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Abstract: The model of the multi-conveyor transport system of a conveyor type is given in the article. 

The conveyor is considered as a complex dynamic distributed system. The analytical expression which 

allows calculating linear density and material flow at any point of the transport route for a specific instant 

in time is obtained. The conveyor belt speed and the material flow from the accumulative bunker to the 

input of the conveyor are represented as given time functions. The decision analysis for the steady and 

transient periods of the transport system operation is accomplished. The estimated duration of the transi-

ent process is given. The model is of interest for the design of highly efficient flow control systems for 

long-ranged multi-conveyor transport systems of a conveyor type. 

Keywords: long-ranged conveyor, production line, flow line, PDE-conveyor model, production control system, 

optimal control, accumulative bunker, distributive system, transport system 

1. INTRODUCTION 

The conveyor method is a common way to organize the in-line production in different 

fields of industries. The conveyor is used for both synchronization of technological 

operations and as a storage device. The conveyor transport systems are widespread in 

the mining industry. A characteristic feature of the mining industry is that the input 

flow of material coming in the conveyor transport system is a non-stationary stochas-

tic flow of material (Jeftenić et al. 2010; Kawalec et al. 2021; Bardzinski 2018). This 

leads to a non-uniform distribution of the material along the transport route (DIN 
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22101:2002-08, 2002). At the same time, specific energy consumption for rock trans-

portation can significantly increase due to a decrease in the loading factor of the con-

veyor with material (Semenchenko et al. 2016; Kiriia et al. 2019). The low linear den-

sity of some conveyors cannot be compensated by an increase in linear density on 

other sides due to the maximum ultimate specific load limitations on the belt and the 

power of the electrical drives. That is why, nowadays it is of high importance to de-

velop highly effective algorithms to control the flow parameters of a conveyor, which 

will allow the conveyor system to operate in a mode close to the nominal one, and at the 

same time contribute to the minimum energy consumption for transporting the unit-mass 

rock (DIN 22101:2002-08, 2002; Korniienko et al. 2018). The success of solving this 

problem is determined by the construction of new models that take into account the une-

ven distribution of material along the transport route. The belt speed control makes it 

possible to increase the loading of the conveyor systems and, as a result, to reduce the 

specific costs of electricity. However, due to the result of switching speed mode, longi-

tudinal oscillations occur in the conveyor belt, due to which the risk of failure of the 

conveyor elements increases (Alspaugh 2004; Sanjay et al. 2019; Burduk et al. 2020). 

The problem of the elimination of non-uniform rock distribution along the transport 

route is particularly important for long distance conveyor systems (Mathaba and Xia 

2015). A common solution when designing the long distance conveyor is the division 

of the total transport route into conveyors (Table 1) (Pihnastyi and Khodusov 2017). 

The division allows localizing the control of non-uniform rock distribution within 

a specific conveyor, which greatly simplifies the solution of the problem.  

Table 1. Characteristics of long-ranged conveyor transport systems (Pihnastyi and Khodusov 2017) 

 Length 

[km] 
Conveyors 

Power 

[kW] 

Speed 

[m/sec] 

Capacity 

[t/h] 

Neyveli Lignite Corp., India (2007), (Siemens, 2023) 14 8 2520 5.4 – 

Çöllolar Lignite Open Pit Mine, Turkey (2011), 

(Siemens, 2023) 
17.4 26 46 300 – 9350 

Coarse ore conveyor system Minera Los 

Pelambres, Chile (1998), (Siemens, 2023) 
12.7 3 25 000 – 8700 

Open Cast Mine Reichwalde, Germany (2010), 

(Siemens, 2023) 
13.5 6 19 350 5.5 6000 

From a mine in India to a cement plant 

in Bangladesh (2005), (Conveyorbeltguide, 2023) 
16.5 1 – 6.5 2400 

Sasol’s Impumelelo project in South Africa 

(2015), (Conveyorbeltguide, 2023) 
27.5 1 4900 6.5 2400 

From the Bu Craa mine to the coast at El Aaiún, 

Western Sahara, (Conveyorbeltguide, 2023) 
128.7 11 – – 2000 

The Henderson Coarse Ore Conveying System, 

the North American Continental Divide (2000), 

(Alspaugh, 2004), (Kung, 2004) 

24   3 12 700 4.5 2270 
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This control can be accomplished in two ways: a) conveyor belt speed control 

(Pihnastyi 2018; Lauhff 2005); b) control of inflow amount with the use of the 

accumulative bunker (Hartford et al. 2013; Kramadzhyan et al. 2015; Marais and 

Pelzer, 2008; Wolstenholm 2008). 

The division of the transport route of the long distance transport system will al-

low us to establish the optimal flow parameter control mode for each conveyor, as 

well as to create conditions for the long distance conveyor to operate in the mode 

close to a nominal one, which is determined by the amount of rock inflow at the 

entry of a separate conveyor of the long distance conveyor. The accumulative bun-

ker can be used to reduce the dispersion of the flow rate which enters a separate 

conveyor. In a conveyor system, the flow rate of the conveyed material changes 

due to a change in the speed of the conveyor or a fluctuation in the input material 

flow. Using an accumulative bunker for temporary storage and accumulation of 

material allows us to compensate for these fluctuations and maintain a more con-

stant material flow value. The belt speed control provides switching to the nominal 

mode determined by the average value of the inflow amount to the entry of a sepa-

rate conveyor for a characteristic control period (He et al. 2016; Lauhoff 2005; 

Pihnastyi and Khodusov 2017; Batrec 2023). Here arises the problem of matching 

the average value of the inflow which enters a separate conveyor with the belt 

speed mode. The problem is complicated by the fact that the choice of the belt 

speed control mode and the value of the flow rate at the entry of the conveyor are 

interconnected with the flow parameters of the neighbouring conveyors. The flow 

of the previous conveyor is the inflow to the accumulative bunker, and it depends 

both on the belt speed of the previous conveyor and on the amount of flow coming 

to its entry from the accumulative bunker. In addition, the complexity of the dy-

namic analysis of the flow parameters of the conveyor is superimposed (Kung 

2004). This is manifested in the fact that the transport system of a separate con-

veyor with a moving rock along the transport route is a distributed system with  

a number of limitations, among which the limitation on the maximum separate 

linear load on the conveyor belt and the limitation on the maximum volume of the 

transported mass are important. 

The mentioned unresolved issues related to the description of multi-conveyor 

transport system have determined the goal of this paper, which is formulated as 

follows: improvement of existing models used for the description of long distance 

conveyors. According to the goal, the main objectives of the research are:  a) the 

development of a distributed model of the long distance transport system, each 

conveyor of which is equipped with an inflow accumulative bunker; 

b) the definition of the dependencies between the flow parameters of conveyors of 

long distance transport system; c) time estimate of transient modes of the main line 

operation; d) the evaluation of the directions for future research in the field of con-

veyors modeling. 
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2. THE MODEL OF THE CONVEYOR 

Conveyor systems are a kind of production systems with a flow method of production 

organization. The model of the flow line in the one-moment approximation can be 

represented in the form (Pihnastyi 2018): 

 
   

0 1
( , ) ( , )

0,
t S t S

t S

  
+ =

 
      

0
(0, )  ( ),S S =  (1) 

    
1 1
( , ) ( , ),t S t S


 = ,      

1
( , 0)  ( ),t t =  (2) 

where Sd is a coordinate for the final technological position (the length of the flow line 

in a phase space) (Pihnastyi 2017),   ( )
0

,t S ,   ( )
1

,t S  are linear density and the 

flow of the material at time t for a technological position  0, dS S , ( )S  is a linear 

density of the initial distribution of workpieces, material or semi-finished material 

along the technological route,  
1

( , )t S


  is a given nominal rate of product pro-

cessing at the technological positions, )(t − is flow of material incoming the conveyor. 

The review of flow line models by means of partial diffrential equation (PDE-models) 

is given in (Pihnastyi 2018). The conveyor as a variant of the production line has the 

following feature: products or material that are in diffrent places of the same conveyor 

move with the same speed, which is equal to the belt speed. In this regard, the flow of 

the material   ( )
1

,t S  is determined through the linear density   ( )
0

,t S  of the 

material distribution along the conveyor and the belt speed a = a(t). The conveyor belt 

speed can be either constant or have continuous or stepped control over time (Halepo-

to et al. 2016; Lauhoff 2005; Pihnastyi and Khodusov 2017). This makes it possible to 

write down a closed system of Eqs. (1), in the form: 

   
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 
 
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(3) 

    
1 0
( , ) ( ) ( , ),t S a t t S =    

0,   0,
( )

1,   0,

S
H S

S


= 


   ( ) 1.S dS



−

=  (4) 

The system of Eqs. (3) and (4) is used to model the rock flow which moves along 

the transport route (Pihnastyi and Khodusov 2017). The addend ( ) ( )S t   presup-

poses the input of the material to the technological operation S = 0 with the intensity 

( ).t  The material which is distributed along the transport route with the linear den-

sity  
0
(0, )S  (t/m), is on the conveyor belt at the initial time t = 0. The system of 
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equation is closed with respect to flow parameters  
0
( , )t S  and  

1
( , )dt S . The 

closure condition of Eqs. (4) allows setting up the exact solution for the system of 

Eqs. (3) and (4) with respect to the flow parameters  
0
( , )t S  and  

1
( , )t S . The 

solution of the system of Eqs. (3) and (4) determines the distribution of material 

along the transportation route for an arbitrary point in time t. A schematic diagram 

of the conveyor with an accumulating bunker at the entry is shown in Fig. 1 (Con-

veyorbeltguide 2023). 

 

Fig. 1. Schematic diagram of the conveyor 

The flow of rock enters the conveyor from the accumulative bunker with the up-

loading which provides required cargo flow in the output. Let us add to the system of 

Eqs. (3) and (4) the equation modeling the accumulative bunker operation: 

 
( )

( ) ( ),in

dN t
t t
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 = −    
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where ( )N t  − is the current amount of the material in the bunker with the Nmax capa-

city. The material flow which enters the accumulative bunker ( )t  is a given value. 

Let us set out the system of Eqs. (3)–(5) in its dimensionless form. To accomplish this, 

let us apply dimensionless parameters: 

 / ,dt T =     / ,dS S =    ( ) ( ),dH S H S =    ( ) ( ),dS S  =  (6) 

( )
( ) ,

S
 


=    

 
( ) ( ) ,d

d

T
t

S
  


=    

 
( ) ( ) ,d

in in

d

T
t

S
  


=    ( ) ( ) ,d

d

T
g a t

S
 =    ( ) 0,a t   

 
0

0

( , )
( , ) ,

t S
  


=    

( )
max ( ), ,

( )

t
S

a t


 

 
=  

 
   

( ) 
( ) ,

d

N t
n

S



=    0

0

 
.

d

N
n

S 
=  

Load per unit of length on the conveyor belt must not exceed overload capacity 
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When ( ) 1.0n  =  and  
0max

, =  the amount of the material in the accumulative 

bunker is  
0max

( )  ,dN t S =  which is required to fill the conveyor with the maximum 

allowable rock linear    
0 0max
( , )t S =  through the full length of the conveyor. Tak-

ing into account the denominations (6), the balance equation of flow parameters of the 

conveyor can be presented in its dimensionless form: 

 ( )0 0( , ) ( , )
( ) ( ),g

     
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dt
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For a constant conveyor belt speed 
0( ) constg g = =  

 )(0  , = ( )
( )

( )
0

0

0

( )
g

H H g
g g

  
  

 

−
 − −   −

+ ( ) ( )0 0 .H g g    − −  (8) 

When 0 ,g   the transport system operates in a steady state mode. The value of 

the flow parameters does not depend on the initial distribution of the material along 

the transport route 

0 ( , )   = ( )0 0/g g  − ,   )(1  , = ( )0 ,g  −    
0 .g   

The stationary mode is of greatest interest for research, since here the transport sys-

tem operates for much of that time. To define value of linear density 
0 ( , )    or the 

flow of the material 
1( , )    at the time   in any part   of the route, we really need 

to know the value of inflow to the conveyor at time 
0 .g  = −  The association of 

linear density values 
0 ( , )    at any points of the transport route 

1  and 
2  at a con-

stant conveyor belt speed is researched in (Antoniak 2010). The value of the output 

material flow of conveyor 
1( ,1)   is an important feature of the transport system and 

when the belt speed is constant, it is defined by the product of 
0g  and 

0 ( ,1)   

1( ,1)   = ( )0 0 0( ,1) 1/ .g g   = −  

3. MODEL OF MULTI-CONVEYOR TRANSPORT SYSTEM 

The long distance conveyor is made as a set of some conveyors (Siemens 2023; Anto-

niak 2010; Xia and Zhang 2015), Fig. 2. The m-th accumulative bunker is at the output 

from the m-th conveyor at the technological position with the coordinate Sm. Bunkers 

provide the accumulation of the material between the conveyors. The flow of the raw 
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material from the m-th conveyor enters the m-th bunker. The value of the flow which 

enters the bunker is equal to the product of the material linear density  
0
( , )mt S  at 

the output from the conveyor and the belt speed of the m-th conveyor ( )ma t . The ma-

terial from the m-th bunker enters (m + 1)-th conveyor at the ( )m t  rate. The location 

of accumulative bunkers is set pointed as Sm. The system of equations of the multi-

conveyor system with non-limiting capacity bunkers is written as: 
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where ( )m S  is the rock linear density along the m-th conveyor at initial time. 

 

Fig. 2. The scheme of the multi-conveyor system 

Let us set that the input device, through which the material enters the main line 

at the rate 0 ( ),in t  is at the technological position, which is determined by the co-

ordinate S0 = 0. In a general case, the number and location of input points, provid-

ing the inflow of the material, are arbitrary. The material leaves the long distance 

transport system through the accumulative bunker at the output of the last convey-

or. There are no other alternatives of the material outflow. Applying dimensionless 

variables: 
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the equation for the main line is 
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Let us write the system of characteristic equations for the Eq. (11): 
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We present the solution of the Eq. (12) as follows: 
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and 1G−  is an inverse function. As the belt speed of the m-th conveyor can be only 

positive (we assume that the conveyor does not stop during the period under consider-

ation), only one ( )   function value corresponds to each time value τ. Using Eq. (14) 

we will express the variables τ and :m  
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On integrating the second characteristic equation we have: 
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For this purpose let us evaluate the integrals 
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Let us apply the integration constant С  to (18) making use of the preceding equa-

tion, and we will get 
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H H Pi          
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− − − − +   (19) 

The expression (19) is the solution for the system of Eq. (11), and it determines the 

state of flow parameters of the multi-conveyor transport system with non-limiting 

capacity bunkers. The value of the function 
0( , )m m    can be calculated by means of 

accumulative bunkers parameters 1 1( )m m − −  and initial conditions ( )m   
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( ) ( )
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Let us apply the expression for the function ( )0 ,m m    in (19) and write the solu-

tion in the form of 
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In the outlined solution (20) it is assumed that accumulative bunkers are adjusted 

and material flow time law ( )m   is given for them. If the bunker is transferred (the 

bunker serves only to direct material flow from one conveyor to another, but it does 

not alter the intensity of current), then the outflow from the bunker is equal to the 

inflow, and consequently in this case we have: 

 
( )
( )

( )
( )
( )

( )
( )

( )
( )

1 1

0

1 1 1 1

, .
m m m m m m m m

m m

m m m m m m m m

g g

g g g g

   



   

     
  

   

− −

+ + − +

= =  (21) 

4. DECISION ANALYSIS 

The expression (20) which determines the linear density of the material distribution 

for main multi-conveyor can be written for one conveyor transport system as: 

 ( )
( )
( )

0 0

0 0 0 1 0

1 0

( , ) ( ) ( ) ( ) ( ).H H H
g





 
       


= − +  (22) 

The solution 
0 ( , )    in the form (22) has been deduced in [10] when developing 

the distributive dynamic model of one conveyor with the belt speed control. Let us 

consider the model of the long distance conveyor which consists of 5 conveyors with 

different speed modes of the belt Fig. 3. The transport route is divided into conveyors 

with lengths 
1Δ m m m   −= −   0.2; 0.3, 0.2; 0.1; 0.2 ,=  each of which has the entering 

bunker and a device to control the belt speed. 

Accumulative buckers are located at positions  0.0; 0.2, 0.5; 0.7; 0.8;1.0m =  and 

their values of flow intensity are  1.0; 0.4,1.2; 0.1; 0.5;1.5 .m =  The motion trajecto-
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ries for a single element of the material located in different places of the transport 

route at a constant conveyor speed within each m-conveyor is shown in Fig. 4: 

 ( ) 1.0; 0.5,1.5; 0.5; 2.0 .mg  =  A set of curves which defines the linear density of the 

material along the transport route at times Δ ,i i =   Δ 0.025, =  1 23i =   Fig. 5 cor-

responds to this set of characteristics. The initial linear density of the material along the 

transport route is given by the expression ( )0(0, ) 0.5sin 2 .  =  At times ii =   

there is the right shift  of the function 
0 (0, )   within limits of each m-conveyor with 

a fixed lead 
 Δ ( ) ( )Δ .g m mg   =  

  

Fig. 3. The belt speed 

of the long distance transport system 

depending on the conveyor 

Fig. 4. The motion trajectories 

for a single material element located in different 

conveyors of the transport route 

The angular slope of the motion trajectories for a single material element is pro-

portional to the belt speed of an m-conveyor and it is a constant value when the con-

stant speed is ( )mg   correspondingly. Within limits of every conveyor the point 

1 ( )Δm mi g   −= +   divides the conveyor into two parts: linear density along the route 

for the left side is determined by the ratio of the value of intensity of the material arri-

val from the accumulative bunker at the conveyor entry to the belt speed; initial distri-

bution of linear density 
0 (0, ) ( )   =  is applied to the right side. This mode of 

transport system operation is transient (unsteady) (Kung 2004). In general cases 

a transient period is marked by the maximum resource spend of the transport system. 

This is due to the fact that in most cases initial linear density ( )   sufficiently devi-

ates from the optimal value or is filled with the material of another sort, which must be 

unloaded from the transport route. 
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When the belt speed ( ) constmg  =  is constant, the time term when the conveyor 

operates in a transient mode can be determined for each conveyor 

( ) 1Δ / ( ),tr m m m mg   −= −    1... .m M=  

For the transport conveyor system per se the time of the transient period can be 

written as follows:   Δ max Δ .tr tr m =  This has led to two very important and obvi-

ous results: a) the distribution of the transport system allows reducing the duration of 

the transient period proportionately to the number of conveyors; b) when Δ ,tr   the 

system reaches a steady-state operation mode, which does not depend on the initial 

material distribution along the transport route, that allows presenting the obtained 

solution (20) in a simple form: 
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Pi
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
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−
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=  (23) 

If the capacity of the bunkers is quite significant and contains a sufficient amount 

of the material to provide uninterrupted functioning of the m-th conveyor, then it can 

be assumed that within the given period every conveyor of the transport system 

operates as an independent system with it’s the inflow material ( )m   and the belt 

speed ( )1 .mg +
 When constant values of the material inflow is ( )m   and the belt 

speed is ( )1 ,mg +
 the steady mode is fixed, which is clearly demonstrated in Fig. 5. 

Figure 5 shows the linear density 0 ( , )    of the material on the belt along the 

transport route at times 0.025i =  (20). For definiteness, we will assume that at the 

moment of time 0.0 =  the linear density of the material is determined by the initial 

distribution 

( )0

1

(0, ) ( , ) ( , ) ( ) 0.5 1 sin(2 ) .
M

m m m m m

m

Pi Pi        
=

= = +  

We shall mention that the constant value of the linear density at a given point 

can also be provided when we have a constant values ( ) 0m m  =  = const, 

( ) ( ) ( )1 1 ,0
const.

m m
g g

+ +
= =  At the next moment of time, the initial linear density 0 (0, )   

shifts at a speed ( )mg  . The movement occurs on each conveyor. The conveyor belt 

is filled with a material with a linear density 0 ( , )   , the value of which is determined by 

expression (23). Since ( )m  , ( ) ( )1m
g 

+
 are constant,  1.0; 0.4,1.2; 0.1; 0.5;1.5 ,m =  

( )mg  =   1.0; 0.5,1.5; 0.5; 2.0 , but different for each conveyor m = {0.0; 0.2, 0.5; 0.7; 0.8, 

1.0}, then the value of the linear density is also constant, which is shown in Fig. 5. 



Mathematical model of a long-distance conveyor 39 

After a period of time Δ ~ 0.6tr  the transport route is filled with material with a con-

stant linear density (23). The filling time Δ tr  is determined by the maximum value of 

0Δ /m mg . This time is less than 1, Δ 1tr  , due to the fact that the transportation 

route is divided by conveyors. 

 

 

Fig. 5. The linear density of the rock 

along the route at times 

 = 0.025i, i = 1…23, a = 0 

 

Fig. 6. The linear density of the rock 

along the route at times 

 = 0.025i, i = 1…23, a = 0,25 

 

Fig. 7. The linear density of the rock 

along the route at times 

 = 0.025i, i = 1…23, a = 0.5 

 

Fig. 8:  The linear density of the rock 

along the route at times 

 = 0.025i, i = 1…23, a = 0.75 
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Let us consider the transport route with a timevarying belt speed of the m-th con-

veyor (Figs. 6–8) 0 1( )m m mg g g = + ,  0 1.0; 0.5,1.5; 0.5; 2.0mg = , gm1 = {a; 2a, 3a; 

–a/2; –2a}, a = 0.25 (Fig. 6), a = 0.5 (Fig. 7), a = 0.75 (Fig. 8). 

The variation with the time of the belt speed g m(τ) of the m-th conveyor leads to 

inversely proportional varying of the linear density of the material 
0 ( , )   . The dura-

tion of the transient period 
 Δ tr m  for the m-th conveyor is determined by the equation 

(12): 

2

1 0  1

Δ
Δ

2

tr m

m m m tr m mg g


  −− = + ,   tr m = max{tr m}. 

The process of the conveyor belt slow downing (mode gm1 < 0) is of practical inter-

est for the research. The deceleration leads to the hyperbolical growth of the material 

linear density at the entry to the conveyor (Figs. 6–8, conveyors 4 and 5), which is the 

cause of highly uneven loading of the belt with the material, and as a consequence 

leads to the breakdown of the conveyor belt in case if load per unit area exceeds ad-

missible load. 

5. CONCLUSION 

A distributed dynamic model of a multi-conveyor transport system with intermediate 

accumulative bunkers is presented in the article. As a rule the efficiency of the transport 

system of a conveyor type is achieved by means of conveyor belt speed control and 

the intensity of the material flow, which enters a conveyor. Control algorithms devel-

opment which is used to eliminate the non-uniform distribution of rock along the 

transport route is of particular importance for long-ranged conveyor systems. The 

division of the transport route into conveyors decreases the specific cost of the energy 

for transporting the rock and increases the operational life of long-ranged conveyor 

systems. However, as it is shown in this article, it greatly complicates the modeling of 

a transport system of a conveyor-type. The interaction of the flow parameters of the 

distributed system both within a separate conveyor and between the flow parameters 

of different conveyors should be taken into account. For the first time an analytical 

model with partial differential equations for a single-conveyor transport system was 

presented in (Pihnastyi and Khodusov 2017). The significance of the result obtained in 

(Pihnastyi and Khodusov 2017) lies in the fact that a model of a distributed transport 

system is developed and the dependencies between the flow parameters of the system 

are presented in an analytical form. This provided new opportunities to design energy-

efficient systems for optimal control of conveyor transport by means of belt speed 

control and the intensity of the material which enters a conveyor. However, the prob-
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lem of the development of long-ranged multi-conveyor systems with intermediate 

accumulative bunkers and variable belt speed hasn’t been solved yet.  The topicality of 

this problem is due to the ever-increasing number of operating main multi-conveyor 

systems, which require highly efficient optimal control algorithms. 

An important result of this article is the further development of a single-conveyor 

model of a distributed transport system and the development of a model of a long-

ranged multi-conveyor system with accumulative bunkers. The solution which de-

termines the value of the linear density of the material in any place of the transport 

route as a time function for a given law of variation of belt speed and the material 

flow to the entry of the conveyor from the accumulative bunker is given. The deci-

sion analysis for transient and steady modes of the conveyor operation is presented. 

The analytical dependencies of the material flow and the linear density of the mate-

rial for technological positions within limits of one and different conveyors are pre-

sented. The evaluation of  the duration of the main line unsteady mode operations is 

accomplished. It is shown that the division of the transport route into conveyors 

leads to a significant decrease in the duration of unsteady modes, which increases 

the efficiency of the system as a whole. The presented solution opens up new oppor-

tunities to develop optimal algorithms for the flow parameters control of a long- 

-ranged multi-conveyor system. 
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