = (3 + Math.Sqrt(3)) / 4 * Math.Sqrt(2); 
     double h2 = (3 – Math.Sqrt(3)) / 4 * Math.Sqrt(2); 
     double h3 = (1 – Math.Sqrt(3)) / 4 * Math.Sqrt(2); 
     double g0 = h3;      double g1 = -h2; 
     double g2 = h1;      double g3 = -h0; 
     int I = 0, j = 0; 
     int half = approximationSize >> 1; 
     double[] tmp = new double[approximationSize << 1]; 
     for (j = 0; j < approximationSize – 3; j = j + 2) 
     { 
        tmp[i] = a[j] * h0 + a[j + 1] * h1 + a[j + 2] * h2 + a[j + 3] * h3; 
        tmp[I + half] = a[j] * g0 + a[j + 1] * g1 + a[j + 2] * g2 + a[j + 3] * g3; 
        i++; 
     } 
     tmp[i] = a[n – 2] * h0 + a[n – 1] * h1 + a[0] * h2 + a[1] * h3; 
     tmp[I + half] = a[n – 2] * g0 + a[n – 1] * g1 + a[0] * g2 + a[1] * g3; 
     return tmp; 
} 
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the second stage, one financial time series was selected corresponding to 12 hours of 
quotations divided into equal size parts using sliding windows. The goal was to dis-
cover changes in time series. This study of the impact of wavelet compression on the 
time series information using wavelets Daubechies 4 was carried out on the currency 
market FOREX. This market operates 24 hours a day, from Sunday 11.00 pm to 
10.00 pm on Friday (according to Central European Time). According to statistics 
published in 2008, most transactions concerned the pairs [Bank for International Set-
tlements 2008]:

EUR/USD 27%,––
USD/JPY 13%,––
GBP/USD 12%.––
Given these observations the authors have chosen the time series describing 

historical transactions for these three pairs of currencies. The selection of samples 
for the testing were purely random. The intervals (the first day and the last day of the 
month) were generated randomly using the pseudo-generator from the platform .
NET. The generated values indicate days of the time series to evaluate. To ensure the 
objectivity of research, we have drawn five time series of two consecutive months 
for the same days (if the number indicated the day when the FOREX is close, the 
next closest date was taken on which the transactions take place), and all pairs (EUR/
USD, USD/JPY, GBP/USD) have been selected from those days. In this way, 30 
time series have been extracted for the experiment. Time series of the length of 256 
have been created from the aggregated data to one minute; the first value represents 
the aggregated transactions within the first minute of the day (0:01),the last 
transactions 256 minutes later (at 4:17). The time series were grouped within the 
pairs of currencies. So the result was three sets of data, three sets of the average 
relative errors (computed for a single currency). 

The test consisted of two phases. In the first, we have examined the amount of 
information in time series, evaluating the effectiveness of the prediction algorithm 
ARAR. Each of the selected series was divided into two series of length of 128. The 
first 128 values served as a learning set, and 20 consecutive values (the first 20 
values from the second series) were treated as a validation set. Then, the mean 
relative error (MRE) for each of the quotes (from 1 to 20) was calculated according 
to the formula:
where x0 is an expected value, x is a real value. MRE was obtained by dividing RE 

into a number of samples.

The second stage was to demonstrate if the quantity and quality of information 
afforded by the compressed time series significantly differed from the uncompressed 
one. To achieve this a series of length 256 was compressed by the discrete transform 
wavelet. The resulting series of length 128 (twice the compression) was divided into 

0 0 1,
x x xxRE

x x x
−Δ

= = = −  
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two series of length of 64. Values of the first series have been used as a learning set, 
and a set of next 20 values (the first 20 values from the second row) as a validation 
set. The last step was the calculation of the average relative errors (MRE) for each of 
the quotes using the same formula as for the series of the first stage.

As a result, three groups of the test series were performed, which included the 
values of the average relative errors ranked according to the period. Recall that the 
objective of this study was to demonstrate that the double wavelet compression did 
not significantly worsen the average prediction error. Such a result confirmed the 
hypothesis put at the beginning of the work that the double compression using 
wavelet Daubechies 4 does not affect significantly the quality of information carried 
by a time series in comparison with the original ones. To validate the hypothesis the 
compatibility the Kołmogorov–Smirnov test was applied. The test confirmed that the 
two populations had the same distribution, which is equivalent to saying that the two 
samples come from the same population.

In this project the algorithm ARAR for time series prediction and the authoring 
program to compress the time series were applied. In the experiments, the randomly 
selected quotes from January 8, 12, 16, 17, 19, 20, and February 9, 12, 14, 17, 19, 
2009 were tested. For the second study, the quotes come from February 25, 2009. 

The average relative errors for the original and transformed time series are 
presented in Figures 3-5. The differences are practically negligible. Comparison of 

Prognostic horizon

Figure 3. Comparison of average relative errors for original and compressed time series.  
Pair USD/GBP 

 

USD/GbP
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USD/JPY

Prognostic horizon

Figure 4. Comparison of average relative errors for original and compressed time series.  
Pair USD/JPY 

EUR/USD

Prognostic horizon

Figure 5. Comparison of average relative errors for original and compressed time series. 
Pair EUR/USD 
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the cumulative average of errors is shown in Figures 6-8. The solid lines represent 
the values for the transformed time series, while the dashed lines illustrate original 
ones. Values are almost similar; only in case of USD/GBP the difference is greater. 
When comparing the maximum and minimum values we have noticed that in some 
cases better prediction results were achieved using the transformed time series, and 

Figure 6. Comparison of average cumulative errors (max, min and average)  
for original and compressed time series. Pair USD/GBP 

Figure 7. Comparison of average cumulative errors (max, min and average)  
for original and compressed time series. Pair USD/JPY 
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in some, when predicting based on the original time series. Although in these cases 
the differences were small (except the USD/GBP where the wavelet compression 
significantly improved the least effective prediction).

The goodness-of-fit Kołmogorov–Smirnov test was also carried out. Null 
hypothesis was assumed that the distributions of the average relative prediction error 
in the original and compressed time series were the same. To validate the hypothesis 
the following statistic has been used:

where
1 2

1 2

n nn
n n

⋅
=

+

and                           are the empirical distribution functions computed on the basis of  
samples. Graphical presentation of the distribution is shown in Figure 9. 

Values n1, n2 mean the sum of averages of relative errors of predictions. The 
value of empirical statistic was computed and it was equal to 0.004468. The limit 
λ-Kołmogorov distribution at the confidence level α = 0.01 is equal to 1.63. So, 
based on the relation:

λe < λα

there is no reason to reject the null hypothesis. So, we say with 99% probability that 
the average error distributions are the same in the case of time series transformed by 
Daubechies 4 wavelet and as the raw time series. 

Figure 8. Comparison of average cumulative errors (max, min and average )  
for original and compressed time series. Pair EUR/USD 
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Figure 9. Comparison of average error distributions for original and compressed time series

In the second experiment, the differences were less noticeable for the average 
and minimum values. However, in all three cases the results were better for com-
pressed time series than the uncompressed one.

Taking into consideration that the predictions were made on double-compressed 
time series, it can be stated that the result was very encouraging. Not only was the 
computing time reduced, but also the prediction accuracy was improved.

6. Conclusions and future works

The results of this research have confirmed the hypothesis established at the begin-
ning of the work that the information carried by uncompressed time series is qualita-
tively identical to the information carried by double-compressed time series using 
Daubechies 4 wavelet. The consequences are important. Colloquially speaking, it 
makes no sense to use the original time series since the use of a time series of two 
times shorter (after compressing by D4) assures the same results. Given the comput-
ing complexity of the classification algorithms, it is of utmost importance. It should 
be also noted that in the case of a long time series (covering 12-hours period) wave-
let compression improved the quality of prediction. This would mean that, at least 
for these three examined time series, noise and redundant information have been 
eliminated by the compression process.

To determine the usefulness of wavelet compression in financial time series in 
general, it would be recommended to test them on significantly greater empirical 
material coming from various stock markets. One can also consider trying other 
wavelets of the Daubechies family. In the paper, we were focused on the computational 
complexity and its reduction in the context of prediction systems. It should be 
mentioned here that the wavelet D1 has lesser complexity than the D4, which could 
make it more useful for larger data sets or in real time systems. But one must have in 
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mind that D1 is less sensitive to subtle, local changes in the original time series, and 
it is less efficient in analysis of highly frequent time series.

Summing up, although we have indicated that further research is required, the 
use of compression is fully justified if we are interested to reduce the multidimensional 
space and we do not want to lose any significant information contained in the original 
time series. 
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WPŁYW KOMPRESJI SZEREGÓW CZASOWYCH  
O DUŻEJ CZĘSTOTLIWOŚCI FALKĄ DAUBEUCHIES 4  
NA JAKOŚĆ ZAWARTYCH W NICH INFORMACJI 

Streszczenie: ostatnio ilość prac na temat zastosowań teorii falek w eksploracji danych zna-
cząco wzrasta. W większości przypadków prace te dotyczą zastosowania jej z konkretnym 
algorytmem. W niniejszym opracowaniu będzie zaprezentowana ogólna metoda kompresji 
szeregów czasowych, która będzie mogła być łatwo zaadaptowana do wielu problemów, w 
których redukcja wielowymiarowości ma kluczowe znaczenie.. W pracy tej autorzy spróbują 
udowodnić hipotezę, iż dwukrotna kompresja falką Daubechies 4 nie wpływa znacząco na 
jakość informacji niesioną przez szereg czasowy w stosunku do szeregu nieskompresowane-
go lub inaczej, dwukrotna kompresja falką Daubechies 4 nie wpływa znacząco na pogorsze-
nie jakości szeregu czasowego jako nośnika danych. W celu weryfikacji hipotezy badane 
szeregi czasowe zostaną ocenione pod kątem jakości prognozy algorytmu, który przewiduje 
przyszłe wartości jedynie na podstawie analizy informacji niesionej przez wartości przeszłe. 
Jako algorytm predykcyjny został użyty ARAR ze względu na bardzo dobre wyniki w pro-
gnozowaniu rzeczywistych finansowych szeregów czasowych, a także dlatego, iż został on 
dokładnie zbadany i opisany w literaturze tematu.
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