
RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS
No. 85	 2009

Advanced Information Technologies for Management – AITM 2009

Andrzej Niesler
Wrocław University of Economics, Wrocław, Poland

e-mail: andrzej.niesler@ue.wroc.pl

EFFICIENT XML INTERCHANGE: BINARY ENCODING
IN DATA PROCESSING AND INTEGRATION

Abstract: Extensible Markup Language (XML) is the foundation of many modern IT architectures.
It is an extremely versatile integration tool and has been adopted in almost every business domain. The
variety of applications imposes now the need for thorough analysis on how does the XML-orientation
affect the enterprise data processing and integration scenarios. The paper discusses the problem of
XML processing efficiency on various stages of the data interchange process. The main focus is on
the information representation issue, with a special emphasis put on the binary encoding. As there are
many different approaches to serialization of the textual XML, some common integration scenarios are
subjected to the comparative analysis, in order to identify the crucial efficiency factors and implementa-
tion constraints. Based on the determined set of criteria, selected technologies are evaluated from the
perspective of effective XML implementation strategy.

1. Introduction

The primary goal when introducing the Extensible Markup Language (XML)
was to deliver a general-purpose, human-readable data interchange standard
that would replace many proprietary binary formats in use. Due to its very high
flexibility and real platform independence, it has become extremely popular as
a common technology for exchanging structured and semi-structured data among
various heterogeneous information systems and business applications, especially on
the Internet. As it has been almost a decade since it was introduced on the market,
there is a suitable moment for the preliminary assumptions to be revised. Also the
question of efficiency analysis appears expected and legitimate.

XML provides a unique set of properties that most of the other data formats lack
or implement only partially. It offers a single, flexible information model which can
be applied to represent almost all the data used in many different data processing sce-
narios. The ability to expand the initial set of tags according to the changing needs
makes it also an extremely versatile integration tool. Providing the foundation for the
standardized and reliable integration platform, XML still remains a human-friendly

Księga1.indb 179 2010-03-23 11:09:06

180	 Andrzej Niesler

technology. Its self-descriptiveness and textual nature facilitate the readability and
maintenance of the data which, therefore, can be viewed or modified using only
a simple plain-text editor, available on every modern operating system. Regardless
of the variety of advanced, sophisticated tools and solutions being offered currently
on the market, it is extremely important, from the integration point of view, that the
use of them is by no means mandatory and the whole XML processing model is
based on open, easy adaptable international standards.

The introduction of XML in data representation, however, leads inevitably to-
ward a substantial increase in verbosity, which is becoming a significant problem as
the scope of deployment areas increases steadily and encompasses more and more
business domains. That concerns not only the low-level data representation tier, but
also a whole group of still emerging higher-level communication protocols, that
make use of core XML syntax as the solid foundation for their own messaging struc-
ture. As a result, the indicated verbosity problem affects a great number of various
aspects of the data interchange process and has a profound impact on the overall
performance of XML-based IT solutions.

This paper discusses the problem of XML processing efficiency on various stages
of the data interchange process. Its main focus is on the information representation
issues, with a special emphasis put on the binary encoding solutions. As there are
many different approaches to serialization of the textual XML, some common
integration scenarios are subjected to the comparative analysis, in order to identify
and verify the crucial efficiency factors and implementation constraints. The main
goal is to analyze the advantages and disadvantages of various XML efficiency-
-increasing solutions. The paper is organized as follows: the next section provides an
insight on the XML processing model, introduces the XML information set definition,
characterizes standard programming approaches to XML document processing,
XML communication protocols, and analyses some generic performance drawbacks.
Section 3 presents the idea of binary encoded XML, lossless data compression
methods, binary serialization and integration of such solutions with existing XML
applications. Section 4 discusses selected use cases of XML in business integration
scenarios and presents the results of a brief performance analysis. Finally, in section
5 some conclusions are drawn.

2. XML processing model

This section introduces the essential aspects of XML processing: XML infor-
mation set, object-oriented and sequential processing approaches, and XML-based
communication protocols. At the end, it discusses key performance-related XML
processing drawbacks.

Księga1.indb 180 2010-03-23 11:09:06

	 Efficient XML interchange	 181

2.1. XML information set

From the structural point of view, XML imposes a hierarchical document
structure, composed of entities, attributes, and values, denoted using the mechanism
of textual tags. Therefore, a typical XML document consists of two major kinds
of data: the markup and the actual content. The standard defines only a basic set
of core syntax rules, which must be strictly satisfied for the document to reach the
lowest level of compatibility, i.e., the so-called well-formed status. It is possible to
make references between elements located inside the same document or to any other
document or resource available on the Internet. The specification of the abstract data
model of an XML document, i.e., the set of all valid information items, is called
XML Information Set [W3C XML…].

In the real-world data computing scenarios, it is usually required to define the
complete set of syntactical rules, e.g., to indicate precisely which elements are
obligatory, which attributes are available and apply to them, in what order should be
declared, etc. This kind of information is defined by the data schema and required
in the validation process. As it is usually stored in a separate file, a valid XML
document, besides having its structure organized accordingly, has to contain a direct
reference to a proper schema file.

2.2. DOM and SAX

There are two common approaches for processing XML documents. The first
one is the Document Object Model (DOM) which, according to its authors, is
a multi-platform, language-independent interface standard allowing for dynamic
representation, access, and update of document’s content, style, and structure [W3C
Document…]. The main idea in this case is based on the object-oriented representation
of the whole data structure which can be easily accessed in a standardized way on
many different programming platforms. The second approach is called Simple API
for XML (SAX) and implements serial access based on event-driven processing
paradigm. The programmer defines a list of methods and corresponding events. If
a defined event occurs during the parsing process, the execution of required method
is triggered with corresponding initial parameters.

In the DOM approach, a special processing programme called DOM parser per-
forms a comprehensive analysis of the document and creates a representation of
its hierarchical data structure in memory. The programme that originally requested
access to the XML data operates on this intermediary structure, and after the last
operation has been finished, the result of all the performed actions is incorporated
back to the physical document. This approach is especially effective when the pro-
cessing procedure consists of many repeating operations performed on a single XML
document, that have to be executed inconsecutively or in random order. However, in
the opposite situation, when there is only one-pass and/or sequential processing, the

Księga1.indb 181 2010-03-23 11:09:06

182	 Andrzej Niesler

SAX approach is much more effective as it omits the time and memory consuming
procedure of building the hierarchical intermediary structure for object-oriented data
representation in memory. Therefore, both approaches are valid and prove useful in
different processing scenarios. The difference in performance is the result of correct-
ness of selection and adjustment to the circumstances, rather than implementation of
sequential or tree-based data processing algorithms.

2.3. XML-based communication protocols

As it was already stated, XML is not only used for structuralizing documents,
but also as a foundation for many modern communication protocols, standards, lan-
guages, and platforms, e.g., Web Services Architecture [W3C Web…]. Besides the
standard actors in the data interchange scenario, i.e., sender and receiver, there may
be also many various additional processing points on the path between the indica-
ted two. This includes common middleware solutions with the message-level ro-
uting functionality, which must analyze the message to find its recipient, or any
other processing unit that has to examine in any way part of the transmitted data be-
fore passing it on. With the constantly growing popularity of web-based applications
and systems, the amount of network traffic generated by the XML-based message
interchange has significantly increased in recent years and, in consequence, affects
bandwidth utilization and the overall networking performance.

Applying XML on the communication protocol level is alluring and convenient
for more and more companies, as it fits perfectly in the single information model
paradigm. However, the textual verbosity and processing requirements may in many
cases be the cause of additional spending on CPU power and/or network infrastructure,
which can be substantial and not lead directly to any instant business advantages or
benefits. Moreover, unconsidered XML adoption may often result in occurrence of
unexpected performance problems and limited scalability in the future. This may
concern many various integration scenarios and platforms. Particularly vulnerable are
those based on wireless networks and mobile devices, with limited processing power,
storage capacity, operating memory, and, last but not least, battery life constraints
[Kangasharju et al. 2007]. The situation becomes even more critical when considering
the usage of any additional processing functionalities, like advanced authentication
schemas, digitally signed message envelopes, or other important security features.
Although many of these solutions are now under development, none of them has
actually gained as high a level of acceptance as the XML standard itself.

2.4. XML performance drawbacks

To summarize the discussed characteristics, several XML performance draw-
backs can be pointed out. One can assign different priorities to them depending on
the particular circumstances, but they all are valid and should be taken into conside-

Księga1.indb 182 2010-03-23 11:09:06

	 Efficient XML interchange	 183

ration in almost every data processing and integration scenario. The first one is re-
lated to the textual verbosity of XML documents, which results in substantial in-
crease of data that have to be stored, transmitted, and processed. It affects stora-
ge capacity, bandwidth, and operating memory, and can be problematic in wireless
computing environment, as well as in any other, as the size of XML document can
nowadays easily reach a few dozens of gigabytes. Besides the verbosity, the textual
form itself is in many cases a serious processing drawback. Many applications ope-
rate on numerical data types or binary large objects, which have to be encoded and
decoded to or from the textual representation every time the data are processed. This
can yield an unnecessary latency in CPU-intensive computational tasks.

Another group of performance drawbacks is related to the XML processing
model. In the traditional approach, the entire document has to be read before it can
be processed. There are several phases that have to be completed in order to verify
whether the document is well-formed in terms of core XML syntax or structurally
valid according to a schema. That involves a lot of textual parsing which substantially
slows down any data processing and is one of the most common bottleneck and
scalability problems [Leventhal 2004]. Bearing in mind the previously mentioned
increasing verbosity issue, this can lead to even bigger reduction in performance, as
in many cases it is impossible to achieve processing goals in a single run due to the
document size and restrictions in operating memory usage.

3. Binary representation

The addressed processing problems have been subjected to investigation in many
recent scientific studies. Some of the proposed solutions even succeeded commer-
cially. Almost all of them are based on two main concepts: lossless data compression
and binary serialization. All these efforts lead towards a common standard for binary
representation of XML data. This section discusses the major approaches and com-
ments on the advantages and disadvantages from the perspective of XML processing
efficiency.

3.1. Lossless data compression

The usual approach to solving the verbosity and limited bandwidth problem is
to compress the data while transmitting on the network. The corresponding field of
research is lossless data compression, based on C. Shannon’s information theory and
D. Huffman’s statistical modelling for data encoding algorithms. Due to the textual
representation of XML documents, many dedicated text compression methods can
be applied. However, in most cases it is sufficient to use one of the available general-
purpose compression tools, e.g., BZIP2 [Seward 2007], GZIP [Deutsch 1996], or
ZLIB [Deutsch, Gailly 1996]. The interchange process starts with compression of
the document, then the compressed data are transmitted over the network and de-

Księga1.indb 183 2010-03-23 11:09:06

184	 Andrzej Niesler

compressed by the receiver to the original, i.e. textual, form. This approach solves
the bandwidth overload problem, unfortunately at the cost of additional process-
ing time spent on compression and decompression. Moreover, during the transmis-
sion phase the data cannot be easily accessed or updated without executing the full
process of decompression. This may cause additional problems to the systems that
deliver content-based processing functionality on higher layers of the Open System
Intercommunication Reference Model (OSI), e.g., LSI Tarrari Content Processors.

A much more effective approach is based on separating structure compression
from content compression. In this case a better compression ratio can be achieved
by taking advantage of the schema and data type information [Sundaresan, Moussa
2002]. This kind of XML-related compression methods has been introduced in such
research projects as, e.g., XMill [Liefke, Suciu 2000] and Millau [Girardot, Sunda-
resan 2000]. The Millau architecture, depicted on Figure 1, is based on two compres-
sed streams of data: one for encoded structure and the other for compressed content.
The input can be either a pure XML data stream or a hierarchical DOM structure.

Encoded
s

XML
Compression

XML
Decompression

tructure stream

Compressed
content stream

XML

DOM

XML

DOM Tree

SAX

Figure 1. Architecture of the Millau Compression-Decompression System

Source: [Sundaresan, Moussa 2002, p. 683].

The compactness and size reduction of encoded XML data is achieved without
any loss of functionality or semantic information because the Millau format is an
extension of the WAP Binary XML format [WAP Binary... 1999]. However, some
of the meta-information is removed in the encoding process, hence it is not always
possible to generate the exact copy of the original input document on the output of
the Millau system.

3.2. Infoset binary serialization

The experience with the Millau project shows the right direction on the path
toward efficient XML processing. The best results can be achieved through a proper
combination of content-aware data compression and compact encoding of the docu-
ment structure. From the technical point of view, this approach amounts to the quest
for a better serialization of XML, i.e., a more efficient infoset binary encoding that

Księga1.indb 184 2010-03-23 11:09:06

	 Efficient XML interchange	 185

would replace the original text-based representation. An example of such specifica-
tion is ITU-T Rec. X.891 [ITU-T...]. Contrary to the generic compression methods,
it optimizes both: the document size and the processing speed. The transformation
is fully reversible, as there is no information loss during the conversion process con-
ducted by a dedicated parser. The reduction in document size is significant, but not
as good as the one delivered by the “true” compression methods based on statistical
probability of the symbol’s occurrence. However, considering the fact that there is
no additional processing power required, this is a very reasonable trade-off.

As Fast Infoset is not the one and only available approach for binary serializa-
tion of XML information set, its implementation on a large scale is not as easy as in
the case of the standard XML. To solve the emerging problem of compatibility and
lay the foundation for future XML development, the Worldwide Web Consortium
(W3C) started in 2005 a research to determine the set of key properties that such
a standard should possess. As a result, AgileDelta’s Efficient XML Interchange [Ef-
ficient XML...] specification was selected as a best solution and recommended for an
open international standard.

Table 1. Minimum binary XML requirements

Property
Must support Must not prevent

Directly readable and writable Processing efficiency
Transport independence Small footprint
Compactness Widespread adoption
Human language neutral Space efficiency
Platform neutrality Implementation cost
Integratable into XML stack Forward compatibility
Royalty free
Fragmentable
Streamable
Roundtrip support
Generality
Schema extensions and derivations
Format version identifier
Content type management
Self contained

Source: http://www.w3.org/TR/xbc-characterization.

In comparison to Fast Infoset, EXI delivers a better compactness, because it of-
fers a stronger support for schemas and take advantage of the document vocabulary
analysis. There is also an improvement in compression ratio due to applied bit align-

Księga1.indb 185 2010-03-23 11:09:06

186	 Andrzej Niesler

ment instead of byte alignment implemented in Fast Infoset format. Table 1 presents
the minimum set of requirements established by the W3C Working Group for XML
binary standard.

There are two main categories: “must support” and “must not prevent”. Some of
the properties concern more the processor implementation than the standard itself.
The second category contains some elective properties which can be traded off for
any other improvements, but the standard cannot prevent those requirements.

3.3. Integration with existing XML applications

Binary serialization of XML information set increases processing performance
and reduces the document size. However, the benefits are usually achieved at the
expense of losing human readability and returning to the tight-coupled programming
interfaces. The ability to read the transmitted data without any special tools or drivers
is still essential from the programming or debugging points of view. Maintaining
the property of loose coupling on the communication level is also very important
in terms of supporting the information architecture flexibility. Finally, there is an
issue of integrating new processing scheme with the existing XML applications. If
it is not possible to implement the new binary processing functionality in a legacy
solution, the encoded document has to be transformed back to the textual XML form.
In today’s heterogeneous, distributed computing environment, it is very common
to provide an automatic backward compatibility in order to provide a maximum
openness and integration readiness.

To address these issues, some solutions offer a hybrid approach that combines
the standard textual XML document and a binary extension to increase the proces-
sing speed. A good example of such an approach is XimpleWare’s Virtual Token
Descriptor XML (VTD-XML) format. It introduces a new XML processing mo-
del based on non-extractive tokenization, where XML tokens representation is done
by binary encoding with 64-bit integer VTD records that encode the token length,
starting offset, type, and nesting depth [Zhang 2006]. It is a 100% processing per-
formance-oriented solution and the total size of transmitted data is always larger
than the size of the original document, due to the enclosed binary representation of
pre-processed data structure.

4. Integration scenarios and performance analysis

This section presents selected use cases of XML in business integration sce-
narios. It discusses the possibilities of increasing processing effectiveness through
application of the described data compression and binary encoding techniques. The
section ends with a brief performance analysis, comparing the discussed XML inter-
change technologies.

Księga1.indb 186 2010-03-23 11:09:06

	 Efficient XML interchange	 187

4.1. Business warehouse data aggregation and loading

One of the common real-world business scenarios with XML data interchange
and processing is the data aggregation and loading process for a corporate warehouse.
In the use case published by SAP AG, this kind of aggregation is performed by
a Point-Of-Sale (POS) Server which receives data from individual POS Interface
applications or other intermediary POS Servers. For large retailers with hundreds
of stores, the number of receipts per day can easily reach a level of about several
millions. The local POS Server aggregates all sales items of a store and sends it in
batch mode during closing hours to the central server. Using the standard XML 1.0
data encoding, this results in several gigabytes of data which have to be transmitted
to the POS Server in a relatively short time.

In this scenario applying generic compression methods does not solve the
problem. On the contrary, the overall processing time increases, as the gain achieved
from shorter transmission time is marginal and negligible. The binary encoded XML
infoset is a better solution, however, it imposes the upgrade of software in the parsing
layer in all the data collection points. All tools above this layer in the processing
stack can remain unchanged.

4.2. Enterprise web services

A very common integration scenario concerns the situation, when there is a cer-
tain number of enterprise systems that communicate with each other using one or
more binary protocols, such as Remote Procedure Call (RPC), Remote Method Invo-
cation (RMI), Distributed Component Object Model (DCOM), or Common Object
Request Broker Architecture (CORBA). In the age of ubiquitous integration that
exceeds the boundaries of a single enterprise, many companies are trying to imple-
ment the web services architecture, in order to reach a higher level of flexibility and
interoperability with present and potential business partners. However, as the web
services technology stack is based on XML, the transition from binary protocol to
text-based SOAP and WSDL can lead to a significant degradation in performance.
Therefore, in this integration scenario, the reasonable option is full binary encoded
XML infoset for enterprise inner messaging infrastructure and a standard generic
textual serialization for the outbound messaging interoperability.

Standard XML representation and processing model confines the performance
and scalability of web services. Binary encoding can significantly increase the exe-
cution speed and throughput of web services architecture. It should also concern
other performance-related issues, like, e.g., efficiency of data-binding and mapping
of XML data to methods and methods parameters, or rapid mechanisms for ensuring
message confidentiality, authentication, and integrity [Leventhal 2004, p. 12]. The
standard XML interface can be established for outbound connectivity in order to pro-
vide less effective, but truly dynamic, loosely-coupled web services architecture.

Księga1.indb 187 2010-03-23 11:09:06

188	 Andrzej Niesler

4.3. Performance analysis

There are many various factors that determine performance of a particular XML
processing approach. The difference can be significant even between two implemen-
tations of the same binary format and parsing algorithm. The thorough performance
analysis of every major XML processing technology, especially involving conside-
ration of various document sizes and levels of complexity, is beyond the scope of
this paper. However, for the purpose of general comparison of the discussed solu-
tions, some relative benchmarking tests will be provided. The aim is to juxtapose the
performance of discussed four major technologies, i.e., standard text-based XML,
XML compressed with GZIP, Fast Infoset, and Efficient XML (EXI). That will al-
low ranking the results, assessing the differences between them and their order of
magnitude.

The two common performance measures are processing speed and compression
ratio. Figure 2 presents the results of processing a set of real-world large web services
SOAP messages. The fastest solution in the group is Efficient XML which operates
up to 10 times faster than XML in case of small size messages, up to 15 times with
medium size, and up to 35 times with large messages. Fast Infoset is on the second
place and at least 2 times slower than Efficient XML. The smaller message size, the
bigger advantage of EXI processing speed. GZIP compression does not have, as one
would obviously expect, any noticeable impact on the processing speed, because the
output after decompression is exactly the same as in case of standard XML.

Figure 2. Processing speed of large SOAP messages

Source: www.agiledelta.com.

Figure 3 depicts the differences in compression ratios of the same large SOAP
messages. In this case taller bars represent smaller messages. As one can notice, Ef-

Księga1.indb 188 2010-03-23 11:09:07

	 Efficient XML interchange	 189

ficient XML yields up to 90 times smaller output than standard XML for small size
messages, up to 118 times smaller for medium size, and up to 120 times smaller for
large messages. On the second place is GZIP, which produces several times smaller
output than uncompressed XML, but is still 10 to 14 times bigger than Efficient
XML. Fast Infoset is located on the third place with up to 4 times smaller output
than standard XML. The huge advantage of Efficient XML over Fast Infoset in pro-
cessing speed is only to a certain extent related to the smaller output message size.
According to the AgileData, it can operate at over twice the speed when optimized
for speed over size. This can be extremely useful if processing speed is the primary
implementation goal.

Figure 3. Compression ratios of large SOAP messages

Source: www.agiledelta.com.

The test results may vary in different computing circumstances, e.g., an opti-
mized Fast Infoset driver could probably improve a little bit its processing speed.
However, the order and the differences seem to be reliable. The Worldwide Web
Consortium conducted extensive benchmarking of many binary XML technologies
and in every considered test group and every use case, the Effective XML achieved
the best result in compression ratio, and was among the fastest solutions in terms of
processing speed.

5. Conclusion

XML specification was designed with the main focus on flexibility, easiness of
use, and human readability. Nowadays, it is used in many different data interchange
scenarios, where there is less need for human interaction and a very strong need for
scalability and performance. Application of generic compression methods can solve

Księga1.indb 189 2010-03-23 11:09:08

190	 Andrzej Niesler

the limited bandwidth and communication latency problems. However, in most cases
it is achieved at the cost of degraded performance and functionality. There is a need
for an efficient way to exchange and process XML documents, and this efficiency
can be achieved through the binary serialization of XML information set. The
research conducted by the Worldwide Web Consortium resulted in standardization
of XML binary encoding formats, which now can be freely implemented and
utilized in business and non-business solutions. The analysis of XML use cases in
common integration scenarios demonstrates the importance of binary XML, as a key
technology to provide the new level of efficiency. Performance analysis of such
solutions as Efficient XML indicates a great economic potential in this approach.

References

Deutsch P. (1996), GZIP file format specification version 4.3, RFC 1952, http://www.gzip.org/zlib/
rfc-gzip.html.

Deutsch P., Gailly J. (1996), ZLIB compressed data format specification version 3.3, RFC 1950, http://
www.gzip.org/zlib/rfc-zlib.html.

Efficient XML Interchange Working Group, http://www.w3.org/XML/EXI/.
Girardot M., Sundaresan N. (2000), Millau: An encoding format for efficient representation and ex-

change of XML over the Web. Proceedings of the 9th WWW Conference, Amsterdam, Netherlands,
Computer Networks, Vol. 33, Issues 1-6, June, pp. 747-765.

ITU-T Rec. X.891, http://www.itu.int/rec/T-REC-X.891-200505-I/en/.
Kangasharju, J. et al. (2007), XML messaging for mobile devices: From requirements to implementa-

tion, Computer Networks, Vol. 51, No. 16, pp. 4634-4654.
Leventhal, M. (2004), Is now the time for binary XML? Report on current W3C activity, [in:] XML 2004

International Conference and Exhibition, Washington D.C., http://www.gca.org/xmlusa/2004/.
Liefke H., Suciu D. (2000), XMILL: An efficient compressor for XML data, [in:] ACM SIGMOD

Record, Vol. 29, Issue 2 (June 2000), Eds. W. Chen, J. Naughton, Ph. A. Bernstein, ACM
New York (http://portal.acm.org/citation.cfm?id=335191&coll=GUIDE&dl=GUIDE&type=
issue&idx=J689&part=newsletter&WantType=Newsletters&title=ACM%20SIGMOD%20
Record&CFID=76448438&CFTOKEN=9808248), pp. 153-164.

Seward J. (2007), BZIP2 and libbzip2, version 1.0.5: A program and library for data compression,
http://www.bzip2.org/.

Sundaresan N., Moussa R. (2002), Algorithms and programming models for efficient representation
of XML for Internet applications, Computer Networks, Vol. 39, No. 5, (http://www.informatik.
unitrier.de/~ley/db/journals/cn/cn39.html#SundaresanM02), pp. 681-697.

W3C Document Object Model, http://www.w3.org/DOM/.
W3C Web Services Architecture, http://www.w3.org/TR/ws-arch/.
W3C XML Information Set, http://www.w3.org/TR/xml-infoset/.
WAP Binary XML Content Format, W3C Note 24 June 1999, http://www.w3.org/TR/wbxml/.
Zhang J. (2006), Simplify XML processing with VTD-XML. A new option that overcomes the prob-

lems of DOM and SAX, JavaWorld, March.

Websites

http://www.w3.org/TR/xbc-characterization.
www.agiledelta.com.

Księga1.indb 190 2010-03-23 11:09:08

	Efficient XML Interchange: Binary Encoding in Data Processing and Integration
	1. Introduction
	2. XML processing model
	2.1. XML information set
	2.2. DOM and SAX
	2.3. XML-based communication protocols
	2.4. XML performance drawbacks

	3. Binary representation
	3.1. Lossless data compression
	3.2. Infoset binary serialization
	3.3. Integration with existing XML applications

	4. Integration scenarios and performance analysis
	4.1. Business warehouse data aggregation and loading
	4.2. Enterprise web services
	4.3. Performance analysis

	5. Conclusion
	References

