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QUANTILE ESTIMATION OF PROBABILITY DISTRIBUTIONS 
FOR MAXIMUM DAILY PRECIPITATION  

AND SHORT TIME SERIES OF OBSERVATIONAL DATA  
FOR ENGINEERING DESIGN 

Knowledge of the distribution quantiles of precipitation maximum amounts is required in many 
fields concerning engineering design or hydrological risk assessment. When the number of observa-
tion years is small, it is not possible to fit the probability distribution function to maximum values 
and to calculate quantiles. This paper presents a procedure for calculating the quantiles of the proba-
bility distribution of daily precipitation maximums over a year using stochastic convergence of dis-
tributions. The distribution series of random variables, defined based on the cut-off sample with the 
elimination of the smallest values, made it possible to determine the quantiles for times series of or-
der α of the distribution. These values were approximated by a function from the exponential class 
and then extrapolated to obtain quantiles for the distribution of maxima. The resulting quantile esti-
mates, for short time series, were corrected using the kurtosis of the data used for estimation, which 
leads to a very large error reduction. 

1. INTRODUCTION 

Urban development leads to a constant expansion of urban areas, which consequent-
ly by anthropogenic activities lead to changes in the environment, especially in the at-
mosphere. As a result, there are greater amounts of precipitation recorded in urbanized 
areas than in non-urban areas. Surface runoff is much higher and retention, evaporation, 
and underground runoff are much lower. Already today it is estimated that about 25% of 
the annual sum of the amount of precipitation can be caused by the influence of the city, 
and precipitation may increase with urban expansion and climate change [1–6, 10, 16]. 
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The planned infrastructure, drainage systems, especially for new residential areas must 
be properly designed and dimensioned taking into account the precipitation potentially 
exceeding the capacity of the drainage system, local land slopes or areas with sealed 
surface and limited retention [7, 8] – regardless of the current problem in Poland, 
which is the use of rainwater and environmental pollution. Thus, information on the 
probability of occurrence of high or extreme daily precipitation in urban areas is very 
important in the broad context of planning, dimensioning, construction, and operation 
of technical infrastructure, but also in minimizing the effects of precipitation floods or 
expert valuation of potential damages [3, 4, 11, 12, 15, 17].  

On the other hand, in urban agglomerations, there are no long-term series of meteoro-
logical observations which would allow proper estimation of the probability of occurrence 
of extreme daily amounts of precipitation. Moreover, even longer observation series are of 
limited use for fitting probability distributions and determining their parameters. This is 
due to changes over the years in the amount and structure of precipitation caused by poten-
tial climate changes, relocation of meteorological stations, or changes in measurement 
techniques [12, 14, 15]. It is also worth noting that in the issues described above, the 
choice of distribution is less important than the proper estimation of quantiles of distribu-
tions of random variables (i.e., fitting the tails of the distribution) illustrating probabilities 
of high and extreme precipitation appearance [25, 26].  

This paper considers the problem of estimating quantiles of probability distribu-
tions for short observation series. The research is an extension of earlier work [15] 
based on simulation calculations using a meteorological data generator [18–20]. How-
ever, in the presented study, calculations were performed on real data – daily precipi-
tation over 30 years of observation (1989–2018) for Wrocław using independent tests 
and cross-validation techniques. An innovative method was also introduced to correct 
the error of maximum precipitation quantiles approximation, for short time series, 
using a linear function and kurtosis as a cut-off parameter of insignificant errors. The 
procedure presented was applied to estimate the probability distribution quantiles of 
maximum daily precipitation for annual periods. 

2. METHOD FOR ESTIMATING QUANTILES  
OF EXTREME PRECIPITATION DISTRIBUTIONS 

The estimation of maximum daily precipitation distributions quantiles as a random 
variable Xmax is based on the construction of probability distributions series of random 
variables {Xk}, each successive distribution of which is formed based on the elimina-
tion of an increasing fraction of the smallest values in each year. In the notation adopt-
ed for the random variable Xk, the symbol k (0 ≤ k < 100) denotes the fraction of re-
moved observations from the sample, which is used to define the probability distri- 
bution. For example, the random variables X0, X50, X95, X99 indicate that probability 



 Quantile estimation of probability distributions for engineering design 37 

distributions were constructed using, all observations with recorded precipitation, 
50%, 5%, and 1% of those with the highest values in each year used together to fit the 
distribution or determine the distribution parameters. The random variables of the 
series {Xk} may be defined for any period: a year, a summer period, a month, or other. 
According to the procedure described above, the series {Xk} is expected to converge 
stochastically to the distribution Xmax.  

Since in practice the sample is limited to n years, where n may be relatively small, 
e.g., 5–15 years, the question arises of accurately determining the probability distribu-
tion of the random variable Xmax or (more importantly) its quantiles of a given order  
– based on a series of distributions of random variables {Xk}.  

Thus, the task can be reduced to determining the quantile Xmax,α of order 1 – α for 
the distribution of the random variable Xmax based on a series of quantile values {xk, α} 

that is the limit max ,100
lim .kk

X x α→
=  

The quantile value Xmax, α for a given α can be estimated by extrapolating a func-
tion of the form:  

 ( ) ( )1 2 3expf x b b b x= + +   (1) 

where b1, b2, b3 are the estimated parameters for the approximated values of (k, xk, α)  
– as shown in Fig. 1.  

 
Fig. 1. approximation of quantiles xk,α determined from the distribution of random variables Xk  

(X95, X96, …, X99.5) and the approximation of the quantile Xmax, α of the Xmax distribution  
with the quantile pred

max,x α calculated using the exponential function (X axis shows the percentage  
of the k removed smallest values of the amount of precipitation in the considered period,  

Y axis – the values of the quantile of fixed order 1 – α for the distributions of random variables Xk) 
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Function fitting was performed based on the method of least squares verifying the 
condition that the approximation of the function f(x) does not “over-parameterize” the 
equation [19]. This means keeping the right proportions between the number of obser-
vations and the number of parameters and verifying the function fit using a cross-
validation test with the possibility of approximation on an extended set of points  
(k, xk,α) with additional k values (the removed fraction of observations). 

3. SELECTION OF THE PROBABILITY DISTRIBUTION 
OF MAXIMUM PRECIPITATION AMOUNTS  

At the first stage, using the assumption of stochastic convergence of maximum 
distributions, the optimum theoretical distribution was selected, which could be used 
to describe the distribution of successive fractions of the observed highest daily pre-
cipitation [15]. In other words, the theoretical distribution that best represents the 
“tail” of the maximum precipitation distributions and shows the greatest conformity 
with the values extrapolated by the function (1) was selected. The basic rationale for 
the choice of distributions was based on previous simulations performed on randomly 
generated data [15, 19, 23] for 500 years, that is, for 182 500 daily “observations”. 
According to these simulations, four distributions were chosen to estimate the quan-
tiles of the maximum values: empirical, Gamma, GEV, and Pareto. The empirical 
distribution was treated as an elementary one, being a background for comparison with 
the other distributions, while the Gamma distribution was treated as a typical distribu-
tion used in determining precipitation for variously defined random variables [25]. 
From the family of extreme value distributions – EV (Gumbel, GEV, Weibull), de-
scribed by Gumbel [24] the GEV distribution was selected as the one that in hydrome-
teorology corresponds to descriptions of processes such as the occurrence of maxi-
mum rainfall or floods during the year or the lowest flows. As a fourth distribution, 
the Pareto distribution was chosen – as a very flexible and physically valid distribution 
for modelling many phenomena, especially events that exceed a certain threshold  
value [25]. 

For the empirical distribution, the empirical quantiles of the corresponding frac-
tions were determined, the exponential function (1) was fitted, and the quantile values 
of the maxima were extrapolated using this function. For the other distributions, in-
stead of empirical quantiles, quantiles were determined from the Gamma, GEV, and 
Pareto theoretical distributions fitted to the empirical distributions of the fractions.  

For quantiles of the order 1 – α, determined from the empirical distribution and 
approximated using an exponential function, underestimations occur in each of the 
cases considered: α = 0.1, 0.05, 0.02, 0.01 (Fig. 2). The differences do not change mono-
tonically, but it should be remembered that empirically determined quantiles are subject to 
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significant error when the sample is small and the number of data is limited. The differ-
ences in the quantile value of the maxima extrapolated by the exponential function and the 
empirical value range from 1 to 8. This means that according to the definition: Pr(Xmax > x) 
= 1 – 𝛼 for a given probability 1– 𝛼 the differences reach 8 mm (per day).  

 
Fig. 2. Approximation of the quantile values xk,α (k = 92, ..., 99; α = 0.1, 0.05, 0.02, 0.01)  

for order 1– α and approximation of the quantile value Xmax, α (●) of the distribution of maximum daily 
precipitation amounts in a year by an exponential function for four probability distributions 

The Gamma distribution also underestimates the quantiles of maximum precipita-
tion amounts. However, at a lower level and with monotonicity as the 1 – α quantiles 
increase. On the other hand, when the GEV distribution is chosen, a large variation is 
observed when fitting the tail distribution which causes the effect of stochastic con-
vergence of the extreme value distributions to be lost and this is the rationale for using 
the less sensitive Pareto distribution. When the Pareto distribution was used, the best 
results were obtained for the goodness of fit of the quantiles determined from the dis-
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tribution and those estimated using the approximation function. This fact is confirmed 
in the literature, as this distribution is also often used to model the tails of other ran-
dom variables (e.g., studies of financial markets indicate that the use of GPD (general-
ized Pareto distribution) is a very good choice in extreme risk analysis). In addition, 
the quantiles of the maxima are consistent with the quantiles derived from the empirical 
distribution, as confirmed by using the Chi-square and Kolmogorov–Smirnov goodness of 
fit test. Comparison of quantiles determined from the probability distributions and 
those estimated using the exponential function are given in Table 1.  

T a b l e  1  

Table 1. Comparison of quantiles pred
max,x α calculated using an exponential function  

for four probability distributions and quantiles pdf
max,x α  determined from the distributions  

of maximum daily precipitation Xmax according to the equation ( )pdf
max max,Pr 1X x α α> = −  

Distribution 
α for 

quantile order 
1 – α 

pdf pred
max, max,x xα α−  

pdf pred
max, max,

pdf
max,

100%
x x

x
α α

α

−
×  

Empirical 

0.10 
0.05 
0.02 
0.01 

6.2 
5.3 
8.2 
0.8 

10.6 
8.6 

11.1 
1.0 

Gamma 

0.10 
0.05 
0.02 
0.01 

5.1 
4.4 
3.6 
3.0 

9.0  
7.4  
5.6  
4.5  

GEV 

0.10 
0.05 
0.02 
0.01 

3.3 
1.2 

–4.8 
–16.2 

5.7  
1.7  
–5.7  

–15.7  

Pareto 

0.10 
0.05 
0.02 
0.01 

4.4 
2.1 
0.1 

–0.8 

6.3  
2.8  
0.07  
–1.0  

 

The results presented in this section indicate that the quantile estimates of the dis-
tributions (right tails) for real data are better for the Pareto distribution than those for 
other distributions (in particular, for the Gamma distribution used in the paper [15]). It 
was also found in the calculations that the GEV distribution for good quantile estima-
tion requires a certain minimum number of observations to estimate the distribution 
parameters and is therefore not suitable for use with small samples. It is worth noting 
that Hosking et al. [13] observed a similar effect indicating that good quantile esti-
mates are obtained when estimating the distribution parameters for more than 50 ob-
servations. 
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4. EVALUATING THE DISTRIBUTION QUANTILE ESTIMATION 
USING A CROSS-VALIDATION TEST  

The distribution quantiles estimation procedure for maximum precipitation amounts 
for short time series with an exponential function was verified using real data with 
a Pareto distribution and a leave-(n – k)-out version of the cross-validation test. Sub-
sequently, k-year series (k = 5, 6, ..., 20) were repeatedly created by moving the k-year 
window by one-year increments in the 30-year observation series. In this way, 26  
5-year sequences, 25 6-year sequences, ..., 11 20-year sequences were created. 

Short time series were used to evaluate the quantile estimates of the maxima using 
errors: absolute and relative. The quantile of the appropriate order estimated from the 
fitted Pareto distribution for maximum precipitation and over 30 years of observations 
(1989–2018) for Wrocław, was used as the reference quantile. For each k-year series, 
the procedure of estimating Xmax, α quantiles of order 1 – α was applied and the mean 
error and its standard deviation were estimated. Changes in mean errors for successive 
k-year periods of calculated 1– α quantiles of both methods (approximation using the 
exponential function and using Pareto distribution) are shown in Fig. 3, while relative 
errors are shown in Fig. 4 and, in addition to relative errors, standard deviations of 
error differences are shown in Fig. 5.  

 
Fig. 3. Mean absolute errors for the quantile approximated using the exponential function (Exp) 

and the quantile approximated using the Pareto distribution  
(X axis indicates time series (years) for which the quantile values were determined) 
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Fig. 4. Mean relative errors for the quantile approximated using the exponential function (Exp)  

and quantile approximated using the Pareto distribution 
(X axis indicates time series (years) for which the quantile values were determined) 

 
Fig. 5. Standard deviation of the absolute error for the quantiles approximated 

using the exponential function (Exp) and the Pareto distribution (X axis indicates time series  
(years) for which the quantile values were determined) 
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The analysis of Figs. 3–5 reveals two important facts: 
• For all quantiles considered and for short time series of observations up to 10 years, 

both the mean absolute errors and the relative errors are smaller for the estimates using 
the exponential function, although in many cases the differences are small. 

• For all considered periods of years, the standard deviation of errors is smaller 
for the method of estimating quantiles using an exponential function. This fact is im-
portant in the choice of method, indicating the stability of the prediction. 

As a result, this means that approximation and prediction of quantiles using ex-
trapolation of the exponential function is more favourable. 

 
Fig. 6. 95% two-sided confidence intervals for the estimated quantiles using the exponential function  

for series of observations (the dotted lines are the reference quantiles) 

Figure 6 shows the 95% two-sided confidence intervals for the estimated quantiles 
using the exponential function. The graphs illustrate the variation of the width of the 
intervals depending on the number of years of the time series as well as the estimated 
quantile and are a practical, important piece of information providing an interval esti-
mate of the quantile of the maximum precipitation distribution. 

5. APPROXIMATION ERROR CORRECTION FOR ESTIMATION  
USING THE EXPONENTIAL FUNCTION 

The results of estimating the quantiles of the distributions using the exponential 
function (Figs. 3 and 4) indicate a strong underestimation of the quantiles of the max-
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ima for short series of observations. These estimates can be improved by shifting the 
quantile by a fixed value. Note that the corrections make sense for a time series lasting 
at most 13 years when the error values Err(v) are smaller than those obtained using the 
Pareto distribution. 

At the same time, for time series from 5 to 13 years, the mean errors decrease lin-
early, and the value of the absolute error can be described approximately by a function 
of the form (Figs. 3 and 4): 

 ( ) 8Err 23
5

v v= −   (2) 

where v is the time period expressed in years. 

 
Fig. 7. Course of kurtosis K(v) (upper curve) and absolute error Err(v) (lower curve) 

 for 198 consecutive v = 5-, 6-, ..., 13-year sets 

Next, we can observe the dependence of the kurtosis K(v) of the precipitation (Fig. 7) 
for individual v = 5-, ..., 13-year time series and the computational error Err(v). This figure 
illustrates the behaviour of absolute error and kurtosis of 198 series, from 5 to 13 years 
created based on a 30-year reference set (1989–2018), according to the previously 
described rule (first 5-year set – years 1989–1993, second 5-year set – years 1990 
–1994, ..., 26th 5-year set – years 2014–2018, first 6-year set 1989–1994, ..., last ana-
lyzed time series, i.e., 18th 13-year set – years 2006–2018).  

Analysis of Fig. 7 indicates that for a low kurtosis of the series, a high error is ob-
served, and a kurtosis value of 55 can be taken as the cut-off point. This fact allows us 
to determine the corrected values of the estimated quantile in the form:  
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T a b l e  2  

Errors of quantile estimates calculated using the corrected exponential function corr
max,x α  and the Pareto 

distribution Pareto
max,x α  for various time series relative to the reference quantile pdf

max,x α determined  

for the distribution of maximum daily precipitation Xmax according to ( )pdf
max max, Pr 1X x α α> = −  

No. of 
years 

α for 
quantile  

order 1 – α 

corr pdf
max, max,x xα α−  Pareto pdf

max, max,x xα α−  
corr pdf
max, max,

pdf
max,

x x
x
α α

α

−
 

Pareto pdf
max, max,

pdf
max,

x x
x
α α

α

−
 

5 

0.10 
0.05 
0.02 
0.01 

4.3966 
4.6803 
5.5465 
6.1409 

 13.4688 
 14.8964 
 15.7537 
 16.0278 

 6  
7  
8  
8  

20  
21  
21  
22  

6 

0.10 
0.05 
0.02 
0.01 

5.0134 
5.0509 
5.362 

5.9163  

 12.6698 
 13.8715 
 14.5782 
 14.8001 

7  
7  
7  
8  

18  
19  
20  
20  

7 

0.10 
0.05 
0.02 
0.01 

 4.731 
4.8504 
5.3049 
5.7986 

 11.4778 
 12.5762 
 13.2274 
 13.4333 

 7  
7  
7  
8  

17  
17  
18  
18  

8 

0.10 
0.05 
0.02 
0.01 

4.9956 
5.0383 
5.4752 
5.9696 

 10.2089 
 11.2106 
 11.8024 
 11.9884 

7  
7  
7  
8  

15  
16  
16  
16  

9 

0.10 
0.05 
0.02 
0.01 

4.2574 
4.3617 
5.4712 
6.0946 

 9.1543 
 9.8659 
 10.2917 
 10.4284 

6  
6  
7  
8  

13  
14  
14  
14  

10 

0.10 
0.05 
0.02 
0.01 

4.1977 
4.4443 
5.7061 
6.2764 

 7.4780 
 8.1950 
 8.6144 
 8.7452 

6  
6  
8  
8  

11  
11  
12  
12  

11 

0.10 
0.05 
0.02 
0.01 

4.0386 
4.2588 
5.4511 
5.9854 

 5.7692 
 6.4209 
 6.7943 
 6.9066 

6  
6  
7  
8  

8  
9  
9  
9  

12 

0.10 
0.05 
0.02 
0.01 

3.8774 
3.9492 
4.9521 
5.4832 

 4.4298 
 4.8723 
 5.1201 
 5.1927 

6  
5  
7  
7  

6  
7  
7  
7  

13 

0.10 
0.05 
0.02 
0.01 

3.1385 
3.1091 
4.0346 
4.6051 

 3.2854 
 3.3263 
 3.3269 
 3.3201 

5  
4  
5  
6  

5  
5  
5  
4  
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Fig. 8. Mean absolute error for the quantiles approximated using 

 the corrected exponential function (Exp-corr) and by the Pareto distribution distribution  
(X axis indicates time series (years) for which the quantile values were determined) 

 
Fig. 9. Mean relative errors for the quantiles approximated using  

the corrected exponential function (Exp) and by the Pareto distribution  
(X axis indicates time series (years) for which the quantile values were determined) 
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Fig. 10. Standard deviation of the absolute error for the quantiles approximated  
using the corrected exponential function (Exp) and by the Pareto distribution  

(X axis indicates time series (years) for which the quantile values were determined) 

 
Fig. 11. 95% two-sided confidence intervals for quantiles estimated by an exponential function  

and modified using kurtosis for time series of 5-, 6-, ..., 13-year observations 
 (the dotted line is the reference quantile)  



48 L. KUCHAR, E. BROSZKIEWICZ-SUWAJ 

 ( ) ( ) ( )( )corr pred
max, max,

823 55
5
vx v x v K vα α δ = + − < 

 
  (3) 

for v = 5, 6, ..., 13, where δ denotes the zero-one function (1 when the condition (K(v) < 55) 
is satisfied and 0 when not).  

In practice, this means that when estimating a given quantile of the distribution for 
a short sample (5, 6, ..., 13 years), the kurtosis in the sample is small (<55), the ex-
trapolated value obtained from equation (1) then can be improved using equation (3). 

The quantile estimate corr
max,x α  corrected according to equation (3) is characterized 

by absolute and relative errors that on average are twice as small compared to the es-
timates obtained using the Pareto distribution (Table 2). An illustration of the errors 
for the increasing number of years in the sample (evolution of mean absolute and rela-
tive error) is provided in Figs. 8 and 9.  

It is noteworthy that a 12–13-year series of observations is the criterion indicating 
the choice of quantile estimation method. For a set of more than 12–13 years, calculat-
ing the quantile of the distribution by the classical method (selection of the distribu-
tion, estimation of its parameters, calculation of quantiles) is more advantageous, that 
is, it gives a smaller error. From the point of view of potential applications, the error 
variance is very important. As a result of the approximation correction, the standard 
deviation of the absolute error is on average three times smaller (Fig. 10). Consequent-
ly, confidence intervals for mean quantile values are relatively small and can also 
serve as interval forecasts (Fig. 11).  

6. CONCLUSIONS 

In the study carried out on long-term data (1989-2018) for Wroclaw, it was shown 
that for short observation time series (from 5 to 13 years) quantiles of maximum daily 
precipitation heights can be approximated based on extrapolation of an exponential 
function, approximated on values of quantiles of the Pareto distribution obtained for 
truncated samples containing 95, 96, ..., 99.5 percent of the largest observations. 

For short time series, less than 13 years, the average error of quantile approxima-
tion using an exponential function decreases linearly as the length of the series in-
creases and is strongly correlated with the kurtosis of the time series and determine an 
effective procedure for correcting the values of the calculated quantiles. 

The procedure described allows for up to a threefold reduction in the error of 
quantile estimation while at the same time, on average, the standard error deviation is 
three times lower compared to the quantiles determined from the Pareto distribution 
which in the conducted studies was a better fitting distribution than the GEV and 
Gamma distributions.  
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