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GramGen: A Genetic Programming System 
Based on Context Free Grammar

Abstract: In this paper, a new genetic programming system, called GramGen, is described. 
The system combines context free grammar (CFG) with genetic programming and uses an 
extended operator set. The objective of the grammar is to limit the size of the search space by 
allowing the user to define constraints related to the structure or the simplicity of the discovered 
formulas. These constraints are taken into account by the use of specific genetic operators. 
The experiments show that the proposed system allows users not only to discover new 
knowledge but also improve the performance of existing ones.

Keywords: genetic algorithms, genetic operators, context free grammar, knowledge discove-
ry, evolution-based software.

1. Introduction

A genetic programming algorithm (GP) is a kind of evolutionary algorithm in which 
the genetic individuals correspond to functions or programs [Koza 1992]. GP offers 
several interesting advantages in terms of knowledge representation and knowledge 
discovery. The rule representation by syntactic trees is easy to understand and facili-
tates knowledge validation by a human expert. On the other hand, an evolutionary 
algorithm provides an increased resistance of discovery with regards to noisy data 
and local minima. The ability to customize genetic operators allows a deeper interac-
tion with the human expert or the domain knowledge (such as specific convergence 
criteria, fitness function able to deal with understandability measures for the trees 
such as size, depth, balancing). 

Context free grammar-based [Freeman 1998; Javed et al. 2004] GP allows the 
user to directly influence and constrain the evolutionary search to produce the 
programs he really needs for his domain-specific application. Up to our knowledge, 
this thematic is not well extended in the literature. For instance, García-Arnau et al. 
[2007] developed such an approach which also integrates a parameter to control the 
maximum size of the generated trees. However, they considered only the size 
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measured as the height of the tree. In our approach, we consider both the total number 
of terminals in a tree and the height of the trees as two different criteria for the user. 
Attention has been given to the crossover operator [Manrique et al. 2005] to guarantee 
the consistency of this genetic operation, but less work has been dedicated to the 
mutation operator. In our approach, we propose a consistent crossover operator as 
well as a highly customizable and consistent mutation operator.

In this paper, a grammar-based GP system, called GramGen, is proposed to 
limit the size of the search space and allow defining constraints related to the structure 
and complexity of the formulas. In the system, the constraints are taken into account 
by applying specific genetic operators to simplify generated formulas, and in 
consequence, make them more comprehensive.

To introduce the problem of knowledge representation in GP systems, let us 
define a few basic terms, notably:

Genotypic tree.••  A tree corresponding to the content of the genetic chromosomes. 
This tree is related to the grammar and is used to facilitate the generation of new 
individuals.
Phenotypic tree.••  A tree corresponding to the interpretation of the genotypic tree. 
This tree is derived from the genotypic tree and encodes the function given to the 
user.
Non terminal symbol•• . The non terminal symbols are nodes of the genotypic 
trees and they are only useful during the derivation step, in which the production 
rules of the grammar are applied.
Terminal symbol••  or terminal operator. The terminal symbols are nodes 
existing both in a genotypic tree and in a phenotypic tree. In this paper, this term 
does not indicate the value of a node, but the corresponding keyword. For 
instance, opMUL refers to the multiplication, opSIN to the sinus and opCST to an 
instantiated constant.
Node operator••  or functions. Node operators correspond to functions with an 
arity greater than 0, such as opMUL, opSIN, etc. They are only used in the leafs 
in the genotypic trees (and not in the phenotypic trees).
Leaf terminal•• . Leaf terminals are leafs in the phenotypic tree and correspond to 
functions of arity 0, such as opCST (instantiated constants) or opARG (instantiated 
arguments).
Grammatical disjunction•• . Right part of a production rule containing one or 
several conjunctions. This part replaces the left part during a derivation.
Grammatical conjunction•• . Part of a disjunction corresponding to a terminal or 
a non terminal symbol.
In the next section the GramGen system is presented. In section 3, the formalism 

of the grammar is described. Section 4 introduces the terminal operators used in the 
algorithm, the opPUSH operator and the opPOP operator followed by the initialisation, 
the crossover and the mutation operators are described. Finally, in the last section,  
a simple example is discussed illustrating the ability of our algorithm to produce 
comprehensible rules. 
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2. Main algorithm

The general principle of rule discovery by GP follows the principle of evolution-
based algorithms [Goldberg 1989], except that here, the rules introduced by the 
algorithm correspond to tree structures including node operators and leaf terminals.

GramGen uses this principle, and in addition, implements a set of constraints on 
the tree representation using a grammar initially defined by the user. For instance, the 
following example shows a small grammar which can be used to learn equation 
having only addition and substraction.

S → E		  # Start symbol
E → O2 E E | opARG
O2 → opADD | opSUB

Another point is that the individuals of the population are ordered by their fitness 
values as an efficient way to find similar individuals. This measure is simply used as 
an indicator of a premature convergence of the population and is shown to the user.

Algorithm A1 describes the main algorithm of GramGen.
GramGen applies a grammar, parameterized by the user before starting the 

algorithm to discover the rules. The genetic operators are strongly based on this 
grammar. Thus, during the initialisation step, the crossover step, or the mutation 
step, the constraints defined by the grammar are always true at the output of the 
operators. These constraints are defined in terms of grammatical constraints (the 
numerator of a ratio must not have multiplicative signs) and probability constraints 
(the multiplicative and addition signs must have the same probability of appearance). 
In particular, we have proposed two ways to guarantee that the genetic operators 
produce only correct offsprings. The passive method checks each produced individual 
and deletes the trees which do not satisfy the grammatical constraints. The active 
method ensures that the operators produce directly correct individuals in terms of 
grammatical constraints and predefined probabilities. These last operators are more 
complex to describe, but as they do not lose time by generating and deleting useless 
individuals, thus they have been selected in the final implementation of GramGen.

Function GramGen(Propχ , Propρ , Propµ )
Propχ is the proportion of crossovers in the population
Propρ is the proportion of reproductions in the population
Propµ is the proportion of mutations in the population
Result - I, the function (tree) solving the given problem
 

Initialize the algorithm (gen=0, pop={})
Randomly create an initial population pop
Evaluate the fitness of each individual in the population
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repeat
Begin a generation (indiv=0, popnew={})
while indiv/size(pop) < Propχ

Choose two individuals from pop based on the crossover selection strategy
Carry out the crossover (see the section 4)
Insert the two offsprings into popnew (indiv=indiv+2)

end while
while indiv/size(pop) < Propρ

Choose an individual from pop based on the reproduction selection strategy
Copy this individual into popnew (indiv=indiv+1)
end while
while indiv/size(pop) < Propµ

Choose an individual from popnew based on the mutation selection strategy
Choose randomly a type of mutation among the three available (see the section 4)
Carry out the mutation
Insert the new individual into popnew (indiv=indiv+1)

end while
Compute the new population (replacement) : pop=Recycle(pop, popnew)
Evaluate the fitness of each individual in the population
Order the individuals of the population by their fitness
Compute the values of the termination criteria (number of generations, best fitness exceeding a 

threshold, average fitness exceeding a threshold)
gen=gen+1

until One of the termination criteria are satisfied
Return the best individual I according to its fitness

Algorithm A1. Algorithm GramGen

Let us describe the key concepts of the algorithm. The fitness function of 
GramGen measures the relative quality of an individual by comparing it to other 
individuals in the population. The fitness function is the ratio of the wealth of an 
individual and the sum of the wealth of all individuals of the whole population. In 
our case, this evaluation is computed for each individual using the following 
formula:

E(i) = CfunEfun(i) + CsizeEsize(i) + CcstEcst(i) + CargEarg(i),                   (1)

where Efun(i), Esize(i), Ecst(i) and Earg(i) are the evaluation of the individual i according 
to specific constraints, and Cfun, Csize, Ccst and Carg are the weights set by the user 
according to his appreciation for each constraint. The values of each specific 
evaluation function are between 0 and 1.

Efun(i) computes the accuracy between the expected value of a training sample 
and the value obtained using the formula encoded in the individual i. The average of 
the sum of the error squared obtained on the training set is used as the result of Efun(i). 
It should be noted that in regression problems, the error corresponds to De− , where 
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D is the difference between the obtained and the expected value. In classification 
problems, for an expected class, the error is 0 for a positive value and 1 for a negative 
value. And, for an unexpected class, the error is equal to 1 for a positive value and 0 
for a negative value.

Esize(i) computes the score of an individual according to an expected size, which 
corresponds to the number of nodes in the tree. This enables the user to specify a 
constraint on the size of the tree, which influences to the understandability of the 
obtained formula. In general, the shorter a formula is, the more understandable it will 
be, but the accuracy will also decrease. The user inputs an ideal number of nodes, X, 
and a maximal number of nodes, M. Let a given formula be i with s nodes. If s is 
between 0 and X, the score is computed proportionally between 0 and 1. If s is 
between X and M, the score is computed proportionally between 1 and 0. And, if s is 
above M, the score is set to 0.

Ecst(i) and Earg(i) compute the score of an individual according to the number of 
constants and to the number of arguments used in the formulas. When a formula 
contains more constants, the accuracy is higher, but it will be more difficult and 
specific to the training set. Comparatively, when a formula uses more arguments 
(attributes of a training sample), this formula will be more complex and more difficult 
to understand. The user can input an upper number of constants and/or arguments, 
and the score is computed as before.

Consequently, the evaluation function used in GramGen is a trade-off between 
the accuracy and the constraints defined by the user in terms of understandability and 
readability of the obtained formulas.

3. Formalism of the grammar

Regression systems based on GP usually amplify the size of the trees during the 
search of a reliable solution. For instance, a research work presented by Ross [Ross 
et al. 2002] shows a tree requiring about fifty nodes to be effective in a classification 
problem for a real-world application. The produced tree does not deliver a clear and 
intuitive explanation to users. Type-based genetic programming is often difficult to 
understand, especially for users without extensive GP experience who need to design 
grammars. However, in these kinds of problems, a rigorous interpretation of the 
generated functions by a human expert is required for the validation of these functions. 
To simplify the trees, some constraints have often been proposed, as for instance 
those described by Montana [1994]. In his project, the nodes are associated with data 
types and only the authorized grammatical constructions are admitted. However, in 
many regression or classification problems, the data have often the same format and 
this kind of type assignment is not required.

In our approach, the well-known Context Free Grammar (CFG) has been applied 
[Freeman 1998; Javed et al. 2004]. This grammar is simple, general and can be put 
in the normal form to be fast and effective for the parsing operators.
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Formally, a CFG can be defined as a quadruplet G = (V_t, V_n, P, S), where:
V•• t is a finite set of terminals,
V•• n is a finite set of non-terminals,
P••  is a finite set of production rules,
S••  is an element of Vn and corresponds to the start symbol.
The elements of P are represented by Vn → (Vt ∪ Vn)

*. Below, an example of  
a CFG grammar is given:

V•• t  = {opADD, opARG, opCST},
V•• n  = {S},
P••  = {S → opADD S S, S → opCST, S → opARG},
S••  = S.
Figure 1 illustrates this CFG. The operator opADD corresponds to the addition 

between two numbers and the operator opARG corresponds to an argument of the 
function (the real index of the argument is instantiated in the phenotypic tree). The 
operator opCST corresponds to a constant (the real value of the constant is instantiated 
in the phenotypic tree). Grammars like this are able to derive trees of variable sizes.

Figure 1. Several genotypic trees produced using a derivation rule  
and an instance of a production rule

In GramGen, the start symbol is derived using the production rules until the 
obtained set contains only terminal symbols. The trace of this derivation can be 
reproduced in the form of a tree, called in the paper a derivation tree or a genotypic 
tree. Thus, the trace of the rule A → B is a tree with a root node A connected to a child 
node B. A rule A → B C is a tree with a root node A connected to two child nodes B 
and C. At a given time, a non terminal symbol has to be derived, in one or more 
symbols, using only one of the production rules. The symbol “|” is used to separate 
several production rules (disjunctions). The creation of the genetic individuals is 
carried out in two steps (Figure 2): the grammar is firstly used to define a genotypic 
tree AG, and then this tree is converted into a phenotypic tree AP corresponding to the 
function that the algorithm is looking for. The tree AP is obtained by replacing any 
genotypic subtree GA' containing a root node X and N +1 edges by a phenotypic 
subtree PA' where the root corresponds to the first edge of GA'  (corresponding to  
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Figure 2. Conversion of genotypic trees into phenotypic trees

a function of arity N), and where the N edges correspond to the number of edges 2 to 
N +1 of the tree GA' . The complete phenotypic tree is obtained by performing all the 
replacements but the grammar is not required during this process. The Polish notation 
is applied: the node pointed by the first edge of each node encodes the function and 
the following nodes its arguments.

This grammar needs consistent genetic operators to work with. By consistent we 
mean that the application of the crossover or the mutation genetic operators keeps 
the generated trees compatible with the defined grammar. The next two sections 
present the standard and the special terminal operators composing the grammar, 
while the subsequent three sections present the initialisation, the crossover and the 
mutation genetic operators.

4. The GramGen terminal and genetic operators

4.1. Terminal operators

The terminal operators correspond to atomic units for the phenotypic trees produced 
by GP. Two kinds of terminals can be distinguished: the leaf terminals (arguments or 
constants), and the functions. Many operators have been implemented, and they are 
mainly mathematical, boolean and statistical. In the experiments some mathematical 
operators, some operators of arity 3 and some operators of arity N have been used. 
For instance, in addition to the implementation of common functions, a few useful 
functions for regression problems have been proposed such as the functions of arity 
N with an unspecified number of parameters in the input, in particular opSOMM 
(sum of the arguments) or opAVG (average of the arguments). 
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The user may select the terminals to use in the genetic programs, either implicitly 
in the form of probabilities in the generated trees, or directly by the definition of the 
production rules. The syntax of the grammar has an implicit way to define the 
preferences of the apparition of a given terminal in the generated trees. If the user 
decides to repeat a given symbol (a terminal or a non terminal symbol) during the 
writing of a production rules, this symbol has a higher probability to be selected. For 
instance, if the user writes the rule S → opADD opADD opADD opSUB, the symbol 
opADD (the addition operator) is selected in 75% of the cases, and the symbol opSUB 
(the substraction operator) is selected in the remaining 25% of the cases.

If needed, the setting up of the appearance probability of a terminal symbol (or a 
non terminal symbol) can be defined by repeating the occurrence of this symbol 
several times in the production rule. 

4.2. Queue operators

In some cases, the user could need to manipulate a structure having the behaviour of 
a list, a file, etc. For instance, in some problems requiring to sort values in a table, or 
to manipulate a specific kind of data (spectral signal, ...), operators to facilitate the 
management of First In, First Out (FIFO) queues are needed. FIFO queues allow a 
function to build tables where its size is known only during their execution. So their 
size can dynamically increase or decrease depending on the input attributes of the 
symbolic expression. Two queue operators are designed: the opPUSH and opPOP 
operators are these special operators. As a tree is interpreted by depth-first search 
(the child nodes of a given node are computed before its parent), it is consequently 
possible for a node to carry out computations on a file encoded in one of its child 
nodes. Figure 3 shows a grammar construct using such operators, a genotypic tree 
built using this grammar, the related phenotypic tree and its semantic interpretation.

If needed, some inter-type conversions may occur in the nodes during the assign-
ment of a value. For instance, a strictly positive constant returned by a mathematical 
operator is converted into a boolean constant equal to true. A null or negative value 
is converted into false, and the values true and false are respectively converted into 
1 and 0. Lastly, a parameter is integrated into each one of these operators to define if 
the operator is commutative or not. This parameter is applied during the structural 
comparison of two trees, and that is used as a diversity criterion in the termination 
operator.

4.3. Initialisation operator

In GramGen, the initialisation operator for genetic individuals has to select the 
grammatical rules as well as the order of their application regarding a given number 
of constraints. This operator is applied to create the first genetic population or new 
edges claimed by the mutation operator. If several possibilities arise, the choice of 
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Figure 3. Grammar using the opPUSH operator
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Sub-Function Height(X) – Function computing the minimal height of a symbol X
H(X) is an attribute of the symbol X
Result – The height of the symbol X
 

let h := ∞
for each disjunction D of the rule X

let hc := 0
for each conjunction C of D

hc := Max(hc, H(C))
end for
h := Min(h, hc)

end for
Height(X) := h +1

Sub-Function Size(X) – Function computing the minimal size of a tree generated 
by the derivation of a symbol X
T(X) is an attribute of the symbol X
Result – The size of the symbol X

let s = ∞
for each disjunction D of the rule X

let sc = 0
for each conjunction C of D

sc = sc + T(C)
end for
s = Min(s, sc)

end for
Size(X) := s

Function InitSymbols(L) – Function used to initialize the symbols of the grammar
L is the list of the symbols Vt ∪ Vn of a grammar G
Result –- A parameterized grammar: the height and the minimal size of each 
symbols of L

for each symbol X of L
if X is terminal

H(X) = 0
T(X) = 1

else
H(X) = ∞
T(X) = ∞

end if
end for
repeat

for each non terminal symbol X of L
H(X) := Height(X)
T(X) := Size(X)

end for
until the attributes of the symbols in L have converged
Returns the parameterized grammar

Algorithm A2. Function InitSymbols
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the production rule is done according to several criteria, based on the size of the trees 
and the desired depth. The two principal steps devoted to the construction of the new 
individuals are as follows:

determination of the height •• H(X) or the smallest number of terminals T(X) that 
it is possible to generate in the best case for each symbol X,
during the construction of a subtree or a complete tree, determination of the ••
symbol to use according to a given random probability related to H(X) or T(X).
The first step is performed only once, at the time of the grammar parameterization. 

This step is described in Algorithm A2. Figure 4 shows a parameterized grammar. 
The parameterization concerns the height and the minimal number of symbols that 
can be obtained in a genotypic tree derived from a given symbol. The computing of 
the maximum values is not very interesting for most grammars because they are 
infinite. The main interest of this algorithm is that it converges even in the case of 
full-recursive grammar rules (for instance, A → A). In this case, these rules are 
automatically ignored.

Figure 4. Example of a grammar and its parameterization

The second step is performed during the creation of the individuals or each time 
a genetic operator requires the creation of a subtree. This step is presented in algorithm 
A3. The parameters of the algorithm are the following: a grammar, a non-terminal 
symbol (either the start symbol S, or another) and the constraints defining tree size 
and tree height. The result of the algorithm is a complete genotypic tree or a subtree 
which can then be included in a larger tree, which will be converted into a phenotypic 
tree before the evaluation of the individual. The algorithm performs its computing in 
an exact constraint environment, that is, the size specified by the user in terms of 
number of nodes is always respected. For instance, if the user selects an even size N, 
and that grammar can only produce trees with odd sizes, then there is a probability 
of 0.5 that an individual of size N – 1 is produced and 0.5 for an individual of size  
N + 1. If the user specifies a null or a negative value for the size, the produced tree will 
be as small as possible. If some variable sizes are required, the user has to choose a 
range of acceptable values, for instance, trees containing from 3 to 15 nodes. Then 
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the algorithm randomly selects a value in this range and uses it as parameter. The 
algorithm is called as many times as required to constitute a complete population. 
Thus, it is possible to obtain a population including trees where sizes can be specified 
by various probability functions: uniform, linear, Gaussian, etc. In our case, a linear 
function is used. 

The determination of the non terminal symbol to derive, when the current 
derivation tree contains several symbols (known the derivation style), is not performed 
from the left (leftmost derivation), nor from the right (rightmost derivation). In fact, 
the best results have been obtained each time by randomly choosing the non terminal 
symbol in the tree currently in derivation. Moreover, that guarantees some diversity 
in the pool, even if the grammar is badly written. 

Function TreeCreation(G, A, fask)
Parameters – A parameterized grammar G, a non terminal symbol A, the requested size 
or height fask for the generated tree
f(X) is the criterion to optimize. Either H(X) (the height of the subtree generated by the symbol
X), or T(X), the size of this subtree
Choice(L) is a function which selects in a uniformly random way an element of the set L
ψ(n) is a function that gives the selection probability of a symbol if the subtree generated 
by the derivation of this symbol adds in the final tree more than n symbols compared to the size 
expected by the user
Result – The created individual
 

let R a tree with a root node A
while R contains a leaf which is a non terminal symbol

let L the list of the leafs in the tree R
let fmin := 0
for each symbol X of L

fmin := fmin + f(X)
end for
let Lnt the list of the non terminal symbols of L
let T := Choice(Lnt)
for each disjunction Di of the right part of the rule T

let fadd := f(Di)
let fsub := f(T)
Di,suppl := fmin+ fadd – fsub – fask 
Di,proba := ψ(Di,suppl)

end for
Choose a disjunction D ∈ {D1, ..., Dn} of the rule T using the selection probabilities Dproba
let Rins a tree with a root node T and where each edges is one of the conjunctions of J
Replace in the tree R the symbol T by the subtree Rins

end while
Returns R, a tree with a root node A where the leafs are terminal symbols

Algorithm A3. Function TreeCreation
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When a disjunction needs to be derived, a choice has to be made to select the best 
symbol B. This choice is related to the number of symbols needed to complete the 
current tree and the estimation of the number of symbols that can be generated by  
a derivation of B. Given a grammar G, a non terminal symbol B and a criterion F  
(F could be the expected size or height of a subtree generated by B), the algorithm 
uses a function ψ(n) returning the selection probability of B if the subtree generated 
by the derivation of B adds in the final tree more than n symbols compared to the size 
expected by the user. It is clear that this probability should be low for high values of 
n. Several probabilistic functions for ψ(n) (see algorithm A3) have been selected, 
among them:

,                                                 (2)

,                                                  (3)

where a and b are constants.

By experimenting on several regression problems, the function ψ2(n) was found 
to have good selection qualities using the constant values of a = 2 and b = 5.2.

4.4. Crossover operator

The proposed operator for crossing over two genetic trees is based on the following 
principles:

the generated individuals must remain coherent at the output of the operator. In ••
particular, the grammar rules must always be verified as well as the arities of the 
nodes (a terminal operator should never change its arity);
the selection probability of each node must be identical. Even if the genetic ••
recombinations actually implement a very complex chromosomal system, it is 
preferable to keep the same probabilities of mixing, as in the case of a simpler 
representation. For instance, a root node is not selected more frequently than a 
leaf node, so that the modifications are smoother;
the algorithm must bring a guarantee that the resulting offsprings are different ••
from the parents.
In conclusion, only subtrees coming from the same grammatical symbol are safe 

to be exchanged. The crossover operator, Algorithm A4, only deals with the genotypic 
description of the trees. The use of the genotypic trees guarantees the three points 
mentioned above. For instance, two subtrees, even deriving from the same terminal 
operator, will not be exchanged if they are not in the same grammatical context, i.e. 
if they derive from two distinct grammar rules. The resulting trees are converted into 
phenotypic trees and inserted in the new population. 
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Function Crossover (A1, A2)
Parameters – A1 and A2 are the two genotypic trees to cross
S(A) is a function which returns the list of the left-defined symbols of the grammar G defined in 
the tree A
Deriv(A,X) is a function which returns the list of the nodes in the tree A containing the symbol X
Choice(L) is a function which choose in a uniformly random way an element of the set L
GetChild(A, n) is a function which returns the child number n of the node A
X is a symbol of the grammar
n1 and n2 are nodes from genotypic trees
Results – A’1 and A’2 are the two resulting genotypic trees
 

for each tree A ∈ {A1, A2}
while CountChild(A) = 1

A := GetChild(A, 1)
end while

end for
let L := S(A1) ∩ S(A2)
let X := Choice(L)
let N1 := Deriv(A1, X)
let N2 := Deriv(A2, X)
let n1 := Choice(N1)
let n2 := Choice(N2)
Exchange n1 and n2 in the trees A1 and A2
Returns the resulting trees A’1 and A’2

Algorithm A4. Function crossover

Two remarks can be stated concerning Algorithm A4. First, the only case in 
which the offsprings would be identical to the parents is the case of a filiform 
genotypic tree. That corresponds to a grammar containing only one terminal symbol, 
consequently the corresponding phenotypic tree consists of only one symbol. In this 
case, the crossover cannot do better than exchange this symbol with one of the 
corresponding symbols of the other parent respecting the grammar. Second, the 
algorithm uses a parameter constraining the size of the generated trees. After the 
crossover, it is possible that this criterion is not respected any more. So, this criterion 
is verified a posteriori in the evaluation function.

The crossover parameters set by the user (besides the grammar) are the follow-
ing:

the percentage •• Q of individuals to be crossed. Most of the literature [Goldberg 
1989; Schoenauer, Michalewicz 1997] consider that 80% is an acceptable value, 
but we obtained good results with a comprised value between 70 and 95%,
the crossover s•• election type (roulette wheel, tournament, etc.).
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4.5. Mutation operator

The mutation operator contains two significant characteristics; it imposes fewer 
parameterizations by the user and it preserves almost all the material from the parent. 
This has led us to define three different and complementary sub-operators applied in 
a uniformly random way. Each one of these operators takes as input a genotypic tree 
and returns the modified tree. The conversion into a phenotypic tree is necessary 
before the insertion into the new population for the calculation of the evaluation 
function. In all cases, the constraints (which have been explained earlier) for the 
crossover operator have to be also respected (coherence, probability of selection, 
production of new offsprings).

Figure 5. Mutation operators in GramGen. Note that rand(a, b) is a function returning a random value 
between a and b
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The three sub-operators are as follows:
Mutation of a node: performed by removing one of the nodes in the tree and ••
replacing it by an equivalent one generated by the grammar.
Mutation of a terminal: performed by changing one of the values of a numerical ••
terminal (a constant or an argument).
Mutation by self-crossing: performed by crossing the tree with itself. This sub- ••
-operator is complementary to the other ones because it can, for instance, reverse 
the numerator and the denominator of a ratio, which is not possible with the other 
sub-operators.
For the mutation operator (Figure 5), the user has to define the following param-

eters:
the percentage •• Q of individuals to be mutated (the considered percentages have 
been set between 5 and 45%,
the mutation type,••
and in the case of the terminal mutation operator, the new value is selected in an ••
interval [x – v; x + v] where x is the previous value and v is a parameter of 
variation related to the size of the authorized range for this value (so, this operator 
is data-scale independent).
To summarize, the described operators guarantee that the numerical constraints 

imposed by the user are respected (for instance, the size of a tree) as well as the user 
defined grammar. Some specific checks can be implemented to deal with the case of 
badly conceived grammars. In the case of the last mutation sub-operator (mutation 
by self-crossing), the exchange of a node with one of the progenitors of this node 
should never be permitted. However, this can occur with a grammar generating 
filiform trees. In this situation, the case is detected and the non-modified tree is 
returned.

5. Case study – function COSLOG

The goal of the experiment is to test our algorithm on a very simple regression 
problem, called the COSLOG problem. The algorithm has to interpolate a set of 
points given by the function f(x) = cos(log(x)). This function is very complex 
compared to the terminal operators available for this algorithm. The set of available 
terminals contains (+, –, ×, /, |x|). The chosen grammar allows generation of trees 
with any number of nodes, but the ideal number of nodes parameter has been set to 
10. In this case, trees of any sizes can be generated, but the fitness function will 
penalize trees that are too small or too large. This will give clues about the ability of 
the algorithm to model complex real world functions with only a limited set of 
operators. The experiment has been made more complex by limiting the number of 
available points: the training set contained only 20 pairs in the form (x, f(x)).

The learning has been carried out using the set of parameters shown in Table 1.
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Table 1. Used parameters for the COSLOG problem

Parameter Value
Sampling 20 instances
Population size |P| = 50 individuals
Size of the trees 5 to 10 nodes
Termination criterion 50 generations
Operator set {+, –, *, /, absolute value (opABS)}
Terminals {constants (opCST), variable X (opARG)}
Pmut 0.40
Pcross 0.70
Selection operator Direct ranking
Replacing operator Direct ranking
Number of offspring per generation |P|
Elitism 1% (high)
Duration 2 min (2.5 GHz CPU) for 20 instances

The grammar which has been used is this one:
# Start symbol
S → E

# Definition of the core of the equation
E → O2 E E | O1 E | V

# Definition the operators (with one or two arguments)
O1 → opABS
O2 → opADD | opSUB | opMUL | opDIV

# Definition of the terminals
V → opCST | opARG

Figure 6 shows the COSLOG problem. The left part shows the function f(x) for 
a training set of 20 points. More points have been sampled in the interval (0; 0.2] 
because of the shape of the function. The right part shows the function f(x) (dashed 
line) and the function found by GramGen (dotted line). A horizontal logarithmic 
scale has been used in the second figure to facilitate visualization.

Equation 4 represents the formula which was finally generated and Equation 5 is 
its simplified form.

      (4)

       (5)
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Figure 6. The COSLOG problem. Left part: function f(x) = cos(log(x)) and the training set. Right part: 
the function f(x) (dashed line) and the function found by the algorithm (dotted line)

Discussion: A high correlation has been observed between the function 
interpolated and the obtained formula. The genetic evaluation of the individual 
corresponding to fGG(x) is 0.946 and the correlation coefficient between f(x) and 
fGG(x) is 0.926. According to Figure 6, this correlation is also relatively high for small 
(~0.1) and high (~5) values of x, despite the relative simplicity of the obtained 
formula. Consequently, GramGen achieves a good performance for the small data 
set and for the complex function shown in this experiment.

GramGen has been extensively tested in classification of remote sensing images 
but this domain is out of the scope of this volume. Interested reader may find more 
information about this application in [Quirin 2005; TIDE 2005].

6. Conclusion

In this paper, a new approach to discover rules able to solve symbolic regression 
problems by grammar-based GP is proposed. In general, algorithms generating trees 
allow the user accessing a powerful representation, but are sometimes difficult to 
understand. This representation requires the redefinition of the genetic operators in 
such way that the generated individuals are coherent, according to the grammar. In 
the paper, specific attention has been given to the legibility and the complexity of the 
trees by integrating thresholds defined by the user. The thresholds control the number 
of nodes, the height of the trees and the expected accuracy using a small number of 
parameters.

Some tests have been carried out with this new approach using a user-defined 
grammar. On the tested problem, the obtained results have been acceptable in terms 
of accuracy on the testing set. Concerning the comprehensibility, the question of 
knowing why a tree is more comprehensible only because it is generated by a 
grammar written by an expert remains an interesting research perspective. In many 
fields, experts are still accustomed to precise schemata, and it is advisable to respect 
this predisposition. 
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In spite of the complexity of the mutation operator, the bulk of the computation 
is led in an automatic way to use the grammar which discharges the user from 
parameter setting. Nevertheless, this operator can be improved. For instance, the 
principle of the self-adapting mutation [Back, Hoffmeister, Schwefel 1991] has not 
been tested yet within the framework of GramGen.

The presence of constants involves a considerable increase of the size of this 
search space. An interesting topic for future work would be to optimize this search. 
Techniques in which some constants values are freezed and locally optimized have 
been described in the literature, but they have not been yet implemented in GramGen. 
During the experiments, the amount of use of the opCST operator was limited, which 
restrains the effect of over-fitting and returns formulas which are slightly more 
adapted to the new data. Another interesting point concerns the anticipated algebraic 
simplification of the obtained formulas during their evolution, either to reduce the 
search space, or to deliver more understandable formulas. Research work in these 
areas is needed and they will undoubtedly be considered as future research 
directions.
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GramGen: SYSTEM PROGRAMOWANIA GENETYCZNEGO 
OPARTY NA GRAMATYCE BEZKONTEKSTOWEJ

Streszczenie: w artykule przedstawiono platformę programowania genetycznego, zwaną 
GramGen, łaczącą ideę algorytmów ewolucyjnych z gramatyką bezkontekstową (CFG). Za-
daniem systemu jest generowanie formuł logicznych (drzew genotypowych), które po prze-
kształceniu do drzew fenotypowych (formuł) są w stanie rozwiązać konkretny problem prak-
tyczny. Jako ilustrację podejścia podano przykład wykorzystania GramGen do regresji 
symbolicznej funkcji CosLog. W artykule opisano szczegółowo główne algorytmy, operatory 
genetyczne, sposóby definiowania ograniczeń oraz “strojenia” parametrów systemu.
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