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OPTIMIZATION AND CONTROL
IN JUST-IN-TIME

MANUFACTURING SYSTEMS

Just-in-Time (JIT) is a new, very efficient strategy of control of discrete production systems. Its analysis requires essentially new mathematical models and new efficient methods of solution of optimization problems. At the begining, review of research directions in the field of JIT systems has been presented and that of discrete optimisation methods with particular attention paid to those based on elements of Artificial Intelligence. In the essential part of the book, there are analysed some scheduling problems which can be applied to modelling JIT systems. There are considered, among others, the problem of scheduling of a production cell with various measures of on-time parts supply, the problem of minimising the work-in- process in the flow-line and the problems of intercell buffering in the flexible flow-line. For each considered problem there are provided mathematical models, some properties and solution algorithms. From among solution methods, the significant attention is paid to local search techniques and very efficient tabu search method which has been developed essentially. The numerical properties of the algorithms are examined analytically and experimentally.



Chapter 1

Introduction

Just-in-time (JIT) is the strategy of manufacturing and inventory control whereby the required items are produced at the time and in the quantities needed. JIT stimulates a new flexible thinking in planning, controlling and performing activities, stock controlling, cash controlling and has significant influence on the reduction of manufacturing costs. In practice, its effects are much more significant by simultaneous improving the overall performance of the whole organisation. Generally, JIT can be seen as an approach that combines several objectives, commonly considered as conflicting, namely decrease in cost, increase in product quality, manufacturing flexibility and delivery performances.One of the most spectacular implementations of JIT manufacturing, performed on the Q-Flex accelerometer product line at Soundstrand Data Control’s Instrument Systems Division, provided already in the first year of application the following benefits: quality up by 50%, rework down by 66%, scrap costs cut by 60%, cycle to produce a unit reduced by 90%, money tied up in work-in-process down by 80%, unit hours decreased by 20%, overtime virtually eliminated, Scan- zon [277]. All this with a 20% improvement in total capacity and no additional floor space required. Many other famous implementations have been provided, as an example Xerox plant, where the JIT strategy introduced in 1983 reduced the time of holding inventory 1.5 times with respect to MRP inventory control (dated from 1979), this in turn reduced 2.6 times inventory with respect to the older order point system, Flapper et al. [71]. Other well-known names appear frequently in the context of JIT successful implementations: Intel, Motorola, Texas Instruments, IBM, Westinghouse, General Electric.The source of JIT philosophy one can find in Japanese manufacturing techniques from the end of 70’s and at the beginning of 80’s, see Toyota production systems, Schonenberger [278]. Since these works and the important addition concerning zero inventories, Hall [133], a considerable amount of results has been 



8 Chapter 1. Introduction

reported in this approach. The greatest number of papers published is observed close to the end of 80’s and at the beginning of 90’s, hence the JIT philosophy is quite young. The significance of JIT strategy is clearly shown in the survey of the state of its developement and implementation in the USA in 1990, Gilbert [80], where 31 characteristic elements of the JIT technique were checked on a representative sample. 20-30% of manufacturing systems have been found with appropriate JIT implementation programs well developed, and next 20-40% - with programs just starting. All JIT characteristic elements constitute a high innovation in traditional manufacturing systems, thus are particulary recommended for obsolete manufacturing enviroments. In fact, JIT systems come near the attention of many practitioners since they offer essentially new benefits as well as profitable attributes in the aggressive, competitive manufacturing environment1, particularly in flexible manufacturing systems (FMS) and computer-integrated manufacturing (CIM), where this strategy can easily be implemented. One can say that the future belongs to manufacturing systems controlled by JIT strategy.

1The immediate result of the market economy.

On the other hand, most of the papers dealing with JIT systems are classified as case studies based on experience of the authors (some practical aspects). The number of mathematical models and algorithms reported on the JIT manufacturing systems is rather small. Quite often the proposed models either simplify the reality excessively, or become inadequate because of too general assumptions, unacceptable in practice. Moreover, formal mathematical models are still too complex (or of too high dimension) to solve them by standard tools of discrete optimisation, queuing theory, control theory, etc. Solving the stated theoretical problems of optimisation or control by using a reasonable computer resources (storage- and time- requirements) is usually very hard because of dimension curse and NP-hardness of the problems. Up to now, only simulation studies perform well; however in most of the complex cases, a huge amount of time is required. Therefore there is room for applying sophisticated, powerful tools of operations research (OR), management science (MS), control theory (CT), optimisation theory (OT), scheduling theory (ST) and queuing theory (QT) to represent JIT manufacturing systems.The development of JIT strategy coincides well with some research directions arisen recently in the deterministic sequencing theory, as an example problems of due date requirements, nonregular penalty functions, flow lines, multi-purpose flow lines, no-store and zero-wait policy, etc. In this paper, there is presented an approach, having its origin in classic deterministic sequencing theory, which can be applied in modelling and solving some optimisation and control problems in JIT manufacturing systems. Modern discrete optimisation methods with ele- 
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merits of artificial intelligence (AI) constitute a base for this approach. It should be emphasised, that not only formulation of the problems and solution methods are important in the considered research area. Equally valid are also the rational
ity and efficiency of proposed algorithms, which must be adjusted to act in the real control systems and/or decision support systems. The proposed approach is derived partially from the author’s experiences gained during studies on the following subjects and research projects:(a) Theory, models, algorithms and software for sequencing problems, within a Research Program “Numerical methods of optimisation and control” , [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], 2

(b) Algorithms for complex optimisation problems in manufacturing systems, within a Research Program “Theory of control and optimisation of continuous dynamic systems and discrete processes” , [109], [110], [111], [112], [215], [216], [218], [220], [221], [292], [293], [295], [296], [297], [298], [299], [300], [113] 3
(c) Decision support systems, within ail International Research Project “Resource Constrained Project Scheduling Problem: An International Exercise in DSS Development” held under the auspices of the International Institute of Applied System Analysis (IIASA), Laxenburg, Austria , [217], [222], [223], [227], [294], [304] 4
(d) Worst-case analysis as a method of performance evaluation for approximation algorithms . [219], [224], [225], [226], [228], [229], [301], [303], [306]5(e) Artificial intelligence and approximation algorithms for scheduling in manufacturing systems , [230], [231], [232], [302], [305], [307], [308]6

2Research supported by National Research Program R.I.21.01, ASO 4.2.3-4.2.5, 1982-85
3Research supported by National Research Program RP 1.02, 1986-90
4 System developed by the two-person team with the author obtained the highest rank among 

all participated teams, 1987-91.
SA part of this research was supported by the State Committee, Grant 307609101, 1991-92.
6A part of this research was supported by Contract IIASA-PAN, 1991-92, and by the State 

Committee, Grant 3P40301906 1994-95.
7A part of this research is supported by the State Committee, Grants 8T11A01712 (1997) 

and 8T11A02112 (1997-99).

The author also wish to thank all the persons and organisations which supported this work. Special thanks are addressed to my family for the patience, the State Commitee - for funds for the research 7, and Professor Fred Glover from Colorado University at Boulder - for valuable suggestions referring to TS technique.



Chapter 2

Optimisation and control in 
JIT systems

The manufacturing system is a kind of highly complex system presented as a black 
box having row materials (substrates) and resources (machines, personnel, energy, etc.) at the input, and final products at the output. The basic aim of this system is to provide required final products in required quantities and required time moments. These requirements are either set arbitrary (firm contracts) or derived from a forecasting of environment needs 1. From some point of view we would like to obtain the programmed (assumed in advance) output values in time. To reach this goal one must determine the values of input variables in time, having means of 
control variables. There are also available some additional control variables which influence flows of materials and the distribution of resources inside the system. In practice, by controlling the system we can usually get only output the close to that assumed because of random system breakdowns or input disturbances. Moreover, there exist many ways of achieving this goal. Hence, there is needed an additional measure of the system activity. Beside the “ distance” between the assumed and realy outputs, a supporting criterion of the system behaviour has frequently been introduced. It is based chiefly on production cost or net 
present value as the most common and universal ones. Many methods of these cost calculations have been proposed and developed.

'Although the quality of forecasting can have an influence on the system behaviour, we will 
assume hereafter known output requirements obtained by forecasting made outside the system.

2 All these random breakdowns are associated with the presence of man in the machine world.

Manufacturing systems can be analysed by taking advantage of either deterministic or stochastic models. If the system reliability is small (frequent machine breakdowns, man faults, poor product quality, etc. 2) and the input disturbance high, the system tends towards stochastic one. (On the other hand, instead of 
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controling such a poor system one can propose to apply beforehand a firm reconstruction program, that results in a significant improvement of the system performance.)Quite often, in order to decrease the influence of uncertainty on the assumed goal, inputs as well as outputs are buffered. Unfortunately, there is a tendency in practice to increase the buffer stock with increasing uncertainty, that implies the higher production cost followed from the superfluous inventory. These inventory costs, linked with the costs of machine repairing and worker idle time, clearly show faults which will eliminate in the near future this system from the manufacturing environment because of too high production cost.Modern manufacturing systems, by releasing human factor (CIM systems, FMS), admit a smaller number of random events and thus can be described with a high accuracy by deterministic models. Moreover, many production structures investigated theoretically well, as an example the production cell with (non)uniform parallel machines, flow line, multi-machine flow line, flexible job shop, etc., are immediately applicable in these systems. In this context, there is a room for applying models as well as algorithms from deterministic scheduling theory as a convenient tool for analysis and control. Note that better (more adequate) models allow us to use more tight “aggressive” control. In terms of the above, JIT philosophy resolves problems of the production control which provide assumed output with sufficiently high accuracy at the minimal production cost.There are also other significant features which essentially distinguish JIT systems from the surrounding manufacturing environment. The main one refers to the structure of the control system. In manufacturing systems consisting of several production units (PU), there are at least three mutually disjoined control structures (see Fig. 2.1): (a) single-level centralised control (CC), (b) hierarchical multi-level control (HC) with a selected special sub-class two-level (master-slave) control, where parameters for local controllers (LC) are set by superordinary control system (SC), (c) decentralised control based on co-operated local controllers (LC). Other types of the control can be obtained due to a combination of these three, for example by admitting in (b) the co-operation between successive local controllers, like in (c). In this figure, information flows are marked by thin lines, control flows by thick lines, whereas material/product flows by wide arrows. Although we have assumed, for the simplicity of presentation, that the production system has a flow line structure, nevertheless this classification remains valid for other types of production flow, as an example for rooted tree architecture (assembly systems). One can say that enumerated types of control are well known and have been performed for years in the manufacturing systems with a man as an “intelligent controller”. However, followed by a high automation of the technology processes, there is a common tendency to replace human controller
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by automatic (programmed) one, and to simplify the control algorithm. Whereas the control in traditional manufacturing systems has been kept within structures (a) or (b), JIT philosophy prefers control of the type (c) with the algorithm for LC as simply as possible and as fast as possible.Other differences refer to the technique of finding the control. Classic manufacturing control techniques treat the data of the problem (processing times, transport times, set-up times, etc.) as fixed, whereas JIT treats them as at least 
modifiable. These modification can be made under certain conditions, with some limited scope, at some additional cost, etc. One can say that JIT is an “active” strategy with respect to the old one, which is considered as “passive”.There have been found more characteristic elements of JIT systems. Gilbert [80] provides a list containing 31 such elements among which one can find as e.g. pull strategy, set-up and lead times reduction, zero-buffer and no-wait policy, dedicated production lines, synchronised scheduling, zero deviation from schedule, regularity in end-product scheduling, Kanbans.
2.1 Classification of problemsDuring the past few years, a number of papers have dealt with concept, design, justification, control, modelling, implementation, management and operational 
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aspects of JIT manufacturing systems. Although more than thirty characteristic elements of JIT systems have been recognised and distinguished, [80], most of the papers can be reckoned in several research directions briefly presented in the subsequent subsections, see excellent surveys of Golhar and Stamm [93] 3, Gunasekaran et al. [122], Kubiak [174], supplemented by works since 1993, we mention only some of these papers [5, 6, 12, 42, 48, 49, 50, 60, 67, 121, 123, 129, 165, 185, 201, 214, 244, 340].

3This survey is made for a huge number of 860 papers.

2.1.1 Work in process reductionWastes in production systems can take several forms. Most of them have pure inventory character associated with cycle stock, buffer stock, whereas others refer to time, material handling, motion, and product quality, Hall [133]. To reduce these wastes a lot of organisational propositions have been suggested. Nevertheless, the work in process (WIP) reduction problem has been discussed more often than others, particularly in the context of impact of the buffer storage on a production line output, Buzacott [33], Ignall and Silver [150] or impact of production parameters (set-up time/cost, delivery times, etc.) on the inventory cost, Funk [76]. The former models assume either stochastic processing times or random machine breakdowns, and obviously a limited buffer storage. Note that in JIT environments no buffer stock is allowed, and hence zero inventory (ZI) is highly desirable. The notion ZI is often used in the context of Japanese inventory system, JIT system, and Kanban system. ZI with a simultaneous set-up reduction offer a new promising direction of improving production efficiency. However, extreme reducing the set-up costs does not necessarily reduce inventory, Zangwill [341].The reduction of inventory costs in JIT systems and differences between WIP- and JIT-type inventory control policies have been discussed among others by Funk [76] and Sipper and Shapira [290]. Other problems related to WIP in JIT associated with AGV systems have been considered by Occena and Yokota [233].
2.1.2 Kanban controlled systemsThis type of control can be classified as mixed (c) and (b) control structure from Fig. 2.1. Kanban philosophy has been introduced to JIT manufacturing to keep a tight control over inventory and to reduce the inventory level to a minimum. Kanbans derive originally from Toyota, and now are identified as one of the characteristic elements of JIT systems.



2.1. Classification of problems 15
In the Kanban system, items are put into containers and different types of items are held in different containers. Once a container is full, a Kanban is attached to it. “Kanban” in the Japanese, refers to a card or tag. Some of the authors call it also a Kanban ticket or pass. Kanbans are destined for multiple use, their number is limited and used to control the system. The full container is valid only with attached Kanban. A Kanban usually carries the following data: (A) item specification (name, description, cardinality in the container, etc.), (B) container specification (type, capacity), (C) identification number, (D) technological order (preceding stage, succeeding stage).Each stage of the Kanban system can be seen as a production process (fabrication, subassembly, delivery, purchase) with an inventory point located at the output of this stage. Produced items fill a container, which next is stored in the inventory point with a Kanban attached to it. Each stage acts using as inputs the items stored at the inventory point of the immediate predecessor stage. When a full container is taken from the inventory point of the current stage (to be used by the production process of the immediate successor stage) the Kanban originally attached to the container is detached and left at this inventory point. All detached Kanbans are collected and periodically sent back to the production process of the current stage to provide a new processing order usually fulfiled by the FIFO rule.The total number of Kanbans circulating between production process and the inventory point of each stage is fixed over time, and used to control the maximum inventory build-up of this stage. It is clear that the production schedule (production order) of the final stage is automatically transmitted back to all the upstream stages. Since each detached Kanban automatically becomes a new order, no other inventory control is needed. Similarly, each machine breakdown automatically stops unwanted inventory of preceding stages. One can say that upstream are flexible and self-operated.Kanbans play at least five roles in the manufacturing process. The container is a kind of buffer designed to attenuate random production events, e.g. machine breakdowns. The size of the container explicitly allots production lot size. The number of Kanban cards limits the number of production lots. The order of receiving Kanban cards provides the production order. Kanban cards are also used to ensure communication loop (with feedback) between successive production units and to stop unwanted production if it is necessary.There are a few theoretical optimisation problems considered in Kanban systems. First, determination of the number of Kanbans and a container lot size at each stage required to satisfy the customer’s demand, e.g. Philicom et al. [247], Monden [119], Chaudhury and Whinstom [41], Huang et al. [146], or other papers on this subject in the bibliography. These models assume deterministic or 
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stochastic demands, stochastic machine breakdowns, single or multiple item production, assembly type production, single or multiple machine stages. Formulated models are either too unrealistic, or too complicated for practical applications. As to now, only simulation studies prove to be satisfactory. Second, the choice between Kanban system and traditional lot-sized model of production that takes into account a trade-off between the planning horizon and a fluctuation of demands. Note that if the demand fluctuates markedly over the planning horizon the Kanban system, because of the fixed number of Kanbans, forces the facility to carry more inventory than one really needed. On the other hand, these trade-offs are significantly situation dependent.
2.1.3 Assembly line levelingThe primal source of the JIT philosophy follows from assembly systems consisting of a single or multiple cooperated lines with a tree-like structure 4. Consequently, there exists in JIT field the research sub-direction associated with assembly lines, see the papers [120, 152, 172, 173, 199, 200, 202] and the survey of Kubiak [174].

4 Some further implementations of JIT strategy refers to non-assembly systems with a more 
general structure, as e.g. job-shop Gravel and Price [119]

These are the problems specific by means of considered models and scheduling objectives. To satisfy the customer demands for a variety of products without holding large inventories, one proposes to keep the quantity of each product produced per unit time as close as possible to the demand for that product per unit time. This type of problems is called the leveling of the schedule of mixed-model assembly line, Hall [133], Monden [207]. There are several objectives used in these models, as e.g. minimising variation of the rate at which different products are produced on the line (PRV), minimising variation of the rate at which the line supply different products on its output (ORV), smoothing the workload on each workstation on the line, etc. Special cases are distinguished, as e.g. when outputs require the same/various number of parts, when requirements for each different product are approximately equal or distinct, Kubiak [174]. Solution algorithms proposed emply either mixed-integer programing models or scheduling models with appropriately defined penalty function.
2.1.4 Push, pull and squeeze shop floor controlThe push control policy is the oldest and commonly used one, also in many highly industrialised Western countries. Production commands are given per period in advance, based on forecast demands and predicated product flows in the inventory system. The most adequate characteristic of such a system is associated with a 



2.1. Classification of problems 17
job (product) flow. The job (material) is released to the first stage of the system, in turn this stage pushes the work in process (WIP) to the following stage, and so forth until the product reaches the final stage. One can say that this type of control pushes product through the system in accordance with an external master 
schedule. It represents the type (a) of control in Fig. 2.1.The pull control policy prevents the superfluous inventory. The production material goes through the system only on demand, each stage pulls semi-products from the preceding stages, so as to meet precisely customer requirements, see (c) in Fig. 2.1. JIT system is a pull system supplying product only on demand, Kim [161]. Nevertheless, the pull philosophy need not be used in all manufacturing systems. Although there are several techniques of achieving a pull type control system, the most of the known implementations refer to the use of Kanbans, quite often to balance an assembly line.The squeeze control policy concentrates only on those machines in the production process which are bottleneck, i.e. where production is squeezed. Based on the observation that normal fluctuations in production always have a negative effect on co-operated streams, bottleneck machines are protected with an inventory buffer so as to minimise the impact of this fluctuation on the downstreamdependent processes. Next, bottleneck machines are scheduled in accordance to the final product schedule, whereas schedule of the remain machines is adjusted to those bottlenecks.It has been shown by Sarker and Fitzsimmons [269] that pure push and pure pull strategies have different advantages and disadvantages. Therefore, a compromise, called hybrid push/pull control strategies, seems to be the most suitable.
2.1.5 MRP/JIT/OPT inventory controlMRP (Material Requirements Planning), MRPII (Manufacturing Resource Planning), JIT and OPT (Optimised Production Technology) are considered as mutually exclusive systems of the inventory control. They correspond to the control techniques push, push, pull, and squeeze, respectively, mentioned in the previous subsection, Ramsey et al. [258].MRP, MRPII and OPT form a centralised system of controlling and planning the inventory. Demands for final products are translated into requirements for parts, materials, resources, etc. addressed to particular components of the system. The production is completely planned and is run in accordance with a 
master production schedule developed by balancing requirements and resources. This schedule is being performed with the use of monitoring and controlling of the production progress, called the shop floor control. The cost of the production is observed, compared with standard costs for all manufacturing activities and 



18 Chapter 2. Optimisation and control in JIT systems

provides production account. MRP is an ideal technique for planning and controlling production activities, but is less useful for reducing costs and lead-times as well as for improving quality.Generally, application of each of these systems is specific, however there are some suggestions derived from the research and implementations. In a repetitive manufacturing environment with a small variety of products (e.g. assembly systems), Kanban is found as the most effective method of control. There, it drastically reduces inventory and simplifies control and planning. However, in a job-shop environment with a large variety of products, MRP is preferable. In the complex production environments, OPT is preferred to MRP and JIT.
2.1.6 Set-up reductionOne of the important aspect of the JIT systems and ZI concept is to reduce the set-up cost. In this way one can save the capacity of a facility, to reduce lot-sizes, to improve the overall utilisation and efficiency of production system, Porteues [310, 248, 249]. Japanese apply set-up reduction programmes by using quick clamping devices, jigs, fixtures, etc., to reduce set-up time. It can also be shown that in some cases larger batches may also influence a product quality. Besides the problems mentioned, one can also state the problem of finding optimal set-up costs under various conditions and the problem of finding optimal set-up reduction program assuming investment means and profits. Karmarkar [159] has proved that the set-up reduction program can significantly improve the overall utilisation and efficiency of a manufacturing system. These models can be used while evaluating different strategies for investment in the set-up reduction program for achieving a JIT manufacturing system.
2.1.7 JIT purchasing/suppliers systemsBasic concepts underlying JIT production and purchasing systems along with potential problems and benefits have been presented by Hahn [130]. Note that conventional inventory models assume cost per order fixed, but JIT models treat this cost as variable.Various strategies, effective in JIT purchasing environment, were described, by Ansari and Heckel [9], as well as Schonenberger and Gilbert [280]. They presented among others, the delivery frequency model from the Hewlett-Packard. However the JIT purchasing system needs a more general analytical framework. O’Neal [235] described the behavioural and logistical aspects of the buyer-seller relations. Moreover, he presented an empirical study designed to measure the level of JIT system adoption in the automotive industry. Unfortunately, this 
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study has some limitations because of too small sample, single industry branch, etc., that limits its real significance. Transportation costs (vehicle routing) in JIT systems linked with the appropriate supplying problem have been considered by Golden and Assad [92]. Note, modern JIT purchasing practices are in contrast with most employed purchasing traditions. This problem is pinpointed in the paper of Schonenberger and Gilbert [280].
2.1.8 Cellular manufacturing systemsCellular manufacturing systems are closely related to JIT systems, since it is difficult to find JIT system that does not employ this idea. It is one of the best means applied to the implementation at JIT philosophy and total quality control. Cellular manufacturing can be seen as an application of group technology (GT) philosophy, Sassani [270], Wemmerlow and Hyer [332], where a portion of a firm’s production system has been converted to cells or modules. Although several papers deal with cellular manufacturing, application of general GT philosophy in JIT have not received a comparable attention.
2.1.9 JIT implementationsThis is the most descriptive and currently the most practical subject of JIT system applications. Generally, JIT manufacturing requires better forecasting, much tighter control of work-in-process and near perfect quality. Parnaby [242] proposes an approach to the implementation of JIT philosophy in selected industry branches. He formulates some basic principles based on simplification and improving reliability of the flow system, creation of cellular manufacture, team work and non-traditional organisational structures. Some aspects of implementations in other branches of industry have been discussed, among others, by Crawford [51], Miltenburg and Wijngaard [200], Richmond and Blackstone [263].
2.1.10 Design of JIT systemsThe physical layout of the production facilities in JIT systems is suggested to be U-shaped, Monden [208], due to its flexibility in changing the number of workers on demand. Clearly those workers should be trained to be multi-functional. Among the layouts inappropriate for JIT systems one can find isolated islands, bird cages and linear layouts. In practice, such the re-organisation of production facilities might be possible in some systems.There have been relatively few models dealing with the equipment selection problems in JIT manufacturing systems, most of them were reviewed by Kusiak and Heragu [179], Kusiak [178]. These models chiefly consider the problem of 
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selecting the number of machines required, taking account of the standard part processing, daily production of parts, budget, floor space, overtime constraints, influence of Kanbans, lot-sizes, set-up costs, etc.A general decision framework for the problem of equipment requirements has been proposed there. The final machine configurations are determined by the following factors: (i) machine set-up times, (ii) machine processing capacity, (iii) scrappage rates, (iv) investments in buying machines. Therefore the selection of machines for JIT systems should provide at least: (a) minimum or no in- process inventory, (b) minimum set-up times, (c) minimum or no scrappages, (d) appropriate level of general purpose machinability, (e) integration with the material handling system.
2.2 Towards JIT system needs

The problem of the design of JIT system must incorporate particular features of JIT systems such as no buffers allowed, balanced loading, U-shaped system layout, Kanbans, pull-type production, simple shop floor, reduced set-up times, standardisation of process and products, multi-machine work-centre, and multiproduct work-centre, zero deviation from schedule, synchronized scheduling, etc. In order to introduce a master production schedule, a suitable forecasting technique is necessary.Many of attributes associated with JIT manufacturing appears independently; however, a system having only one or two attributes rarely exists. Aims, such as zero inventory, zero set-up times, zero defects, zero break-downs, etc., set by JIT philosophy are usually difficult to reach, Gunasekaran et al. [122]. Therefore, the models considered should be more complex to be adequate to real systems.It appears that JIT performs well for the flow-shop type production, however other production environments e.g. job-shop or flow- and job-shop with parallel uniform and non-uniform machines should also be investigated. Considered structures should employ cellular decomposition of production facilities. The problem of allocation buffers in front of different stages may be an interesting area for further research.The major JIT research should be concentrated on manufacturing, purchasing, Kanbans and WIP inventory reduction. There is also need for research on various optimisation problems in JIT systems. These models can be designed for the use of queering theory methods, scheduling and sequencing algorithms, transfer line models without buffer, control theory and other methods mentioned earlier.
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2.3 Discrete optimisation methodsMost of the problems of optimal planning and control in JIT manufacturing systems are either pure discrete or discrete-continuous optimisation programs. For simplicity, we will write these problems as min^A- A’(;r), where X is the set of feasible solutions. Although these problems have simple formulations, they are very troublesome if they are considered from the algorithmic point of view. From the nature, they have a huge number of various local extrema. Their AP-hardness essentially restricts the set of approaches which can be applied to solve the problem. In the literature, one can find exact algorithms, as well as a rich variety of approximation methods. A lot of these procedures have been designed for special cases, since particular properties of the problems usually allow us to improve the numerical characteristics of an algorithm. It is more and more frequent to meet a problem that has many exact and approximation algorithms developed. These algorithms differ from each other by the computational complexity, accuracy, speed of convergence, etc. Many of very recent approaches, not sensitive to local extrema, refer to Nature, Artificial Inteligence (AI) and Machine Learning (ML). Finally, just the user has to make a decision which - as the only one among these algorithms - is the most suitable for industrial applications in order to support manufacturing process. Basically this needs the decision whether we search for an optimal solution (at high cost of the search, almost exponential dependending on the problem size), or a sub-optimal solution of acceptable solution quality within a 
reasonable time. Note, due to the possibility of performing parallel computations some among the methods presented hereafter can be accelerated additionally.
2.3.1 Exact methodsThe exact optimisation algorithms are based chiefly on the branch and bound scheme (B&B) (see e.g. Applegate and Cook [10], Brucker et al. [30], Carlier and Pinson [38]), mixed integer programming (MIP) and dynamic programming (PD). While considerable progress has been made in B&B approach, practitioners still find such algorithms unattractive or restrict their application to a very limited scope. The algorithms are time-consuming and the size of problems, which can be solved within a reasonable time limit, is too small. Moreover, their implementation requires a certain level of programmer’s sophistication. Similarly, the size of MIP models is impractically large even for the problems of a small size. These large MIP problems cannot be solved by means of standard methods and software packages in a reasonable time. Although PD models are relatively simple, advanced PD algorithms remain very time- and storage-consuming even for the problem of small size. Therefore, one can say the cost of search for an 
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optimal solution is still too high comparing with the profits obtained from its application. On the other hand, application of these complex algorithms is fully justified in repetitive manufacturing where minimal cycle time is sought for a small number of products, see paper of McCormick et al. [195]. There, the better solution accuracy multiplied by a great number of cycles provides profits much higher than the cost of computations. Taking account of a broader context, practitioners frequently are not interested in the optimal solution because the data of the problem have some finite accuracy, sometimes they do not reflect all really existed constraints, and very often are disturbed just after the optimal solution has been found. One can regard the stated problems as superfluously rigid. In this context, it is observed a tendency towards avoiding too complex exact methods and replacing them by approximation algorithms, which are a quite good alternative.
2.3.2 Approximation methodsApproximation methods provide a good solution in a quick time. These two parameters have adverse trends, i.e. better solutions require a longer algorithm time. Traditionally, approximation algorithms are classified as either constructive or improvement method. The former algorithms allow us construct step-by-step a solution or generate a solution. They are very fast, easily implementable, however the performance of generated solution is rather poor. The latter algorithms improve a given solution. They need a slightly longer time to run, they are also easily implementable, and the performance of provided solutions is very good or even excellent. Most of these algorithms are developed and recommended for narrow classes of problems. The ideal approximation algorithm should ensure a compromise between the running time and the solution quality, and allow the user to form this compromise in a flexible way.
Constructive algorithmsThese algorithms are based chiefly on the following approaches: (a) static or dynamic priority rules, (b) relaxation to simplest problems, (c) approximations by other problems. Priority rules is one of the popular and commonly applied technique, e.g. Baker [15], Hunsucker and Sah [149]. A constructive algorithm generates either single solution or a fixed a priori subset of solutions among which the best one is selected. A hybrid combination of these two techniques generates step-by-step a single solution, whereas at each step a partial solution is selected among fixed a priori subset of partial solutions. Algorithms of this class can be applied alone or in a group of competitive algorithms. They are also used as 
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generators of an initial solution for local search algorithms. Due to combination of several known heuristics by means of certain method of their parametrisation, we can synthesise new algorithms for new problems, Wala and Gqdek-Madeja [325]. New interesting proposition is also offered by application of the so-called space of heuristics, Storer et al. [312].
Curtailed B&BBy limiting computer resources (processor time, storage) employed in the classic B&B algorithm one can obtain an approximation algorithm (CB) with some compromise between solution time and solution quality, see for example Kadluczka and Wala [157]. This refers to the following constraints introduced a priori to B&B method: (a) the depth of the tree is limited, (b) the number of immediate descendants of a node in the tree is limited (either a priori fixed or various, depending on the level of a node), (c) the total number of nodes is limited, (d) the total running time is limited, (d) fathomed are only nodes having the lower bound value smaller than some threshold value (it is usually set as reduction by e the current upper bound value), (e) fathomed are only nodes having a measure of usefulness below a threshold value. Although the reduction of the running time is significant comparied it with B&B, CB algorithms continually reveal an explosion of calculations for problems of a greater size.
Local searchRecently a significant attention has been paid to the approximation methods based on various local search approach (LS), since they link to the same extent a high running speed, simplicity of implementation and high accuracy of solutions. Many recent papers have recommended this approach as the most promising for very hard optimisation problems. More advanced LS methods are able to escape from the local minimum, to search the global one. Usually, the implementation of approximation algorithms is simple, however, some of them are quite nontrivial.
Descending search/Hill climbingThe descending search method (DS) is the oldest historically and one of the simplest techniques used to improve a given solution x° € X 5. The elementary step of the method performs, for a given solution xk, a search through a subset of solutions called the neighbourhood M{xk} C X of xk to find a solution xk+1 € N(xk>) with the lowest criterion value. If only in the neighbourhood A/"^) there exists a solution with the criterion value less than K(xk), the search repeats from 

5This method is close to hill climbing technique for maximisation problems.



24 Chapter 2. Optimisation and control in JIT systems

a new starting solution, from the best possible, and the process is repeated as long as the goal function value decreases. The trajectory of the search x°, x1,... roll monotonously down towards a local optimum. Clearly, this method ends the activity there. By starting the algorithm several times from various (randomly selected) initial solutions, one can eliminate in a very limited scope its susceptibility to local minima. A mutation of this method, called descending search with 
drift (DSD), accepts on the search trajectory also unvisited solutions with the same criterion value, i.e. it can be K(xk) = K(xk+1).

Random searchThe random search method (RS) generates a trajectory of the search x°, x1,... which goes up-and-down randomly through the set it. The new solution xk+1 in this trajectory is selected at random in the neighbourhood jV(xk). Clearly, this algorithm returns the best solution from the search trajectory. Although this method is not sensitive to local optima, its convergence to a good solution is generally poor. Some mutations of this method modify the distribution of probability while selecting the neighbour to guide the search into an assumed in advance region of the solution space.
Guided local searchSince random search does not provide algorithms with sufficiently good experimental analysis, there have been proposed algorithms that guide the search (GLS) using specific deterministic scenario proposed separately for each particular problem, see e.g. Adams et al. [3] Balas and Vazacopolous [20]. The search is guided to some most promising regions of the solution space, whereby these regions were selected a priori taking into account some special properties of the problem. In the mentioned paper, these selected regions were searched using a curtailed B&B method. Thus, the method GLS owns all characteristic elements of CB, as an example, reveals the explosion of calculations if the size of the problem solved exceeds certain threshold value. Despite quite sophisticated implementation of this method, the results obtained for selected applications are quite good. Nevertheless, this approach cannot be extended in an easy way to other problems.
Genetic searchGenetic search (GS) refers to Nature. It uses a subset of distributed solutions 
P G X called population to lead the search in many areas of the solution space simultaneously. Therefore GS not only avoids local minima but also reaches to many regions of the solution space.
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Each solution x called individual is coded by a set of its attributes expressed in genetic material (genes, chromosomes). Many techniques of such a coding for various problems have been proposed and developed. The population is controlled, in principle, by three processes: reproduction, crossing-over and mutation. In reproduction phase, individuals are multiplied according to their adaptation 

measure 6. This guarantees that individuals better adopted will have more descendants in the next generation. Individuals chosen by selection from expanded population provide the matting pool. Fro this pool we match couples of parents which next provide the off-spring generation. Each member of this new generation is a new solution x' obtained from the two parent solutions x and y using the 
cross-over operators. Many such operators have been proposed and examined, see for example the reviews of Wala and Chmiel [327, 329] or Vaessens et al. [322]. The mutation phase is an insurance against the loss of valid attributes of the good solutions and a slow mechanism of introducing innovative attributes. It introduces sporadic, random (with alow probability) changes in genetic material.

6The basic adaptation measure is the goal function value K(x) for the individual x.

It is clear that this method have many points of freedom. It needs at least: the technique of coding the solution attributes in the chromosome(s), the form of the adaptation function, the scheme of the matting pool selection, scheme of matching parents, cross-over operators and scheme of mutations. Although many of these elements have already been proposed and examined in case studies, their suitable composition is considered as a key for the success of the algorithm, Wala and Chmiel [328].The major topic of recent research in genetic algorithms is focused on the ability to control the population dynamics. More and more complex mechanisms of the selection and cross-over operators are proposed. However, some failures have been still observed in these algorithms, they are chiefly expressed by the premature convergence to a local extremum or too poor convergence to a good solution. While GS behaves well for small problems, it suffers from strong sub- optimality for lager ones. This is proved that population dynamics is responsible for the premature convergence. In order to improve the fitness of the population, the best individuals are prefered in the reproduction if each generation, which results in the continuous decrease of genotype diversity. This in order decreases the possibility of finding better solutions by reproduction scheme, stops further progress, and one must wait until mutation (after a huge number of generations) introduces a significant change. Therefore, the main goal of a GS algorithm is to adjust the selection as sharply as possible without destroying a genotype diversity.The algorithm’s convergence can be controlled by matting strategies, structuring populations and patterns of social behaviour. Goldberg [90] introduced 
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a new starting solution, from the best possible, and the process is repeated as long as the goal function value decreases. The trajectory of the search x°, a;1,... roll monotonously down towards a local optimum. Clearly, this method ends the activity there. By starting the algorithm several times from various (randomly selected) initial solutions, one can eliminate in a very limited scope its susceptibility to local minima. A mutation of this method, called descending search with 
drift (DSD), accepts on the search trajectory also unvisited solutions with the same criterion value, i.e. it can be K(xk} = K^x^1).

Random searchThe random search method (RS) generates a trajectory of the search x0,®1,... which goes up-and-down randomly through the set X. The new solution in this trajectory is selected at random in the neighbourhood ,N\xk). Clearly, this algorithm returns the best solution from the search trajectory. Although this method is not sensitive to local optima, its convergence to a good solution is generally poor. Some mutations of this method modify the distribution of probability while selecting the neighbour to guide the search into an assumed in advance region of the solution space.
Guided local searchSince random search does not provide algorithms with sufficiently good experimental analysis, there have been proposed algorithms that guide the search (GLS) using specific deterministic scenario proposed separately for each particular problem, see e.g. Adams et al. [3] Balas and Vazacopolous [20]. The search is guided to some most promising regions of the solution space, whereby these regions were selected a priori taking into account some special properties of the problem. In the mentioned paper, these selected regions were searched using a curtailed B&B method. Thus, the method GLS owns all characteristic elements of CB, as an example, reveals the explosion of calculations if the size of the problem solved exceeds certain threshold value. Despite quite sophisticated implementation of this method, the results obtained for selected applications are quite good. Nevertheless, this approach cannot be extended in an easy way to other problems.
Genetic searchGenetic search (GS) refers to Nature. It uses a subset of distributed solutions 
V C X called population to lead the search in many areas of the solution space simultaneously. Therefore GS not only avoids local minima but also reaches to many regions of the solution space.
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Each solution x called individual is coded by a set of its attributes expressed in genetic material (genes, chromosomes). Many techniques of such a coding for various problems have been proposed and developed. The population is controlled, in principle, by three processes: reproduction, crossing-over and mutation. In reproduction phase, individuals are multiplied according to their adaptation 

measure 6. This guarantees that individuals better adopted will have more descendants in the next generation. Individuals chosen by selection from expanded population provide the matting pool. From this pool we match couples of parents which next provide the off-spring generation. Each member of this new generation is a new solution x' obtained from the two parent solutions x and y using the 
cross-over operators. Many such operators have been proposed and examined, see for example the reviews of Wala and Chmiel [327, 329] or Vaessens et al. [322]. The mutation phase is an insurance against the loss of valid attributes of the good solutions and a slow mechanism of introducing innovative attributes. It introduces sporadic, random (with a low probability) changes in genetic material.

6The basic adaptation measure is the goal function value K(x) for the individual x.

It is clear that this method have many points of freedom. It needs at least: the technique of coding the solution attributes in the chromosome(s), the form of the adaptation function, the scheme of the matting pool selection, scheme of matching parents, cross-over operators and scheme of mutations. Although many of these elements have already been proposed and examined in case studies, their suitable composition is considered as a key for the success of the algorithm, Wala and Chmiel [328].The major topic of recent research in genetic algorithms is focused on the ability to control the population dynamics. More and more complex mechanisms of the selection and cross-over operators are proposed. However, some failures have been still observed in these algorithms, they are chiefly expressed by the premature convergence to a local extremum or too poor convergence to a good solution. While GS behaves well for small problems, it suffers from strong suboptimality for lager ones. This is proved that population dynamics is responsible for the premature convergence. In order to improve the fitness of the population, the best individuals are prefered in the reproduction if each generation, which results in the continuous decrease of genotype diversity. This in order decreases the possibility of finding better solutions by reproduction scheme, stops further progress, and one must wait until mutation (after a huge number of generations) introduces a significant change. Therefore, the main goal of a GS algorithm is to adjust the selection as sharply as possible without destroying a genotype diversity.The algorithm’s convergence can be controlled by matting strategies, structuring populations and patterns of social behaviour. Goldberg [90] introduced 
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a sharing function in fitting individuals (in mate selection) to prevent too close genotype similarity. More direct approaches of incest prevention uses the ham
ming distance as a measure of similarity between genotypes, see survey of Davidor [54]. Another approach controls mate selection by a dynamic threshold, Eshelman and Schafer [68]. Further results are derived from structuring the entire population. This can be reached either by splitting up population into islands (migration model) or by introducing overlapping neighbourhoods which cover the population in its entirety (diffusion model), see papers of Miihlenbein and Gorges-Schleuter [210], Davidor [54], or Gorges-Schleuter [94]. Both models restrict immediate data flows between individuals to local area of the population and thus introduce nature-like features of ecological niches to preserve a genotype diversity. The approach based on social behaviour assigns a pattern of attitude to each individual, e.g. pleased, satisfied or disappointed, see Mattfield et al. [197]. The assigned pattern depends, among other, on the goal function value found for this individual. The evaluation of the actual behaviour may change the attitude in the future, so individuals can react differently in the same environmental situation. Each behavioural pattern results in a readiness to go into cross-over, mutation, or sleeping (to avoid replacement by offspring).Up to now, GS algorithms have been applied to several types of problems with various degrees of success. Because of too many control parameters each good implementation of GS requires a huge number of computational experiments. Nevertheless, good results obtained for some applications made allow us to consider GS as one of promising tools for solving hard combinatorial optimisation problems.
Simulated annealingThis local search method (SA) proposed originally by Kirkpatrick et al. [166] uses an analogy to a thermodynamic cooling process to avoid local minima and escape from them. States of a solid are viewed as being analogous to solutions, whereas the energy of the solid - analogous to an objective function. During the physical annealing process the temperature is reduced slowly in order to come, at each temperature, to the equilibrium of energy when entropy is maximum. Then, the search trajectory is guided through the set X in a “statistically suitable” direction.SA generates a trajectory of the search m°, m1,... which goes up-and-down through the set X. The new solution a:*+1 in this trajectory is selected among those from the neighbourhood Af(®*) using specific scenario. First, a perturbed 
solution x', i.e. x' G -N\xk), is chosen in an ordered way or randomly, assuming usually uniform distribution of probability. This solution can provide either 
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K(x') < K(xk) or K(z') > K(xk). In the former case, x' is accepted immediately as the new solution for the next iteration, i.e. a;fc+1 = x'. In the latter case x' is accepted as the new solution with probability min{l, where
△ = K(x'} — K^xk) and Ti is a parameter called temperature at iteration i 7. If 
x1 has not been accepted (neither by the former nor by the latter condition), we finally set xk+1 = xk. The temperature is changed along iterations using cooling 
scheme. A number of iterations, say m, is performed at a fixed temperature. Although the cooling should be carried out very slowly, most of the authors consider the change of the temperature at every iteration (m = 1). Two schemes of the temperature modification are commonly used: geometric Tt+i = AiTi, and logarithmic Ti^i = Ti/(I + AiT^, i = 0,..., N — 1, where N is the total number of iterations, Ai is a parameter, and To is an initial temperature. Clearly, it has to be Tn < To and Tn is close to zero.

7In practice x' is accepted if for a chosen random value U[0,1] inequality R < e holds.

The SA method has many control parameters that have to be chosen experimentally. The parameter At- is often set as a constant. Assuming known (estimated) values of To, Tn and N, one can propose the value of parameter Ai, as an example Ai = (To - Tjv)/(AToTv) for the logarithmic scheme, Osman and Potts [237]. Aarts and van Laarhooven [1] make also several suggestions about the choice of x°, To, Ai, m and the stopping criterion. They propose to select x° at random that helps in randomising the search and removing solution dependence on x°. The initial temperature is set to be 10 times the maximum value A between any two succesive perturbed solutions when both are accepted. In practice, starting from x°, some number k of succesive trial solutions x°, x1,..., xk~1 is generated, accepted and the value Amax = maxi<j<fc K(xt+1) — K(xl) is inspected. Then, we set To = —Amax/ln(p'), where p w 0.9. The following method of finding 
Ai has been proposed in [1] for the logarithmic cooling scheme Ai = Zn(l+<5)/(3<rt), where S is parameter of closeness to the equilibrium (0.1 - 10.0) and &i is the standard deviation of K(x) for all x generated at the temperature Ti. The value 
m is dependent on the nature of random perturbation applied and is set equal the number (or its fraction) of different solutions that can be reached from the given one by introducing a single perturbation. The algorithm can be terminated by limiting the running time, number of iterations, when the temperature is close to zero, or the derivate of the smoothed average value of K(x) at Ti is less that the given parameter e, see also Das et al. [53].The cooling scheme strongly influences the performance of this procedure. If the cooling is too rapid, SA tends to behave like DSD method and usually becomes trapped in a local optimum of poor quality. If the cooling is too slow, the running time becomes unacceptablely long. In practice the proper selection 
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of all control parametrs requires a huge number of computer tests.Several various modifications of this basic scheme have been considered to improve numerical characteristics of this algorithm. First, by choosing at each iteration the sample Mk C N(xk) of perturbed solutions of cardinality m or at most m. All these solutions are ordered according to the criteria value. If there exists, among Mk, the solution x' such that K(x') < K(xk), this solution is chosen as the current one for the next iteration. If not, the first solution from Mk is accepted with the probability min{l,e-A/-r'}. Otherwise, the current solution remains, i.e. xfc+1 = xk. Second, by modifying the probability of acceptance of the perturbed Solution, i.e. to give uniform probability ofacceptation downhill (A < 0) and uphill (A > 0) solutions, Glauber [81]. The third modification changes the basic scheme of cooling by introducing periodical rise of the temperature to its initial value Toit has been proved that some assumptions allow SA to converge with probability one to a global optimum, Aarts and van Laarhoven, [1]. Detailed analyses have also been carried out for the asymptotic convergence and the rate of convergence. Since some among these assumptions cannot be implemented in computer programs, the results obtained have more theoretical than practical meaning. Up to now, SA has been applied to several types of problems with various degrees of success. Nevertheless, good results obtained for some applications made allow us to consider SA as one of powerful tools for solving hard combinatorial optimisation problems.
Simulated jumpingThis novel approach (SJ) uses also thermodynamic analogy to control the search and escape from local minima, Amin [8]. The so-called jumping process bases on rapid cooling and heating of a solid applied alternatively, that results in permanent shaking of the system state. The process of heating and cooling is continued until a desired low-energy state of the system is reached. The shaking of the system not only allows us to get access to many regions of the solution space but it also prevents the algorithm from getting stuck in local minimum and increases the probability of reaching the global minimum.In practice, SJ introduces an additional heating scheme to SA. Heating is applied when the perturbed solution x' has not been accepted, i.e. when we have to set a:fc+1 = xk. It can take, for example, the form T+1 = T, + To * r/i, where p is the random number between [0.0,0.15]. Clearly, SJ has much more elements which have to be chosen experimentally in order to provide algorithm, with a good numerical characteristics. The reported applications of SJ to TSP and QAP problems have shown that its performance is very encouraging, but the 
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speed of convergence significantly depends on the input parameters.
Geometric searchThis approach (GES) follows from the research of Belov and Stolin [22], Sev- ast’yanov [283] and Fiala [69] concearning some scheduling problems. It provides many approximation schemes with good performance, but unfortunately with too high computational complexity, see also works of Shmoys et al. [285]. Basically it refers to some geometric interpretation of a solution and geometry properties. The most common scheme of these algorithms can be summarised by the following steps: (1) find an obvious solution x not necessarily feasible, i.e. it need to be 
x E X, (2) perturb this solution by introducing random (chosen in a reasonable way) values of components of x, to obtain x' not necessarily feasible, (3) transform 
x' into a feasible solution x" € X using special “spreading” approach. Although GES approach provides algorithms with poor experimental performance, it simultaneously allows one to evaluate analytically their performance. It is a pity that competitive performance is being obtained due to the high computational complexity, see conclusions by Nowicki and Smutnicki [226].
Tabu searchTabu search (TS) is a method proposed by Glover [84, 85]. The basic version of TS starts from an initial solution x° € X 8. The elementary step of the method performs, for a given solution xk, a search through the neighbourhood N(xk) of 
xk. The neighbourhood N(xk} is defined by moves (transitions') performed from 
xk 9. The aim of this elementary search is to find in .N\xk') a solution with the lowest cost measured in terms of K(x) or other evaluation functions. Then the search repeats from the best found, as a new starting solution, and the process is continued, yielding the search trajectory x0,x\... A solution x from the search trajectory with the lowest value K(x) is the algorithm’s outcome. In order to avoid cycling, becoming trapped to a local optimum, and more general to conduct the search in “good regions” of the solution space, a memory of the search history is introduced. Among many classes of the memory introduced for tabu search [84], the most frequently used is the short term memory, called the 
tabu list. This list recorded, for a chosen span of time, solutions from the search trajectory, solutions, selected attributes of these solutions, or moves leading to these solutions, all of them treated as a form of prohibition of the future search. A move having prohibited attributes is forbidden (i.e. the solution should be 

8Some advanced variants of TS can start from an unfeasible solution.
9 A move transforms a solution into another solution.
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skipped in the search), however this move can be performed only if an aspiration 
function evaluates it as sufficiently profitable. The search stops when a given number of iterations without improving K(x) has been reached, the algorithm has performed a given number of iterations, time has run out, and/or a solution with satisfying quality has been found. The connectivity property that ensures possibility of finding an optimal solution can be proved for selected problems and neighbourhoods. It states that for any starting solution m°, there exist a search trajectory x°, x1,..., xr, such that xk+1 € Af(xk') and xr is the optimal solution. Note that this property does not provide the assurance of performing desired trajectory and discovering the required solution. The connectivity property is also analysed for SA and SJ methods.
Adaptive memory searchThe adaptive memory search (AMS) notion is used to define advanced TS schemes which goes beyond subset of components and tools enumerated for TS. It has been verified that a search is successful if an appropriate balance between intensifica
tion and diversification is ensured. Thus, AMS emobdies a broader framework by means of more sophisticated memory techniques as, for example, long-term 
memory, frequency and recency based memory, hashing tabu, focuses on exploiting a collection of such strategic components as, for example, strategic oscillation, 
candidate list strategy, path relinking, and adaptive behaviour with learning as, for example, reactive tabu, see the papers of Glover and Laguna [86], Battiti and Tecchioli [21], Woodruff and Zemel [338]. More detailed discussion of AMS techniques one can find in paper of Glover [88]. Although simplified TS approaches are sometimes surprisingly successful, AMS methods are proved to be often considerably more effective than TS.
Ant searchThis very recent method of optimisation (AS) refers to the “inteligent” behaviour of a colony of cooperative agents represented by the ant community, Dorigo et al. [62]. Although this method is recommended for stochastic combinatorial optimization, there are known its applications to classic discrete problems such as travelling salesman, quadratic assignment or job shop. The search activities are distributed over agents with very simple basic capabilities which, to some extent, mimic the behaviour of real ants. This method is inspired by the role of 
pheromone trails discovered in searching by ants the routes path from their colony to feeding sources and back. While an isolated ant moves essentially at random, an ant meeting the pheromone trail follows it with probability proportional to the 
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pheromone intensity. Each ant marks the trail by its own pheromone, thus multiplying the trail intensity, however simultaneously the pheromone evaporates from the trail to prevent explosion of the process. Assuming available tracks (based upon problem stated), certain model of an ant behaviour 10, primal distribution of ants over limited area and primal intensity of pheromone trails, we can start the simulation of the search-process with discrete time events. If only the stagnation of the search has not been observed, algorithm tends towards good solutions.

10Ant has some short term memory and can see. Thus, moves can be performed as an 
elementary step towards some preferable directions.

The results obtained are encouraging, however up to now they are not competitive to SA or TS method taking into account both the running time and quality of generated solutions.
Scatter searchScatter search (SS) is designed to operate on a set of points called reference points, that constitute good solutions obtained from previous calculations, Glover [87]. This method systematically generates linear combination of the reference points to create new points, each of which is mapped on an associated solution. Solutions that result from the linear combination of the chosen reference points are allowed in turn to serve as inputs to accompanying heuristic process. The heuristic procedures then transform these inputs into improved outcomes, thereby bringing the full circle of approach. These outcomes provide a new set of reference points, and the process starts again. By this approach, linear combinations produced at each stage are dispersed across a region of the solution space whose form is biased by the distribution of reference points.Similarities between this approach and basic GS technique are immediately evident. SS and GS are “population based” procedures, which start with some collection of solutions and evolve progressively these elements to yield new ones. They also assume that new solutions are generated as a combination of existed ones. Besides these similarities, there is certain contrast between both methods. GS produces offspring generation by random selection of parents and by setting random points of chromosome crossing-over, hence realised more democratic policy allowing solutions of all types to be combined. In the same time, SS focus on choosing good solutions as a basis for generating combinations without losing the ability to produce diverse solutions. Also, different mechanisms are used by these approaches to obtain the combined solutions.
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Path searchThis method (PS) performs the local search using specific scenario, Werner [334]. A number of search trajectories called search paths are generated from a given starting solution. A trajectory x°,...,xk contains solutions such that = mina.ejV-(a.fc) F(x), where Af(xk) is a neighbourhood, and F(x~) some evaluation 
function, e.g. F(x) = K(x). The trajectory is abandoned if the number (given a priori) of recently generated solutions on this trajectory does not improve the solution which currently is the best. Just after a non-perspective search trajectory has been abandoned, a new search trajectory is started from a selected (unvisited) solution among search trajectories already generated. This approach has Some similarities to simulated annealing as well as to the tabu search technique.
ChunkingThis is not not an autonomous search method but an auxiliary tool in suport- ing the power of other search methods. Chunking (C) means the grouping of basic information units to create the higher-level units, and is considered as a critical aspect of human intelligence, Woodruff [339]. People faced with a hard problem to solve often proceed by linking integrated features they perceive as related and transfer them into solution process. They organize problem data and solving methods in hierachical fashion, which allows one to decompose the problem into sub-problems to solve it. When the problem cannot be decomposed or the decomposition method is unknown, then the common strategy is to group solution attributes to reduce the search space that can lead to discovering and exploiting higher-level relationships. Chunks being problem specific can be either pre-defined by the human problem solver or discovered as a by-product of the search. Chunking is related to Machine Learning and can be applied in many local search methods, i.e. GS, SA, SJ, TS, AMS, etc.
Constraint satisfactionThe optimisation problem has been replaced by a constraint satisfaction problem (CSP), see e.g. application in paper of Cheng and Smith [47]. Generally speaking this method operates on decision variables V 11, domains V for these variables, and constraints C on two or more variables from V. The basic step of this method is to construct in an ordered way solutions through depth-first extension of a current partial solution. Each such an extension defines a new CSP having modified 
T> and C. The new form of T> is obtained by propagating the constraints C. Steps 

11 For example (x,K(x)) in the considered case.



2.3. Discrete optimisation methods 33
are repeated when the inconsistency in CSP is detected. Then, the search is backtracked from this state, and the process is continued. Specific CSP algorithms vary in the type of level of consistency reinforcement that is employed, in the mechanisms incorporated from recovering from inconsistent search states (e.g. backjumping, dependency-directed backtracking, dynamic backtracking), and in the heuristics utilised for ordering solutions while processing depth-first extension. This method has some similarities to B&B or curtailed B&B method, thus reveals equally positive and negative effects of these two approaches.
Neural networksAlthough neural networks (NN) is a domain developing dynamically, applications of this technique to scheduling problems are still at an initial stage. Based on the deterministic, analogue neural network model of Hopfield and Tank [145] with a symmetric interconnections and quadratic energy function, there is developed in [72, 73] a solution approach to classic job-shop problem. Next, Zhou [343] proposed another significantly simplest network with a single neurone per operation, linear number of interconnections and linear energy function. It has been shown that the latter method is superior both in the terms of solution quality and network complexity. Nevertheless, besides poor simulation studies on a few selected instances up to 400 operations, there are no complete comparative studies on standard benchmarks, which would be helpful in a final performance evaluation of this approach. On the other hand, some recent studies criticise serious shortcomings of Hopfield’s nets used for combinatorial optimisation, as an example of inability of finding global minimum and poor scaling properties. Other shortcomings detected, for example, for neural model of TSP cause inability of finding even a feasible solution of the optimisation problem.
2.3.3 Performance of algorithmsApproximation algorithms are usually ranked according to the running time (or computational complexity) and the distance from a generated solution to the optimal solution (an algorithm performance). Several measures of the algorithm performance have been introduced, Blazewicz [25]. These measures can be investigated either experimentally or analytically (worst-case analysis, probabilistic analysis). Experimental analysis being most popular and easy to perform is however a subjective method of evaluation of an algorithm performance since the results depend on a chosen sample of instances. Alternatively, the worst-case and/or probabilistic analyses yield an objective, instance independent evaluation of an algorithm performance. One can say that these analyses provide another, 
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supplementary, sometimes more suitable, evaluation of the algorithm behaviour. These analyses together with the computational complexity analysis and experimental analysis of the algorithm performance constitute the complete numerical characteristics of an algorithm.
Worst-case analysisThe set of data specifies an instance Z of the problem. Denote by X{Z) the set of all solutions of this instance, by K(x\Z} the value of a criterion K for the solution x and instance Z. The solution x* G A(Z) such that K(x*-,Z) = min^^z) K(x-, Z) is called the optimal solution for this instance. Let a;"4 6 X(Z) denote a solution generated by an algorithm A. The worst-case performance ra
tio of the algorithm A with the criterion K is defined as — min{y :
K{xA]Z}/K{x*\ Z) < y for each instance Z }. The asymptotic worst-case perfor
mance ratiois = min{i/ : K(xA; Z)/K(x*-, Z) < y for each instance Z such that K(x*\ Z) > L, where L is a number }. Clearly, it has to be pA{K) >The guarantee of solutions quality can be ensured also using the so-called approximation schemes. Algorithm A is an approximation scheme if for the given 
Z and e > 0 provides solution xA such that K(xA\ Z) < 1 + e. A is polynomial 
approximation scheme if for any fixed e A has a polynomial computational complexity. If additionally this complexity is a polynom of 1/e, A is called a fully 
polynomial approximation scheme. In the sequel, the argument Z will be omitted in K(x*; Z) and K(xA; Z) if it is not necessary.
Probabilistic analysisIn this analysis it is assumed that Z is a realisation of n independent random variables with known (usually uniform) distribution of probability. We denote this fact using symbol Zn. Hence, both A(a:*;Zn) and K(xA\Zn) are random variables. Let Af^A^Zn) be the value of the performance measure M of an algorithm A for the criterion K found in the instance Zn, e.g. MA(K-, Zn) = 
K(xA-,Zn) — K(x*\Zn). Clearly, MA{K',Zn) is also a random variable. The probabilistic analyses provide primarily information about behaviour of random variable MA{K-,Zn), e.g. its distribution of probability, the mean value, variance, etc. However, the most interesting are characteristics associated with the type of convergence of MA(K-,Zn) to a constant m with increasing n. They are distinguished as follows: (a) almost sure convergence to a constant m, if 
Prob{]imn^,Xl MA(K-,Zn) = m} = 1, (b) convergence in probability, when limn-,00 Prob{\MA(K; Zn) — m\ > e} = 0 holds for any c > 0, (c) conver
gence in expectation, if lim^oo \Mean{MA{K-, Zn)) — m|} = 0. Convergence (a) implies (b), but (b) implies (a) only if for any e > 0 the following condition 
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holds 52X1 Prob{\MA(K; Zn) — m| > c} < oo. Similarly, (c) implies (b), but (b) implies (c) only under the above additional condition holds. The best is the algorithm having the measure almost sure convergent to zero. Beside the type of convergence there can be also analysed the speed of convergence.Although probabilistic analysis provides interesting characteristics of an algorithm behaviour, it is usually highly complicated. Up to now there are only few basic results, moreover with too simplified assumption about distribution of data.
Experimental analysisThis is the most popular method of analysis despite its imperfections. It consists inxperimental evaluation of algorithm behaviour (performance measures, running time) on the base of limited sample of instances from Z. The sample can be either fixed (common benchmarks instances) or selected at random. Because of NP-hardness of the considered problems, the performance measures used refers more often to reference solutions instead of optimal ones. As the reference value one can get: (a) a lower bound of the optimal goal function value, (b) the optimal goal function value, even when it needs to run an algorithm with an exponential computational complexity, (c) a sub-optimal solution obtained by limited run of an exact method, e.g. curtailed B&B, (d) the sub-optimal solution obtained by application of other approximation algorithms, (e) random solution.



Chapter 3

Delivery performance using 
R/Q models

In this chapter we discuss these JIT environment requirements which can be modelled using conventional notions of scheduling problems such as ready times, due dates, delivery times x, set-up times, etc. and next solved by means of conventional tools of ST. The proposed approach will be exemplified by a problem, having immediate application in JIT systems as well as in some conventional manufacturing systems.
3.1 Cell work-loading/schedulingConsider a production cell having m machines, and let Ad = {1,..., m} be the set of these machines. The set of n parts JV = {1,2,..., n} has to be processed by this cell. Each part j E A/” requires a single machine for processing, posseses the processing time pij > 0 on machine i E Al and has the delivery interval [aj, 6j] within which this part has to be completed in the ideal case. Each part can be performed on any machine from Ad. Once started, a part cannot be interrupted. Each machine can execute at most one part at a time, each part can be processed on at most one machine at a time. A feasible schedule is defined by a couple of vectors (S, T), S = (Si,..., Sn), T = (ti,..., such that the above constraints are satisfied, where part j is started on machine tj E Ad at time Sj > 0 and is completed at time Cj = Sj + pt-j.The deviation from on time part supply can be measured in several ways 2, see also the survey of Baker and Scudder [18]. To show links of the problem stated 

1Due to these notions, we call the approach in a little informal way with the use of R/Q 
models.

2This subject is discussed in detail in Section 4.1.
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with R/Q models from ST, we use in this section a measure based on maximum deviation from delivery interval, namelym¥[«lj-C,,Cj-y+ (3.1)
where J+ = max{0, ®ls ®2,.. J. Clearly, we wish to find the schedulethat minimises (3.1). Note, if then the measure (3.1) can simply bewritten as maXj^ \\Cj — An alternative (equivalent) representation of (3.1) is to reach an ideal delivery date dj = (^ + %))/2 with an admissible deviation around this date Ay = (hy — ©y)/2.To determine wwdboes wMooid, set M has to be partitioned into m subsets 
Mi C M„ each off which is associated with suitable machine i € Al, and let 
Wi — i M- The ^messsim^ writer of parts from Mi is prescribed by a permutation = (^(1),- - € MMK where ^(j) denotes the element of
Mi which is in position jj in Wa» »d P(Mi) is A® set of al permutations on the set Mi- The pnxr&iiiig writer is defined by wa-tuple v = (ar>,... „ arj. Al such processing orders create the setD = ((M, i€AU)is a partition of M)}. (3.2)Each rr generates a feasible schedule (S,T) in the following manner: set i = V-.W, ® G M- and find starting times S' = (Si,...., SJ by solving the optimisation problem

Mw) = ®™. “ K ~ - M+ M)
^G$((zrr))with the set <S(ar) introduced by constraints5 ~ ......»W f» ® G At.. (3.4)Now,, w® cam rephrase ©rigimalllfy stated probtem as that of finding rr £ M that mm- iim®es ((O') under- comstraimts (S.,4)). The problem (X3)-(X4) cam be decomposed into mi iimdepemdemtt sinigte-maicfijime smfr-prolblems= m^ ^i)) ((3.5)

where
. w k- - (M

and <$((Wh)) is graem by ((3.4) far feed i. M®mw, w® cam mate use rf the fafowftmg 
ipraperty.
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Property 3.1. Problem (3.6) is equivalent to the problem of scheduling jobs from the set Mi on a single machine, with job heads (ready times) rj = aj — pij, 

tails (delivery times) qj = K — bj, where K = maxj^bj, and the makespan criterion maxjejv^Cj + qj). □

Proof. Without losing generality we can set m = 1. Thus, i — 1 (for simplicity in notation we skip index i in all appropriate notions) and Mi = M. The proof will be made for natural -k = (1, ...,n). We also refer to the well- known formulae giving the makespan value for the single-machine problem with heads and tails and the makespan criterion, see e.g. Grabowski et al. [108], which takes in our case the following form
lCmax^) - max (^fc + y'l’s + «)- (3.7)

l<k<l<n s=kSince for every pair 1 < k < I < n and every S € S(x), we havemax [aj — Cj,Cj — &j]+ > max{[afc — Ck]+, [Ci — &/]+}

1 1 *
> - Ck + Ct - h,]+ > H + ^Ps + qi- K]+, (3.8)

s=kthen (3.8) provides a lower bound on i(x)
L^) > ^maxW - K]+ d=f LB^). (3.9)

Applying the recursive formulae given below, one can obtain a schedule reaching this bound
Sj = max{5j_i + Pj-i,aj -pj - j = 1,..., n, (3.10)where So +po = —oo. Indeed, for the values Sj found by (3.10) we immediately have

aj — Cj = aj — max{Sj_i + Pj-i, aj — Pj — LB(tv)} < LB(n), (3.11) and this holds for any j E M. Next, we will show that also Cj — bj < LB(tt) for any j € M. For each fixed j, let k be the job such that k < j, Ck-i < Sk, and G-j = Ss for s = k + 1,..., j. From (3.10) it has to be Sk = ak - pk - LB(^). Since Cj = Sk + ^s=kps, then employing (3.9), we have
i i

Cj -bj = Sk + ^Ps- bj = ak-pk- LB{-k) ^^Ps- bj
s=k s=k
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= rk + ^ps + qj-R- LB(tt) < Cma^7r) -K- (3.12)
s~kFrom (3.11) and (3.12) we obtain

L(ir) = max[flj — Cj,Cj — &j]+ < LB(n) (3.13)
jeNthat yields the property required for the schedule found by (3.10) and completes the proof. ■The problem stated in Property 3.1 is denoted as l|r?, QjjC'max using Graham et al. notation [117]. Property 3.1 also allows us to reformulate the original problem (3.3)-(3.4) in terms of scheduling problems.

Property 3.2. The problem (3.3)-(3.4) is equivalent to a problem of scheduling jobs from the set N on m parallel non-uniform, unrelated 3 machines, with machine-dependent job heads rij = aj—pij, machine-independent tails qj = K—bj and the makespan criterion. □

3These are machines where pij is defined individually for jobs and machines.

Proof of this fact is obvious, therefore will be skipped. This new problem can be denoted as R\rij,^j|Cmax by using denotation from [117]. Finally, we can reformulate the problem originally stated as that of finding % G H which minimises the makespan Cmax(”’) in the reformulated problem, see Property 3.2. Hereafter, we will analyse problem stated only in the form provided by this Property. If all machines in the cell are identical, i.e. pij = Pj, this problem becomes equivalent to the known from the literature problem of scheduling jobs on parallel identical machines with heads, tails, and the makespan criterion (F|rj,^J|C'max).It is also convenient in the analysis to use a simple graph representation of a fixed job processing order tt, see Fig. 3.1. It takes the form = (JV U 
{o, *},X U >t(?r)), with the set of nodes JV extended by two auxiliary nodes o (start) and * (end), and the set of arcs A = *)} and —UieAi U7=^1{(7r^O)’ 7r»(-7+1))}- Each arc (^CO) € has weight r^y), whereas each arc ((tTiQ'), *) G A has weight Each node 7rt(j) G JV has weight Pi^jy Nodes o and * have weight zero. The makespan Cmax(7r) equals the length of the longest path in this graph. It is easy to verify that, by using formula (3.7), this makespan can be expressed

i= max max (rivi{k) + ^Pi^j) + qri(i)\ (3.14) 
j=k
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Figure 3.1: The graph structure for the fixed job processing order.
Table 3.1: The computational complexity C and worst-case performance ratio r)A of an algorithm A (developed in B) for the single-machine problem with ready times, delivery times to minimise the makespan.

A B C VA

S 
P 

HS 
NS

[281][250][132][229]
O(n log n) O(n2log n) O(n2log n) 
O(n logn)

2 3/2 4/3 3/2
This formula on Cmax(7r) is convenient to develop some further properties. Despite complexity of (3.14), due to the problem decomposition and graph representation, the makespan for the given 7T can be simply found in a time O(n).

3.2 Solution methodsOnly few special cases of the problem (3.3)-(3.4) were considered in the literature. The first one refers to single-machine problem with aj = bj, j € JV, Garey et al. [78], called also the problem with maximum discrepancy cost. This problem can be solved in a time 0(n). Unfortunately, the key condition necessary to extend further on this approach does not hold for the problem (3.6).
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The second case refers to the single-machine problem with min-max cost, Sidney [286], which however needs a strongly restrictive assumption “if (ai —pi < aj —pj) then (bi < bj), for any i and j”. Hence, suitable solution methods are sought, by Properties 3.1-3.2, among methods for problems with heads, tails and the makespan criterion.Already the single-machine version of this problem (1]ry, q^Cmax) is NP-hard, Lenstra et al. [192], although there exist polynomial algorithms for some of its special cases, Lenstra [322]. The problem l|rj, qj\Cma,x has received a considerable attention in past twenty years due to many applications found, among others, in scheduling jobs on critical machine, Lenstra [322], in approximation algorithms for job-shop problem, Adams et al. [3], lower bounds for the flow-shop, job-shop and other more general shop problems, see e.g. Bratley et al. [29], Carlier and Pinson [38], Brucker [30], Grabowski et al. [108]. Results of the computer tests show that instances of medium size (up to 1,000 parts) can be solved optimal in a reasonable time by an algorithm of Carlier, [36], which is currently the best one among the known exact algorithms for this problem, see already cited papers [36, 108] and these of Baker and Su [19], MacMahon and Florian [196]. There are proposed, as alternative solution methods, several approximation algorithms, Schrage [281], Potts [250], Hall and Shmoys [132], Nowicki and Smutnicki [229], see Table 3.1. Algorithm S is also known as an extended Jackson rule [154]. Its implementation in O(nlogn) time is given by Carlier [36], whereas the worst case evaluation derives from Kise et al. [167]. There are also proposed, by Hall and Shmoys [132], two approximation schemes for this problem which however, because of great computational complexity, have theoretical rather than practical meaning.The preemptive version of the single-machine problem is polynomially solvable, Lawler [186], in a time O(nlogn), Carlier [36]. It provides the best lower bound for the single-machine non-preemptive case, Nowicki and Smutnicki [216].The multi-machine preemptive case with parallel identical machines (denoted as P\rj, qj,pmtn\CTaax') can be approximated with the absolute error c in a pseudopolynomial time O(n3(logn + log(l/e) + logpmox)) by using maximum flow problem in a dedicated network, see for details Labetoulle et al. [181], Goldberg and Tarjan [91], Blazewicz et al. [26], Brucker [31]. (There are also solved appropriate versions of the preemptive problem with uniform and unrelated machines.) It provides the best lower bound for the multiple uniform machine non-preemptive case among those from Carlier [37], Vandervelde [324], Hogeveen [143], Carlier and Pinson [39]. However, such a high computational complexity of this method limits its too intensive use in an enumerative process. Thus, there is proposed very recently by Carlier and Pinson [39] an O(nlogn + nmlogm) algorithm for finding the so-called Jackson’s pseudo-preemptive schedule that provides a tight 
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(competitive) lower bound for the multi-machine preemptive problem with uniform machines. These bounds can be used in evaluation of algorithm’s quality as well as in B&B schemes.Problems with zero heads and tails constitute a special category of the related problems. Generally, they cannot be applied in our case (excluding some very special cases), however they can provide valuable insights into construction of heuristic solution methods. The basic result refers to the use of the List Schedule 
(LS) algorithm with an arbitrary selected list, designed for problem with parallel identical machines and the makespan criterion. This algorithm has the computational complexity O(n) and the worst-case performance ratio 2 — 1/m. By using in this algorithm the list prepared by means of LPT (Longest Processing Time) priority rule, we obtain a method with the worst-case performance ratio 4/3 — l/3m and the computational complexity O(nlogn), Graham [116]. To solve more general problems with related parallel machines we can apply either generalised LS + LPT algorithm or MF (Multifit) method. LS + LPT assigns a job from the LPT list to the free machine with the highest speed, and provides solution with the worst-case performance ratio 2 —2/(m + l), Gonzales et al. [95]. Algorithm MF is based on the First Fit Decreasing (FFT) algorithm of the binpacking problem, and requires an initial evaluation of the “expected” makespan, Kunde and Steppad [176]. MF assigns jobs from the list ordered accordingly to SPT (Shortest Processing Time) rule using FFD method to the first free machine as long as the ’’expected” makespan is exceeded. Starting with lower and upper evaluation of the “expected” makespan and using binary separation method, we can tend towards quite good solution. Some methods of choosing primal evaluations of the makespan value have been recommended. The worstcase performance ratio is bounded by the value 1.4 (1.2 for the case of identical machines). The problem with unrelated machines and the makespan criterion has been considered rarely. The most significant obstacle, detected in the research, is associated with an unknown a priori (or hardly predictable) influence of a decision made by a scheduling algorithm on the final goal function value, see e.g. a discussion of this subject for a more general problem by Nowicki and Smutnicki [227]. For the problem with a single cell having unrelated machines, zero heads and tails, and the makespan criterion, there is commonly proposed the LS algorithm with a rule of preparing the initial list (as an example LPT) and the rule ECT (Earliest Completion Time) for scheduling. ECT assigns a job at a time moment t to that machine which provides the minimal completion time of this job. The algorithm LS with arbitrary list and ECT has the worst-case performance ratio m. Another more sophisticated approach LP/ECT based on 
ECT and Linear Programming (LP), see Potts [251], provides an algorithm with the worst-case performance ratio 2 4- [log(m — 1)].



44 Chapter 3. Delivery performance using R/Q models

3.2.1 Approximation algorithmsIn this section, we discuss some approximation algorithms formulated for the problem stated. The wide spectrum of the possible solution methods as well as its numerical characteristics have been presented. Although the provided variety does not exhaust all possible solution approaches, it pointed out these important features of the problem which are crucial for the algorithm construction.
List schedulesCertain basic method can be recommended for the case of uniform machines. The proposed list schedule (LS + MW R) is based on the Most Work Remaining priority dispatching rule, the same as in algorithm S. To build it, we schedule, at each moment t where at least one machine and at least one job is available, the available job with maximal tail on available machine. Then we update t and iterate until all jobs are scheduled. Using heap structure 4 to represent a static priority queue, this schedule can be found in a time 0(nlogn).

4 The same as in the heapsort algorithm.

Although these procedures were designed for the case of uniform parallel machines only, one can adopt it also for our needs. To this aim, first we construct an auxiliary problem with identical parallel machines, machine-independent pro
cessing times pij = (1/m)and machine-independent heads rj - (Vm) Eiejvt rij. Then, this auxiliary problem solved by the algorithm (LS + 
MWR), provides only an approximate job processing for the problem originally 
stated. The “incorrect” makespan must be recalculated for original job process
ing times. Clearly, the efficiency of this approximation increases if the variance 
of processing times decreases.

The application of algorithms LS, LS + LPT, MF, and others followed from 
problems with zero heads and tails is generally restricted because of too many 
points of “freedom”: machine-dependent heads, processing times and tails. Even 
if we assume machine-independent heads and tails, the insights necessary for 
forming the list in algorithm LS are usually worse than those for S, P, HS, 
etc. The job priority needs to take into account a combination of head, tail and 
the processing time; however, this combination and its influence of the future 
scheduling result are hardly predictable. In practice, the initial list is formed 
according to nondecreasing values of approximate heads, or the (weighted) sum 
of the head, processing time and tail, whereas scheduling at each examined time 
moment is being performed with the help of ECT heuristic. More sophisticated methods with a prediction of the near future are also discussed by Nowicki and Smutnicki [227]. Computational experiments have not shown superiority of these 
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algorithms over other constructive methods.
Basic TS algorithmBased on conclusions obtained from some single-machine studies, Smutnicki [302], and researches of more general problems, Nowicki and Smutnicki [230, 231], there has been considered only the neighbourhood based on the: so-called insertion 
moves. In our case, this type of moves is associated with tt and can be defined by a triple v = {j, i,y\, such that job (part) j is removed from and then inserted in Afi in position y in the permutation (y becomes new position of j in Ti extended in such a way). Clearly, it has to be 1 < y < ni + 1 if i tj, 
1 < y < ni if i = tj.The neighbourhood of tt consists of orders (tt)v generated by moves v from a given set. Using natural, simple approach one can propose the insertion neigh
bourhood {(7r)„ : v € V(?r)} generated by the move setVW = U U ^W (3.15)
where Vji^ = and VjiW = y^ $ * = ti;To avoid solution repetitions, set VW is on-line examined to remove redundant moves 5. The set Vj^tt) contains moves such that job j is deleted from the permutation and inserted in all possible positions in the permutation tt,-. One can verify that the number of moves iri VW is (n — I)2. This is one of the biggest insertion neighbourhoods proposed. It possesses the connectivity property, see Section 2.3 for its significance. The whole neighbourhood based on VW can be searched exactly (using makespaiis) in a time O(n3).

5Moves are redundant if they provide the same solutions as an example any move (ndy), i, y), 
since it provides and one of two moves (iri(y),i, y — 1) and ftrify — U> 3/)> since both provide 
the same processing order.

The proposed algorithm uses a short-term memory of the search history represented by the cyclic list called the tabu list. For the problem considered, we store on this list the attributes of the visited overall processing orders defined by some pairs of adjacent jobs at a cell. The selection of the pairs depends on the move performed. The list is initiated by empty elements. The move performed from a processing order tt introduces to the list one or two new elements in the following manner. Let (j,i,y) be.a performed move, j' and j" be the immediate predecessor and successor of job j on machine tj-, respectively. Then, if i tj we introduce to the tabu list the pair (j',y) if / exists, and additionally the pair 
Ud") if j" exists. If i = ty, we introduce (W") if this move is performed on the position y higher than the current position of y in j or Wy) otherwise. The 
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move v = (j, i, y), i ^tj, has tabu status if at least one pair (j, ni(ky), y < k < ni, or ^i{k\j\ 1 < k < y, is on the list. For i = tj this move has tabu status if at least one pair (Kilk),/), Xj < k < y, if Xj < y, or at least one pair (j, tt^A;)), 
y < k < Xj, if Xj > y, is on the list.To select the move leading to the next solution on the search trajectory, all moves are divided into three categories: unforbidden, forbidden but promising (these forbidden that lead to the makespan less than Cmax(^TS\ where irTS is currently the best processing order found during the search), forbidden and nonpromising (the rest forbidden). Finally, we decide to perform a move selected from those unforbidden and forbidden but promising which yields the lowest makespan.
Advanced TS algorithmThe exact search of the neighbourhood {v : v € V(tt)} is expensively timeconsuming and makes the search slowly convergent to a good solution. This fault can be eliminated in several ways: (1) by evaluating neighbours with a measure other than the makespan, assuming that the value of this measure can be found in an inexpensive time shorter than O(n3), (2) by reducing the neighbourhood size with the precise search, (3) by reducing the search complexity with the precise search. We propose an approach that join together (2) and (3) skipping contemporary (1) because of poor convergence to good solutions observed in computer experiments. This approach links together philosophies of the so-called 
reduced neighborhoods and search accelerator [231, 232].First, consider the method of creating the reduced neighborhood. Let (u, w, z) be the sequence of indices (i, k,l), 1 < i < n, 1 < k < I < ni that maximises the right hand side of formula (3.14), i.e.

zCmax(^) = ^uTr-u(w) 4” y Puiru (s) + (z) • (3.16)
S—WThis sequence determines the unique path (critical path) in the graph ^(tt), see Fig. 3.1. We call the sequence B = (nu(w),..., 7ru(z)) the block, see for example Grabowski et al. [99]. The block corresponds to a subsequence of elements processed on some machine without inserted idle time. In the graph notions, block is a sequence of nodes (without nodes o and *) located on the critical path in ^(tt). We use B to denote the set of elements from the sequence B. Although, there can exist several sequences (u, w, z) and thus several blocks, we restrict our attention to only one of them arbitrary selected. Based on the introduced notion we can reduce move set V(tf) by eliminating a priori some useless moves, i.e. moves v such that C’max((7r)u) > Cmax(7r).
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Property 3.3. If |S| = 1 then 7r is optimal. All moves from V(tt) are useless. □
Property 3.4. If j B, then for any i £ M all moves from are useless. □
Property 3.5. If j € B \ {ttu(w), ttu(2)}, then each move v = (j^y), 

w < y < z, is useless. □
Property 3.6. If j = 7ru(w), then each move v = (j, u, y), 1 < y < w, is useless. □
Property 3.7. If j = ttu(z), then each move v = (j, u, y), z < y < nu, is useless. □Property 3.4 provides the highest reduction of the move set. Proofs of properties can be done by analyses of the paths in the graph Employing Properties3.3- 3.7 we propose the following reduced set of movesW) = J U (3-17)

jeBieMwhere sets are defined only for j € B in the following manner. If i uwe set If i = u and j G B \ {tt^w), ttu(2)} we set —
Vji \ = (J, hy)' w<y<z}.Iii = u and j = ttu(w) than W^tt) = Vji \ {u =
(j^y) : 1 < y < w}. If i = u and j = 7ru(z) than )%-,(7r) = Vji \ {u = (j,i,y) : 
* <y<nu}e.The set W(7r) contains O((z — w + l)(n - z + w — 1)) moves. This evaluation strongly depends on the block cardinality, and varies from O^n) to 0{n2\ Assuming almost uniform distribution of jobs on machines we get evaluation of the number of moves of the order O(n2/m), which is approximately m times smaller than that of V(?r). The neighbourhood {u : v G >V(7r)} also possesses the connectivity property, see next subsection.We can also make use of the below properties, however applying them we can lose the connectivity property. Although this property is considered to be significant for the success of the algorithm, nevertheless there are known TS algorithms without this property that have excellent numerical properties, see algorithm of Nowicki and Smutnicki [230] and its rank in papers of Veassens et al. [322] and Blazewicz et al. [27].

6Set >V(7r) is also scanned to eliminate redundant moves.
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Property 3.8. If j G B \ {7ru(w),7ru(»}, and ru%u(w) < ruj then move 
v — (j,u,y), 1 < y < w, is useless. □

Property 3.9. If j G B \ {^(w),^,?)}, and q^y > qj then move v = 
(j,u,y), z < y < nu, is useless. □Beside the reduction of the neighbourhood size, we provide some further theoretical properties to accelerate the search process. The proposed method reduces the computational complexity of the single neighbourhood search, and can be applied to W(7r) as well as to V(tt) and the makespan criterion. Let 7r be a given processing order. For each s G Af we calculate virtual heads Rs and virtual tails 
Qs, by using the following recursive formulae— max^_R%i(s_i) 4- (s—i), r.^(s)} (3.18)for s = 1,..., ni, i = 1,..., m, where 7rt(0) = 0 and pio = 0 for any i and Ro = 0,

Qiri(s) = (3.19)for s = ni,..., 1, i = 1,..., m, where TT^ni + 1) = 0 for any i and Qq = 0. These values can be found in a time O(n). Component makespans can be found in a time 0(1) immediately from the equationOmax(^"j) — -^Ti(s) 4“ Piiri(s) 4” (3.20)which holds for any s = 1,..., nj.Let v = (j,i,y) be a move performed. Observe, this move modifies only single permutation if i = tj, and exactly two permutations irtj and Ti if 
i 7^ tj. Since Cmax(7r) = maxjeJvt Cmax^i), then to find the makespan after the move performed, it is enough to provide at most two proper values of component makespans associated with and 7r,-. To be more precise, we introduce the denotation 0 = (tt)v. Concentrate first on permutation 0tj where tj follows from x. It has been obtained from Trt. by removing single element j. To use this method, we need to re-calculate virtual heads and tails for jobs in 0^. To distinguish, call them R's and Q's. Clearly, can be found in the similarway as (3.20), however using R's instead of Rs. All these calculations can be made in a time O(ni — 1). Now, consider 0i that is obtained from by insertion of the job j. By (3.20) for s = y we haveCmax(A) = Rp^y) + Pifa(y) 4" Qpdy) = max-fT?^-!) + PiPi(y-10 ri0(y)}4- Pi0i(y) 4" 4- Pi/3i(y+i), q[3i(y)}- (3.21)
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Since fa(y) = j, due to relations between fa and tt,, we can write simpler form of (3.21) and thus more sophisticated form of the makespan for the neighbourhood (tt)v. To this end consider separately two disjoint cases. If i 0 tj thenC'max((^)v) — max{C, CmaxC/Jfj), maX'{7?7r;(y_i), J 4- Pij A max{§j, (3.22) where

C = max Cmax(7rl) (3.23)If i = tj thenC,max((7r)v) = max{C, max{7?'7r.(3/_1), rij} + pij + max{gj, Q'^y)}}- (3.24)Since C can be found while calculating Cmax(7Ti), then assuming known Rj, Qj, 
Rj, Qj, we can find single Cmax((7r)w) in a time 0(1). Values Rj, Qj do not depend on the performed moves so can be found in advance. Values R'j, Qj depend only on job j but not on two remain components i and y of the move (j, i, y). The calculation of Rj, Qj needs a time O(n^) per job. Therefore, makespans for all 0(n2/m) moves from >V(7r) can be found in a time 0(n2/m), instead of 0(n3/m) originally required. Note, the computational complexity of the single neighbourhood search has decreased e times. The analogous computational complexity for the move set V(tt) is 0(n2) instead of 0(n3).
SA algorithmWe consider the SA algorithm based on the idea of Osman and Potts, [237]. Three versions of algorithm SA have been examined with neighbourhoods based on the move sets V(?r), )V(7r), and kV(7r) extended by the use of Properties 3.8-3.9 and the random selection of the neighbour. We refer to these variants as algorithms SA + V, SA + W, and SA + (W+), respectively. Some tests need to be performed to select the best initial and final temperatures, limit of iterations and the best cooling scheme (logarithmic is recommended), see Section 2.3 for details. There are a few propositions to accelerate the speed of this method. Observe, the performed move changes the component mekespans only on two machines: the original and target one. This means that to find the makespan after the move we need to recalculate only these two, which require a time 0(n/rn) on average. Also observe, zero deviation from the delivery interval is the lower bound of the criterion value. Clearly, SA and TS should be stopped whenever such a solution will be found. Next, since at the low temperature the current processing order becomes the new processing order very often, some neighbourhoods are considered many times. If the sequence of such repetitions 
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is long (greater than the cardinality of the move set), some moves can be chosen several times. To prevent superfluous (repetitive) calculations, the makespans found for neighbours can be stored and used in the future. The hashing table data structure is particularly suitable for such applications 7 and improve the search speed significantly, particularly at the final part of the search trajectory. The suggested hashing function is h(J,i,y) = (j(n — 1) + ns + y mod H) where H is the size of hashing vector.

7The hashing table is used with great advantage in some applications of tabu search method, 
see Woodruff and Zemel [338].

8Some of these aspects have been discussed in [230, 231, 232],

Other reduced neighbourhoodsThe application of the so-called reduced neigbourhoods in local search methods is intuitively clear and justified. Assuming the neighbourhood too big we get, beside a fast convergence to a good solution, an unacceptably high computational cost of the search, that finally implies a slow convergence in time. In turn, admitting it too small we get the advantegeous accelaration of the search, but simultaneously it has been observed a poor convergence (in iterations) to a good solution. The latter fault is usually associated with inability of escaping from local extrema, or simply with the lack of the connectivity property. If other mechanisms of search continuation are not provided, this local search method will be far from our expectations. Therefore, the proper selection of the move set is considered as the key element for the algorithm and is commonly regarded as the art. In this context, the following question can be asked: how to find a proper balance between these adverse trends of the neighborhood design and where is a final borderline of this reduction, beyond which the connectivity is lost 8?Undoubtedly, the fundamental role of the neighbourhood is to set a proper guidance into promising regions of the solution space. The connectivity property ensures continuation of the search process to avoid getting stuck in a local extrema too early. In this section, we consider an extremely reduced neighborhood for the problem (3.3)-(3.4) (i.e. the problem with some particular properties) in the context of the connectivity property. At the end of this section, we generalize the obtained result in such a way as to apply it to the case where no particular problem properties have been found.Consider a strongly reduced neighborhood based on the move setZVW = |J (Z/J1U-i(7r) U Z/^+iW) 3.25)
jeswhere each set C V^tt) contains at most one move and is defined only for 
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j g B in the following manner. First, we assume Z/ji(7r) to be empty if i 0 M. Next, we consider only the case w < z since for w = z we have found optimal solution, see Property 3.3. If i u the set Uji(n) contains only single move (j, i, y) selected arbitrarily (e.g. randomly) from the set The remain cases refer to 
i - u. For j € B\ {tt„(w), xu(z)} we set = {(j,w),(j,z)}. For j = ^(w) we set = {(ttu(w), tt^z))} only if z — w > 1. Otherwise this set is empty as well as the set ^(tt) for j = ttu(z). The set contains O(z — w) moves. Its real cardinality depends on the cardinality of B and varies from 0(1) to 0(n). Assuming almost uniform distribution of parts on machines we have on average 
0{n/m) moves in which is siginificantly less than these for W(7r) and V(tt). Clearly, 12^) C >V(7r) C y(?r), and W(tt) is one of the smallest move sets.

Property 3.10. The neighbourhood based on the move set satisfies the connectivity property. □
Proof. We need to operate on machine workloads for different processing orders. To prevent faults, notions ni, Nj,tj will be indexed by the name of processing order. We start from the definition of the set of job pairs consistent with a processing order a € II

y^a) = U {(«.(*), :3<k<l<n?} (3.26)
iEMLet us define the distance between processing orders a, (3 asp(a,/?) = Afpi(a,/J) + p2(a,^), (3.27)where

P1(a,0)= (3-28)
k^Afalow us to measure the distance between machine workloads, whereas 

p2^,^ = \y^\y^)\, (3.29)enables the measure meant of the distance between permutations, and M is a sufficiently big integer. This definition differs from that of Nowicki and Smutnicki [231] since it uses another, more tight measure for pi(a,/3). Note, if p(a,/3) = 0 then a - /3.Consider a processing order tf 6 II which is not optimal, i.e. Cmax(7r) > Cmax^*) where 7r* € II is an optimal processing order. First we will show that for each 7r there exist a move v € ZV(tt) such that p((7r)„,7r*) < p(7r,7r*).Let us define sets £ = {(7ru(A:),7ru(.z)) : w < k < z} and T = {(tfu(w), ttu(A:)) : 
w < k < z}. Consider separately the following exhaustive cases.
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Casel. “S C and C Y(ir*y. There exists in G(%*) a path containing all nodes from the critical path in G^}. Therefore t > Cmax(7r) where r is the length of this path. Taking account of this statement and assuming that 
C*max(^) > C'maxC’T*), we get the contradiction Cmax(7r) > Cmax^*) > t > 
CmaxC^)-

Case 2. “f \ ^(tt*) 0”. Then there exists j, j € B\ such that
(j,nu(z))^Y^) (3.30)and (7r„(&), 7Tu(z)) € y(7T*), Xj < k < z, (3.31)where Xj is the position of job j in the permutation, i.e. Trt](xj) = j. Let i* G A4 be the machine such that j G A/^*. It follows from (3.31) that there exists the machine i' G M. such that ^^(A:) e N^* for Xj < k < z. Consider two subcases. 

Subcase i* = i'. Since jobs j and ttu(z') belong to the same set , by (3.30) we have e y(7T*). (3.32)Taking into account (3.32) and (3.31) we obtain
^u(k)),j)eY(ir*),Xj <k < z. (3.33)From (3.33) and the definition of y(?r*) we obtain(j,7r„(fe)) £ Y^\xj <k < z. (3.34)Now, we will show that the required move exists.If j ttu(w) or (j = 7ru(w) and z — w = 1) then we chose the move v = 

(j,u,z) G Z/(tt). Clearly, = A/^, i G M, and therefore pi((7r)v,tt*) = pi(7F,7r*). The definition of y(a) for a G {(%)„, ?r} implies
xj<k<z xj<k<zFrom the above and from (3.32)-(3.33), we get

iWWWn U {(;>»«)}] W)-
xj<k<zTaking account of the above equation and from (3.34), (3.30), we get

P2^v, = |y ((^r)v) \ y (%*)l = p2^, - tj) < P2^, tt*).
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Finally ?((%)„, tt*) < p(7r,7r*).Otherwise, if j = 7ru(w) and z — w > 1 then we chose the move v — (ttu(w + l),u, w) 6 Z7(?r). Observe, this move provides the same processing order than the move (ttu(w),u, w + 1) due to redundancy. Therefore, we can make the analysis exactly in the same way as for the move (ttu(w), u, w + 1) (assuming that one can be performed). By analogy to considerations presented above, we have= [H*) \ + 1))}] U {(^(^ + 1)),>)},which provides P2^)v, tt*) = P2^,^*') — 1 and finally p((7r)„, tt*) < p(7r,7r*).

Subcase i* i'. We show that there exists move v € Z/(tt) such that (3.35) 
k^N keAfIn order to prove the above, if u > i* we chose the move v = (j, u — l,y) € Hence, t^v = tj — 1, and t^v — for k j. Therefore, we get immediately (3.35). Otherwise, if u < i* we chose the move v = (z, u + 1, y) € Wj,u+i(’r). By analogy to the previous case we also get (3.35). Next, using (3.35) we have Pi((7r)v,7r*) < pi(7T,7T*) — 1. Therefore, p(7rv,7r*) = Mpi(irv, %*) + 

P2^v,^*) < M(p1(7r,7r*)-l) + p2(’Tv,7T*) = P^ ~[M - p2^v, + P2^and assuming M sufficiently large we obtain p(irv,Tr*) < p^ir,-^*).
Case 3. “f C X’T*), and M71"*) 7^ 0”- This case can be proved by analogy to the previous case.We are now ready to show the main result. Since p(a,7r*) for any a G H has a finite value then for any initial processing order tt^1) there exists a finite sequence of processing orders ir^, tt^2), ..., ttC) such that p(n^, 7r*) > p(7rb+1), tt*), tt^1) € {tt„ : v G Z/(tt’)}, i = 1, and ^tt^^tt*) = 0 or Cmax(7rC)) <Consequently, tt^) = tt* or Cmaxf^^) = Cmax^*). In both cases tfC) is some optimal processing order. ■There are some implications of the Property 3.10. First, even a relatively small move set (0(n/m) on average) ensures the connectivity property. To that end there is sufficient to move each job from the block on at most two machines (the one immediately preceding and the one immediately suceeding) to any single position there, and to move this job forward (backward) in the leftmost (rightmost) position of this block. Clearly, both FV(tt) and V(tt) satisfy this property, however application of Properties 3.8-3.9 in can release it. On the otherhand, experimental tests show that the move made on machines u - 1 and u need not be performed either on the remain machines, i.e. i E M \ {u - 1, u, u +1}, or in a random position y but in the position selected in a reasonable way. Similarly, 



54 Chapter 3. Delivery performance using R/Q models

moves to the leftmost (rightmost) positions inside the block should be performed still further. Fortunately, the spreading of Z/(tt) to kV(7r) (slightly greater) has been made in the problem considered at small expenses paid for the calculations. For problems where calculations are more expensive, ZY(tt) is recommended.The move set Z/(tt) is a tipical example of the explicit application of some useful, particular properties of the problem, see Case 1 in the proof of Property 3.10. For the considered problem, these are the properties derived from the critical path and block notions. If no particular properties for the analysed problem have been found, it follows from the proof of Property 3.10 then the minimal move set with the connectivity property can has the following form= IJ U - 
ieMwhere the move (j,i,0) does not exist and the moves (j, i,y) either if i 0 A4, and y* denotes any (random) position on the appropriate target machine. Intuitively, the move set 3(tt) contains moves where each part j is moved in four opposite directions up, down, left, right only by single elementary step, i.e. by single machine up (down) in an arbitral position, and by single position to the left (right). The last type of moves is called pairwise interchanges, and due to redundancy many of these moves can be eliminated. The move set 3(?r) contains 

O(n) moves.
Combined algorithm TS + AFollowing a two-level decomposition of the problem pointed out in Section 3.1 and a good quality of approximation algorithms for single-machine problem one can propose a two-level approximation algorithm that combines TS approach with an approximation algorithm A dedicated to solving m single-machine auxiliary subproblems. On the upper level, the TS approach is used to find the partition N{, 
i E M, i.e. machine workload. Similar technique has been used by Hubscher and Glover [147] for balancing workload of parallel identical machines, however with jobs without heads and tails. On the lower level, for a given partition, m machine sequences are generated by m-times application of an auxiliary approximation algorithm A. An algorithm from these already enumerated as S,P,HS,NS can be recommended to this aim.There are some essential differences between this algorithm and algorithm TS from the previous section. The main one refers to the computational complexity of the search. Indeed, for the given tt calculation of C'max(7r) needs a time O(n) and this is the cost of checking a single solution. Moreover, by application of fast calculations of the makespans in the neighbourhood, this cost can be reduced to
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0(1) per neighbour. On the other hand finding 7r for the given workload can be found in a time O(nlogn), see Table 3.1, which cannot be reduced. Hence, this method should not be considered as competitive with algorithm TS.

Other special algorithmsIf aj = bj, the single-machine problem formulated in Property 3.1 is equivalent to that of minimising maximum discrepancy, see Section 3.2 which has polynomialtime algorithm 9. Therefore for this case only, one can propose another two- level algorithm TS + G, where on the upper level only the machine workload is searched using, e.g. TS method, whereas on the lower level detailed schedules for all machines are found using the method (G) proposed by Garey et al. [78].

9This algorithm can be extended to cover the case bj — aj =const.

3.2.2 Computational results

A single machine problemAn initial test was made to evaluate the quality of advanced TS versus S, P, HS algorithms for the single-machine problem with heads, tails and the makespan criterion, Smutnicki [302]. Test instances were generated using the scheme of Carlier [36]. For each n = 50,100,150,..., 1000 and F = 16,17,18,..., 25 a sample of 10 instances was obtained. The chosen values rj, pj, qj had uniform distributions between 1 and rmax, pmax, Qmax, respectively. We set pmax = 50, rmax = Qmax = nF. Thus, 10,000 instances were tested. The instances with F = 18,19,20 were reported by Carlier as the hardest. Algorithm TS (advanced) was started from the permutation provided by algorithm S. For all instances tested (100%) algorithm 
TS provided the best result (Cmax(7rTS) < Cmax(7rHS)), whereas for 0.2% of cases only it provided strictly better result (Cmax(irTS') < Cmax(irHS)). Algorithm HS is the best one among S, P, HS, NS both from the worst-case and experimental points of view. Note that in the tested configuration TS has O(n2) computational complexity, whereas HS has original O(n2logn) computational complexity. It means that for instances with n = 50,..., 1000 algorithm TS runs 5 ... 10 times faster than HS. Algorithm TS essentially improves the initial solution in 96.5% of cases, and provides the optimal solution in 99% of cases.
Delivery performance. Algorithm SA.The main part of performed tests were exactly dedicated to the problem of delivery performance. Test instances were generated using own scheme selected to cover a broad class of real examples. For each n = 50,100,150,..., 1000 and
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Figure 3.2: Behaviour of algorithm SA in different neighbourhoods (typical run, n = 300,
m = 5, k = 1.25) 
m = 2,..., 5 a sample of 10 instances was obtained. Values aj, bj, pij were chosen as follows. First, there were selected normative processing times pj with uniform distribution between 1 and pmax, delivery dates dj and deviations from these dates Aj with uniform distribution between 0 and dmax, △max, respectively. We set Pmax = 50, dmax = knpma.x/(2m), Amax — Pmax/2, and k — 1.0,1.25,1.5,1.75,2.0. The parameter k is used to control the level of difficulty, problems with k = 1.0 are much more restrictive than those with k = 2.0. Values p^ were obtained by random disorder of pj within the range ±20%, rounded up to the nearest integer. Values aj, bj are set as follows aj = dj — Aj and bj = dj ± Aj. Algorithm SA was started from the permutation provided by algorithm LS±MWR adjusted to cover unrelated machines case, according to remarks already given. Other constructive heuristics has been skipped in experiments, since both TS and SA outperform them.At the initial stage, several test were performed to select the best configuration for SA method, observe its behaviour in Fig. 3.3. In all tests, solution times are about few seconds per whole run on a PC (up to 1,000 parts), so all of them are acceptable. Therefore, evaluation of the algorithm performance was concentrated chiefly on other measures of the algorithm performance, namely the quality of generated solutions and speed of convergence.
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Some experiments were performed for SA algorithm to establish the influence of control parameters, the neighbourhood, initial temperature, cooling scheme and limit of iterations on the algorithm quality. For SA + W and SA + (W+) we set experimentally the initial (7b) and final (Tv) temperatures which were 25.0 and 1.0, respectively. This is in accordance with findings of Osman and Potts [237]. It has been suggested to set To approximately 0.1pmax. Indeed, TS + V works the best for To = 5.0. However, it has been verified experimentally that 

SA + W (also SA(W+)) needs the initial temperature approximately m times greater than SA+V. The limit of iterations is set to N — 10,000. The logarithmic scheme of cooling is found to be preferable with parameter /? calculated from the dependence 0 = (To — Tn)/(NToTn\ Algorithm SA + V is found to be very sensitive to proper selection of cooling scheme, which however has not been observed for SA + W and SA + (W+). If we assume a slow reduction of the temperature for SA + V, too distant solutions are accepted in the primal phase of the run, and therefore algorithm very poorly converges to a good solution. If we assume, in turn, high reduction of temperature, behaviour of SA + V tends towards descending search with drift methods, which has poor performance. Very subtle differences were found by varying the cooling scheme for SA + W and 5A + (W+), chiefly within the first 1,000 iterations. However, no other dominant cooling scheme has been selected. The general conclusions are in conformity with these observed in Fig. 3.2, which presents a selected (typical) run for n = 300, 
m = 5, k = 1.25. In Fig. 3.2, there is shown the relative error 100%-(Z(tt4)—Z)/Z, where Z(7r®) is the criterion value found at iteration i, and L is the reference value. We set L = £(7r10’000) for the best solutions among all tested variants of SA. Some conclusions are surprising. Observe that the deviation from the initial solution can be relatively high (over 600%) from the best found. This is a consequence of small (near zero) criterion value for the optimal solution and should not be considered as an exception but as a rule. The initial solution can be essentially improved, and the most significant part (80%) of this improvement occurs within first 1,000-2,000 iterations. Generally SA + V very poorly converges to good solution, and within first 2,000 iterations less than 5% improvements appear. Behaviours of SA + W and SA + (W+) are similar, and both algorithms offer quick and efficient reduction of the goal function value. Since the initial solutions are generally very distant from the optimal ones, these valuable properties are especially welcome.
Delivery performance. Algorithm TS.

TS algorithm was tested using the same instances. After some initial runs the best configuration was selected: maxtT = 8, maxiter = 1,000 and LS + MWR
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Figure 3.3: First 1,000 iterations of algorithm SA + W (typical run, n = 50, m — 5, 
k = 1.25)
to find the initial solution (the same as for SA), see also Fig. 3.4. The advanced 
TS algorithm was found to be superior to basic TS for the reasons pointed out in the previous subsection. No essential differences were found between the use of the neighbourhood W(tt) and W(tt) extended by Property 3.8-3.9.Testing SA versus TS,we found that advanced TS generally generates significantly better solutions than SA-f-W. Moreover, it tends more quickly (compared iterations) to the first best solution, so the initial search trajectory is very steep. In Figure 3.5, there is shown the relative error 100% • (L^tt1) — L)/L, where L(k1) is the criterion value found at iteration i and L is the reference value for an illustrative instance with n = 300, m = 5, k = 1.25. We set L — L(ir100) where 7T100 is the best solutions from among the tested algorithms SA and TS. The most significant improvements (80%) of TS appear within first 50-100 iterations, which is quite different than in the case of SA. In practice, SA suppresses its activity in a local extremum, not so far from the global one, however because of the low temperature it was unable (in a short time) to exit from this extremum to continue the search. On the other hand, TS can easy exit from such extrema without any difficulty. For all tested instances (100%) algorithm TS provided the better result than SA, and for more than 90% strictly better result. Moreover, TS provided optimal solutions (zero deviations) in many cases. Note, the
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Figure 3.4: First 100 iterations of algorithm TS + W (typical run, n = 50, m = 5, 
k = 1.25)

Figure 3.5: Comparisons of SA + W and advanced TS (typical run, n — 300, m — 5, 
k = 1.25)
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Figure 3.6: Quality of generated solution (advanced TS) depending on £=1.25,1.5, 1.75, 2.0.
computational complexity of a single iteration of SA is O^n/m), whereas TS is 
0{n2/m). Even assuming equal running times for TS and SA (i.e. SA performs 
n times more iterations), the result provided by SA is essentially worse. Since the time necessary to perform 1,000 iterations for SA is usually shorter than that necessary for 100 iterations of TS, one can propose a combination of both methods. First, SA is run on 1,000 iterations, and then the resulting solution is used as initial one for TS algorithm, which more slowly but efficiently improves the solution. Observed value L(iC), for 7r generated by TS, depends on n, m and 
k. For small n and k > 1.5, the mean (best) criterion value is about 5-10% of 
△max, see Fig. 3.6. To preserve this error for the greatest n, one can set greater 
k. It means that to ensure small maximum deviation from for the delivery interval for overloaded cell (large number of produced parts) one can increase the distribution of delivery dates in order to have it in the interval broader than the mean workload per machine.
3.3 Set-up times in a single-cell modelTo increase applicability of the used model, let us introduce additionally machine set-ups to the problem from Section 3.1, formulated in the form derived from 
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Property 3.2. For this purpose, we accept the following assumption: if the part 
I is processed immediately after part k on the same machine i (ti = = i), aset-up time A^ must be taken into considerations, i.e. Ck+Au < Si. In practice, due to similarity or identity of produced parts, the set of possible set-up values is finite and small. Quite often, for each part there is introduced a membership to the family of types T - {1,..., where fj G J7 is a type of part j. In this case,y set-ups are defined for these parts which are of different types. Neglecting the philosophy of finding set-up values, one can treat A^ as given.Skipping the trivial observation that the model is still working for the set-ups, let us concentrate on the most significant problem of the variety and quality of available solution methods. Algorithms S,P,HS,NS as well as TS + A are hardly adapted to this case, particularly while considering non-uniform machines. Hence, only TS and SA techniques, among these from Section 3.2, remain. Both methods refer to the use of a neighbourhood and eventually to some of Properties 3.3- 3.7. Let us discuss this subject in detail. The application of the neighbourhood {(tt)^ : v G V(tt)} is always valid due to its high generality. Among the properties, only Property 3.3 holds without any additional conditions. Property 3.4, the most useful for a reduced neighbourhood, remains valid if only the following condition holds A^A^ + A’,, (3.36)for any k,l € JV and i G A4. In practice, this requirement is usually satisfied. It states that making a set-up immediately from part k to part I we cannot do worse than making two consecutive set-ups from k to j and from j to I for any other part j. None of the remain properties need hold. Hence, we can propose another significantly reduced neighbourhood with the size of order O^/m) and having the connectivity property, however slightly greater than that with the move set (3.17). Additionally, the approach described in subsection “Advanced 
TS algorithm” for the fast makespan calculation can be used after an appropriate modification with all advantageous properties yielding higher search speed.
3.4 ConclusionsQuality of both SA and TS methods has been significantly improved by application of the reduced neighbourhood. Additionally, TS has been significantly accelerated by the use of some theoretical properties of the problem. Hence, we are allowed to formulate the following (hypo)thesis: just the special properties of the problems should be considered as the key for the success of the solution algorithms. Indeed, these properties play the fundamental and very important role in guiding the search through the most promising regions of the solution 
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space. This fact has been verified and confirmed in many researches conducted by Nowicki and Smutnicki [230, 231, 232].The obtained transformation of the stated delivery performance problem into a problem with heads, tails and the makespan criterion can be performed for almost all workload/scheduling problems, even with more general production struc-( tures. This allows us to solve some problems of delivery using classic scheduling problems. All advantageous properties and algorithms formulated for the latter problem can immediately be applied. Additionally, many results found for classic scheduling problems with the makespan criterion can easily be extended to cover cases with heads and tails, see the best known algorithms in [230, 231, 232].Application of the proposed min-max measure of delivery performance yields certain profits, but simultaneously it leads to some disadvantages. The used model is simply enough to be solved using very fast and easily implementable approximation algorithms with a high accuracy. This model is also useful while considering problems having e independently minimised criteria, each one for a separate customer order. From this point of view it is much more justifiable application of this model on the borderline between purchaser and client (final product stage) than inside the manufacturing system where it seems difficult to include the fluctuations of delivery times in considerations. On the other hand, minimisation of the maximal deviation permits all jobs to tend towards extreme deviations, which is not distinguished by the criterion value, but unreasonable from the practical point of view. To eliminate these shortcomings one can propose to modify the goal function by adding, e.g., a term with the sum of deviations. Unfortunately, this modification essentially complicates solution methods and goes over the power of theoretical tools used in this section (this subject will be discussed in next sections).
3.5 Delivery performance by max/total costIn this section we discuss more advanced scheduling models based on the maximum cost and total cost scheduling criteria, which can be applied in JIT environment. The considered models as well as proposed algorithms still remain inside conventional tools of ST.
3.5.1 Scheduling with cost functionConsider a production cell having m machines and let M = {1,. ..,m} be the set of these machines. Each machine i is available starting from some date gi, because of not finished production tasks. The set of n parts A/" = {1,2, ...,n} has to be processed by this cell. Each part j E A requires a single machine for 
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processing, needs a time pij > 0 for processing on machine i € has weight Wj (interpreted as priority/urgency weight or the cost of inventory per time unit), and has to be completed before the given due date bj, however as close as possible to this date. Each part can be performed on any machine from Ad. Once started, a part cannot be interrupted. Each machine can execute at most one part at a time, each part can be processed on at most one machine at a time. A feasible 
schedule is defined by a couple of vectors (S, T) which are the same as in Section 3.1.To measure the delivery which is not in time we can use the maximum weighted deviation max[wj(6j - Q)],

3 G Aland the total weighted deviationEWf-Q)], (3.38)
jEAfsince for all j & Af we must have Cj < bj. Note, this criterion concentrates only on a measure of waiting times (between the time of part completion and date of delivery) neglecting processing times, which in the case of unrelated machines does not necessarily minimises WIP. Alternatively, to minimise both delivery performance and WIP in the environment with multiple unrelated machines, one can propose to replace Cj by Sj in formulae (3.37) and (3.38). However, the criteria obtained in such a way generally are not equivalent, which leads to a surprising finding that better delivery performance does not necessarily minimises WIP.We also refer to Section 3.1 for the notions: machine workload (A/i,i 6 A4), machine processing orders (tt,,? € Ad), overall processing order rr, set of all processing orders H. The feasible schedule (S, T) generated by tt implies tj = i, 

j = 1,... ,ni, i E Ad. Appropriate starting time S = (5i,..., Sn) follows from the optimisation problem
MM = min max [w,(b. — C,)] 

v 7 ses(?r) jeAT L n J
(3.39)

with the set S(x) introduced by constraints (3.4). Denote by J(?r) the optimisation problem for the criterion (3.38). Similarly as in the Section 3.1, for fixed tt both problems can be decomposed into m independent single-machine subproblems, denoted as Mlxf) and J(^i, respectively. Next, these subproblems can be expressed in terms of ST.
Property 3.11. Each subproblem (Jlni) respectively) is equivalent to the problem of scheduling jobs from the set Afi on a single machine with heads rj = 
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K - bj and a common dead line di = K - pi, where K — mayy^bj, to minimise maximum machine-dependent cost maxj6jv, (total cost SjeJV, re’ spectively), where fij(C) — wyt + Vij, v^j = Wj^bj - K — py). □Easy proof follows from observation that with respect to a single machine the problem stated originally can be “reversed” providing that from Property 3.10. The problem stated can be interpreted as that of scheduling jobs on parallel unrelated machines with machine-independent heads, machine due dates and machine-dependent cost functions combined either as max or sum criteria.
3.5.2 Some remarks on solution methodsThe dead-line restriction stated in Property 3.10 can be modelled by modifying cost function to obtain a general non-linear or piece-wise linear function having appropriately high barrier value in the dead-line point. Obviously, a processing order 7r is feasible if the associated cost does not exceed a threshold value. Although such a modification has no obligatory character, it allows us to forget about dead-lines, which complicate the problems a feasible solution existence (this problem is NP hard). In manufacturing practice, many constraints assumed as fixed can be violated at some additional costs. This approach is close to the local search method where unfeasible moves 10 can be accepted with some additional penalty only to ensure the continuation of the search process. This penalty can be included explicitly in the goal function (as above) or can be added to the original criterion value as an independent term. Note, due to restricting the search with feasible moves only we usually obtain an algorithm of superfluous stiffness and thus poor convergence to the best (feasible) solution.

10Moves that lead to an unfeasible solutions.

Since the problem can be decomposed into m independent subproblems, one can consider algorithms recommended for single-machine problems with heads and general maximum cost or total cost as the useful tool for constructing solution algorithm. Not specifying here any particular solution method, we only refer to these properties and solution approaches that can be recommended for the construction of the solution algorithm. Based on the conclusions from Section 3.4, we consider only local search approaches as the most promising ones.Problems with general max-cost criterion have been treated marginally in the literature, see the excellent review by Gupta and Kyparisis [128]. Only maximum lateness and tardiness are considered more frequently than other max-cost criteria. Nevertheless, research conducted by Smutnicki [291], Grabowski and Smutnicki [102, 103], Grabowski et al. [112], for a general cost function provides its very useful properties, analogous to the so-called block properties. These
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properties constitute the base for the definition of a reduced neighbourhood and for a suitable method of acceleration of the neighbourhood search. TS approach combined with extended block properties and original search accelerator have provided many algorithms with excellent numerical properties see, for example, papers of Nowicki and Smutnicki [230, 231, 232]. This approach can also be easily extended to many other more general structures of the production systems.Problems with total cost criterion have appeared more frequently than those with max-cost, since they have better economic interpretation. Problems with heads and total weighted sum of completion times as well as problems with more general production structure are considered as particularly difficult. Generally, Properties 3.1-3.9 do not hold for this problem. Moreover, except some special cases, no significant general properties have been found so far. (Some experiences with constructive and DS algorithms for a single-machine and flow lines have been presented by Nowicki et al. [220].) It means that in the local search algorithm we cannot use the move set PV(7r), but we can apply either V(tt) or ^(tt), see Section 3.2 for details. The move set V(x) immediately implies very expensive search time O(n3) per neighbourhood. In turn, ^(x) (with the connectivity property) contains O(n) moves and requires a significantly shorter search time O(n2) per neighbourhood. As to search accelerator, excluding the case of zero heads, no changes of the criterion value are predictable in advance. Therefore, we need to re-calculate the goal function value for the newly generated solution to evaluate its quality explicitly. Conclusions drawn in Section 3.4 lead to the statement that any reduction of the move set is especially desirable, first because of too slow SA convergence, next because of too high computational complexity of the single iteration of TS. Since the cost of the whole neighbourhood search becomes too high, SA method is considered as the preferable one. On the other hand TS has been found better than SA taking into account the performance of generated solutions. To prevent too high cost of the single neighbourhood search, there has been proposed the idea of the restricted neighbourhood, Diaz [59]. The size of this neighbourhood is controlled by certain parameter, and decreases if the number of performed iterations increases. The restriction prevents the moves from being distant. This restriction has an arbitrary character, quite different than philosophy of the reduction by eliminating useless moves.Several additional properties, advantageous for constructing a reduced neighbourhood for the problem (3.38), can also be provided. We outline only some of them. Let Cj be the completion times found for processing order x.

Property 3.12. For any move v = such that i tj and 1 <
y < k = max{l < s < ni : rj > there exist a move v' = (j, i, y'} € V^), 
y' > k, such that ./((tt)^) < J((7r)„). □
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Appropriate, more sophisticated, property exists for the case i = tj as well. This property restricts the number of considered positions y on each machine i. In practice, assuming an almost uniform distribution of heads in the processing interval and uniform distribution of parts on machines, approximately half of moves from V(tt) can be eliminated in this way. Other properties can be found to reduce the number of calculations. Observe, schedule on a single machine with criterion can naturally be decomposed into several blocks, each of which corresponds to a subsequence of parts processed consecutively on this machine without inserted idle time. Assume that moves v = (j,i,y) are performed in the inverse order y = ni + 1, n^..., k + 1 for some fixed j and i / ty Insertion of 
j in position ni + 1 can be evaluated in a time 0(1) on the base of J^i) and 
fj(t). If only this part adheres to the last block in the resulting processing order, the insertion in position ni can be interpreted as a swap of immediate adjacent elements, hence the new total cost can be found in a time 0(1) by modification of the oldest one 11. Then the process is repeated. Unfortunately, some exclusion need to be made if the insertion is performed on a position “between” the blocks. Nevertheless, the profits obtained remain significant.

11 Some additional conditions are necessary to ensure correctness of this manipulation.

3.6 ApplicationsOne can find a lot of applications of the model proposed and solution methods.First, they can be used immediately in an interactive system to support scheduling decisions, like that developed by Nowicki and Smutnicki [227]. Values 
aj, bj, Wj can be used as the control parameters (aspiration, reservation level) which allow the user to express his own preferences in the process of developing the satisfactory solution. Note, the user can smooth the faults associated with the use of min-max delivery measure by appropriate setting his own preferences: expected delivery date, deviations from these dates, urgency.Since the proposed algorithms reduce the criteria value very fast and efficiently, they are highly recommended for the pre-processing phase in more advanced algorithms, designed specially to minimise other, more complex non-term delivery measures.The pure problem of scheduling jobs on parallel machines with heads, tails and the makespan criterion (auxiliary for our aim), and also its special cases, can be also used for resolving problems of scheduling jobs on critical machines and/or in critical machine nests, in the conventional manufacturing systems. Each time when a bottleneck production unit (machine, machine cell, etc.) has been detected, an additional parallel, identical or more often non-identical machine is 
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added to increase the production power and to remove the bottleneck mark from this production unit. The proposed model and algorithm allow us to analyse and evaluate all what ... if cases for any extended machine set.Another application one can find in a transportation system. Let this system contain m (independent) vehicles. These vehicles have to deliver n products to n points, each of which need to be visited in the time window [aj, bj]. Once visited, a vehicle spends time pj at the point j, and the travel from point i to point j needs a time Ay (set-up time). Skipping the vehicles capacity, we would like to find the schedule of vehicle routes, which minimises a measure of not on time delivery. In fact, limited vehicle capacities can also be included in this model by imposing a restriction on the feasible machine workload or auxiliary penalty per vehicle overload.These models can also be used to design and analyse the inventory control in a manufacturing systems. Cyclic manufacturing can be approximated by analysing flows of parts for some, small number of cycles. Fixed delivery dates, like that in the model from Section 3.5, allow us to propose a self-operated JIT inventory control with pull strategy, see Fig. 2.1 (c).



Chapter 4

Delivery performance by using 
E/T penalties

In this chapter we discuss more complex measures of delivery performance, which can be modelled by using some advanced extensions of scheduling problems, namely the ones having so called non-regular criteria or general earliness and 
tardiness (E/T) penalty function. The study of these models is relatively recent area of inquiry in ST, and is strictly associated with the developing of the JIT philosophy. In this models, each customer order (groups of these orders) has determined individual penalty function for non-term delivery. The primal role of this function is to guide solutions toward the target of meeting all required delivery dates exactly. From this point of view, it represents the customer/host expectations. Nevertheless, this function may also expresses explicitly some production costs. Although penalty functions may reflect customer views more accurate, solution methods recommended for these problems remain still unsatisfactory, chiefly because of too high computational complexity. Most of considered hereafter problems can be modelled with the help of linear programming (LP), however already solution methods (particularly these enumerative and local search) need to solve some LP problems a huge number of times. Since one can doubt about effectiveness and rationality of this approach, then generally it will be avoided. The fundamental aim of this chapter is to select problems, their properties, and methods, which allow us to reach assumed goal (the best performance of delivery) under a minimal cost of computations.At the begin, we introduce the general framework of using E/T penalties, the basic properties of problems, as well as a classification of problems and approaches. Next, some results for a single-machine problem with min-max earliness penalties is presented, Smutnicki [305]. These studies go over basic results formulated for problems with min-max E/T penalties, Sidney [286], Lakshiminarayan 
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et al. [184], Achuthan et al. [2], and are immediately applicable for problems with more general structure of the production, Grabowski and Smutnicki [110], Smutnicki [299, 300]. In the end, we discuss some aspects of application the total and extended E/T penalties to single-cell scheduling. All approaches will be presented on examples of selected problems, having immediate application in JIT systems.
4.1 E/T measuresIn the JIT scheduling environment, final products (semi-products) need to be completed as close as possible to the due date (delivery interval), and equally the early as well as tardy completion is undesirable. The former because of cost of inventory that must be held, the latter because of customer dissatisfaction. Generally, variation around the due date can measured in various ways, see e.g. Section 3.1, nevertheless in this section we consider only these pointers that use nontrivial, appropriately defined E/T penalty functions. There have be selected two sub-classes of such problems: these where due dates are given (fixed), and those where due date is a variable that has to be chosen. The latter case can be used to negotiate the term of delivery. Another two sub-classes are distinguished by admitting that either all jobs can start earlier than time zero, or cannot. These subclasses are called unrestricted and restricted version of E/T problem, respectively.All known in the literature problems deal with the single machine, static model, although some of these results have been extended to at most parallel uniform machines case, see the review by Baker and Scudder [18] supplemented by papers since 1990 [4, 7, 34, 78, 131, 135, 139, 175, 209, 321]. Some of these results appear also in the book of Brucker, [31]. Although, one can found in the literature very few more general problems, either no particular algorithm has been proposed or the proposed ad hoc algorithm has not been implemented and verified experimentally. In general, the research concentrate on special, polynomialy solvable cases, or models as simply as possible, because of too high computational complexity of the proposed solution methods. Indeed, problems with E/T penalties are much more troublesome than classic scheduling problems x. Because of the non-regular form of the goal function, all traditional approaches from ST are useless, and therefore new solution methods are intensively looking for .Classification of problems will be made assuming that the set of independent

Tn classic scheduling there are known at least five classes of schedules: left-justified, weakly 
active, strongly active, left optimal and optimal, see e.g. [323]. Solutions with E/T penalties 
generally are not left-justified.
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products (jobs) Jtf = {1,..., n} is to be performed in the system, each of which requires a machine (dedicated or selected among a given set) during some uninterrupted processing time. Specification of the machine set has no influence on the classification, so is skipped. Each product has a delivery interval [rj, dj] within which it should be completed in the ideal case. Let Cj denote the completion time of this product. Clearly this completion time depends on the schedule. We define also the job earliness Ej = [r^ — C'J]+ and tardiness Tj = [C, — dj]+, where [a:]+ = muz {0,2:}. A lot of measures have been considered so far in the literature. Although models with delivery tolerance (i.e. such that rj < dj) are better justified in practice, Cheng [45], almost all known results refer to the case without the tolerance rj = dj, where delivery interval reduces simply to the due 
date denoted hereafter dj. There are four distinct classes of measures based on: maximum E/T, linear combination of E/T, non-linear combination of E/T, variations of mutual job completion times. The last class does not introduce explicitly required delivery interval, but extort the schedule to be as much as compact on the time axis. One of the simplest and early recognised is a function of maximum deviation, Sidney [286], m^max^Ej), f(Tj)}] (4.1)

j GATwhere g(t) and /(t) are some nondecreasing, continuous, convex functions. Some very special cases of (4.1) have been also considered, e.g. Garey et al. [78], Brucker [31]. A nontrivial generalisation on the case of various functions gj(t), 
fj(t), under relatively weak assumptions about penalty functions, has been provided by Grabowski and Smutnicki [110], and Smutnicki [299, 300, 305]. Note, these measures are quite promising since admit various due dates yet. Further papers provided a lot of measures based on total deviation, as an example simple total absolute deviation from about common due date, Kanet [158],£|Cj-</|=^[£j+T,] (4.2)

jeAT jeAfwith the understanding that dj = d, j € AT. Many of the authors have used such measure, see [18]. By leaving the common due date and introducing two weights 
w and v we obtain a slightly more general measure, Bagchi et al. [13],

^[vEj + wTj] (4.3)
j&AfThe next generalisation extends (4.3) by introducing, nearby the variable common due date, an element of negotiation represented by maximal acceptable due date 
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d*, Panwalker et al. [240],
£ [vEj + wT, + u[d - d*]+]. (4.4)jeVAnother variation of (4.3) on additional penalties with the common due date refers to the measure introduced by the same authors

^[vEj + wT. + uCj] (4.5)
jeATwhere also flow time is taken into account. By assuming a common, fixed due date, the measures (4.2)-(4.5) have, from some point of view, a limited application in JIT systems where many products need to be delivered in various time moments. This note refers also to cases with variable, negotiable due dates. Moreover, solution of these problems appears to be intrinsically different (significantly simpler) from solutions of problems with distinct due dates. All these enumerated measures can be represented by the following general linear one, containing also models with distinct due dates, considered by many authors, see the review [18], 5? \wi^j + vj^j + uj^j + zjdj] (4-6)

jeATNonlinear penalties are represented by squared deviation£(^-^2=£[^? + ^] (4.7)
jeAT jeAfor a variation of (4.7) admitting the use of the weights v and w, or Vj and Wj. The last class of measures is based on variances between job completion times, Kanet [158], ££|G--CJ (4.8)

itAT jeAfor (4.9)
iEAf j£AfThis class has an important application in assembly line leveling problem, see Kubiak [172, 174].Generally, the total penalty measure can be written asE^W^ (4.10)

jeAf
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where fj(t) and gj(t) are some nondecreasing, continuous, convex functions. In this formulation, there are no differences between restricted and unrestricted versions, since the job starting before the time moment zero can be avoided by defining appropriately the penalty functions g^t}. Note, measures based on total deviation are constructed very often in such a way as to provide the convex goal function. This causes that, the problem for fixed job processing order has a single extremum, not necessarily unique. Otherwise, this problem can own several local extrema, which becomes much more troublesome. From this point of view, some penalty functions as an example barrier functions are not basically allowed and require specific solution techniques. Note also, the measure based on min-max penalty need not the assumption about convexity.There are a few solution methods applied. Almost all of them use the so- called V-shaped property. Briefly, this property states that there is an optimal schedule where jobs concentrate around due date(s). There are many particular forms of this property, developed by many authors, with the dependence on used measure and the assumptions about the problem. Skipping the review of their variety, we only send back the reader to papers already cited. Whereas the form of this property is well understood in the case of the common due date, it is much more complicated when we deal with the distinct due dates. Up to now, a lot of polynomial algorithms have been proposed for special, simply problems, chiefly these having a common due date. More advanced problems, among which are those with distinct due dates, have been solved either by B&B 2 or heuristic algorithms. The search for the optimal schedule is usually decomposed into two subproblems: finding a job sequence and finding job starting times (for the given sequence). Given a job sequence, the optimal job starting times can be produced by solving a linear programming problem. However, for some problems there can exist more efficient polynomial-time procedures, see for example Garey et al. [78], Smutnicki [291]. As to the heuristic methods, most of them use a constructive algorithm followed by the descending search method with the neighbourhood based on job pairwise interchange.

2It has been reported that problems with more than 20 jobs can already lead to exccessive 
solution times.

E/T models can successfully be applied in JIT environment, provided that the following conditions are fulfilled: (a) the tolerance of delivery date is preferable, i.e. rj < dj, (b) the model with distinct delivery dates should be considered as basic one, (c) solution algorithm should be applicable to instances of practical size (100..1000 jobs), (d) in models with variable delivery dates, there should be a small variety of dates, each of them being selected from the given interval or from the given discrete subset of values, (e) considered models as well as algorithms 



74 Chapter 4. Delivery performance by using E/T penalties

should be designed and tested for more general production systems, or at least the proposed approach can be easily extendable to cover such systems.
4.2 Min-max E/T penaltiesIn this section, we discuss a basic model with general min-max E/T penalties. The proposed approach has been extended to cover more complex production structures, e.g. flow line, Grabowski and Smutnicki [110], and the job shop structure, Smutnicki [300].The set of n different jobs should be processed on a single machine, which can execute at most one job at a time. Each job j, j = {1,..., n}, requires an uninterrupted time pj for processing and has a cost function hj(t). It is assumed that the function hj{t) owns single, not necessarily unique, minimum. The job j which started at the time moment Sj, implies the job cost hj(Sj'). We wish to find the optimal starting times Sj, j € J\f of the jobs that minimise the maximum cost maXjeAf hj(Sj).Rough assesment of the formulated model suggests the application of a general non-linear optimisation method in order to solve the stated problem. However, we will provide a more fitting solution method using an alternative formulation with the notion of job processing order. The processing order of jobs is represented by a permutation tt on JV", and let H be the set of all permutations. Denote by= {5 : S = (5i,..., Sn), S^ + p^ < 5%(i+i), i = 1,..., n - 1} the set of feasible starting times of jobs in tt, and by H(iE) the lowest cost obtained for tt. H(tt) can be found by solving the following optimisation problem= min maxhj(Sj'). (4-11)

Se5(jr) jEATNow, the problem 1|| hm^ can be formulated as that of finding the permutation tt* € n, such that H(?r*) = minH(Tr), (4.12)
%enand can naturally be decomposed into two subproblems: find the optimal permutation 7r* (optimality is measured by ^(tt)) and find the optimal starting times 

S* 6 5(?r*) by solving (4.11) for 7r*.For needs of the algorithm we will introduce another (equivalent) form of function hj(t). Let [a;]+ = max{0,a:} and h*j = min_oo<t<oo Define rj and dj so that rj = min{t : hj^t) = h*},d3 — max{t : hj^f) = h*j}. Clearly 
rj < dj. The earliness of the job j started at the time t with respect to rj is Ej(t) = [rj - t]+, whereas the tardiness of the job j with respect to dj is 
Tj(t) = ~ dj]+- The earliness cost function is given by gj(t) — hj^rj - /), while 
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the tardiness cost function by fj(t) = hj(t + dj). Both functions are defined for 
t > 0 and are nondecreasing. Note that hj(t) = max{gj^Ej^t)), and= min m^max^/#/^)),^ (4.13)

SG5(7r) jGJVIn the sequel, for simplicity in notations we will use Ej^Tj instead of Ej(Sj) andProblems with hmax criterion were considered by Achuthan et al. [2], Lak- shiminarayan et al. [184], Sidney [286]. The problem examined in [286] and [184] is a special case of (4.11)-(4.12). All cited papers deal with some properties of the problem and exact algorithms (the problem is NP-hard). Approximation algorithms have not been considered so far.
4.2.1 Algorithm SOLAlgorithm SOL solves the optimisation problem (4.11) or more precisely its equivalent form (4.13). The value can be found from the formulaE(?r)= max Halin') (4.14)

(a^ehnwhere
lab = {(«,» : a < i < j < b}, (4.15)

HabW = min (4.16)and
6-1△aft(71’) = [^afe^)]^ = [^^(a) — ^tt(6) + • (4-17)
s=aJob starting times S* e which ensure minimum of (4.13) can be found in the following way. First, find for j 6 N the values

Ej = max{t : gj(E) < Hix')} (4-18)where H(tt) is found by (4.14). Next, find the job starting times S* G 5(?r) using the following recursive formulâ (D=-Xi) - % <4'19’+ ; = 2,..,n. (4.20)Note that this method does not require any additional assumptions (as, e.g. continuity) concearning the cost functions If the functions hj(t), j € AT are 
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continuous and = 0, then the optimisation problem (4.16) can be replaced by the problem of solving the equation = /%(6)(^a6(7r) — ^)- For frequentlyused piecewise linear cost function
hj(t) = vAri ~ *1+ + wilt ~ (4-21)the solution of (4.16) takes the formtt / \ V%(a)WTr(b) A f \ (a^ab(TT) = -----4--- ^Aa6(7T). (4.22)

^■(a) "b Wir(6)Since |Iin| = n(n + l)/2, then can be found in a time 0(n2w) where w is the number of iterations necessary to solve the problem (4.16) for given a, b and 
Aab(yr'). The job starting times S* E S(x) can be found in a time 0(nr) where 
r is the number of iterations necessary to find E'- for the fixed j, see (4.18). For the cost function (4.21), both w and r are 0(1).

Property 4.1. Algorithm SOL is correct. □
Proof. Without losing generality we can assume that 7r(i) = i, i = 1,..., n. We will prove (4.14) by showing two complementary inequalities > y” and 

“#(%) < y” where y = max(o jjejln Hab^), and is defined by (4.13).
Case > y”. By virtue of (4.13) we havemm, max max^/^),//^)} > nuii maxfe^),/^)}. (4.23) 

StS(ir) SeS(iv)Since we have Tb > 0 and
Tb = Tb + Ea - Ea = [S6 - db]+ + [r0 - Sa]+ - Ea

6-1> [ro - db + Sb - Sa]+ - Ea> [ro - db + 52ps]+ - Ea = ^ab^ - Ea, (4.24) s=afor any 1 < a < b < n, then Tb > [△^(tt) — _Sa]+. Applying this result in (4.23) we obtain > nun max{ffo(£ll),/j([A4ir) - £a]+)} o€o(7r)= nmin max{#o(.Ea),/b([Aa6(7r) - JEa]+)} = min{ min max{ga^Ea),
0<H,o<0O 0<Ea<^.ab^)

fb^ab^) - #a]+)}, min max{ga(Ea\ /&(0)}}
‘Aab\^)<Ea<OO- < ,max<5a(^a),/6([Aa6(7r)-£a]+)},max{fi-a(Ao6(7r)),/b(0)}}
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= min max{5a(i), ^(Aoi^) -t)} = Hab(x). (4.25) 

0<t<£iab(Tr)Since (4.25) holds for any (a, 6) € An, then ^(tt) > maX(O)t)e/ln Hab(x) = y which completes the proof of this case.
Case < y”. Let us denote Ej = Ej(Sj'), T* = Tj(Sj). From the definition of y and from (4.18) we have Ej = max{t : gj(f) < y}, gj(Ej') < y, and g^t) > y for t > Ej, j e N. Next, from (4.19)-(4.20) it follows that Sj > rj - Ej and therefore E* = [r^ — /Jy ]+ < Ej, j € N. Since gj^t) are nondecreasing, we obtain 

^(^*) < gj(E$ <y, je N. (4.26)Next, we will show that
fAW <y, je N. (4.27)This fact will be proved by contradiction. Assume that there exists the job v such that fv(T*) > y. Then, find a job with the smallest index u such that the machine is not idle in the time interval [5*, S*], i.e.

u = max{i < v : + p^ < S*}, (4.28)where Sg + po = -oo. Such an index always exists and by virtue of (4.19)-(4.20) it has to be E* = E'u, S* = ru - E*, and
V—1 V—1

K = K + £ps - dv]+ = [ru - dv + £ps - E*]+ < [A^x) - ££]+ (4.29) 
s=u s=uIf E'u < Auv(tt), we obtain

y > Huv(x) = min max{p„(t), /v(Au„(tt) - t)} = min{ min max{qu(t}, 0<t<Au„(7r) 0<t<E^) h- /)}, min max{gu(t), /u(Auv(tt) - t)}} z!/u<t<Auv (TT)
> «»(<)} > (4.30)Otherwise, if E'u > Auu(7t), we have

y > Huv(x) = min max{ffu(t), fv^Uv^) - t)}
min /„(△uv(?r) - t)

0<t<Auu('n’)
min 0<t<Aut,(?r) /v([^uv(tt) — t]’*’)
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> min (4.31)
0<t<B4Both (4.30) and (4.31) imply the contradiction. So, it has to be (4.27). Now we are ready to show the final result. By virue of (4.13) and employing (4.26)-(4.27) we immediately obtain

= max{max g^E*), max 
jEN 3 Ely 3Ely

<y= max Hab^ 
(a,b)ellnwhich completes the proof of this case. ■

4.2.2 Approximation algorithms

Priority rulesAmong many approximation algorithms with priority rules we consider only those based on the classical two-steps technique: (1) find a permutation using job priorities, and next (2) find job starting times using the algorithm SOL. At step (1) one can propose the following obvious rules:(PR) arrange jobs according to the nondecreasing values rj,(PD) arrange jobs according to the nondecrasing values dj,(PA) arrange jobs according to the nondecrasing values (rj + d^/i.Although several other rules were considered and investigated by us, the experimental evaluation of the performance was similar. Therefore, in the sequel, we will refer to only one of them, namely PA.
Insertion techniqueThe approximation algorithm INS has been designed using the so-called insertion technique, introduced primarily for flow shop scheduling with the makespan criterion, Nawaz et al. [212], and applied to many other scheduling problems with regular criteria. Both experimental analysis and worst-case analysis prove that this technique, as the best, can be recommended for problems with the makespan criterion, Nowicki and Smutnicki [226, 231]. Due to its properties the insertion approach seems to be particularly suitable for the problems with irregular criteria.Without losing generality we assume that jobs are indexed so that pj > 
Pj+t, j = 1,..., n — 1. The algorithm INS generates a sequence of partial permutations ai,....,an where ai = (07(1),..., <t/(Z)) is a partial permutation on the job set {1,...,/}, I = 1,... ,n. Clearly, 07 = (1). The permutation 07+1 
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is created from <7/ in the following way. At first the set II/+1 containing I + 1 auxiliary partial permutations on the set {1,...,/ + 1} is generatedIIi+i = = (az(l),..., ai(m - 1), I + 1, cri(m),..., : m = 1,..., I + 1}.(4.32)The permutation <7^ is created from <7/ by inserting the job I +1 in m-th position in (this insertion moves the jobs cr/O), j = m,..., I one position to the right). For m = 1 the inserted job precedes, whereas for m = I + 1 succeeds all jobs from cq. Next, we select <7^ G H/+1 such that ^(cr^) = nuni<in</+i and thus we set <r/+i = <7^ for the next iteration. Obviously we have xINS = <7n. The computational complexity of this algorithm is O(n2z/) where v is the computational complexity of the algorithm SOL. Unfortunately, already for the cost function (4.21), v is O(n2}. Therefore the computational complexity of INS is generally whereas for the cost function (4.21) is OLn4).

Efficient insertion techniqueThe computational complexity of the algorithm INS is too high for practical applications. Therefore we will provide another more efficient version INS/E of the insertion method, which runs in a timeO(n3w). Unfortunately, the computational complexity proposed simultaneously implies more complicated description of the method.First note that auxiliary permutations m = 1, ..,Z + 1 in INS are checked in a time O(Z3w), which requires I + 1 runs of SOL. We propose a method that checks these I + 1 permutations in a time of the single run of SOL, i.e. 0(/2w).Let us begin with some notions and notations. Besides Iab, see (4.15), we define for a, b, c, d G {1,..., n} the following sets
Jab = {(m) : a < i < b, c < j < d}, (4.33)and assume if a > b or c > d. Let <7/ be the permutation obtained in theLth iteration of the algorithm INS. Analyse an auxiliary permutation <7^ (for a fixed m) obtained in I + 1-st iteration. Observe that, see also Fig.l,l<J<m-l, (4.34)^710') = - 1), ™+l<j<l + 1, (4.35)^(m^Z+l. (4.36)By virtue of (4.34) and (4.35), we have

^ab(^) = Nab(ai), Hab^^ = Hab(o-i) for (a,b).e II,m-1, (4.37)
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^ab^yj.^ = Hab(a^ = for (a,b) € /m+i,z+i.(4.38)Next, by virtue of (4.34)-(4.36) and (4.17) we obtain for (a, 6) €
△a6(^) = [^,6-l(<7/) + W+l]+ = (4.39)and let us denote

Hab^i) = min max{5ai(a)(t),/^(A^ctz) -1)}. (4.40)
0<t<^ab(ai)Although Aah(<7/) and Hab^oi) have to be calculated for (a, b) G Jym-1’ we decide to calculate Hab(ai) for all (a, b) G In employing the obvious inclusion Jy^^ C 7^, m = 1,..., I + 1. This can be done at the beginning of the I + 1-st iteration in a time O(Z2u>).#(<t^1) can be found from (4.14) by maximization max^)^ i+1 Hab^^). Let us decompose the set Iij+i into six subsets in the following way

h,l+i = h.m-1 U Im+yl+1 U U U U {(m, m)} (4.41)and consider the problem of maximization separately, according to the sets listed 3 Due to (4.37) we havemax Hab^a^j.^ = max Hab^ai) = Rm-i (4.42)
(a,6)eh,771 — 1 ' Meh ,771 — 1where

Rj = max Habfai). (4.43)
(a,6)eZi;Since U U {(j, j)}, then

Rj = max{ max Hab(ai), max Hab((Ti),Hjj((Ti)} 
(‘hb)eJ313ij_1

3It is naturally assumed as max;6A a, = 0 if A = 0.

= max.{Rj^, max Hab(af),HjjW}, j = 1,. -., I. (4.44)
(a,6)eJ"_!Clearly, Ro = 0 and [^lj-rl = j — 1. Observe that Rj, j = does notdepend on m and can be found recursively on the base of ai in a time O(/2w), only once at the beginning of I + 1-st iteration.
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The second problem of maximization, due to (4.38), can be written asmax ^(a^J = max Hab(aQ = Qm (4.45)

where
Qj = max Hab(a/). (4.46)

(a,b)eljiFrom definitions (4.15) and (4.33) we have Iji = Ij+i,i U J^1’1 U {(j,j)}. In consequence, we obtain
Qj = max{ max Hab(ai), max Hab(aQ, H./a/}

= max{Qj+1, max Hab(aQ,Hjj(ai)}, j = I, I - 1,..., 1. (4.47)
Clearly, Qi+i = 0 and = I — j- By analogy to Rj, we conclude that
Qj, j = 1,..., I, can be found in a time O(l2w}.Maximizations on sets and see (4.41), can be performed inthe time 0(/m — l)w) and 0([l — m + l)w), respectively.Next, consider the maximization on the set Observe that by (4.40)we have max Habia/l/) = max max Hab{a?:-Q

{a bKJrn+i,i+i

= max max Hab^aQ = max Uim = Vm, (4.48)
l<i<m—1 [a,b)EJ^1 l<£<m—1where Vi = V)+1 = 0 and

Uij = max Hab(aQ, i - i,...,j-1, j = 2,...,l. (4.49)
The values Uij can be found reccursively using the following dependence

Uij-i = max HabQrQ = max Hab(aQ

= max{^j_i(a/), Uij}, i = 1... j - 1, j = 1,1 - 1,... ,2. (4.50)All values of Uij can be found in a time 0(12<jT), whereas all Vj, j = 1,...,/ + 1, in a time OQ2}.
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Finally, maximization on the set can be found as= max Hab^cri^.^ — max.{Rm—i,Qm, (a,6)e/i,<+imax max Rab(^l+i), Vm, (4.51)
(a,6)eJ^+1in O(la>) time. Since the values Rj,Qj,Vj are calculated in advance, hence all 

rn — 1,... ,1 + 1 can be found in time.At the end of this section we briefly summarize the main steps of algorithm INS/E. We generate a sequence of permutations in the same way as in INS. For the permutation ai we calculate additionally the values Rj, Qj, Vj, j = 1,..., I, from (4.44), (4.47), (4.48)-(4.50), respectively. Then we calculate the values #((7^) using (4.51). The computational complexity of algorithm INS/E is O(n3w).
Local searchThe local search method works in a neighbourhood A/”(7r) of 7r, which contains a set of permutations obtained from tt using for example job interchanges, pairwise interchanges or insertions. The neighbourhood is entirely searched in order to find the best permutation (in terms of the goal function value). Many recent researches have suggested that the so-called insertion neighborhoods are highly recommended for the problems with minimax criteria. These neighborhoods can be defined using the insertion move. The move (x,y) is a pair of positions 1 < 
x < n, 1 < y < n, x y. This move when applied to the permutation tt generates new permutation in the following way: if x < y then the job 7r(a?) is deleted from the position x, the jobs rr(x + 1),..., rr^y) are shifted to the left by a single position and job 7r(a;) is inserted in the position y, if x > y then the job 7r(o:) is deleted from the position x, the jobs 7r(?/),..., r:(x — 1) are shifted to the right by a single position and the job 7r(a;) is inserted in the position y. For the problem 1| l^max, we propose some specific neighbourhood. Let (u, v) G Iin be a pair which maximizes the formula (4.14) for the given 7T. The neighbourhood of % is defined as followsZ/(tt) = {tt^} : u < x < u} U {tt^ : u < x < v}. (4.52)Exceptionally, if v - u > 1 then we set Z7(tt) = {(u, u)}. This form of the neighborhood is justified by the following theorem.

Property 4.2. For any permutation 7 = (7(1),...,7(n)) such that = 7f(u), 7(u') = 7T(u), u' < v', {?r(u + 1),..., 7r(v - 1)} C {7^' + 1),..., 7(7/ - 1}, we have #(7) > □
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Proof. It is clear that ^s^u'P-y^) > Therefore

V1 — 1 v— 1

“F ^7(5)] for(u) ^Tr(v) “I” Ptf(s)] — ^UV^. 
s=uf s=u (4.53) In consequence, we obtain= min max{ff7M(t),/7M(ABv(7) - t)}

> min max{^(u)(i), t)} = Huv{x) = (4.54)
0<t<Auv (7r)which completes the proof. ■From Property 4.2 it follows that insertion moves such that: (a) x,y E {u +1, ..., v - 1}, (b) x € {1,... ,u - 1}, x < y, (c) x E {v + 1,.. .,n}, y < x, are “non-promising” if we take account of the immediate improvement. From among the remain (“promising”) moves we selected a subset used in construction of the neighbourhood (4.52). This subset guarantees the connectivity property for which offers the “possibility” of finding an optimal solution by repetition of the local search method.

Property 4.3. For any tt1 € II there exists a finite sequence of permutations Tr1,...,^” such that 7T®+1 € for i = l,...,r — 1, and xr is an optimal permutation. □Proof can be obtained by analogy to that from Section 3.1.The neighbourhood contains at most 0(2(v — u—1)) new permutations4,

4Two moves (x,y) and (y.x) provide the same permutations K(x,y') = Therefore, in 
order to avoid redundancy, one of them will be eliminated from W(?r).

and hence can be searched in a time O^v—u^n2^. In order to speed up searching, we propose some method of calculations’ reduction.The method will be outlined for moves to the right, i.e. (x,v), u < x < v, since moves to the left can be analysed by analogy. Denote the move performed by (x,v) and set o = By the definition we have
0(3) = 3 € {1 • • •x - 1} U {v + 1,... n}, (4.55)O'O) = ^0 + 1), x < j < v - 1, (4.56)

a^v) = 7r(m). (4.57)
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In consequence of (4.55) and (4.56), we have△a6(c) = Aab(n), Rabl^) = Habl^) for (a, b) E Iyx-1 U 4+1,n? (4.58)△a(,(cr) = Aa+li6+1(7r), Hable) = tfo+i,6+1(7r) for (a, 6) € 4,^-1 • (4.59)
H(a) can be found from (4.14) by maximization max(a]j)ejln Hable). Let us decompose the set En into subsets in the following way
hn = h,x-i U 4+1,„ u 4,.-i U u 4^-1 U 411’” U J^1 u u {(u, u)},(4.60) and consider the problem of maximization separately, according to the sets listed.Due to (4.55) we havemax Habla) = max Habl^) = Rx-i, (4-61)
where Rj is defined by (4.43)-(4.44) (for 7r instead of ei). For all moves to the right we require the values Rj, j = 1,..., v - 1, which can be found in a time 
OUv - l)2w).Similarly, due to (4.55) we havemax Hable) = max Hablir) = Qv+i A;+l,n Aj-}-1 ,n (4.62)
where Qj is defined by (4.46)-(4.47). For all moves to the right only single value <4+1 is realy needed, which can be found in a time OHn — u)2w). Note that, by symmetry, for moves to the left we will require the values Qj,j = u,...,v — 1.Next, due to (4.56) we havemax Hable) = max Habl^) = P^+i- (4.63)

(a,b)Elx,v— i (^tb)Elx+i,vSince Ijv = 4+i,v U U we obtain
Pj = max Habl^) = max{ max Hab(n), max Habl7r),Hj ,(tt)} 

(a,b)eljv (a,b)elj+i,„ (<hb)eJjf1’v= max{P,+i, max Habl^),Hjjl^)}, j = v,v-l,...,u (4.64)
where Pv+i = 0. Since for all moves to the right we require the values Pj, 
j = u,... ,v, the time needed is OHu - v)2ui).Now consider maximization on the set 4^-1 • By virtue of (4.55) we havemax Hable) = max HabM = Wx^ (4.65)
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where

Wj = max Hab(^ = max{ max HabM, max HM]

= max{Wj-i, max HabM}, j = 1,... ,v - 1, (4.66)
(a,b)er+1-nand JV0 — 0- The required values Wj, j = 1,..., v — 1 can be found in a time 0((v - l)2w).Maximizations on the sets <7^_1 and can be performed in a time 

0((v - l)iu) and O((n — v)w), respectively. Unfortunately, maximizations on the sets and cannot be simplified and require O((x - l)(v - x)u) and 
0((y - x)(n — v)w) time.Finally, we obtain

Hla) = max{Rx-i,Qv+i,Px+i, W^-i, max Hab(a), 
(a,b)GJpv^uJ^’nmax Hab(a), Hvv(a)} k\a 7®>v~1, । rv + l,n z (4-67)

At the end of this section we briefly summarize the main steps of the single neighbourhood search using moves to the right. For the permutation 7r we calculate additionally the values (Rj, j = 1,..., v — 1), Q„+i, (Pj, j = u,... ,v), (Wj, 
j = l,...,v - 1) from (4.43)-(4.44), (4.46)-(4.47), (4.64), (4.66), respectively. Then we calculate the values using (4.67).
Descending searchIt has been verified experimentally that the priority rules for the problems with irregular criteria have significantly worse intuitive justification and provide algorithms of poor performance. Threfore many authors have appended various descending search (DS) supporting proceduresm to the aforementioned rules. To evaluate the quality of such an approach to the problem stated, we also design an algorithm of this type.The proposed DS algorithm starts with a given permutation 7r and searches at each iteration the neighbourhood ^/(tf) of tt. If the permutation better than #(7) has been found, this permutation replaces 7r and the process of generating the neighbourhood is repeated, otherwise the algorithm ends its activity. The number of iterations performed by the algorithm DS is a priori unknown. The starting permutation for the algorithm DS can be found by any method.
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Tabu searchIn this section, we refer only to the basic version of this approach, see Section 2.3 for details. The procedure for solving our problem by means of the proposed algorithm consists in starting from an initial permutation tt and searching through its neighbourhood Z/(tt) for a permutation a G with the.lowest cost Then the search repeats from a new starting permutation found as the best, and the process is continued. To avoid cycling, becoming trapped into a local optimum, and to guide the search to “good regions” of the solution space, a memory of the search history is introduced. We employ only the tabu list that records the selected attributes of subsequently visited permutations, treating them as a form of prohibition for the future search.The used tabu list is represented by the cyclic list T of the length maxt. An element of T is a pair of jobs (g,h), g,h € N. The list is initiated by empty elements. The new element introduced to T replaces the oldest one. Each move, performed from a processing order tt, introduces to T the single element (?r(2? + l),7r(a?)) if the move has been performed or (7r(a;), tt(x — 1)) if the move (a, u) has been performed. The move (g, h), g < h, has the tabu status if at least one pair ^'(k')'), k = g +1,..., h, belongs to T. The move (p, h), g > h, has the tabu status if at least one pair 7r(p)), k = h,..., g — 1, belongs to 
T. Let iv* denote the best permutation found up to the current iteration. The move to be performed is selected as the best one among all non-prohibited moves, and prohibited moves with the cost lower than If there are no movessatisfying the required property (a very rare situation) we add the empty move (0,0) to T and next repeat the selection until a move has been chosen.Algorithm stops its activity after the given number of iterations. The starting permutation for the algorithm TS can be found by any method.
4.2.3 Experimental analysisAlgorithms PA, INS, PA+DS, INS+DS, INS+TS have been coded in Pascal, run on PC 586/90 and tested on random instances. Algorithm INS was implemented in its efficient version INS/E. The symbol A+DS means that algorithm DS was started from a permutation found by algorithm A. Algorithm TS was run from permutation found by INS, with maxt = 8 and iteration limit 50 for n < 50 and 100 in other cases. Since there are no standard benchmarks for considered problem, we generated some tested instances in the following way: pj, dj, Vj, Wj as the integers with uniform distribution in intervals [1,100], [0, nk], [0,n&], [1,5], [1,5], respectively where k = 16,...,25. For each chosen n = 10,20,40,80,100 and k = 16,..., 25 a sample of 10 instances was generated. We found experimen
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tally that the chosen range of k provides particularly hard problems. Thus 500 instances were tested. For each instance and for each algorithm A the values of relative performance error

pA = - H)/H, (4.68)where H = min^Tr71) : A £ {PA, INS, PA + DS, INS + DS, INS + TS}, were calculated. Algorithms were evaluated from two points of view: the mean relative error pA and the mean running time. Results of comparison are shown in Tables 4.1-4.3. Table 4.1 present the mean running time for instances of the given size. Table 4.2 contains mean values of errors rjA, and mean numbers of neighbourhoods searched by DS in combination with INS and PA (denoted as IT INS and IT PA, respectively). Table 4.3 repeats the results from Table 4.2 however, classified, according to the range k used in generation of random instances.The results obtained are surprising. The classical priority rules tested are completely useless (mean error about 250 percent). Moreover, this error strongly increases if the size of instances increases. On the other hand, the insertion technique INS provides results with the mean error about 45 percent. This error also increases with n, but the increase is rather weak. A variation of the error is dependent on k, see Table 4.3. Although the error r]INS remains too high, if we take into account the priority algorithm PA, then it can be accepted as “relatively good solution obtained within a reasonable time”. Two remain methods based on the descending search technique provide results of execellent quality (see r)A, A G {INS + DS, PA + DS, INS + TS} in Table 4.2), however 
PA + DS runs in a longer time than INS + DS. Observe that in this case the error pINS+DS weakly depends on the instance size. Algorithm DS started from 
PA, performs about twice iterations more and provides worse results than the combination INS + DS. Algorithm INS + TS is the absolute champion with respect to the solution performance.
4.2.4 ConclusionsThe experimental analysis performed shows that only insertion technique and local neighbourhood search technique are those which can be recommended to construction of approximation algorithms for problems with min-max irregular criteria. An approximation algorithm based on these approaches has been provided and experimentally shown to be much better than other known approaches when both running time and solution quality are taken into account.The appraoch proposed can be extended in an easy way to a single production cell model as well as problems with more general production structures,
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Table 4.1: Mean solution times (in sec) on a PC 586/90 (each entry refers to 100 instances of the given size) CPU time Neighbourhoods
n INS DS IT INS IT PA ITTS10 0.01 0.00 2.03 5.32 5020 0.01 0.01 4.86 12.39 5030 0.06 0.05 9.43 21.21 5040 0.12 0.11 14.25 30.58 5050 0.23 0.22 19.92 41.08 5060 0.41 0.39 25.76 49.85 10070 0.65 0.62 29.90 59.92 10080 1.01 0.93 37.09 70.94 10090 1.41 1.33 43.43 80.71 100100 1.91 1.80 51.45 94.30 100

INS : mean time of INS,
DS : mean time of a single search of the neighbourhood ^(tt),
IT INS mean number of neighbourhoods searched by algorithm INS+DS, 
IT PA : mean number of neighbourhoods searched by algorithm PA+DS, 
IT TS : the number of neighbourhoods searched by algorithm INS+TS.

Table 4.2: Mean relative error of algorithms (each entry refers to 100 instances of the given size) Mean r]A
n PA INS PA + DS INS + DS INS + TS10 133.27 13.33 0.91 1.98 0.0020 191.36 27.43 0.77 2.21 0.0030 233.86 36.02 1.22 2.30 0.0040 242.67 43.96 2.05 1.72 0.0050 259.80 47.55 3.52 1.63 0.0660 262.62 52.14 3.03 2.17 0.0170 271.52 53.20 4.09 3.04 0.0080 274.06 59.00 4.69 3.88 0.0090 284.95 59.18 7.59 3.40 0.00100 289.63 61.27 6.65 2.90 0.00all 244.37 45.31 3.45 2.52 0.01
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Mean r/A

Table 4.3: Comparison of algorithm performance in groups of random instances for 
k = 16.. .26; each entry refers to 80 instances, 10 for each size n=10, 20, 30, 40, 50, 60, 80, 100

k PA INS PA +DS INS + DS INS + TS16 204.01 29.67 2.63 1.93 0.0317 198.71 29.90 2.92 1.26 0.0018 199.95 31.67 2.32 2.68 0.0019 204.35 36.60 3.69 2.07 0.0220 210.40 33.14 3.93 2.20 0.0021 191.17 36.86 1.24 1.27 0.0022 195.79 39.46 2.35 2.31 0.0123 190.90 40.20 3.16 2.09 0.0024 180.52 39.26 1.57 2.05 0.0025 191.41 41.77 2.04 2.59 0.00
see Grabowski and Smutnicki [110], Smutnicki [291, 299, 300]. These extensions preserve the reduced neighbourhood structure, the possibility of accelerating the search and the computational complexity 0(n2w) of finding the criteria value for a given solution 5. So really, the single neighbourhood search is still considered as disquitely high that makes hard the application of this algorithm to greater n. One can hope that the approach of Garey et al. [78] can be extended and applied to this case in order to reduce this cost to O(nlogn) per single solution (at least for some special cases). Futher research need to be made in this subject.

5This cost is O(n) for most of classic problems with a regular criterion.

4.3 Total and extended E/T penaltiesTo show how other E/T penalties can be embedded in JIT systems, we consider the already known single-cell performance delivery model, however with quite different penalty function.Consider a cell having m machines, and let Al = {1, be the set of these machines. The set of n parts JV = {1,2,...,n} has to be processed by this cell. Each part j g JV requires a single machine for processing, owns the processing time > 0 on machine i g M, and has the delivery interval [rj, dj] within which this part has to be completed in the ideal case. Each part can be performed on any machine from Al. Once started, a part cannot be interrupted. Each machine can execute at most one part at a time, each part can be processed 
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at most on one machine at a time. A feasible schedule is defined by a couple of vectors (S, T), S = (Si,..., Sn), T = (ti,..., tn), such that the above constraints are satisfied, where the part j is started on machine tj G Ad at time Sj > 0 and is completed at the time Cj = Sj + Ptjj ■In this section we use the measure based on total weighted deviation from delivery interval, namely£(^[«i - GF + ^j - . (4.69)
jeAfWe wish to find the feasible schedule that minimises (4.69). Note, if aj = bj and Vj = Wj the measure (4.69) can be simply written as ^j^Wj |Cj - bj\. Garey et al. [78] made additional assumption that Wj =const and then they considered the single machine problem with the latter measure, see problem with 

total discrepancy. We also refer to Section 3.1 for the notions: machine workload (A/),z G Ad), machine processing orders (tt^z G Ad), overall processing order tt, set of all processing orders II. The feasible schedule (S, T) generated by zr implies 
tj = i, j = 1,..., ni, i G Ad. Appropriate starting times S = (Si,..., Sn) follow from the optimisation problem= min £(^[ay - Q]+ + Wj[Cj - 6y]+) (4.70)
with the set S(tt) introduced by constraints (3.4). In the context of consideration from Section 3.1, the problem can be decomposed into two subproblems: (1) find the processing order 7r G H, (2) for the given tt find the minimal criterion value by solving (4.70), (3.4). Clearly, the best processing order from II is looked for. However, each such a processing order need to be evaluated in more complex manner. Similarly as in the Section 3.1, for fixed tt the problem can be decomposed into m independent single-machine subproblems. Next, each singlemachine subproblem can be written as a LP problem and then solved. However, for the single machine case there exists a polynomial-time algorithm, Smutnicki [291]. Also the method provided by Garey et al. [78] can be adapted to this case, that ensures the competitive computational complexity O(nUogn2) for a given 
Ti. As to the searching for the optimal (best) processing order, one can propose a local search algorithm, for example by using SA method with the neighbourhood V(tt). Indeed, it should work. However, the expected significant reduction of the neighbourhood size is not possible in this case since neither Property 4.2 nor its extensions hold. Hence, having in mind a disadvantegous influence of the too big move set on the behaviour of SA algorithm, see Section 3.1, we propose to 
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employ the move set w = U U <4-71)
where the sets Uji{x) are defined in the following manner. If i = tj > 1 then 
Uji = {(T tj ~ 1)}> if« = tj = 1 then Uji = 0. If i / tj then Uj/x) contains only the single move (j, i, y) selected from the set Vj^tt) so that < (rj+dj)/2 <5^^), where Sj are job starting times found for the processing order %. The set contains mn — 1 moves, posseses the connectivity property (its proof can be performed by analogy to that of Property 3.10) and is significantly less thanAlso TS with V(tf) is not too promising since it requires a time 0(n3logn) per single neighbourhood search. TS with is much more justified from this point of view since it requires only O(n2mlogn) time per neighbourhood. Unfortunately, currently there are not good and simple ideas how to reduce superfluous calculations in order to accelerate the TS speed. Further research need to be made in this subject since these computational complexities are considered as disquitely high in the context of local search methods.Extensions of this approach to more complex (general) production structures immediately lead to LP models (assuming linear penalty function) constructed separately for each fixed processing order, see for example Toczylowski [319]. Since many processing orders need to be considered by means of a local search method, an algorithm of this type must solve at each iteration an LP program (at least one per neighbourhood for SA method, and many of them for TS method) of the size proportional to the number of parts that flow through the system. Assuming that a move introduces only a small perturbation of the current processing order, none can hope that the new LP problem (for the descending processing order) can easily be found by modyfing solution of the oldest one. Even if such a method is found, the cost of the local neighbourhood search will remain large. From this point of view, the SA or SJ method is much more preferable than TS.The decision which type of the E/T penalty can be applied in each particular case depends finally on the user. Nevertheless, one can observe that problems with total E/T penalties are much more troublesome than those with max E/T penalties from many points of view. On the other hand, total penalty may be better economically interpreted (WIP, storage, capital costs, etc.). Let us come back to the fundamental role of the E/T penalty function, which is guidance of solutions towards the target of meeting exactly all delivery dates required. Consider the problem of minimizing n independent criteria hj(Sj') each with the target zero. To obtain the effective solutions (Pareto optimal), a scalarisation of these objective functions is required. Because of nonconvexity of the problem, 
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the function e.g.
maxpjhj(Sy) + € (4.72)

can be proposed. Observe, the problem obtained in this way is relative to this with sum and that with max E/T penalties. Although the goal function (4.72) is much more complicated than each of its term, assuming c sufficiently small, we can propose a two-phase solution algorithm. In the first phase, there is searched the good solution of the problem taking into account only max term. To this end the method from Section 4.2 can be applied. Next, starting from the solution obtained in the first phase, search is continued, however with the use of the whole criterion (4.72).



Chapter 5

Work in process reduction

5.1 IntroductionThe philosophy of JIT forces the reduction of wastes associated with holding semi-products and products in the system. This can be obtained among others by the reduction of times lost by items (products) waiting in queues for processing centres. Each product waiting in the system creates superfluous in-process inventory, which the JIT strategy should minimise. If each product is manufactured in unique way (on an appropriate machine), then instead of reducing the volume of in-process inventory, we can reduce the WIP cost assuming that this cost depends on a product (it is constant for a product but varying for various products) and on a product waiting time (it linearly depends on the waiting time). Moreover, we assume the strategy of delivery in which each product must be delivered not later than the given time moment. In this chapter we present an approach, using a case study, which can be applied in order to solve the selected problems of this type.Consider a flow manufacturing line having m stages, single machine at each stage and FIFO service rule in queues for all machines. This model known in the literature as flow-shop problem has good industrial application in many chemical branches [330, 331]. This line should deliver n different products and each of them has to meet its due date dj. (Cyclic manufacturing and repetitive products can be modelled and solved due to high generality of this model.) Each product flows downstream the machines 1,..., m in that order, and the product j spends the time pij on the machine i. Each machine can execute at most one product at a time. Processing of a product on a machine cannot be interrupted. We wish to find starting the times Sij of products on machines such that the total cost of holding work-in-process is minimal. This cost is simply equal to the total (weighted) time spent by all products in the system, Fig. 5.1. Observe that the
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machine

Figure 5.1: JIT scheduling of flow line

Figure 5.2: Forward-backward symmetry of flow line scheduling
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optimal schedule need be neither compact nor shifted to the left on the time axis.We will show that this problem can be analysed and solved using tools from OR field. First, employing its forward-backward symmetry, we will show the equivalence of this problem to some classic scheduling problems. Next, we provide a wide theoretical analysis of algorithms recommended for the latter problem. A new related theoretical results will also be pointed out.On the base of original data n, m, pij, dj, we introduce a new problem with data indexed by “prime”. We define a problem having m' = m machines, n' = n products, processing times p'^ = pm_i+iyj and product ready times r'j = D — dj, where D = maxi<j<n dj. One can say that the latter problem has been obtained by “inverting” the former one, see Fig. 5.2. The original waiting time of the product j is equal to Wj = dj - Sij — whereas in the new problemis equal to W- = C'mj - r'- - where CT is the completion time of theproduct j on machine i. Moreover we clearly have Wj. = Wj. Hence, instead of minimising the (weighted) sum of Wj, we can minimise the (weighted) sum of 
Wj in the transformed problem. The latter problem is known in the scheduling theory as the permutation flow-shop problem with ready times to minimise total (weighted) completion times, and can be transformed to the problem of minimising (weighted) completion times without ready times, because the sum of ready times provides a constant not having any influence on the optimal processing order. Finally, we obtain the equivalence between the former problem and the permutation flow-shop problem with the weighted sum of completion times (if costs of holding are different for various products) and the mean completion time (if cost of holding is the same for all products). These two pure problems will be discussed in detail in the next sections.
5.2 The flow line scheduling problemThe considered flow manufacturing line with m stages, single machine at each stage and FIFO service rule in queues for all machines can be modelled by the problem called in the scheduling theory the permutation flow-shop problem. It has the following mathematical formulation expressed by conventional notions. The set of n different jobs should be processed on m different machines. Each job 
j,j £ J = {1,..., n} passes through the machines 1,2,..., m in that order and requires an uninterrupted time pij for processing on the machine i, i = 1, ..,m J. Machine i, i = 1, ..,m, can execute at most one job at a time and each machine processes the jobs in the same order. We wish to find the optimal job processing

1It is assumed that a zero processing time on a machine corresponds to a job performed by 
that machine within infinitesimal time.
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order (represented by a permutation tf on the job set J) which minimises the given criterion K.From among many regular criteria defined for scheduling problems we consider only these used in the analysed algorithms, i.e. the weighted sum of completion times (Csum), the mean completion time (CSUm), and the makespan (Cmax), defined as follows 
n

Csum(^) — (5.1)
.7=1

Cmax^) = ^ax CmWjh (5.2)
l<J<nwhere

i 3s

S=1 t=js^is the completion time of the job ^(j) on the machine i, j = 1,... ,n,i = 1,.. .,m, see, e.g. [99]. The criterion Cs,m is a special case of (5.1) such that Wj = i/n,i = 1,..., n. Note that (5.1)-(5.2) suffice to model a fairly broad class of scheduling criteria, e.g. these based on completion times, flow times (assuming that all jobs are available at time zero), job waiting times, machine idle times, machine utilisation, etc.
5.3 Algorithms performanceThe stated problem is strongly AP-hard for (m > 3) and CSUm, Csum (m > 2) criteria, therefore a few exact and a lot of approximation algorithms have been developed to provide a good solution in a short time. Almost all exact algorithms are based on various B&B schemes, although few MILP models have also been considered without a great success. In practice, these algorithms can solve problems up to 50 jobs and 5 machines in a reasonable time 2. Therefore, approximation methods remain still the most popular solution methods. For the criterion Cmax there are constructive methods [35, 52, 124, 148, 212, 239, 264], and improvement methods [43, 52, 59,140, 153, 231, 234, 237, 262, 314, 334, 336]. The respective methods for Csum and Csum one can find in [79, 140, 141, 144,164, 183, 203, 204, 253, 254, 255, 256, 257, 58]. Two last papers deal with a multiple objective version of the problem - they consider simultaneously Cmax and as well as other scheduling criteria.

2Some problems having 50 jobs and 5 machines remain still too hard.

Experimental analyses have been done for all afore mentioned algorithms, however the worst-case analyses have been performed only for the constructive 
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algorithms CDS [35], RA [52], P [239], RS [264], NEH [212], HR [148], G [124], TG [183], HK [144] and for the improvement algorithms RA.CS and RAES [52], see papers [219]-[228], [264], or Table 5.6. Besides theoretical implications, the latter analysis confirms the known experimental result that the insertion algo
rithm NEH can be considered as the champion among constructive algorithms with the criterion Cm&x. Based on conclusions derived from the insertion approach, there have been proposed several improvement algorithms with very good performance verified in computer test on standard benchmarks up to 10,000 operations.Known approximation algorithms recommended for the permutation flowshop problem with the weighted sum of completion times have the worst-case performance ratio indefinite, or definite but not limited by a function of the instance size. We propose three new algorithms with these ratios equal m, [m/2]p2, and \m/E\pk, where pk is the worst-case performance ratio of an algorithm solving an auxiliary fc-machine problem. Some results of the worst-case analysis for several other approximation algorithms with various scheduling criteria have been also presented. The results obtained supplement research from papers [219]-[228].
5.4 AlgorithmsIn this section, we briefly outline only these known algorithms which will be analysed in the next sections. New algorithms will be presented together with their analysis.Many approximation methods developed for flow-shop problems refer to job 
waiting times, delays between jobs, gaps, job matching, or job fitness, e.g. the improving algorithm HC proposed in [140] for the permutation flow-shop problem with a general scheduling criterion, and experimentally investigated using criteria of the mean flow time, mean utilisation and makespan. This algorithm is based on a gap notion. Although, in our opinion, the philosophy of gaps has its origin in makespan problems, HC has been formulated and recommended for any regular 
criterion. The overall revised gap is defined as df; = where d}, =
Pkn,i - Pkj is the gap and= ( 1 if > 0ij I 0.9^^^ +0.1 if d^<0 (5-4)
is the discount factor, k = 1, m - 1, i,j = l,...,n. Partitioning the set {1,.. ,,m - 1} into subsets Mij = {1 < k < m : Pk+i,i > Pkj} and Lij = {1 < 
k < m : Pk+i,i < Pkj} we can rewrite in another equivalent form that will be
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more convenient for our applications= E 4 + ^E<(m-2-*+1’+0'1L4
keMij keLij keLij

m-1 m—1= E ^"^2 E 4(^-1) = E^+i-’-E^ 
keMijULij keLij k=l fc=lE 4#-i) = »r-,-«7-,-^2 <5-5)

k^Lij k£.Lijwhere a™-1 = S™"1 = Y7=i P™-s+i,t, t = l,...,n are processingtimes of the (m — l)-th auxiliary two-machine flow-shop employed by the algorithm CDS. Observe that the last sum in (5.5) can be performed over the redefined set Lij = {1 < k < m : pk+i,i < Pkj} since the element for k = 1 has the weight of zero. Algorithm HC can be written in the following compact form. Let tt = (tt(1), 7r(n)) be an initial permutation on J. Denote by the permutation obtained from tt by interchanging jobs in the positions x and y. Set initially a = 1, b = n.

Algorithm HC1. If b = a + 2 then set irHG := tt and stop.2. Find values X, Y and indices g,h (a < g < b,a < h < 5) such that X = 
d“(aW = :a<j <b},Y = = min{d^>(6) : a <
j < b}.3. If (((x > o) v (y < 0)) A (|x| > |y |)) v «x < o) a (y > o) a (|x| < |y|)) then go to step 4, otherwise go to step 5.4. Set a := a + 1. If < X(tt) then set 7r := ^(a,g)- Go to step 1.5. Set b := b — 1. If < K(n) then set tt := n^b)- Go to step 1.At each iteration of HC we need 2(b - a - 1) values of d^^j and d^^j, 

j = a + 1,.. .,5 — 1. Since in every iteration exactly one of two indices a or 
b changes the value, the total number of the values used in all iterations is equal to (n — 2) + (n — 3) + ... + 1 = (n2 - n — 2)/2. All these values can be calculated on request. The algorithm HC has the computational complexity 0(n2m) 3 and requires an auxiliary approximation algorithm for preparing the 

3The efficient implementation of NEH is also O(n2m), [314], NEH shows in experiments
very good performance for Cmax as well as for Csum.
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initial permutation. The original version of HC uses CDS (the commonly used algorithm) with the computational complexity O(mnlogn + m2n) at the start.
CDS', generates the permutation irCDS selected from among m-1 auxiliary per- muatations such that C'max(7rc''D5) = niinTe^i t%m-i}Cmax(7r), where Trk is the optimal permutation of an auxiliary two-machine flow-shop problem with the processing times ak = ELi pij, = E™m_fc+i Pij, j = on machines 1 and 2, respectively, k = 1,..., m — 1.Any improvement algorithm (thus also HC) can be modified in several ways. First, using other quick constructive algorithms for generating the initial permutation. To this end, there are proposed either special priority indices [141, 255], or already known priority functions [124, 239], where a permutation is formed by arranging jobs in nondecreasing order of priority values
H : Vj = E2=i(m - » +
P : ^j = EEi(m “ 2« + ^PiP

G : /3j = AJ mini<t-<m_i(pjj + pi+ij), where Aj = -1 if pij < pmj and Aj = 1 in other cases,or other constructive algorithms mentioned in Section 5.4, e.g. [52]
RA: find a permutation which is the optimal processing order of the auxiliary two-machine flow-shop problem with the processing times aj = E^i(m — 

i+l)pij, bj = EEi iPii on machines 1 and 2, respectively, and the makespan criterion.Algorithms G, P and RA have the computational complexity O(nm + nlogn). The similarity between H and the algorithms P, RA, HR4 has been pointed out in [141]. Second, a supporting improvement procedure is usually added at the end of the algorithm. There are few, well known types of these procedures, namely: interchanges of the adjacent pairs of jobs (API), interchanges of the non-adjacent pairs of jobs (NPI), and insertions (INS) [169]. Although API reveals serious drawbacks for the criterion C'max, [226], it still remains the most popular method of improvement, chiefly for the criteria other than Cmax- (INS and some of their refined variants are considered as the most recommended for Cmax [231, 314].)
4 Algorithm HR is & slight modification of P.

Other approximation algorithms, called hereafter RC1, RC2, RC3, RCo, have been proposed in [253, 254] for the problem with the criterion C’SUm- Algorithms RCf, RC2, RC3 [253] can be interpreted as dynamic priority rules which 
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operate on the sets of scheduled (5) and unscheduled (U = J\S) jobs. Jobs from the set S form a partial permutation cr, and let denote the completion time of the last job from S on the machine i, i — 1,... ,m,d = |S|. The partial permutation aj, where j G U, provides completion times of this job Cij — Cla^) + Pij, 
Cij = max{Cia^), + Pij, i = 2,..., m,. Each of these algorithms select a job k € U to follow cr with the least appropriate priority value:jRCT : u'k = “ Ci,a(d),0},
RC2: =

RC3 : 2 fG-M - Citff(d)| + cilk.Any ties are broken by choosing the job having the least completion time at the last machine. The algorithm RCo [254] employs a set of static priority rules.
RCo : generates the permutation -krg° selected from among m auxiliary permutations such that Csxaa(TrRGo) = minwe^i)%m}Csum(7r), where x* is obtained by arranging jobs in nondecreasing order of priority values wk- = min{m - i + 1, m - k + l}pty.Algorithms RC1, RC2, RC3 have the computational complexity 0(n2m), when 
RCo is 0(nm2). Algorithm RC1 is a special case of minimising between job delays algorithm KS2 from [164] 5. In the cited paper, to ensure a better solution performance, each job is additionally and successively considered as the first job in the primal partial sequence, i.e. the algorithm is repeated n times, each time starting from a = (j) for successive j = 1,..., n.

5There are five algorithms in this paper, all based on job delays.

We will also consider a very recently proposed algorithm R for a multiobjective problem with Cmax and Csum criteria [257]. This algorithm consists of three phases: (1) it starts from nGDS, (2) it applies API procedure to improve nCDS using criterion Cmax, and (3) it applies restricted API procedure which accepts only these solutions that improve either Cmax or Csum. Details of the phase (3) will not be discussed here since, as we will show next, they are of no significance in its worst-case analysis.In the sequel, a composition of algorithms A and B, such that the algorithm 
B starts from a permutation generated by the algorithm A, will be denoted by 
A + B.

5.5 The worst-case analysisThe data n,m,(p,j,i = = 1,..., n),(wj, j = l,...,n), specify aninstance Z of the problem. Denote by II the set of all permutations on J, by 
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K(tt; Z) the value of a criterion K for the job processing order 7r and the instance 
Z. The processing order 7r* e II such that /f(7r*; Z) = min^n K(ir; Z) is called the optimal processing order. Let tta € II denote a permutation generated by an algorithm A. The worst-case performance ratio of the algorithm A with the schedule criterion K is defined as gA(K') = min{j/ : K(nA; Z^/Z} < y, for each instance Z}. In the sequel, the argument Z will be omitted in A(tt*; Z) and 
K(rA\ Z) if it is not necessary.We will use some simplified notation analysing an instance Z. If the set J consists of g > 1 subsets (groups) Ji, J2,..., Jg of identical jobs we assume that each job from a subset Jj is indexed by the same index j, j = 1,2,...,g. In such a case, the job processing order will be considered as a permutation with repetitions. Therefore, let 717 denote a permutation on a set I C {1,2,... ,g}. We employ the symbol (ttj), denoting the s-times concatenation of the permutation tt/. To simplify, the index I in 7T/ will be omitted if I = J. Denote also by fa:'] the nearest integer not smaller than x.

5.5.1 The weighted sum of completion times criterionThe aim of this section is to analyse the worst behaviour of various known and some new algorithms for the criterion Csum. The following general property provides a reference level for these evaluations.
Property 5.1. For any 7r G II and Z, we haveCsum(7r;Z)/Csum(7r  ̂ (5.6)where

w = min Wj, w = max Wj. (5-7)
jeJ jeJ□

Proof. Let tt* be the optimal processing order for the criterion Csum- Applying the simple job-based bound Cmj > we get a l°wer bound of
Csuni(^*) 

n m n m

CSum(7T*) > 52 E^CO - ~E (5'8)
3—1 i=l j=l i=lNext, using consecutively (5.1), (5.3) and (5.8) we obtain the following sequence of inequalities

n m js n m J

CsumH = 52 E E p^ - E EEm
3=1 - - s=l t=js-i 3=1 «=1 <=1
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n m n m n n f< EE E^ = (E E^E,uW
J=1 S=1 t=l S=1 t = l j=l ~which completes the proof. ■The value 1 + (n - l)(w/w) can be arbitrarily large and equals n if Wj=const. 

j € J■ Using Property 5.1 we can derive the worst-case performance ratio for the primal class of algorithms.
Theorem 5.1. For A € {CDS, G, P, RA} we have the tight bound

< ^(Csum) < 1 + O - l)(w/w). (5-9)
Proof. The upper bound in (5.9) follows immediately from Property 5.1. To complete the proof we will show, using an example, that this bound is tight.
Example 5.1. Let m > 2. The job set consists of two subsets fa and fa with cardinalities 1 and n — 1, respectively. Weights are defined as wi = w, W2 = w, where w < w are any numbers. Two processing times are defined explicitly 

Pmi = l,Pm2 = 0. All the remaining (undefined explicitly) processing times are equal to e, and c is the sufficiently small number such that lim^o €wn2 = 0. 0At first, analyse the behaviour of an algorithm A € {CDS,G,P,RA} in this example. For the A:-th auxiliary problem in Algorithm CDS we have a} = a2 = 
kc, bk = 1 + (k - l)c, 62 = (& _ 1K & = 1,..., m - 1. Therefore all m - 1 auxiliary problems can provide the same result irk = (l)1(2)n-i, k = l,...,n, and thus 
^cds _ see Fig. 5.3. In algorithm G, we have fa = -\/e,fa = 1/efor
m = 2, and fa = = 1/c for m > 2. It means that G can generate thepermutation ttg = (l)i(2)n_i. Since uq = -m + 1 + (m - l)c and uq = (™ - l)q algorithm P generates tvp = (l)i(2)n_1. In algorithm RA, the processing times of a single two-machine auxiliary flow-shop problem are defined as follows: = 1 + fam - l)(m + 2)/2, fa = m + e(m - l)m/2, a2 = fam - l)(m + 2)/2, and 
b2 + fam — l}m/'2. Therefore RA provides ttra = (l)i(2)n-i. It is easy to prove that Csum(7rA) = w + w{n- 1), A e {CDS,G,P, RA}.Now apply algorithm HC starting from 7r = (l)1(2)n_i. By virtue of (5.5) we have revised gaps dR2 = 1 - c and d22 = -0.1c since L12 = 0 and L22 = {m- 1}. Initially we set a = 1, b = n. At Step 2 we find g = 2,h = 2. Since X = dR2 = 1 — c > 0, y = d22 = -0.1c < 0 and |Aj > |F|, the jump from Step 3 to Step 4 will be performed. This interchange does not cause any improvement, so job 1 remains in the position 1. Further interchanges operate on the set J2 of uniform jobs, and therefore cannot introduce any improvement at all. Finally we have 
^a+hc = and Csum(7rA+HG) = Csum(7rA) for A (E {CDS,G,P,RA}. It can
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2m-1

m 1

m£o 1+(n+m-1)£Figure 5.3: Schedules in Example 5.1: (a) for tta , A £ {CDS, G, RA, CDS + HC, G +
HC, P + HC, RA + HC} and (b) for tt* 
be proved that the permutation tt* = (2)n_1(l)1 is optimal and C'sum(7r*) = w + w(m + n-3)e+w(m-2)(n-l)e+wn(n-l)e/2. Finally, Csum(7r^+#c)/Csuin(7r*) tends to 1 + (n - l)(w/w) if e -> 0, A e {CDS,G,P, RA}. ■It follows from Example 5.1 that some modifications of the basic scheme of algorithm HC are non-perspective from the worst-case point of view. As an example consider a modified form of Step 2: = max-fd^^) : a < j <b}, dv(h)ir(b) = '■ a 3 < Another “unsuitable” modificationreplaces interchanges at Steps 4 and 5 by appropriate insertions. Also observe that the same result will be obtained if we use algorithm NEH (in its original form) as a method of finding the initial permutation.The extremely high worst-case performance error is the direct consequence of some lacks observed in HC. First, information about pu and pmj has been completely ignored in d^j, see formulae (5.5). Second, the first and the last jobs in the permutation have never been moved somewhere, in spite of their evidently bad location. Third, neither CDS nor P, G, RS (or their variants) should be recommended for generating the initial permutation since they are specific for Cmax problems.
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In the context of previous considerations, the following question arises “does there exist an approximation algorithm for the stated problem with the worstcase performance ratio bounded by a function of ml”. An algorithm obtained by natural extension of the well-known single-machine WSPT rule provides the first positive answer. The next, more promising approach, is offered by an extension of CDS and by a new decomposition technique T discussed at the end of this section.Let us consider algorithm F which generates a permutation irF by sequencing the order of jobs in decreasing Wj/ x Pij.

Theorem 5.2. For the algorithm F we have the tight bound^(Csum) < m. (5.10)
Proof. By virtue of (5.1) and (5.3) we can write the following sequence of inequalities

n m jsCsum(7rF) = max . . 52 P™FW
j = l s=l t=]s-1

n mj< 52 12 52 p^v • (5-n)
j=l s=l t=lSince the permutation ttf is optimal for the single-machine problem with processing times then

n j m n j m52 52^52
J=1 t=l S=1 j=l t=l S=1Therefore from (5.11), using the obvious machine-based bound

n j

^Psv*^) — Csum(7T )
.7 = 1 t=lfor s = 1..., m, we obtain

n j m m n j

csum(7r) < £w^G)52(52p^w) = ^*0) 52 )■

J=1 t=l S=1 3=1 J=1 t=lTo complete the proof we provide an example of the bound’s tightness.
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Figure 5.4: Schedules in Example 5.2: (a) for ttf , and (b) for 7r*. All jobs on the machine 
i have index i and processing time pn = 1.

Example 5.2. Let m > 2. The job set J consists of m subsets Jm, each with the cardinality q, where q is an integer. The processing times and weights are equal to pn = 1, Wi = 1, i = 1,2,..., m. All the remaining (undefined above) processing times are equal to zero. Thus, we have n = mq jobs. OSince Pij = 1 for all j = 1,2,..., m, algorithm F can generate thepermutation ttf = (l)g(2)g .. .(m)q and C'Sum(7rF) = (l/2)[g2m(m — 1) + qm(q + 1)], see Fig. 5.4. One can prove that the optimal job processing order is 7r* = 
(m,m - 1,... 1), and Csum(7r*) = (l/2)mq(q + 1). Hence Csum(7rF)/Csum(7r*) = 
(m ~ 1 and tends to m if q —» oo. ■Consider a new algorithm, called hereafter Q/X, designed for the criterion Gsum using scheme of CDS. We will show that Q/X can be better than F from the worst-case point of view. Let us assume that there is known an approximation algorithm X for the two-machine flow-shop problem with the criterion Csum and the worst-case performance ratio ^(Csum)- The proposed algorithm Q generates a permutation 7r$ € {x1,..., tt7”-1} such that CsumC7^) = min-cj-^i ^m-ijC'sumCTT^) where irk is the permutation generated by the algorithm X for an auxiliary two-machine flow-shop problem with the criterion Csum and processing times aj = ^LiPiF bj = Td=m-k+i PH’ J = l,...,n, on ma
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chines 1 and 2, respectively, k = 1,... ,m— 1. Denote by Qk the algorithm which generates the single permutation irk and by Qk/X the combination of Qk with 
X. For the A;-th auxiliary two-machine flow-shop problem, denote by Zk the A-th instance obtained from the instance Z, by Ci}(Z) and Cij(Zk) the completion time of the job j on the machine i for instances Z and Zk, respectively. Let 
r = [m/2"|. To carry out the analysis, we need two auxiliary results, which are found in Property 5.2.

Property 5.2. For any 7r, any Z, any j = 1,..., n, and (a) for k = r, r + 1,..., m — 1, we have
< C2<j)(Zk\ (5.12)(b) for k = 1,2,..., m - 1, we have

(5.13)
Proof, (a) Let 1 < Uq < . - < um < j be the sequence of integersminimising the right-hand side of formula (5.3) for i = m. Then, we obtain

m us k us m us

Psir(t) = ^2 Xv Psn(t) + ^2 Ps^(t)

s=l t=us_i s=l t=us-i s=k+l t=us-i

Uk k um m

— 'j Psir(t) T Z E Ps%(t) 
t=u0 3=1 t=Uk S=k+1

vt k V2 m

t=VQ 3=1 t=vi s=m—k+l(b) Employing the definition (5.3) for i = m, we can write the following sequence of dependencies
k m js*C„.0)(Z) = 22 £

2 = 1 - - _ S=1 t=:gs_1

ji

“ 1<JO S + S Pm-k+i,*(ty)
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k ji 3m—fc+t

K’w+, X
* =1 t=J»-l t=Jm-k+i-l

k ji jm—k+i

~ ^l<n-l<n=n„m;  ̂ Pm-k+i,^
* =1 t=3i-l t=3m-k+i-l

k V1 V2
= + ^Pm-k+i,^)

i=l t=vo t=vi

k V2 k
- 1<t,o™^2</52(52^(0) + Z^(52pm-*+»,%(t))} = 

— — — — t=vo t=l t=vi £=1The first inequality is the direct consequence of a relaxation of job processing times. Clearly, since i < m — Ar + i + lform > 2, any i and any k € {1,..., m —1}, therefore ji < jm-k+i-i ■ The second inequality follows from the commonly known fact max!€A di > max.i&A> «£ for any A' C A. Subsequent equality is the result of a simple substitution tp = = ji,V2 = vm-k+i- The final inequalityemploys the well-known claim o-ij > Note alsothat 52i=1 Pm—k+i,j — ^Ii=m-k+l Pij • ■The inequality (5.12) provides an upper bound of Cmir*^(Z) whereas (5.13) a lower bound. Now we are ready to formulate subsequent evaluations of the worst-case performance ratio.
Property 5.3. For algorithms Qk/X, we have(a) tight bounds for k = 1,2,..., r — 1,^^(Gsum) < 1 + (n - l)(w/w), (5.14)(b) for k = r, r + 1,..., m, < ^^^(Csuxn) < ^(C^), (5.15)where

fmW=k2±S^^. (5.16)
m□

Proof, (a) Due to Property 5.1, we need only an appropriate example.
Example 5.3. Let m > 2 and r = fm/2]. The job set consists of two subsets Ji and J2 with cardinalities 1 and n — 1, respectively. Weights are defined as
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machines 
1 (a)

wj = w, w2 = w where w < w are any numbers. The processing times are equal to pri = l,pr2 = e,pmi = cw/w,pm2 - e where e is the sufficiently small number such that lim€^o ran2 = 0. All the remaining (undefined above) processing times are equal zero. OSuppose that algorithm Q has been combined with algorithm X producing optimal permutation. For the primal r — 1 auxiliary problems we obtain ak = 0, j = 1,2,6^ = ew/w, bk = e, k = 1,...,r — l. Each of these problems can be solved using WSPT rule on the second machine. Since wi/bk = wz/bz, algorithm X can provide r — 1 identical permutations nk — (l)x(2)n_i, k = 1,..., r — 1, and CsumC^) = w + w2e/w + wne{n - l)/2 + w(n - 1)(1 + e), see Fig. 5.5. One can prove that the permutation tt* = (2)n_i(l)! is optimal and Csum(7r*) = 
we + wen(n — l)/2 + we(n - 1) + w + yPe/w. Hence, Csum(7T/:)/C’sum(7r*) tends to 1 + w/w(n - 1) if e —> 0, k = 1,..., r — 1.(b) Applying the formulae (5.12) for tt = irk in the definition (5.1), we obtain

Cs^k-,Z)<Cs^k-,Z^By virtue of the definition of px(Cswn) we have Csum(7r*; Z^/C^ir^; Zk} < ^^(C'sum) where r*k is the optimal permutation of the fc-th two-machine flowshop problem. Next applying the formulae (5.13) for tt = 7r* in the definition
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Figure 5.6: Schedules in Example 5.4: (a) for tt*, k = r,..., m, (b) for tt*. All jobs on the machine i have the index i and the processing time pn = 1
(5.1) we obtain

Csu^TT*; Z)

Cswn^-Zk) C^^Z^ Cs^k-,Zk) 
k “ k kT]x(Csvm)Combining two last results we get

Cs^k-,Z) < ^(C^K^^Z)which yields the upper bound in (5.15). The lower bound in (5.15) follows from the example.Example 5.4. Let m > 2. The job set J consists of m subsets each with the cardinality q, and q is an integer. The processing times and weights are equal to pjj = 1, Wj = 1, j = 1,2,..., m. All the remaining (undefined above) processing times are equal to zero. Hence, the total number of jobs is n = mq. O
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Processing times of the A:-th auxiliary flow-shop for k = r, r + 1,..., m - 1, are defined as follows: = 1, j = 1,2,..., k, = 0, j = k + 1,..., m, bk =
1,2, ... ,m — k,bk = l,j = m - k + Assume that ^(Csum) = 1, i.e.every auxiliary problem is solved optimally. Hence A can generate permutations 
-Kk = (k + 1, l)q(k + 2,2)g ... (m, m - k^m -k + l),(m - k + 2)g ... (k)q, and Csum(7rfc) = i + i = kq(kq + l)/2 + (m - k¥q2/2 + (m - k)q/2, seeFig. 5.6. The optimal permutation is tt* = (m, m — 1,..., l)g, and CsumC^*) = IXi mi = mq(q+l)/2. Finally, Csum^VCsum^*) tends to [k2+ (m-k)2]/m = 
fm(k) if q^ oo. ■The function fm(k) is nondecreasing, fm(k) > m/2 for any k, and m - 2 < 
fm(m - 1) < m - 1. A more precise analysis shows that /m(r) = r for even m, and fm(r) = r — 1(1 - X.) for odd m. Presumably, a more extensive research may provide better lower and/or upper bounds of p^k^x(Csvaa), however this considerable effort will not change the final worst-case evaluation of the algorithm 
Q/x.

Theorem 5.3. For the algorithm Q/X we have the tight bound< r?n/2]77X(C'sum). (5.17)
Proof. By virtue of Property 5.3 we have

(C^um) = ™ini<k<mPpkl (Csum) < min kp (C^um)

= rw/2]77X(C'sum)that implies (5.17). To complete the proof we consider the following example.
Example 5.5. Let m > 2. The job set J consists of r subsets, each with the cardinality q and q is an integer. The processing times and weights are equal to pm-r+i,i = 1, Wi = 1, i = 1,2,..., r. All the remaining (undefined above) processing times are equal to zero. The total number of jobs is n = rq. <>Calculation of the processing times for auxiliary flow-shops provides the following results: (a) for k — 1,..., m - r we have ak = 0, j = 1,..., r, bk = 0,j = 1, • • •, k and bk = 1, j = k + 1,..., r, (b) for k = m - r + 1,..., m — 1, we have a) = l,j = l,...,k-m+r,a^ = Q,j = k-m+r+1,..., r and = l,j = 1,...,r. Assume that px(Csum) = 1, i.e. every auxiliary problem is solved optimally. In consequence, X can generate r1 = ... = irm~r = (l)g(2)g ... (r)q and 7rTO-r+1 = • • • = TT—1 = (r)i(l)g ...(r- l^r^. Hence C^tt1) = i = rq(rq + W and C'Sum(7rm_r+1) = 1 + SZi1 i = l + (rq~ l)rq/2 < Cs^tt1), see Fig.. 5.7.
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Figure 5.7: Schedules in Example 5.5: (a) for 7rm r+1, (b) for 7r*. All jobs on the machine 
i > m - r have the index i - m+r and the processing time pm-r+i,i = 1
It is easy to prove that the optimal permutation is = (r, r — 1,..., 1)Q, and C^TT*) = ri = rq^q + l)/2. Finally, C'sum(7rm_’’+1)/C'sum(7r*) tends to r if q —> oo. ■It is clear that algorithm Q/X will provide better results if and only if there exists an approximation algorithm X for the two-machine problem with (6'surn) less than 2. Up to now, such algorithms have been found for a few special cases, see Table 5.6. Hence, an algorithm X for the general case with ^(Csum) < 2 is still looked for.At the end of this section we propose another, general family of algorithms, called hereafter T/Yk, which can be better than Q/X from the worst-case point of view. An algorithm from this family is based on an approximation of m-machine problem by some /j-machine flow-shop problem for k < m. Let mi,..., m^ be a sequence of integers such that ms > 1, s = 1,..., k, Ss=i ms = m, for some 
k < m. We define li = i = 1, •••>&> and = 0. The auxiliaryfc-machine flow-shop problem has the processing times defined as follows

i, 

tij = Psj-

s=l.-i+l

(5.18)
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Although the latter problem is defined in a univocal way by the sequence of machine aggregations (mi,..., m^), for the sake of notation simplicity we will identify it by means of k. Since this problem for k > 1 is AP-hard, we assume that it is solved by an approximation algorithm Yk with the worst-case performance ratio r]Yk{Csxim). Clearly, the proposed algorithm T/Yk generates a permutation 
■^T/Yk by solving, with the worst-case bound pyfc(Csum), the fc-machine flow-shop problem with processing times defined by (5.18). Let us denote this fc-machine —e __£ instance by Z , and the appropriate job completion times by Cij(Z) and Cij(Z ). Two preliminary results found in Properties 5.4 and 5.5 are necessary to prove the final evaluation of the performance T/Yk.

Property 5.4. For any tt, any Z, any j € N, and any (mi,..., m*,), we have
Cm.^Z) < Ck<j}(Zk). (5.19)□

Proof. Let 1 < «o < ui < • • • < um < j be the sequence of integers minimising the right-hand side of formula (5.3) for i = m. Then, we obtain
m us k lr

= ^2 E ^(t)= 52 52 52 p^w 
s=l t=ua_i r=l 3=ir_1+i t=ua_i

k ^lT L= E E E p^)<

r=l t=uir_1 s=Zr_i+l
max A Vr lrEE E

r=l t=vr^ 8=1^+!

which completes the proof. ■
k vr

r=l t=vr_i

Property 5.5. For any tt, any Z, any j e A, and any (m^ ..., we have
—k

Crir(j)(.Z ) < mma.xCm„^^^ (5.20)where mmax = max mi. (5.21)
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□

Proof. Employing (5.3) for i = m we obtain the following sequence of inequalities
mmax Cm7r(j)(^) —

772 max m Ja

8 = 1 S=1 t=Js-l

T^max max l<jo<H < -<jm <3

k lr js

£ £ £
r=l s=Zr-i+l

max
m <j

k 3&ri

52 52
r=l t=jXri-iwhere xrt = min{Zr_i + i,lr}. Note that for any fixed i we have xr-i,i < xri- Next note that for the fixed i, maximisation can be done over indices vr = xTi, then we can continue as follows

ax k Vr

8=1 ----- r—| f=Vr_1 

max
i^o^i <—<vk<j

k Vr ^mai
£ £ £ Pxriv(t)

r=l t=vT—i 8=1

max
1<8>O<^1 < — <«*<}

k vr mr

E E £ P®rt8r(t)

r=l t=vT_i 8=1

k Vr lrmax V V' y PiTfit)

r=l t=vr-i 8=/r-i+l

k Vr

= <8^-2 52 =
— r=l t=vr-iThe final inequality has been obtained using the well-known sum-max > max-sum 

fact aij > maxjgB ■
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Using the introduced properties we are able to evaluate the worst-case performance ratio of algorithms T/Yk.

Theorem 5.4. For any algorithm T/Yk defined by the sequence mi,.. „,mk we have
pY\Csum). (5.22)

Proof. Applying (5.19) for tt = 7rfc in the definition (5.1), we obtain
Csum(^Z)<CsumGr^

By virtue of the definition of pYk(Csaia) we have Csum^J Zk')/Csum^*k-, Zk) < 
r/Yk(Csum) where Pk is the optimal permutation of the k-machine flow-shop problem. Now, applying the formulae (5.20) to 7r = tt* in the definition (5.1), we obtain

m

^max Csum(^ > ^) = ^max ^m-TrUy) (^)

1=1

> £
j=l ‘ \°sumjBy combining these results we get the following upper bound on r]T/Yk(Csvaa)

C<suni(^ > Z) < mmax T] (Csum) Csum^ j Z').Let consider also a lower bound.
Example 5.6. Let m > 2. Without losing generality we can assume that 

= mi- To simplify notation we set c = mmax. The job set J consists of c subsets J^,.. .,JC each with cardinality w each and w is an integer. The processing times and weights are equal to pa = 1, w, = 1, i = 1,2,... ,c. All the remaining (undefined above) processing times are equal to zero. Thus, we have 
n = cw jobs. OFor this instance we have t^j = ^=1 Pij = 1 and tij = 0, i = 2,..., k, for all 
j = 1, 2,..., c. Weights are equal to Wj = 1, j = 1,..., c. Due to special structure, the auxiliary problem can be solved in such a way as to obtain the optimal one using the well-known WSPT rule. Therefore r]Yk = 1 and the algorithm 
T/Yk can generate the permutation irT^Yk = (l)w(2)w ... (c)w. Consequently, Csum(^fc) = (l/2)[w2c(C-l) +wc(w +1)]. One can prove that the the optimal job processing order is tt* = (c, c - 1,... l)w and C^tt*) = (l/2)cw(w+ 1). Finally 
Csvm(nT/Yk)/Csvun(n*) = (c - 1)^ + 1 which tends to c = mmax if w oo.«



5.5. The worst-case analysis 115
Theorem 5.4 provides an unexpected theoretical result.

Collorary. There exists the algorithm T/Yk such that^(Cs™) < \m/k^Yk(Csma). (5.23)
For k = 1 we obtain the well-known result ^^(Csum) = m, since T/Yl. is equivalent to F and 77yi(CSUm) = 1- For k = 2 we get the evaluation 

r]T/Y2(Cmm) = fm/2~|7?y2(Cq„Tn) that had been previously found for other algorithms, e.g. Q/X. In practice, solving the two- or three-machine case is usually easier than the general m-machine problem. Therefore k = 2,3 can be recommended for applications. For example, assuming m = 9, k = 3, mi = m2 = m3 = 3, and pY3(Csain') = 1 (i.e. the auxiliary three-machine problem is solved in order to obtain its optimal solution), we obtain pT/Y3(Csum) = 3, whereas the best known up to now result refers to riT^Y1(Csvm) = 9 or 7?T/y2(C'sum) = Fm/21 = 5. It is clear that algorithm T/Yk will provide better results than F and Q/X if and only if there exists an approximation algorithm for the fc-machine problem for k > 2 with the worst-case performance ratio sufficiently good.
5.5.2 The mean completion time criterionRecently, a considerable attention has been concentrated on the flow-shop problem with the criterion Csum, chiefly due to its industrial applications. In this section, we discuss some basic results of the worst-case analysis for a few approximation algorithms recommended for this problem.

Theorem 5.5. For algorithms A G {RC1,RC2} we have tight bounds^(Csum) < n. (5.24)
Proof. The upper bound follows from Property 5.1. So, using the following example we will show that these bounds are tight.
Example 5.7. Let m > 2. The job set consists of two subsets J\ and J2 with cardinalities 1 and n — 1, respectively. The processing times are equal to 

Pmi = l^Pm-i^ = pm2 = e where e denotes the sufficiently small number such that lim^o cn2 = 0- All the remaining (undefined above) processing times are equal to zero. OLet us start the algorithms RC1 and RC2 with d = 0, i.e. S = 0. We have = 0 and = w" — e. So both algorithms schedule at the first job 1, i.e. a = (l)le The remain n — 1 jobs are uniform and therefore RC1 and 
RC2 provide the same permutation tt^1 = tt^2 = (l)i(2)n_i, see Fig. 5.8.
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machines

2

1+ncFigure 5.8: Schedules in Example 5.7: (a) for nA, A € {RC1,RC2}, (b) for t*.
Hence, Cgim/rr^01) = Csum^ir1^2) = 1 + |e(n — 1). It can be proved that the permutation x* = (2)n_1(l)1 is optimal and Csum(7T*) = + € + ^Finally, Csum^^/Csum^*) tends to n if e -> 0, A € {RC1,RC2}. ■This extremely high performance error of RC1 and RC2 is a direct consequence of the single mistake made at time moment zero. Since the waiting time for the big job is shorter (by e) than the waiting time for each of many small jobs, so this big job will be scheduled first blocking completely the machine. This case owns some similarities to the worst-case instance of Schrage’s algorithm for the single-machine problem with ready and delivery times and the makespan criterion. However, the worst-case performance of Schrage’s method is deteriorated by such a mistake only twice, but of RC1, RC2 - up to n-times.One can say that the detected mistake of RC\ (RC2) can be avoided by considering each job in turn as the first one in the primal sequence, see algorithm 
KS2. However, the following example shows that such a thinking is illusory.

Example 5.8. Let m > 2. The job set consists of two subsets and h with the cardinalities 1 and n — 1, respectively. The processing times are equal to pmi = ljPm-ip = Pm—1,2 = Pm2 = € where e is the sufficiently small number such that lime_>o en2 = 0. All the remaining (undefined above) processing times 
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are equal to zero. 0Starting from a = (1) we have to generate the job processing order 7r^S2 = (l)i(2)n_1 since there are no other alternatives. In turn, starting from a = (2) we can generate the job processing order kKS2 = (2)1(l)1(2)n_2. Indeed, if a = (2) we can schedule next the job from or a job from J2. In both cases delays between a and next scheduled job are zero, so the partial processing order for the next iteration can be <7 = (2)i(l)i. Next, there are no other choices. Then, wCsum^*"52) = n + \en(n + 1) and nCsvan^KS2) = 2e + - Tfin - 1) + (n -1)(1 + 2e). It can be proved that the permutation n* = (2)n_i(l)i is optimal and nCs^TT*) = 1 +^en(n - 1) + 2ne - e). Clearly Csuln(’i’AS2) < ^sum^52)- Finally C’sum(7rA52)/Csum(7r*) tends to n - 1 if e —> 0.Since Example 5.8 can be applied to all five algorithms from [164] with the same result, we immediately have the following evaluation.

Theorem 5.6. For the algorithm A, A € {KSI,..., KS5} we have
n 1 < TJ (67 sum) < • (5.25)

Although a more precise evaluation has been done, in the context of (5.25) this proof is of minor importance and therefore will be omitted.Analysis of the algorithm RC^ and RCo has provided more promising result.
Theorem 5.7. For algorithm RC3 we have2m 1T + 3m < ^^(Csum) < n. (5.26)
Proof. We present only an example showing the lower bound in (5.26).
Example 5.9. Let m > 2. The job set consists of m subsets Ji,i = 1,..., m. The subset i has cardinality (2m — 2z + 1)#, where q is an integer. Thus, the total number of jobs is n = ^^i(2m — 2z + l)q. The processing times are equal to pa = 2m-2t+i, i = l,...,m. All the remaining (undefined above) processing times are equal to zero. OOne can prove that the algorithm RC3 can generate the permutation ttRC3 = Wp.n-i),(2)(2-3), ■ • • (m)„ = J E”, - 1)?(•-!) + - l)?2m(2m2 - 3m + 1) + ^(2m - l)?m(m« + 1),see Fig. 5.9. The optimal permutation is zr* = ((m)i.. .(2)2m-3 (l)2m-i)g. and Csum(zr*) = i SJ=i[Si(2m - 2i + l)](2m - l)j = ^m2(2m - l)q(q + 1). It means that 67sum(zrRC3)/67sum(zr*) = (|™ + 3^ + + g) which tends to

2m 1 1 ;r _ , __3 + 3m d ■
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machines
(a)

1 DD - OD
2 D O - 0-0

1 DD - DD
2 - 00 (b)

i—i------------ r
0 1 qFigure 5.9: Schedules in Example 5.9: (a) for ttRC3, (b) for tt*. All jobs on the machine 

i have the index i and the processing time pn = (2m — l)/(2m — 2i + 1), v = 2m — 1
Theorem 5.8. For algorithm RCo we have

| < r]RC°(Cs^ < m.
O O

(5.27)
Proof. First note that 7rm = 7tf assuming Wj = 1/n, j = 1,..., n. Therefore, from the definition of RCo and pF(Csum), we have

CS^RC°) < Csuin(7rm) < rnCsum(7r*) (5.28)which provides the upper bound in (5.27). The lower bound follows from the example.
Example 5.10. Let m > 2. The job set consists of m subsets such that the set Ji has the cardinality (m — i + 1)§, i = 1,..., m, where q is an integer. The job processing times are equal to pu = l/(m — i + 1), i = 1,... ,m. All the remaining (undefined above) processing times are equal to zero. OPriority values for RCo can easily be found equal to erf = min{l, 

j = 1,..., n, k = 1,..., m. Since erf < w*+1, j = 1,..., n — 1, for any k =
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machines

1 0 - 0
2 D-D

q (m-1)q mq

1 0 - D
2 D - 0 <b)

m-1 Q ... Q
m [J ... □

I---------------------------- 1---------------------------------------------------------------------------------------------------------------------------------

0 qFigure 5.10: Schedules in Example 5.10: (a) for ttRCo, (b) for tt*. All jobs on the machine 
i have the index i and the processing time pu = l/(m — i + 1)
l, ...,m, all auxiliary permutations in RCo may have the same form 7rfc = l)2g(m)g,A: = l,...,m, see Fig. 5.10. Hence -krc° = (l)mg...(m)g and i =
^q2m[(m + l)(2m + 1) + Q/q]- The optimal permutation is tt* = -1% - - -(l)™)g and CsumO*) = SLi Ej=i w[(m-j + l)f] = ^m(m+l)g(g+l).Finally, one can check that the ratio Csum(7rRCo)/Csuin^*) tends to 2m/3 + 1/3 if q -> oo. ■In the context of Theorems 5.3, 5.6 and 5.7, we conclude that Algorithm 
Q/X for Csum can use RCo or RC3 instead of X. Indeed for m = 2 we have 5/3 < rjRCo(Csvtm) < 2. Since tt2 = ttf and 77F(Csum) = 2, one can expect that the small value of ^^“(Csum) is reached due to tt1. However, restricting our attention only to tt1 we also get this ratio as 2. Finally, using specific following example we can make our previous evaluations more precise.

Example 5.11. Let m = 2. The job set consists of four subsets Ji, J?, J3, J4 of identical jobs. The job processing times and cardinalities of subsets are given in Table 5.1. O
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Priority values and w? j = 1,2,3,4 for RCo are shown in Table 5.1. Thus, permutations generated by RCo may have the following form: 7T1 = (3)iog(4)ioq(l)i6g(2)2g and TT2 = (l)i6g(3)iog(4)iog(2)2g. Since 16g + 2 • 2g < 10g 4- 2 • 10g then in tt1 all jobs from Ji and J2 finish at time 30g. Therefore we have, j + E^O? + 2j) + E^(30g) = 790g2 + 15g. Next,nCsum^2) = EjS j+E)=V16^>E}^  ̂ = 790g2+23g.We can show that, the optimal permutation is 7r* = (3, l)iog(4, (1)2)3g(4, 2)29(4)5, and nCsum(7r*) = E}=i (2>)+ E>i 3(10g + 2j) + E^i 2( 16g + 2j) + Ejli (20g+ 2j) = 414g2 + 28g. Finally, Csum(TKCo)/Csum(7T*) tends to ~ 1.908 if g -> 00.Although, we have only shown 1.908 < r)RCo(Csum) < 2 for m = 2, one can expect that r)RCo is close or simply equals 2. Example 5.11 also suggests that the lower bound on T]RCo(Csum) for general m can be improved, however using special approaches for separate m.For m = 2 we have 3/2 < r]RC3(Csvia). Hence, one can hope that just 
RC3 owns the best worst-case performance evaluation. Unfortunately, besides a slightly improved lower bound on pRC3(Csum) we have not succeeded in further evaluations.

Example 5.12. Let m = 2. The job set consists of 2 subsets Ji,J2 with cardinalities 174g for and 100g for J2 where g is an integer. The job processing times are equal to = l,pi2 = 0,p2i = 0,^22 = 3. OLet us start with S = 0, i.e. d = 0 and C^d) = 0, i 6 M. Completion times of any as yet unscheduled job j G J \ S, which can be appended to the current partial permutation o, have the following forms: Cij = C2j — 1 for j G Ji, and 
Cij = 0, C2j = 3 for j G J2. Hence, = 3, for any j G J \ S. Consequently, 
RC3 can select k = 1 at the first step. This implies d = 1, a = (l)i, and 

= C2a(d) = 1- Next, since both machines are available at the same time moment 1, the previous step can be repeated, creating the partial permutation 
or = (l)i74g- The remain jobs are uniform and therefore RC3 generates the permutation irRC3 = (l)i74g(2)wog- It is easy to prove that nCsvlia(nRC ) = EiZi?^ + E£=i9(I74g + 3f) = 47,538g2 + 237g. The optimal permutation is x* = ((2)1(l)3)58g(l)42g, and = E^4 ■ 3i + EX’i(174g + 3i) =30,138g2 + 411g. It means that Csum^^/Csum^*) tends to « 1.577 if g —► 00.The last result of this section refers to algorithm R.

Theorem 5.9. For the algorithm R, we haven - (2 - < ^(Gum) < VCDS+API{Cswa) < rf^C^ < n. (5.29)
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Table 5.1: Data for the Example 5.8.

1 2 3 4
PC 1 2 0 0
PC 0 0 1 2
card 16# 2q 10g lOq

3 2 4 1 2
.7

1 2 1 2
Proof. Due to Property 5.1, we need to show only a lower bound.Example 5.13. Let m = 3. The job set consists of three subsets Ji, J2 and 

Ji with cardinalities 1, 1 and n — 2, respectively. The processing times are equal to psi = 1, P22 = P32 = P33 = P23 = e, P13 = 2c, where c is a sufficiently smallnumber such that lim^o «n2 = 0 and 5 = (1 — c}/n. All the undefined explicitly processing times are equal to zero. OOne can prove that CDS provides the permutation ttcds = (l)i(2)i(3)n_2. This permutation can be improved by API neither in terms of_Cmax nor in Gum criteria. It means that ttcds = ^CDS+API _ ^R. j{ence nCsam{'KCDS} = Sj=i[l + (j-l)€] = n+|cn(n—1). The optimal permutation x* = (3)n_2(2)i(l)i yields nCsum(7r*) = £”“1 2c(j + 1) + [2e(n - 1) + + [2c(n - 1) + 6 + 1] =2nc + 4c(n — 2) + e(n - 2)(n - 1) + 26 + 1. Finally, Csum(7r-B)/CSUin(’i’*) tends to 
n - (2 — -J-) if e —> 0, which is close to n. ■This surprising theoretical result undermines our notion of the wonderful quality of API. Its good behaviour observed in computer tests follows from the simplicity of API and the commonly known fact that “the best among several solutions is better than any single solution”. By employing NPI procedure instead of API we increase the computational complexity of the algorithm, improve the solution performance observed in computer tests; however, we do not improve significantly the worst-case performance. A slight modification of Example 5.13 shows that also CDS + NPI has the worst-case ratio of the order 
O(n). Indeed, by setting 6 = 1 in Example 5.13 we obtain an example such that: (a) vCDS = (l)i(2)i(3)n_2, (b) nCsum^CDS} = n+ |cn(n-l), (c) re003 cannot be improved by NPI, hence ^DS+NP1 = nCDS, (c) x* = (3)n-2(2)i(l)i, (d) wGumG*) = 2ne + 4e(n —2) + c(n —2)(n —l) + 3, (e) Csum(TCDS+NPI)/Csv^(^ tends to n/3 if c —> 0. Therefore one can say that such a poor value of ^(Gum) 
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follows from the application of CDS at the initial stage. Note that both proposed examples can be improved using INS.

5.5.3 The makespan criterionIt follows from Table 5.6 that no approximation algorithm A with <[m/2j has been found so far. The only suspected NEH has no such proof made up to now, unfortunately. Therefore, we have examined particularly precisely each new algorithm looking for a desired approach. Although we can immediately prove, by using Properties 5.4-5.5, that the bound riT^Yk{Cmax) = mmax ’?yi(C'max) is tight, nevertheless this result implies the existence of a competitive algorithm (see analogy to the Corollary) only in the context of satisfactorily good approximation algorithm for the ^-machine problem for k > 2. Until such algorithm is found, new results referring to the existing algorithms, as for example, the given below evaluation of r/^C’max), support us in the search.
Theorem 5.10. For the algorithm CDS + HC we havem/2 < pCDS+HC(Cma^ < (5.30)
Proof. The upper bound in (5.30) follows immediately from the obvious inequality K(7ta+hc; Z) < A^x^Z), and from the evaluation proved in [219] 

Cmax^008', Z)/C’max(x*; Z) < \m/2\. To complete the proof, we provide a lower bound in (5.30) using the following example.
Example 5.14. This example is designed for m > 7. The job set consists of 2r job subsets. The job processing times and cardinalities of subsets are given in Table 5.2 (even m) and Table 5.5 (odd m). Table 5.2 also contains processing times of auxiliary two-machine flow-shops used by CDS. OLet us consider the case of “even m.” According to the data in Table 5.2, CDS can generate the following sequence of permutations: x1 = (2)g ... (r)g(r + l)i ■ • • (m)i(l)g, vk = (k + l)g... (r)g(m- k + l)i... (m)i(l)g... (k)q(r + l)i...(m- 

k^ fork = 2,..., r — l,xr = (r + l)i ... (m)i(l)g... (r)q, and irk — (m - k + l)g • • .(r)q(k + l)i.. .(m)i(r+ l)x.. .(&)i(l)g ... (m - k)q for k = r + 1,.. .,m- 1. To avoid time-consuming calculations of m — 1 makespans C'max(x/c),fc = l,...,m - 1, required by CDS, observe that the makespan value cannot be lower than the maximal nondecreasing subsequence of job indexes chosen from irk. From irk (see also Table 2) we have > m - 1, Cmax^k) >max{m—2k, r} for k = 2,..., r—1, and Cmax(xfe) > r for k = r,..., m—1. One can prove that at least C'max(xr-1) = r, and thus CDS can generate irCDS = xr-1. This schedule is shown in Figure 5.11. For the simplicity of notation, irGDS will
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subsets of jobs
Table 5.2: Job processing times and cardinalities for Example 5.14 for even m; e = 1/q. The lower part contains processing times for the auxiliary two-machine flow shops

machines 1 2 r — 1 r r + 1 r + 2 m — 1 m1 €2 6 € € 6 €

r — 1 €
r €r +1 1
r + 2 1
m — 1 1
m 1card 9 9 9 9 1 1 1 1a1 e
b1 0 0 ... 0 0. 0 ... 0 0 0 0 ... 00 0 ... 0 01a2 6 € 0 0 e 6 € e
b2 0 0 0 0 0 0 1 1
ar~1 6 6 € 0 € € € €
b^1 0 0 0 0 0 1 1 1
ar 6 € € 6 € € € 6
br 0 0 0 0 1 1 1 1
ar+Y € € € € 1 + e € 6 €
b^1 0 0 0 e 1 1 1 1
am-2 € € 6 € 1 + e 1 + e ... € €
bm-2 0 0 6 € 1 1 1 1a"-1 € € € € 1 + e 1 + e . . 1 + e e
jm-l 0 € € € 1 + e 1 + e . 1 + e 1 + e
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i/ j 1 ... r r + 1 ... m — 1 m

Table 5.3: Block matrix of subtractions b™ 1 — a™ 1 for Example 5.14 (even rn)

1 — € —e — 1 62
r

0 -1 0
r + 1

m
1 0 1

x | - denotes a matrix of an appriopriate dimension having all elements equal x 
x G {-1,0,1}.

Figure 5.11: Gantt Chart for schedule in Example 5.14
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be called tt in the sequel. Figure 1 also illustrates the obvious decomposition of 7T into two disjointed subsequences tt = tftf where 7r = (r)g(r + 2)j... (m)i, ? = (1),... (r - l)g(r + l)i, Cmax(?r) = r, and Cmax(7r) = r. Any permutation a such that at least one of these subsequences is preserved in a has the makespan Cmax^) not less than C'max(7r). This property is a direct consequence of the so-called block properties [99].Now we are ready to analyse the performance of CDS + HC. Instead of precise study we will only show that HC cannot improve tt. Let us begin with the calculation of revised gaps (5.5). To this end, the values b™-1 — a]”-1 found from Table 5.2 have been formed in the block matrix shown in Table 5.3. Sets 
Lij are defined for i = 1,..., m as follows: (a) for j = 1,... ,r,Lij = {j} if 
i / j - 1, (b) for j = r + 1,..., m - 1, = {2, j} if 3 ± i / j - 1, L^ = {;}if i = 3, Lij = {2} if i = j — 1, and (c) Lim = {2} if i 3. All the remaining (undefined above) sets are empty. Finally, the revised gaps are given in Table 5.4. The matrix dP has a block structure with some exceptions observed in the first row, last column, sub-diagonal, and the right half of the third row. Elements of this matrix are defined as follows z = 0.9/(m - 2), (1) for j = 1,2,..., r we have 
aj = z(y —l)c, al = aj—e, ^j = aj+1, and (2) for j = r+1,..., m—1 we have Pj — 
z(j - 1) + a2 — 1,P'j = Pj — e, P" = Pj — az, 6j = Pj +1. By virtue of the definition and after simple calculations we introduce some dependences, crucial for HC: (a) aj > 0, al< 0, j = 1,..., r, (b) pi < P'J < Pj < 0,j = r + 1,... ,m - 1, for sufficiently small e < (m —2)/9, (c) all sequences aj,al,pi,P",Pj, are increasing, (d) |cur| < |a'| ,j = l,...,r —1, and |ar| < |^+1 | . The selection of X (and thus 
g) corresponds to a searching for an element in an appropriate row, while the selection of Y (and h) corresponds to a searching for an element in a column of the matrix dP.Set initially a — 1 and b = n. At first, the row r and the column r + 1 are searched. As a result we obtain X = ar, which refers to job r located nearby position a in the block (r^, and Y = P'r+1 which refers to job 1 in the block (l)g. From (a), (b) and (d) we have X > 0,Y < 0, |X| < |Y|. It means that HC jumps to Step 5. This interchange operates on jobs 1 and r — 1 located in the subsequence x and thus no improvement of the makespan occurs. Therefore job 1 remains on its position, and b decreases. At the second step, row r (without the element r+1) and column r — 1 (without the element r + 1) are searched. Thus we have X = ar > 0, which refers to job r (as the above), and Y = a'r_x < 0, which refers to job 1 in the block (l)g. Similarly we have X > 0, Y <0, |X| < |T|, and HC jumps to Step 5. The interchange operates on jobs 1 and r — 1 and for the similar reason cannot improve the makespan. Subsequent q steps have the same character, so finally the sequence (r — l)g(r + l)i will be fixed.
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Table 5.4: Revised gaps dP for Example 5.14 (even m)

i/j 1 2 v r — 1 r r +1 r + 2 •• w m — 2 m — 1 m
1 •• a( •• ©r—1 ®r Prv ^+2 •• •• P'm-2 P'm-l «2
2 0 012 •• av ■■ Or-1 ar ^r+1 ^r+2 Pw •• Pm-2 Pm—1 O2
3 O1 0 av ■■ Or-1 ar /?r+l ^'+2 - K, •• Pm-2 Pm-1 0
4 01 O2 av ■■ ©r-1 /?r+l Pr+2 Pm-2 Pm—1 “2

v T 1 ai » 2 0 ©r-1 Ur ^r+1 ^r+2 Pw •• ^m—2 Pm—1 O2

r — 1 «i ©2 Or-1 ar ^r+1 Pr+2 " Pw Pm—2 Pm—1 02
r ai 02 •• av 0 Otr Pr+1 Pr+2 Pw ■■ Pm-2 Pm—1 “2

T + 1 71 72 " 7v •• 7r—1 1 X fir+2 * * ^m-2 ^m—1 72
T + 2 71 72 •• 7» - 7r-l 7r ©2 X ^m-2 Sm-l 72
r + 3 71 72 ■■ 7» •• 7r-l 7r 6r+l 02 &m-2 ^m—1 72

w + 1 71 72 yv •• 7r-l 7r 6r+l ^r+2 &2 bm-2 ^m—1 72

m — 1 71 72 •• 7v - 7r-l 7r £r+l ir+2 02 X 72
m 71 72 - 7« •• 7r-l 7r 5r+l ir+2 2 «2 X

= 0.9/( m — 2), ai = - l)e
o,P" = xJ

V
 o u N

D

= al 
< 0

Y 
ii 

1 0,& = z(j 
©> + 1, 6j =

— 1) + 02 

P, + 1-
-e<

Repeating the latter steps we obtain the sequence (l)g.. .(r - l)g(r + l)i = if fixed. Since all further interchanges preserve 7f within each tested permutation, we never improve the makespan. On the other hand the optimal permutation is 7T* = (n^n - l)i... (r + l)i(r)g(r - l)g ... (2)g(l)g and C^Ctt*) = re + 1. It means that Cmax(irffC)/C'max(7r*) > r/(rc + 1) which tends to r if c —> 0.By analogy, to the example from Table 5.5 (odd m) we can conclude that 
Cmax(nHCMCmax(T*') tends to m/2 if e —> 0. This completes the proof. ■
5.6 ConclusionsFrom the worst-case point of view the following conclusions can be drawn.The worst-case performance ratio for the algorithm producing random permutation when applicable to problems with criterion Cmax is equal to m, when applicable to problems with criterion Csum is equal to n, whereas for Csum it can be arbitrarily large, see also Table 5.6.
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subsets of jobsTable 5.5: Job processing times for Example 5.10 (odd m); e = 1/q.

machines 1 2 r — 1 r r + 1 r + 2 m m + 112 € e c € €
r - 1 €
r € 1r + 1 1

t—11
.. E E 1 1card 2q 2g 2q g 1 2 2 2

Surprisingly, for the problems with the criterion Csum, a relatively simple algorithm F is better than quite complex CDS + HC. The algorithm Q/X developed “by analogy” to CDS offers performance also “by analogy” ^lx{Csmn) = 
\m/2]rix(Csvlia), where ^(Csum) is the worst-case performance ratio of an algorithm used for solving the two-machine flow-shop problem. In spite of external analogy, the particular auxiliary two-machine problems, solved in the internal work of this algorithm, do not manifest any analogous behaviour. This fact and the presented worst-case instances allow us to formulate another general conclusion: any overlooking of some data (even though they are really incomplete) deteriorates significantly the worst-case performance evaluation. Having in mind the performance of RC3, new algorithms for the problem with the criterion CSUm should be designed as an extension of ideas taken from this algorithm.For problems with the criterion Csum, there exist approximation algorithms with the worst-case performance ratio equal to or less than m, see Table 5.6. Although evaluations of the performance obtained for the algorithms RC^ and RCo are not tight, we have though that for RC3 it is closer to 2m/3 + C(l/m) than to m. Proof of this fact seems to be hard, since up to now there has been no clear methodology of analysing constructive algorithms with dynamics (RC3,NEH). From among algorithms recommended for this criterion, RCo and RC3 are better than RC1,RC2 and CDS + HC (this result also has been confirmed by experimental analysis), being as good as F and Q/X. For m = 2 the algorithm with the worst-case performance ratio less than 2 is still loking for.
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Table 5.6: Lower r/A and upper rjA bounds (provided in E) of the worst-case performance ratio r)A of an algorithm A (developed in B) for various scheduling criteria K. (New results are marked by an asterisk (*))
K A B r)A E
C*max any m m [96]

R [264] \m/2'\ [m/2] [264]
CDS [35] [m/2] [m/2] [219]
RA [52] m/y/2 + O(l/m) m/\/2 + O(l/m) [225]
RAGS, RAES [52] m/\/2 + <?(l/m) m/i/2 + O(l/m) [226]
P [239] m/^/2 + O(l/m) m/y/2 + O(l/m) [226]
NEH [212] x/m/2 + O(l/m) (m + l)/2 [226]
HR [148] m/\/2 + O(l/m) m/y/2 + O(l/m) [228]
G [124] m — 1 m — 1 [228]
TG [183] (m + l)/2 (m + l)/2 [183]
IE,M [238] m m [183]
KS1,KS2 [164] m m [183]
CDS+HC [140] m/2 [m/2] *
T/Yk * \m/kyr]Yk(Cmax} [m/k]riYk(<CmaX) *

C^sum any n n [96]
SPT [96] m m [96]
RCo [253] 2m/3 + 1/3 m [303]
RCo, m— 2 [254] 1.908 2 *
RC1,RC2 [254] n n [303]
RC3 [254] 2m/3 + l/(3m) n [303]
RC3, m=2 [254] 1.577 n *
HK,m — 2 [144] 2b/(a + 6) 2b/(a + 6) [144]
KS1,...,KS5 [164] n — 1 n *
R, CDS + API [257] n - (2 - 4/(n+ 2)) n *
CDS + NPI * n/3 n *

Csum any
CDS, G, P, RA, 
CDS + HC, 
G + HC, P + HC,

1 + (n — l)(w/w) 1 + (n — l)(w/w) *
RA + HC [96] 1 + (n - l)(w/w) 1 + (n — l)(w/w) *
F * m m *
Q/x * [m/2]j?x(Csum) [ m/2] T)X (Gsum) *
T/Yk * [m/fc]7?Y*:(6'sum) \m/k\ r)Yk(Csum) *
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The simple transfer of the ideas accepted for makespan problems to problems with other scheduling criteria (namely to those based on a sum of penalties) usually produces less efficient algorithms and generally should be avoided. Particularly, these algorithms should not be used to prepare initial solution for improvements algorithms with other than Cmax criteria.Constructive algorithms for the Csum and Csum problems should be designed as an extension of methods developed for the single-machine problems with these criteria. Dynamic priority rules based on a simple job fitness (e.g. between job delays) are usually worse than those based on a weighted combination of between job delays combined with the sum of completion times. Improvements algorithms should contain procedures API (NPI) as well as INS.For the makespan criterion the algorithm HC is as good as CDS, and is worse than NEH (NEH still remains the champion). For other criteria HC is as good as any algorithm producing random permutation.Results obtained in [226] for algorithms RACS and RAES as well as results obtained in this paper for HC, CDS+API, CDS+NPI and R confirm a general hypothesis that improvement algorithms are as good as auxiliary algorithms used for finding starting solutions.Clearly, the analysis carried out in this paper for more than ten various algorithms does not complete the worst-case research. The results obtained pinpoint the drawbacks of some existing algorithms, introduce a reference level for comparisons, provides supplementary characteristics of algorithm behaviour and outline directions of the new and better approaches to future research.



Chapter 6

Zero-inventory policy

JIT forces the decrease of in-process inventory by elimination (limitation) either internal/external storage place or storage time. With respect to storage place these constraints usually take the form of “no storage place is allowed”, “storage place is limited” by means of the number of stored parts or the size (volume) of stored parts, “total number of items circulated in the system is limited”, “number of items of the same type circulated in the system is limited”, or “store must contain a limited number of parts” where store’s capacity is limited from bottom to top. With respect to storage time they take the form of “parts must go without waiting”, “waiting time between successive stages is limited”, or “waiting times immediately influence on the production costs” 1. Two special classes of these constraints are considered as crucial for introducing ZI control, namely no-store (NS) and zero-wait (ZW) policies. Note that pure JIT strategy assumes no in- process storage. In processes where ZW has no obligatory character (because of technology requirements), ZW policy is much more restrictive than ZS.Although the above constraints are very easily formulated, not many theoretical results are known for these problems and the generality level of the considered problems remains relatively low, see the up-to-date survey of Hall and Sriskan- darayah [136]. There are a lot of papers dealing with flow-shop problems with the so-called blocking constraints (NS policy), see survey [136] supplemented by papers [206, 53, 115, 118, 265], limited storage [206, 252, 55, 170] and with no-wait constraints [243, 155, 23]. Slightly more complex problems are considered only in the context of simple priority heuristics, Kuriyan and Reklaitis [177], Sawik [273, 274], hierarchical decomposition Sawik [271, 272], studies of special cases Kubiak [171], or simulation studies. These problems also increasingly preoccupy the attention of many researches because of their applicability in FMS systems, Sawik [275, 276]. Recently, an excellent approach to modelling quite broad class
’These constraints also appear frequently in CIM system and FMS. 
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of FMS problems has been proposed by Toczylowski [319]. This approach can also be employed for modelling some problems with limited storage constraints. We also refer to our earlier studies Smutnicki [292, 296, 297], Nowicki and Smutnicki [227].Generally,.the methodology of modelling the NS and ZW problems enter the phase of development, particularly for more complex production systems. Even for the simple flow line with single machine per each stage and NS policy there exist several different models, but simultaneously there are no papers with the critical comparison of their applicability. Simultaneously, there are no models which can be applied to more general production structures with NS or limited storage (LS) policy. Additionally, the number of specific properties which can be useful for the solution algorithms still remains poor. Either no numerical results are provided or the reported numerical results are far from making possible a solution with high accuracy instances of greater sizes existed in practice. Particularly significant lack is observed in the very profitable local search methods and exact methods which might minimise the manufacturing cycle time.In this chapter we provide a common approach to modelling and solving problems without (with limited) in-process storage with the methodology oriented towards the efficient local search methods. This approach will be presented on the base of some case study, a flexible flow-line scheduling problem, which is immediately usable in practice and general enough to show some nontrivial properties. The applied technique of modelling is adjusted to make easy the extending to general problems, namely these with non-uniform machines, machine set-ups, transport time, etc., and those with more general flow-production structure, as for example, job shop or network. Although the delivery performance will not be discussed in this section (since the main stress has been laid on the storage problem), the proposed approach, models and algorithms can be extended in an easy way taking into account, for example, a measure of delivery performance from previous sections. Nevertheless, we should be conscious that the final numerical properties of the algorithm depend on theoretical properties of the problem, which in turn, depend significantly on the chosen measure of delivery performance.
6.1 IntroductionThe verbal description of the problem is as follows. There is a set of parts (elements, customer’s orders) and a set of processing cells (service centers) each of which has a set of parallel identical machines (service stages), Figure 6.1. A part is associated with a sequence of operations processed in successive cells, and



6.1. Introduction 133

Figure 6.1: Flexible flow line
all parts flow through cells in the same order. In a cell, a part can be processed on any machine. There can be a transport time of a part between cells. Moreover there are buffers with limited capacity that mediate in transferring parts between machines/cells. We want to find a schedule that minimises the makespan, one of the most frequently used criterion. This problem, called hereafter FP, can be considered as a hybrid combination of two classic scheduling problems, namely the flow shop and parallel shop problem.Architecture of automated manufacturing systems usually does not allow the formation of internal queues of parts (transported on pallets or in containers), or limits the length of these queues due to buffer size. With respect to FP, the following problems (with an increasing description complexity) can be considered: (U) system has buffers with infinite capacity or finite however large enough, (W) system works without buffers, (B) system works with buffers of finite capacity. In the system B, buffers can be designed as: buffer to machine (M), buffer to cell (C), common (shared) buffer for all machine/cells (G), dedicated part buffer before machine (PM), dedicated part buffer before cell (PC). Buffers can also be located on the output of the cell (machine), however, due to symmetry, we will not consider this case separately. The case (G) is relative to the buffering performed by automatic-guided-vehicle (AGV) transportation system or a common (single) store of limited capacity. The case (PG) is relative to the Kanban controlled 
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system. Note that pallets can be interpreted as a specific class of store. If the capacity of a buffer is greater than one, we should also consider the buffer service rule. There can be distinguished at least three rules, which are as follows: (1) first- in-first-out (F) where parts go for processing in the same order in which they enter the buffer, (2) arbitrary order (A) where the next part for processing is selected arbitrarily among those waiting in the buffer, and (3) extended arbitrary (E) where the next part for processing can be selected arbitrarily among these waiting in the buffer extended by those waiting on blocked machines of the preceding stage. In the last case, we permit a part to pass over the buffer, immediately on the next stage. Clearly, the rule applied should be adjusted to the phisical construction of the buffer and should reflect the general service policy used in the manufacturing process. Intuitively, the case (F) is the most restrictive, whereas (E) the least restrictive. From the methodological point of view, the case (E) is significantly harder than (F). Thus each considered problem, besides introduced assumptions, can be characterised by a triple (system type)-(buffer type)-(buffer service rule).
FP creates the basic model for a broad class of problems called in the literature the flexible flow-line scheduling. These are pure problem FP or problems obtained directly from FP by introducing a few specific additional assumptions, e.g. some parts can skip one or more machines during the route, buffers have infinite capacity, transport time is negligible, etc. A detailed review of industrial applications, among others in chemical branches, polymer and petroleum industry, computer systems, telecommunication networks, FMS, spaceship processing, etc., one can find in [149], [211],Although FP have quite simple formulation, it is troublesome from the algorithmic point of view. Its AF-hardness essentially restricts the set of approaches which can be applied to solve the problem. From the literature one can find exact algorithms based on the branch-and-bound (F&B) [284] and mixed-integer programming (MIP), as well as a variety of approximation methods, see the review in [149]. Some of these procedures have been designed for special cases, e.g. for the systems that have only two cells, the ones where only one of the cells has parallel machines, etc.; see the newest paper in this field [43]. Algorithms for FP have also been considered in [273, 337]. Research outcomes show that B&B algorithms become useless for more than 10 parts. Similarly, the size of MIP models is impractically large even for a small number of parts and cells. Therefore, more attention has been paid recently to the approximation methods. Currently, only a few constructive algorithms applicable to FP are known [61, 149, 273, 337]. Surprisingly, up to now there is no improving algorithm, although many recent papers have recommended the local search approach as the most promising for very hard optimisation problems [86, 322].
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Table 6.1: Data for the Instance.

j ei ci Pj 3 ei ci Pi 3. ey ci Pi 3 ei ci Pi1 1 1 60 4 2 1 30 7 3 1 40 10 4 1 302 1 2 60 5 2 2 10 8 3 2 30 11 4 2 403 1 3 30 6 2 3 40 9 3 3 40 12 4 3 5013 5 1 20 16 6 1 30 19 7 1 8014 5 2 90 17 6 2 50 20 7 2 4015 5 3 70 18 6 3 30 21 7 3 100
6.2 Basic model — infinite capacity buffersThe system has m machines located in c machine cells, and let M = {1,... ,m} be the set of machines, C = {l,...,c} be the set of cells. The cell I € C has 
mi > 1 parallel identical machines, and let Mi = {ki + 1,..., ki + mi} C M be the set of machines in this cell where ki = mi. The set of e parts (elements, customer orders) £ = {1,2,..., e} has to be processed in this system. Each part 
k € £ corresponds to a set of Ok operations Ok = {Ik + 1, • • •, h + °k} processed in that order, where Ik = ^2i=i °i, and let O = U*=i ^k = {l,...,o} be the set of all operations that have to be processed. Operation j corresponds to a processing of part e^2 at cell Cj, can be performed on any machine from MCj and requires pj > 0 time units for processing. Once started, operations cannot be interrupted. Each machine can execute at most one part at a time, each part can be processed on at most one machine at a time, and each part k flows through the system so that cj_i < Cj for j - l,j G Ok- A feasible schedule is defined by a couple of vectors (S,P), S = (Si,... ,SO), P = (Pi,... ,P0}, such that the above constraints are satisfied, where operation j is started on machine Pj € MCj at time Sj > 0.

2ej = k for any j € Ok-

To illustrate the problem, notions and denotations, we will use through this chapter a sequence of Examples, each of them employs the same data given in Instance.
Example 6.15. A feasible schedule for the Instance has been shown in Gantt Chart, Fig. 6.2. For example, operation 2 of part 1 at cell 2 is performed on machine 3, is started at time 130 and completed at time 190, i.e. P2 = 3, 

S2 = 130. The makespan is 310. O
Instance. The system has m — 3 machine cells with 2 machines at the first cell, 2 at the second cell, and 3 at the third cell, i.e. mi = m2 = 2, m3 = 3. The
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Figure 6.2: Gantt Chart for Example 6.1
set of n = 7 parts with processing times given in Table 6.1 has to be processed in this system. •To provide a formal mathematical model of the problem we introduce some notions. Let Ci = {j 6 O : Cj = 1} be the set of operations that have to be processed in a cell I EC. Machine workload is a subset of operations assigned to a machine in a cell, however, due to interchangeable machine identity it is not associated with any particular machine. To determine all machine workloads, each set Ci has to be partitioned into mi subsets Mi C £1, i E Mi, and let ni = 
\Mi|, i E Mi, I E C. The machine processing order is prescribed by a permutation of operations = (^(1), ..., 7r,(n2)) E P(Mi) where Tti(k) denotes the element of Mi which is in position k in tt;, and P(Mi) is the set of all permutations on the set Mi. The overall processing order is defined by m-tuple 7r = (tti, ..., 7rm). All such processing orders create the set II = {tt = (tti, ..., 7rm) : (tt,- e P(Mi), i E 
M), ((Mi, i E Mi) is a partition of the set £\, I E C)}.Next, let us consider relations between ir and a feasible schedule. Assume that 7T is given. For each j E O we define machine predecessor/successor Sj,Sj and technological predecessor/successor tj,tj as follows: s^tj) = ^i(j — 1) for 
j = 2,..., ni and = o (null); s^j) = -Ki(j + 1) for j = 1,..., ni - 1 and= °i tj = J — 1 if J > 1 and ei-i = eii and tj = 0 otherwise; tj = j + 1 if 
j < o and ej+i = ej, and tj = o otherwise. For this tt, starting times Sj and the 
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completion times Cj of operations have to satisfy the following clear constraints

Sj > 0, j G O, (6.1)
Ctj < Sj, j G O; tj 0 o, (6.2)

< Sj, j GO; s^o, (6.3)
Cj = Sj + pj, j e O. (6.4)These constraints lead to an obvious recursive formula on starting times

Sj = max{^. + p^, S^ + p^ } (6.5)where So = 0 = po, which allow us to find them in a time O(o). The appropriate completion times can be found using equation (6.4). The makespan value associated with 7r will be denoted by Cm^Tr), and thus C^vItt) = maxjeo Cj.To determine the feasible schedule from the given 7r G II, we have to assign permutations tt;, i G Mi, to machines i G Mi at cell I, I G C 3. Since machines at a cell are identical, the assignment can be carried out in any way. Therefore, one can obtain a feasible schedule (S, P) in the following manner: set PVi(j) = i for j = l,...,ni, i G M, and find Sj by using formulae (6.5). It is clear that any 7r represents nF=i(mO- feasible schedules with the same makespan value and various assignments of tt,- to machines. Finally, we can state our problem as that of finding 7r G II which minimises C'max(7r).

3 Machine workload allow us to reduce the number of considered feasible schedules.

Example 6.16. For the Instance we decide to perform operations in cells in the following manner: 7Ti = (1,4,7), 7T2 = (10,13,16,19), tts = (11,17,2,5,8), 7t4 = (14,20), tt5 = (18,12,9,6), tt6 = (3,15), tt7 = (21). The overall processing order is tt = (tti, ..., tt7). This processing order generates 2!-2!-3!=24 feasible schedules with the same makespan value. One of these schedules is shown in Figure 6.2. Starting times and completion times follow from (6.5) and (6.4). OIn the analysis we will refer to an auxiliary graph model associated with a fixed tt G II. The graph ^(?r) = (O, A* U .4(7r)) has a set of nodes O and a set of arcs A* U >I(tt) where
# = U <6-6)

and
•4« = U <&'*»• <6-7)

jEO; Sj^o
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Figure 6.3: Graph ^(tt) for Example 6.2
Arcs A* proceed from constraints (6.2), (6.4), represent the route of parts through the cells and have the weight zero. Arcs A(tt) proceed from constraints (6.3), (6.4), represent the machine processing orders and have the weight zero. Each node j G O represents the operation j, event “starting” Sj of this operation, and has the weight pj. Starting time Sj is equal to the length of the longest path to node j (without pj) in ^(tt), whereas completion time Cj is equal to the length of the longest path to node j (including pj) in this graph. The makespan C'max(7r) equals the length of the longest path (critical path) in <7(tt).Let us consider a critical path in ^(tt) interpreted as a sequence of nodes (operations) U = (ui,... ,uw), Uj G O. Each subsequence of successive operations 
Bab = («a, • ■ •, Ub) from U such that PUo_1 ± PUa = ... = PUb PUb+1 we call the 
block 4. We also denote U = {«i,..., izw}, Bab = {^a, • • •, Ub}-> and for any j € O we define Xj so that ftp-(xj) = j.

4We say / PUa if a = 1, PUb / Pub+1 if b = w.

Although notions Pj, Xj, ni, Sj, Sj, U, U, Bab, Bab depend on tt, however, for the sake of simplicity we do not express this fact explicitly. In the sequel, if several overall processing orders will be used simultaneously, these notions will refer to 7r by default.
Example 6.17. The graph ^(tt) for the Example 6.2 is given in Figure 6.3. The critical path is U = (10,13,16,17,2,5,8,9,6), w — 9. There are three blocks on this path Bys = (10,13,16), £4,7 = (17,2,5,8), Bg^ = (9,6). O
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6.3 Related problemsAssuming c = 1 we obtain the classic problem of scheduling parts on parallel identical machines to minimise makespan, see Section 3.1 for more comprehensive discussion of this subject.Assuming mi = 1,1 € C (thus c = m) we obtain the classic flow-shop problem, for which a lot of exact and approximation algorithms have been developed. The searched schedule can be either permutation (processing orders on all machines are identical) or overall (no additional assumption is made). Industrial applications of this model are presented in the last chapter of this book. This model is also considered as a fundamental in developing advantageous approximation algorithms for more complex systems, e.g. considered here problem with infinite capacity buffers. A significant progress has been observed recently in this field. First, the worst-case analysis made for the known and some new algorithms have introduced an objective, instant-independent list of ranks, see Table 5.6. Second, due to this list and due to experimental results, there is selected the champion algorithm (NEH) and the most fruitful approach - an insertion technique, Nawaz et al. [212]. Next, a skilful combination of insertion technique with tabu search approach has provided fast and easily implementable algorithms with excellent solution performance, which allow us to solve problems up to 10,000 operations on a PC in a reasonable time, Nowicki and Smutnicki [231]. At the end, there are also designed more powerful B&B methods, successfully run on instances up to 2,000 operations, [236, 323]. Assuming all cells non-bottleneck but fc-th, one can obtain a problem of scheduling operations on parallel identical machines with ready times and delivery times to minimise maximum makespan, see also Section 3.1. Several results have been obtained in other special-cases, chiefly for the systems having two cells with one non-bottleneck. These results are summarized in Table 6.2.
6.4 Schedule characterisationFrom Section 6.2 it follows that any schedule (S, P) can be represented in a unique way by an overall processing order tt € II, and any tt generates a subset of schedules equivalent to it if the makespan is taken into account. In this section, we discuss some relations to other known in the literature characteristics of the schedule in the flexible flow line, namely the permutation processing order, cell loading sequences and cell input/output sequences. The last one is strictly associated with the m-processor notion, a convenient tool of modelling and analysing
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Table 6.2: The worst-case performance ratio r]A of an algorithm A (developed in B) for mixed single- and multiple- machine cells and the makespan criterion
A B c case gA
LS [3U] 2 mi = 1, m2 > 2 3 - l/m2
LS [3H] mi = ... = mc_i = l, mc > 2 c + 1 - l/mc
J [3H] 2 mi = 1, m2 — 2 2
J [3H] 2 mi = 1, m2 > 3,

Pi + maxje£2Pi 2
J [3U] 2 mi = 1, m2 > 3, 

C^^3) > Eyecx Pi + maxje£2 p. 1 + (2 — —)(1 — —)1 \ m2'' m2'

A [3U] 2 mi = m2 > 2 3 — l/m2
A [3U] mi = ... = mc > 2 c + 1 — l/mc
B [3U] 2 mi = m2 > 2 (7/3-3^, 3-^)
B' [3H] 2 mi = m2 > 2 (2,3—l/m2)

CLS [43] 2 2 — l/max{mi, m2}
some complex scheduling problems, Toczylowski [319]. Nevertheless, the model formulated in Section 6.2 has been chosen consciously after analysing profits and disadvantages of other available approaches.In the classic flow-shop problem, there exist two clearly distinguished cases: the permutation flow-shop problem in which all machines process the parts in the same order, and the general flow-shop problem in which various machines can process the parts in different orders. The primal case has been introduced chiefly to facilitate algorithm construction in order to satisfy some rare technological requirements and/or to simplify the rule of service part queues. Nevertheless, the latter (significantly harder) case usually provides solutions with the lower makespan value, and from this point of view it seems to be more attractive. Most of the papers have considered only the primal case, treating the latter one marginally, which however is not fully justified.Among the algorithms formulated for FP one can find a class of methods generating the so-called permutation processing order, Ding and Kittichartphayak [61]. Although this notion has already been introduced and used, principal differences between permutation and non-permutation cases of this problem have not been discussed by the authors. As we will show below, these notions can be defined and understood in a various manners.We call tt € II the weak permutation processing order if there exists a permutation a* g such that sequence (e^i), • • •, ^(n,)) is a subsequence of a* for any This definition prohibits the parts from passing over, i.e. if for some 



6.4. Schedule characterisation 141
machine a part i precedes a part j then there is no such machine that allows a part j to precede a part i. To check whether a given 7r is the weak permutation processing order we can proceed as follows. Create the graph Jhaving the set of nodes 8 and the set of arcs J(tt) = UieA4 Ifthis graph does not contain a cycle then 7r is the weak permutation processing order. The permutation a* = (a*(l),..., ^(e)) € P(£) required in the definition can be found in O(o) time as the order of nodes such that “if there exists a path between nodes o^i) and then it has to be i < j”.

Example 6.18. Job processing order from Example 6.2 is not the weak permutation processing order. A weak permutation processing order for the machine workload given in Example 6.2 is e.g. th = (1,4,7), tt2 = (10,13,16,19), 7t3 = (11,17,2,5,8), tt4 = (14,20), tt5 = (12,18,6,9), 7r6 = (3,15), tt7 = (21). This order yields the makespan value of 310. <>For each a G 7^(8) there exist nz=i[((”^)e — / (miY-] processingorders tt G II such that none of the sets Ai, i G A4, is empty and tt is generated by 
a. For example, for c = 3, mi = m2 = m3 = 2 and e = 10 this number exceeds 108. Thus, one can say that finding a weak permutation processing order is relatively easy due to large freedom. On the other hand, the arbitrary restriction of the considered processing orders only to those being the permutation in the weak sense can lead to extremely bad makespans. Let us consider the example of the system with 3 cells, single machine at cells 1 and 3, and two machines at cell 2, i.e. c = 3, mi = m3 = 1, m2 = 2. In this system, we have to process 
e parts of two types. There are e — 1 parts of the first type and a single part of the second type. Each part of the first type has processing times equal to pi = p3 = l/(n — 1), p2 = e. The part of the second type has processing times equal to p4 = p6 = e, p5 — 1. It is easy to prove that if e —> 0 the best weak permutation processing order provides the makespan approximately twice longer than the best non-permutation order. One can say that the flexibility of the system has been completely destroyed (or not applied) in this case.We call permutation ri 6 77(T/) the list sequence of cell I if ^(j) < ^(j+i)> 
j = 1,..., li — 1 where l[ = The loading sequence of cell I is determined by the sequence of parts pi G Pl = ••• 1 Each ri corresponds one-to-one to pi. Note that ri does not determine directly and univocally the machine workload at cell I, thus does not determine univocally the overall processing order 7r. In practice, the final assignment of operations to machines is performed by an auxiliary list schedule algorithm LS (with ceratin rule ML of machine loading) which uses ri on its input. Obviously, the obtained results strongly depend on the applied rule ML. This dependence is clearly visible if we admit machine set-up times and/or the use of unrelated machines.
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Figure 6.4: Input/output sequence representation with machine set-ups
At the end, let us discuss a representation of the schedule by the input/output cell sequence [319]. Since the proposed tool is more powerful than we need, we restrict our attention only to those aspects that are applicable to the problem stated. This approach is designed for cell consisting of a number of identical parallel machines called m-processor 5, and by definition cannot be extended to the case of unrelated machines. For each cell there are defined two sequences of operations: the input sequence ti G and the output sequence uq G These sequences introduce only the order of events “starting” and “completing”, namely J — 1, • • • > 1, and J 1, • • • ? ^Z

5 It can also be applied to modelling of buffers, pallets, etc.

The approach does not determine explicitly the machine workload, assuming that one can be found univocally. To prevent cell overloading, there are introduced additional constraints, which takes in our case the foilwing form (6-8)where is the change over time between the operations uji(j') and ri(j).We will show that the last assumption does not hold if we consider the classic machine set-up times, so the representation of the schedule by input/output sequences cannot be extended even to the case of identical parallel machines with machine set-up times. To this end, let us consider the example shown in Fig. 6.4, see case (a). Two identical parallel machines in a cell process four 



6.5. Algorithms for the basic model 143
operations starting from a non-zero primal fill (marked as shadow). We define only some necessary machine set-up times A13 = 2d, A24 = d, A23 = 0, A14 = 2d, where d is a constant. Assuming r - (1,2,3,4) and w = (1,2,3,4), by virtue of (6.8) we have two inequalities to prevent cell overload, namely Ci + ^13 < S3 and C2 + ^24 < S4. Concentrate on ^i3. There is an unsolved problem how to set this value. By setting <543 = A43 = 2d we obtain the situation shown in Fig. 6.4 (a). Due to setting this value to d or zero, operation 3 shifts to the left on machine 1 and provides tottally incorrect solution. However, the solution from Fig. 6.4 (a) is also incorrect, since the proper solution for this instance is provided in Fig. 6.4 (b). Observe, Fig. 6.4 (b) provides another solution with exactly the same input and output cell sequences, so the same sequences can lead to many various schedules. However, the problem of finding, for the given sequences, the proper schedule has a combinatorial character. In the considered example the difference 
S3 — C4 depends on the “history”, therefore 643 need to own some “strange” value found as a result of the previously scheduled operations.We call 7T € n the strong permutation processing order if there exists a permutation r* G V{£} such that the sequence (eT1,... ,eT(j) is a subsequence of r* for any I G C. This definition forces a unique order in all queues of jobs waiting for cells, i.e. if for some queue the part i precedes the part j that there is no queue that the part j precedes the part i. To check whether a given 7r is the strong permutation processing order we can make as follows. Create the graph (£, ^(tt)) having the set of nodes £ and the set of arcs y(7r) = U/ec{(e«>ej) : 
i, j G £1, Si < Sj} If this graph does not contain a cycle then tt is the strong permutation processing order. The permutation t* required in the definition can be found as the order of nodes in this graph.If mi = 1, I G C, then both definitions are equivalent.
6.5 Algorithms for the basic modelIn this section we propose and discuss the solution algorithms based on a local search approach, which is currently the best known technique for constructing approximation algorithms of various hard optimisation problems, see Section 2.3. Two of these approaches, namely simulated annealing and tabu search, have been analysed in detail, since they can apply immediately some theoretical properties developed for neighbourhoods used in the search.
6.5.1 NeighbourhoodsBased on conclusions drawn by Nowicki and Smutnicki [230, 231], there are considered only neighbourhoods based on the so-called insertion moves. In this case, 
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such a type of moves is associated with 7r and can be defined by a triple which means that operation j is removed from the and inserted in the position y in the permutation tt^ (y becomes a new position of j in 7r8- extended in such a way). Clearly, it has to be i G 1 < y < ni + 1 if i Pj, 1 < y < ni if i = Pj.The neighbourhood of tt consists of the orders ttv generated by the moves v from a given set. Using natural, simple approach one can propose the insertion 
neighbourhood {tt,, : v G V(tt)} generated by the move setV(tt) = |J |J V,^) (6-9)
where ^(tt) = if 2 / Pi and = U^=i{(j,U 3/)} if 2 = Pi 6-

6Set V(?r) is examined to eliminate redundant moves, i.e. moves that provide the same 
solutions.

The set Vj^tt) contains moves such that operation j is deleted from the permutation Tpj and inserted in all possible positions in the permutation tt,-. One can prove that the number of moves in V(tt) equals approximately oe. The neighbourhood {tt^ : v G V(tf)} possesses the connectivity property that guarantees the possibility of finding globally optimal solution, see Section 2.3.
Example 6.19. The move set V(tf) for the Example 6.2 is shown in Table 6.3. It contains 140 moves marked by white and black bullets. Moves marked by dots are redundant. OThe final quality of the local search algorithm depends among others on the computational complexity of the single neighbourhood search and on the neighbourhood size. This is highly important for those local search methods which tested entirely the neighbourhood. Our previous research shows that such algorithms behave much better if we evaluate descendants directly by the criterion value, [230, 231, 232]. Therefore V(?r) is considered as highly time-consuming. Hence we introduce a new notion, i.e. reduced neighbourhood which contains “the most promising part” of the original one.The main idea of the reduction consists in eliminating some moves from V(tt) for which it is known a priori (without computing the makespan) that they will not immediately improve Cmax(7r). By employing certain graph property “if there exists in Q(ttv) a path containing all nodes from U, where U is found for </(%), we have CmaxC^v) > CmaxW” we propose the following reduced set of movesW) = U U Wj^, (6.10)

jeUieMCj
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Table 6.3: Sets V(tt) and IV(7r) of moves v = for Example 6.2

i = 1 i = 2
j y =1 2 3 4 5 6 1 2 3 4 5 e3 c3 P3 .Tj block
1 • o o 0 0 0 O 0 1 1 1 1
4 0 0 0 O O 0 2 1 1 2
7 o 0 0 O O 0 3 1 1 3

10 • • • • 0 • • 4 1 2 1 #1,3
13 • • • • • • 5 1 2 2 Bi ,3
16 • • • • • • • o 6 1 2 3 Bi ,3
19 O O O 0 O 0 • • 7 1 2 4

i = 3 i = 4
j y =1 2 3 4 5 6 1 2 3 4 5 e3 c3 P3 Xj block

11 • 0 0 o o O 0 0 4 2 3 1
17 • • • • • • 6 2 3 2 Bi,7
2 • • 0 • • • • 1 2 3 3 Bt,7
5 • • • • • • • • 2 2 3 4 Bi,7
8 • • • * * • • • 3 2 3 5 Bi,7

14 o O 0 0 o o • 0 5 2 4 1
20 O O 0 0 O 0 7 2 4 2

i = 5 i = 6 i = 7
j y =1 2 3 4 5 6 1 2 3 4 5 1 2 eJ c3 P3 J block

18 • 0 0 0 0 0 0 0 0 6 3 5 1
12 • • 0 o 0 0 0 0 0 4 3 5 2
9 o • • • ♦ • • • • 3 3 5 3 Br,9
6 • • • • • • • 2 3 5 4 Br,9
3 O 0 O 0 o • 0 o o 1 3 6 1

15 O 0 0 0 o 0 0 5 3 6 2
21 0 0 0 0 0 0 0 0 • 7 3 7 1

where C V^tt) are defined only for j £ Bab C ZV in the following manner. If a = b, we put W^tt) = 0. If i Pj and a / b then Wjt(7r) = Vji^). In the remaining cases, i.e. if i = Pj and a / b, we set: — Vji(n) \ Xj(xUa +1, Zub ~ 1) if j € Bab \ {ua, Ub}, Where
i

Xj(k,l)=(J{(j,Pj,y)}.
y=k

(6-H)
Next we set ^(tt) = Vji(7r) \ Xj(l,Xj) if j = ua; WjiW = Vjt(7r) \ Xj(xj,ni) if j = Ub- The strongest reduction is possible for i = Pj and a / b: if a — 1 and 

j ± ub, we can set Wj,(7r) = Vj,(%) \ Xj(l,xUb - 1); by symmetry if b = w and 
j £ ua, we can set = Vji(n) \ Xj(xUa + 1, nJ.

Example 6.20. The move set }V(7r) for the Example 6.2 is shown in Table 6.3. It contains 53 moves marked by black bullets. O
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Although principally the problem from [232] does not allow incomplete part routes (a part must pass through all cells), however, by direct analogy from [232], one can derive the following theoretical results. First, the proposed reduction of the neighbourhood size is significant.
Property 6.1. |F(x)| / |kV(x)| ss o/w. □Assuming uniform distribution of machines over cells and uniform distribution of parts over machines, we have o/w ~ m. Indeed, a reduction of the neighbourhood size observed in computational experiments was equal (with a small error) to the number of machines in the system. Second, the reduction is advantageous since the skipped part of the neighbourhood is “less interesting” from the immediate improvements point of view.
Property 6.2. For any overall processing order v £ V(x) \ W(x), we have Cmax^v) > Cjnax^). dNext, the reduced neighbourhood preserves the connectivity property that guarantees the possibility of finding optimal solution.
Property 6.3. For any x1 € II there exists a finite sequence x1,..., x” such that x’+1 g {xv : v € >V(x')} for i — 1,..., r — 1, and xr is an optimal overall processing order. □The specific structure of the proposed neighbourhood allows us to search it exactly (using makespans) in a very efficient manner.
Property 6.4. Makespans for all xu, v g W(x) can be found in a time 

O(ew'). □This last result is rather shocking. Since there are O(ew) neighbours in the reduced neighbourhood, we conclude that each C'max(xu) can be found in a time 0(1), instead of the originally required O(o). Note, Property 6.4 can be applied only while calculating all neighbours from W(x) but not for a separate neighbour. Since the calculation of makespans for all neighbours consumes almost 100% of the algorithm’s running time, the application of this property is crucial for the speed of the algorithm. For example, using the Property 6.4 for the instances with o = 3000 one can observe in experiments the reduction of a running time by about 1500 times. It is better than we ever can imagine!
6.5.2 Simulated annealing algorithmIn this section we analyse the impact of the results from Section 6.5.1 on the application of SA approach. We consider some variants of SA algorithm comparing them with the tabu search method presented in the next subsection. All examined variants are based on the scheme proposed by Osman and Potts [237].
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A neighbourhood (one of those from Section 6.5.1) of the current solution 7r is searched in a random way using uniform distribution. Two cooling schemes have been examined: (1) logarithmic Ti+1 = Ti/(l + 0Ti), (2) logarithm-periodic Ti+i = Ti/(1 + ^Ti) if Ti > T* and Ti+i = in other cases, where T* is a threshold value, i = 1,...,/— 1, and I is the assumed number of iterations. For each scheme we need to set Zf and (3, and for scheme (2) additionally T*.Three implementations with different computational complexity were considered:

(V) V(tt) is used. For each neighbour chosen at random, the makespan is calculated immediately by using (6.5).
(W) kV(7r) is used. For each neighbour chosen at random, the makespan is calculated immediately by using (6.5).(W+) W(7r) is used. First, we detect whether tt has been visited immediately before. If so, for each neighbour chosen at random, we check whether this neighbour has already been visited. If not, its makespan is calculated by using (6.5) and stored. If so, the stored already makespan is taken. The cost of computations decreases if a solution is repeated more than ew times that has been observed for a low temperature.The variant (W+) is a new proposition followed from an observation that for the low temperature a solution is usually repeated many times before random scheme select a change. The number of such repetitions is on average significantly higher than the number of neighbours. That is why SA methods works slowly.Experimental comparisons, depending upon neighbourhoods and tuning parameters, have been carried out for a wide class of random instances with o = 40..3000 and m = 20..200, see Nowicki and Smutnicki [232], for the generation scheme. The conclusions obtained in all tested cases are similar, hence we only illustrate them by means of a single (representative) instance. Experimental comparison, depending upon neighbourhoods, is shown in Figure 6.5. A random example having 50 parts, 300 operations, 6 machine cells with 3 machines at each cell (18 machines totally) has been run with three different neighbourhoods based on the neighbourhoods denoted as V, W, and W+. In the figure, there are shown the best makespans found during the first 4000 iterations of the run.Some experiments were carried out for SA algorithm to set the influence of control parameters, the neighbourhood, initial temperature, cooling scheme and limit of iterations on the algorithm quality. For SA + W and SA + (W%) we set experimentally the initial (7b) and final (Tn) temperatures 5.0 and 1.0, respectively. The limit of iterations is set as 10,000. The logarithmic scheme of
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Figure 6.5: Comparison of SA method using different neighbourhoods. The best makespan found during the run (typical run for e = 50, o = 300, m = 18)
cooling has been applied with the parameter /3 found on from the dependence (3 = (7'o —7n)/(10, OOOTaTn). Algorithm SA+V is found to be very sensitive to proper selection of cooling scheme, which however has not been observed for 5A+W and 5A + (iy+). Assuming for 5A + V slow reduction of the temperature, too distant solutions are accepted in the primal phase of the run, and therefore the algorithm very poorly converges to a good solution. In turn, assuming high reduction of temperature, the behaviour of 5A+ V tends towards descending search with drift (DSD) methods, which has poor performance. In practice SA + V requires the initial and final temperatures approximately m times lower comparing with these for SA + W and SA + (IV+). Very subtle differences were found by varying the cooling scheme for SA + W and SA + (W+), chiefly within the first 1,000 iterations. However, no other dominant cooling scheme has been selected. It is clear that application of the neighbourhood W provides high profits.
6.5.3 Adaptive memory search algorithmThe proposed algorithm AMS uses two memory classes of the search history: a short-term memory represented by the cyclic list T of the length LengthT called the tabu list and a long-term memory of attractive search regions with unvisited 
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neighbours of the best solutions already visited. The tabu list stores attributes of the overall processing orders visited defined by a certain pair (or two pairs) of adjacent operations at a cell. The selection of the pair(s) depends on the move performed. The list is initiated by LengthT empty elements. The new element introduced to T replaces the oldest one. The move performed from a processing order tt introduces to T one or two new elements (g,h) consistent with tt, i.e. 
(g,^ e coA^ where coA(7r) is a transitive closure of A(7r). More precisely, let 
(j, i, y) be a performed move. Then, if i ± Pj we introduce to T the pair (s},j) if Sj ± o and additionally the pair (y, sj) if Sj 0 o. If i - Pj, we introduce (sj, j) if Xj > y or (J,Sj) if Xj < y. The move v = (j,i,y) from processing order tt has tabu status (cannot be performed) if there exists on the list T a pair (g,h) which is consistent with irv but not with tt, i.e.
v € VK(tt) has tabu status O 3(g,h) E T : (g,^) 0 coA(tt) A (g,h) 6 coA(ttv).(6-12) This definition is equivalent to the following more practical condition. The move 

v — (J, y\ i 0 has the tabu status if at least one pair (j, ?ri(k)), y < k < ni, or (irfik), j), 1 < k < y, belongs to T. For i = Pj this move has the tabu status if at least one pair (^-(A;), j), Xj < k < y, if Xj < y, or at least one pair (j, 7rt(A:)), 
y < k < Xj, if Xj > y, belongs to T.

Example 6.21. Assuming T — 9, the tabu list for the Instance and the processing order tt from Example 6.2 is formed as follows. Consider move v = (13,1,2) which deletes operation 13 (located in X2 = (10,13,16,19) in position 2) and inserts it in position 2 in tti = (1,4,7). Denoting (3 = 7rv, we have /?i = (1,13,4,7), X?2 = (10,16,19) and fii = tt, for the remaining i. Performing this move we add to T pairs (10,13) and (13,16). Assuming that the first block in 
(3 contains operation 13, the following moves from (3 are forbidden: (zj (13,2, y), 
y = 1, since among pairs (13,/?2(&)), f — y<k<n2=^, there exists pair (13,16) G T, (ii) (13,2, y), 2 < y < 4, since among pairs (^(k), 13), 1 < k < y there exists pair (10,13) € T. Therefore operation 13 cannot be inserted in any position in X?2. OGiven a job processing order tt, its neighbourhood is searched in a specific way based on the local diversification strategy with move filtration. First, the move set W(tt) is split into individual subsets )%•»(%), each of them associated with a particular job and machine, i & A4Cj, j Eli Each such a subset is then searched separately, without checking the tabu status, to find the best move in terms of the makespan value. The moves filtered in this way create the basic move set IV(7r) considered for this tt. The filtration is to some extent similar to a class of
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Figure 6.6: Comparison of AMS method using different neighbourhoods. The best makespan found during the run (typical run for e = 50, o = 300, m = 18)
strongly reduced neighbourhoods from Section 3.1 7.

7 The place of insertion of the part j is not random but selected in a specific way.

The long-term memory is associated with the searching trajectory. Starting from the initial solution 7T° we perform successive iterations, generating the sequence of solutions 7T°, t1, .... At the i-th iteration (i = 0,1,...) for the given solution tt’ we search the neighbourhood defined by the move set H’(Tr’). Attrac
tive search regions with their selected attributes (e.g. the processing order, move set) are stored in the long-term memory and used to guide the search in many diverse directions of the solution space. The details of this technique called back 
jumps on the search trajectory are given by Nowicki and Smutnicki [230, 231, 232].Experimental comparison of neighbourhoods is shown in Figure 6.6. A random example having 50 parts, 300 operations, 6 machine cells with 3 machines at each cell (18 machines totally) has been run with three different neighbourhoods based on the move sets P(tt), PV(7r), and PV(tt) with the application of Property 6.4. In the figure, there are shown the best makespans found during the first 
t seconds of the run. It is clear that application of Properties 6.3-6.4 provides high profits. Such results have been observed for all instances, and profits are much more advantageous for greater sizes of instances. The detailed behaviour
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Figure 6.7: Comparison of SA + W versus AMS+W in iterations. The best makespan found during the run (typical run for e = 50, o = 300, m = 18)

Figure 6.8: Comparison of SA + W versus AMS+W in time. The best makespan found during the run (typical run for e = 50, o = 300, m = 18)
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Figure 6.9: AMS trajectory (first 1,000 makespans, Cmax^8), i = 1, • • •, 1000) with the neighbourhood W (typical run for e = 50, o = 300, m = 18)
of AMS algorithm is shown in Figure 6.9. Makespans of visited solutions change themselves significantly, although the best up-to-now makespan quickly decreases (white line). Note that classic descending search method will stop after a few iterations in a local extremum.Comparison of AMS with SA method shows its clear advantages, Fig. 6.9. 
AMS faster converges to the best solution than SA and this superiority becomes higher when the size of the instance is greater. For greater instances the cost of calculations of SA is unacceptable large.Algorithm AMS has more intesively been examined in the paper of Nowicki and Smutnicki, [232], using 1800 random instances of various sizes (o = 40,..., 1800, e = 20,..., 300, m = 4,..., 60) and various schemes of generation (fixed or random number of machines at a center, different parts, groups of similar parts). AMS algorithm provides better makespan than the best known heuristics by 0.2-11.4 within first 1,000 iterations, and by 0.2-13.7% within 10,000 iterations. The main improvement appears within the first 1,000 iterations. The relative improvement of A MS algorithm is on average 5 times greater (11 times ex- tremally) than the relative improvement of the classic descending search method 
(DS) designed specially for this problem. This superiority increases if the number of centers increases.
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Figure 6.10: Gantt Chart for Example 6.4 (no buffers)
6.6 No buffersIn this section, we deal with the problem where no storage place for parts is allowed. This case has been considered as one of these fundamental for JIT philosophy.The production system has mathematical formulation from Section 6.2 provided that there are no buffers between cells/machines. It means that each part having a route from some machine i to a downstream machine k can pass immediately from i to k if and only if k is free. Otherwise, it has to remain on i until k becomes available, but prevents another part from being processed on i, i.e. blocks machine i. Let C denote the time in which machine Pa is releasedJ Jafter completing operation j. A feasible schedule is defined by a triple (S, C, P), where S - (Si,..., So), C = (C',... ,C'), P = (Pi,..., Po), such that above constraints are satisfied, when operation j starts on machine Pj G MCj at time 
Sj > 0 and occupies this machine till the time moment Cj.

Example 6.22. A feasible schedule for the Instance and overall processing order from Example 6.4 is shown in Gantt Chart, Fig. 6.10. For example, operation 14 of part 5 at cell 2 is performed on machine 4, is started at time 50 and completed at time 140, however it blocks machine 4 till time moment 220 since part 5 begins processing at cell 3 (operation 15) at time 220, i.e. P14 = 4,
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514 = 50, C(4 = 220. The makespan is 360. <>For a given tt the appropriate feasible schedule has to satisfy (6.1)-(6.4) and the following constraints
C^ < Sj, j e O, tj / o, (6.13)
C'^ < Sj, j € 0; Sj / o, (6.14)

Cj < C'j, j E O. (6.15)Although (6.2)-(6.3) and (6.13)-(6.15) are redundant, e.g. (6.2) can be obtained from (6.15) and (6.13), nevertheless we consciously leave them to introduce and employ some special properties of the problem. Since there are no buffers, then we have
Cj = S-t. (6.16)if tj / o and C'j = Cj otherwise. Inserting (6.16) to (6.13)-(6.15), and next eliminating some (but not all) redundant and all trivial conditions 8, one can prove that the starting times Sj have to satisfy the already known constraints (6.1)-(6.4) and an additional requirement

8The aim is to leave basic constraints (6.1)-(6.4) and support them by a minimal set of 
conditions necessary to get a feasible solution

Sh. < Sj, j G O, Sj 0, t,. o. (6.17)By using (6.1)-(6.4) and (6.17) we propose the following recursive formulae on starting times of operations
Sj = max^ + pt., S,. + P^., S^ } (6.18)where t0 = o, So = 0 = p0. Similarly as (6.5), all Sj can be calculated in O(o) time.Constraints (6.1)-(6.4), (6.17) as well as starting times S have a convenient interpretation on a graph model. For this purpose we use the graph ^(tt) = (0, «4*U.4(7r)U.A/(x)) with the set of nodes 0 and the set of arcs ^*Uyl(7r)U>l/(7r) where A* and A(tt) are defined by (6.6)-(6.7). The set of arcs

U («-19)
160;represents buffering constraints (6.17). The weight of the arc (j,St) G .4'(7r) is minus pj. Notions Sj, Cj and Cmax(7r) have the same meaning as in Section
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Figure 6.11: Graph ^(tt) for Example 6.4 (no buffers)
6.2. Notion Cj does not have immediate interpretation in this graph, its mediate meaning follows from (6.16). Comparing this graph with that from Section 6.2 one can see it as an extension obtained by introducing buffering arcs >V(7r).One can consider this model as rather inconvenient since it contains arcs with negative weights, “artificial” in some sense. Indeed, due to the special structure of ^(tt), each arc € «4'(tt) can be replaced by a set of zero-weighted arcs 
{{k,j) : (k, i) € >l*UX(7r)}. However, such a modification generally increases the number of arcs in the outcome graph and, moreover, it complicates the properties formulated next. Therefore this possibility has consciously been overlooked.The relation between processing order 7r, graph ^(tt) and feasible schedule is united in the following property.

Property 6.5. For each 7r such that ^(tt) has no cycle, there exists a feasible schedule (S, C', P) of the problem without buffers, such that S is determined by (6.18), C" by (6.16), P^jj = i, j = .1,... ,n,-, i.e M, and S, C are as small as possible. □
Proof. If ^(tf) has a cycle, it must be of a positive length due to special structure of weights assigned to nodes and arcs. Thus, for operations (nodes) from this cycle we cannot find any feasible times of “starting” events which might satisfy all precedence constraints. Hence, no feasible schedule (S, C',P) can be obtained in this case.
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Assume that 5(tt) has no cycle. We will show that for the found schedule 
(S, C, P) all events appear in correct order. First note that buffering constraints (6.16) are satisfied. Completion times C have to satisfy clear condition (6.4). From (6.18) we immediately obtain (6.1)-(6.3). Since Sj = Sjt then from (6.16) we obtain Sj = C't. that provides (6.13). Next, applying (6.18) and (6.16) we have Sj > Sja = C's for Sj 0 o and t^ / o. For Sj o and tg. = o, we have Sj > Cg = Cs.- These last two results provide (6.14). Finally, applying (6.18) and (6.16) we have for tj o the inequalities Sj > C^ and Sj — C{ , so 
C't > Ct., that provides (6.15). Easy proof necessary for showing that S, C are as small as possible we leave to the reader. ■Note that the feasible schedule for a given tt is determined fundamentally by the single formulae of S, whereas C' has a secondary character since it follows from S. Because the starting times Sj found by (6.18) are as short as possible, Cmax(’r) = maxjeo Cj is the minimal makespan that can be obtained for this x. Next, we will consider only feasible overall processing orders 7r € II* = {a G II : ^(a) has no cycle } 9.

9The problem of cycle does not exist in the system with infinite capacity buffers.

Let us define the critical path U and blocks Bab in ^(x) in the same way as in Section 6.2. While the existence of multiple critical paths in the problem from Section 6.2 is of little importance (this case rarely exists), now it becomes significant for the distribution of blocks. A path from a node Sj to j can pass either by the single arc (sj,j) G >4(tt) or by two arcs (sj,tg) G A* and & X'(tt) in this order. In both cases, the lengths of paths are the same, however the distributions of blocks are extremely different. To employ the block elimination properties we realise the policy of “a small number of long blocks”, hence the former path will be preferred. Unfortunately, the block notion does not suffice to make an solution algorithm good enough, since Property 6.2, fundamental to the use of move set W(tt), does not hold in this case. Nevertheless, by introducing some new notions we can restore all advantageous properties. The extended 
critical sequence U* = (u^,..., u*) is a sequence obtained from U by inserting an additional element sUk between any successive operations Uk-t and Uk such that 
(uk-i,Uk) G ^'(tt). Generally, U* need not be any path in Next, we define an extended block B^b as a maximal subsequence of the successive operations («*,..., from U* such that Pu* = ... = Pu*.For the convenience of notations we set Z/* = {^,..., u*}, B*b = {u*,..., u*b}. "

Example 6.23. The graph ^(x) for the Example 6.4 is given in Figure 6.11. The critical path is U = (10,13,16,17,2,3,15,20,21), w = 9, and the extended 
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critical sequence is U* = (10,13,16,17,2,3,15,14,20,21), z = 10. There are five extended blocks in this sequence, i.e. = (10,13,16), B^5 — (17,2), 
B& = (3,15), B*8t9 = (14,20), B^w = (21). o’The main idea of the neighbourhood size reduction presented in Section 6.5.1 consists in eliminating some moves from V(tt) for which it is known a priori (without computing the makespan) that they will not immediately improve ^^(tt). The move v such that there exists in ^(ttv) a path containing all nodes from the critical path in ^(tt) (i.e. nodes from Z7) has the required property and thus can be eliminated. Instead of an explicit but time-consuming search of all these moves, we propose several simple and fast conditions for identifying most of them. A move can be eliminated if at least one of the following conditions is satisfied:(1) j does not belong to U*,(2) j belongs to extended block B^b containing only single element, i.e. a = b.All further cases refer to the situation where j G B*b and i = Pj, i.e. move is performed inside the permutation wp-:(3) move is made inside the extended block, i.e. j € B*b \ and xu* <

V <(4Z) first element in extended block is moved to the left, i.e. j = u*, y < xu*,(4") last element in extended block is moved to the right, i.e. j = ub, y > xu*.(5') first element in the first extended block is moved to the right inside this block, i.e. a = 1, j = u*a, y < xu*.

(6") last element in the last extended block is moved to the left inside this block, i.e. b = w, j = y > xu*.These cases have been justified for the classic block notion [232], however they need an explanation for the extended blocks. Observe that U QU* and at most u* need not be in U. Moreover it has to be u^,u* G U and ub G U for any b. If u* G U, the extended block B*b has the same properties as the classic block. Hence cases (1), (2), (5'), (5") are clear since they must refer to conventional blocks, as well as cases (3), (4'), (4") if only u* G U. Let us consider u* U. Any alteration of operations inside the extended block (i.e. operations from 
Bab \ {Ua, ^}) preserves all nodes from U within a path in the outcoming graph. Similar results can be obtained in cases (4Z) and (4Z/).
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Therefore, at the end, we propose the following set of moves for creating the reduced neighbourhood in the local search methodsW*(tt) = □ U W^). (6.20)
j&A* i^McjSets WJ/tt) C V^tt) are defined only for j e B*b C If* in exactly the same way as Wjilyr), see Section 6.2, however with respect to extended block B2b-

Example 6.24. The move set >V*(7r) for the Instance and processing order from Example 6.4 (no buffers) is shown in Table 6.4. It contains 34 moves marked by black bullets. Moves marked by time symbol are unfeasible. OLet us analyse theoretical properties of the proposed neighbourhood {tt^ : v € W*(tt)}. The proposed reduction of the neighbourhood size strongly depends on the distribution of extended blocks. Although the detailed analysis has been made, final conclusions, assuming near uniform distribution, are similar to those from Property 6.1. So the reduction remains significant. It is still advantageous since the skipped part of the neighbourhood is “less interesting” if we take account of the immediate improvements.
Property 6.6. For any overall processing order tt„, v G V^) \ W*(7r), we have either 7r„ £ II* or Cmax^v) > GnaxW- □The proof of this fact can be obtained by analysing the paths in the graph ^(x). Since the methodology of producing such proofs has been known, Grabowski et al. [Ill], therefore it will be omitted.One can expect that the remaining fundamental properties also hold. Unfortunately, even a simple instance with two parts, four operations, two machines, two cells and having the typical structure of the non-permutation flow-shop without buffers shows the lack of connectivity property. Moreover, this instance clearly shows that the optimal solution cannot be reached without passing the search trajectory through the unfeasible region II \ II*. This significantly complicates the form of further theoretical properties. Let us discuss this subject in detail.We assume that the search trajectory can contain both feasible and unfeasible processing orders. For the unfeasible processing orders 7r G II \ II* we set the makespan Cmax(7r) = oo and the move set= U PP xi - 0’ Pi~^ UP^^ (6-21)

jeowhere the move does not exist and the moves (j,i,l) does not existeither if i 0 MCj. Observe, this move set is a'generalisation of that minimal with
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Table 6.4: Sets P(tt) and W*(ir) of moves v = (j, i,y) for Example 6.4 (no buffers).
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the connectivity property form Section 3.1. The connectivity property is satisfied for the generalised move set 2*(tt) defined as follows: (a) if tt G II* then we set 
Z\iv) = {v : v G >V*(7r), 7rv € II*}, (b) if tt G II \ II* then we set £*(tt) = Z(n).

Property 6.7. For any tt1 G II there exists a finite sequence tt1, ..., 7Tr such that 7r’+1 G {ttv : v G Z*^)} for i = 1,..., r - 1, and 7rr is an optimal overall processing order. □Instead of the full formal proof, we provide only its outline. To this end we refer to the scheme of the proof of Property 3.10. Consequently, we need to show that for each 7Tl there exists a move in Z*^1) such that the distance, see the distance measure (3.27), to optimal solution tt* decreases, i.e. p(7r*,7r*) > p(7r’+1,7r*). If only tt G II*, the required move v belongs to W*(7r’), and ir’+1 g n*, then, by modifying; the mentioned proof, we can obtain the necessary inequality of the distance measure. If x G II*, the required move v is in W*(7r.’) but 7r—II*, we perform the required move and obtain an unfeasible
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Figure 6.12: Search accelarator. Modification of graph </(%) for Example 6.4 (no buffers) and move v = (17,4,2). Phase 1
solution 7rt+1, but the distance to the optimal solution still decreases. Next, continuing with this unfeasible solution we perform moves however from Z(tt), that allow us to reduce the distance to the optimal solution even though we need to pass through unfeasible ones. Finally, we can reach a feasible optimal solution.This strategy of searching is relative to strategic oscillation technique known in AMS approach, Glover [87]. Such an interpretation of the connectivity can be included in the algorithm in an easy way. We modify the basic step of the algorithm as follows: if the current processing order is feasible, we select the move to be performed by searching in the traditional way among feasible neighbouring solutions i.e. {(tt)v : v G >V*(7r), (7r)v G II*}, see AMS algorithm in the previous Section for details. If no move has been selected but the set {(x)w : v G >V*(7r), (7r)„ G II*} is not empty, we add the empty element to tabu and then we repeat the selection. If the set {(x)y : v G W*(7t), (7r)„ G II*} is empty, we select a move from W*(tt) to obtain the unfeasible solution by checking only tabu status but not the makespan. In turn, if the current solution is unfeasible, we select the move to be performed among those from the set 2 (tv) by checking the tabu status as well as the makespan.The last subject discussed hereafter refers to the most exciting element of local search methods, i.e. to the search accelerator. Its construction for the problem stated is much more complicated than for other problems (e.g. the one
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Figure 6.13: Search accelerator. Modification of graph ^(tt) for Example 6.4 (no buffers) and move v — (17,4,2). Phase 2
with single cell or multiple cells with infinite capacity buffers), since a single move introduces significant changes in the graph ^(tt) . Whereas a move changes in those problems few arcs and only those from „4(?r), for the problem stated the single move modifies usually 12 arcs, both from X(x) and In the sequel, we outline the general scheme of the search accelerator for the flow-line problem without buffers. This method allows us to find the makespans for all feasible moves from the set in a ^me O(o), thus acceleratating the search0(e) times.Let v = be a selected feasible move. Consider graph ^(tt) and graph 
Q(irv). The former one can be obtained from the latter by a two-phase modification. First we define a mediate graph 'Hj(TTv) by removing in the operation jfrom Pj, but without making the insertion yet. The graph can be obtainedfrom ^(tt) in a time 0(1) by removing arcs (sj, j) and (j, Sj) from «4(tf), removing arcs (ts ,j) and from .4'(7r), adding the arc (sj,Sj) to -4(?r), and adding the arc (ts to ^'(tt). Note, this graph is common for all moves from the set UieA4c kV*(7r). Clearly, the respective arcs are removed and added if only such exist. The illustration of the phase 1 is shown in Fig. 6.12. It represents the move 
v = (17,4,2) made from the processing order from Example 6.4. In the second phase, the appropriate insertion of the operation j is performed starting fromTo this end we need to remove two moves (fti(y — l),7Tt(j/)) € >!(%) and
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€ A'(tt), and next to add the moves - l),j) and (j,iri(yY) to A(tt), and the moves (t^^-i), j) and (tj^i^y)) to The illustration of phase 2 is shown in Fig. 6.13. The accelerator refers to the values Rs, Qs, seO, calculated for the graph Ttj^Y The value Rs equals the length of the longest path passing into the node s (without pY) in this graph, whereas Qs equals the length of the longest path passing out of the node s (also without psY All these values can be found in a time O(o). Analysing the graph ^((Tr)^), it is sufficient to consider two separate subcases depending on the fact whether the longest path passes through the node j or not. Hence, the makespan for the move v = (j, i.y) can be found in a time 0(1) by applying the following formulae
Cmax((^)ii) = max-fmax^-ft^^—jj T Pj^y—yp Rj^ Rt7r^y_1^} d- Pj

+ maxlQj,^^) + Q^(y)},C} (6.22)
where C is the length of the longest path in Hj^Y To complete the accelerator, we only mention that for a given j E O we can find in a time O(o) all preceding nodes (i.e. there exists a path from a preceding node to j) and all succeeding nodes in ?f(7r). Thus, we can test the feasibility of all moves from UieA4c ^*(7r) in a time O(o).

Property 6.8. The feasibility of all ttv, v E W*(tt) can be checked in a time 
O{owY □

Property 6.9. The makespans for all feasible ttv, v E FF*(tt) can be found in a time O(owY OAlthough, the results obtained are not so valuable as the result from Property6.3 , it still remain significant, since the single neighbourhood can be searched in a time 0(e), which is faster than the explicite calculation of the makespans for all neighbours.Experimental test of AMS algorithm has shown clear advantages of the application of the reduced neighbourhood, see Figure 6.14. In this figure there are shown the best makespan values for AMS methods with the neighbourhoods y(?r) and Z*(tt) (with accelerator) during the first 150 seconds for an instance with o — 300, m = 18 (typical run). In practice, unfeasible solutions in the search trajectory have been observed very rarely.



6.7. Machine buffers with limited capacity 163

Figure 6.14: Comparison of different neighbourhoods for AMS without buffers. The best makespan found during the run (typical run for e = 50, o = 300, m = 18)
6.7 Machine buffers with limited capacityTo prevent superfluous machine blocking one can accept a limited storage by using buffers of small capacity. The size of individual buffers can also be employed as a tool in controlling flows of parts in JIT systems.The production system has mathematical formulation in Section 6.2 with an additional constraint that buffer Fi is located before machine i and has capacity 
fi > 0, i.e. it can store at most fi parts at a time, Figure 6.15. It means that each part completed on some machine and sent to a machine i can be stored in the buffer Fi if it is not completely filled, otherwise this part must remain on the primal machine (blocking this machine) until will be transferred to a buffer. A feasible schedule is defined by four vectors (S', S, C, P) such that above constraints are satisfied, and the part ej, before performing operation j, goes to the buffer Fp} at time S'-, is taken from the buffer at time Sj, starts processing on machine Pj G Mc- at time Sj and occupies this machine till time moment C-.Several problems arise depending on physical (mechanical) construction of the buffer. They generate some additional constraints, e.g.: (a) a part must go on the machine only through a buffer, (b) some parts can skip buffer and go immediately on the machine, (c) each buffer has capacity one (or at most one), (d) parts arrive
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Figure 6.15: Flow line with machine buffers
at the buffer and leave this buffer in the same sequence (FIFO service rule), (e) parts can arrive at the buffer, but the sequence of arrival is different from the leaving sequence (any service rule), (f) passing a part through the buffer needs a time, usually constant for all parts. Clearly, these constraints should be applied in a reasonable way, e.g. either (a) or (b) can be applied, either (d) or (e) can be applied, (c) eliminates (d) and (e), however can also be combined with (a) or (b), etc. Note that (e) requires explicitly a sequence Oi in which parts arrive at the buffer Fi to prevent competitions where “the winner takes the last free place in the buffer”. Clearly, parts must leave buffer Fi in the sequence TTi, which is the processing order on machine i. Taking into account the notions and models that have already been introduced we can propose a few “ad hoc” approaches to solve, these problems.Assuming any of non-zero buffer capacities, FIFO service rule and zero passing time, we can replace each machine buffer Fi by a sequence of fi fictitious machines with zero processing times for each part. Originally buffered as well as all fictitious machines aquire now the non-buffered status. (Buffer passing time can be modelled next as a time of transport between successive fictitious machines.) In spite of a simplicity of the description, this approach has some serious disadvantages. The most significant is the size of the model measured by the number of nodes and arcs in appropriate graph ^(zr), since it is crucial both for the time of a single neighbourhood search as well as for a cardinality of the move set. In the 
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proposed approach, the size of the model significantly depends on buffer capacities, namely the number of nodes and arcs in the graph ^(tt) is + fi))times larger than for that from Section 6.2. A next disadvantage is associated with processing times which are assumed to be positive (non-zero). Moreover, to ensure the feasibility of an overall processing order, processing orders on all fictitious machines in a sequence leading to machine i must be conformable with 
7Ti 10. So, moves cannot be defined separately for fictitious machines, since their workload and processing orders follow from processing orders on real machines. This complicates the definition of a move as well as the properties which would be useful for the application of local search method, particularly in the context of an analogy of Property 6.4. A modification of the proposed approach consists in using, instead of Fi, an auxiliary buffer with capacity fi — k followed by a sequence of k fictitious machines for some k, 1 < k < fi.

10This is only a necessary condition, but not sufficient.
11 If f,: = 0, we say that all parts pass over the buffer.

An alternative approach is to replace the machine buffer Fi by a set of fi parallel fictitious machines with zero processing times. This set is dedicated for processing operations from the set Afi only. The originally buffered machine i as well as fictitious machines after this transformation attain the non-buffered status. Although this model does not contravene the FIFO buffer service rule, and thus is recommended for buffers without fixed service rule, it has similar disadvantages as the first proposed approach.It is well-known that the ideal model should be simple, small and convenient as much as possible. Unfortunately, cases listed at the beginning of this subsection imply a few various special small models or a single general model but of bigger size. Obviously, the complexity of models increases with the increasing complexity of problems (and constraints), but the efficiency of algorithms decreases at the same time. That is why we discuss several models. The first one, dedicated to fi G {0,1}, is related to that from Section 6.6 and preserves the original size of the graph. The second, recommended for any fi and FIFO service rule, is of the size at most twice as big as that of the primal.
6 .7.1 Unit machine buffersIn this section we consider the most common case fi G {0,1} where no passing over of the buffer is allowed if fi = 1 n. Thus = tt,, i E Ad. We start from some auxiliary notions. The b-machine predecessor/successor r_j, rj of the operation j is set as r^ = Tv^j - fi) for j = fi + 1,..., ni, and rv.^ = o for j = 1,..., fa 
r^j) = + fi) for j = 1, • • •, ni - fi, and r^j) = o for j = ni + fi + l,..., ni.For the considered case we have: if fi = 0 then r_j = j = rj, if fj = 1 then 
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rj = Sj, rj = Sj. For a given tt, an appropriate feasible schedule (S', C, C, P) has to satisfy (6.1)-(6.4) and (6.13)-(6.15). Invalid constraint (6.16) should to be replaced by = max{Cj,^. } (6.23)where ro — o and So — 0. New constraints on Sj should be also included
S' < Sj, j e O, (6.24)
= S', tj ?o,je O, (6.25)

S^ < S'j, Tj ?o,je O. (6.26)From (6.25)-(6.26) and (6.23) we deduce that
S'j =max{Ct_.,Sr_.} (6.27)where Co = 0. Inserting (6.23) and (6.27) into the remaining conditions we obtain, after some simple transformations, besides (6.1)-(6.4), an additional requirement

S^ < S^ (6.28)for j € O such that Tj o, tj, o, st. £ o. Finally, we can propose the following recursive formulae of starting times of operations
Sj = max{5t + pt, S,. + Psv Sr } (6.29)

J J J J *>3^where = o, t0 = o, So = 0 = po- Similarly to (6.5), all Sj can be calculated in 
0(0) time.

Example 6.25. A feasible schedule for the Instance and overall processing order from Example 6.4, assuming that each machine buffer has the capacity one, is shown in Gantt Chart, Fig. 6.16. For example, operation 4 of part 2 at cell 1 is performed on machine 1, it comes to the buffer of this machine at time 0, is started at time 80, and completed at time 110. However, it blocks machine 1 till the time moment 130, since buffer to machine 3 at cell 2 (where this part has to go) is busy. Hence P4 = 1, S4 = 0, S4 = 80 C4 = 110, C4 = 130. The makespan is 330. OThe appropriate graph model can be formulated as follows: £(tt) = (O,A* U .4(tt) U>V(7r)) where A* and A(tt) are given by (6.6)-(6.7). The set ^'(vr) of arcs representing buffering constraints need to be re-defined and now takes the form-4'W = U (6.30)
j€O; Ly/o; iy/o; st^ #o
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Figure 6.16: Gantt Chart for Example 6.4 (each of the machine buffers has capacity of one)
suitable for (6.28). The arc (rj,^) € >V(7r) has the weight minus pLj. Notions 
Sj, Cj, and Cmax(7r) have the same meanings as in Section 6.2. A processing order 7r is united with the feasible schedule (S', S,C, P) by the following property.

Property 6.10. For each tt such that ^(tt) has no cycle, there exists a feasible schedule (S', S, C, P) of the problem such that S is determined by (6.29), C by (6.23), S' by (6.27), P^j) = i, j = 1,.. .,ni, i e Ad, and S', C, C are as small as possible. □
Proof. If ^(tt) has a cycle, it must be of positive length due to special structure of weights assigned to nodes and arcs. Thus, for operations (nodes) from this cycle we cannot find any feasible times of “starting” events which might satisfy all precedence constraints. Hence, no feasible schedule (S',S,C,P) can be obtained in this case.Assume that does not contain a cycle. We will show that events appear in correct sequences, and each buffer i contains not more than fi parts in each time moment t. First consider events. From (6.29) we immediately get (6.1)- (6.4). Condition (6.15) follows from (6.23). Since obviously Sr- < Sj, then by using (6.2), (6.23) we have Sj > ma^Ct^S^} = C*. which provides (6.13). Inserting (6.23) to (6.27) we obtain (6.25). By using (6.25) and (6.2) we have
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Figure 6.17: Graph ^(tt) for Example 6.4 (each buffer has capacity of one)
Sj = C't < Sj, which provides (6.24). Formulae (6.26) is obtained immediately from (6.27). Since SL- < Sj by (6.29) and C^ < Sj from (6.2), by using (6.23) we have C' = max{Csj,Sr- } < Sj, which provides (6.14).Next analyse the buffer capacities. We will show that for each time moment the number of parts in the buffer Fi is not larger than fi. Since the buffer changes its state only in discrete time moments, we can check buffer overflow only in Sj, 
j G O. Consider separately two cases. If “fi = 0” then Vj = j and from (6.24)- (6.26) we have Sj = Sj = C^. It means that part ej between operations tj and 
t is sent without using buffer Fp}. If “fi = 1” then rj = Sj and from (6.26) we have Ss < Sj. Hence buffer Fp^ contains in Sj zero parts, so loading this buffer with a new part ej in Sj we do not make the overflow.Since (6.29) corresponds to the longest path in a graph, and therefore Sj, 
j G M, are as small as possible, C and S' are as small as possible either. ■By virtue of Property 6.10 we conclude that Cmax(7r) = maxj€o Cj is the minimal makespan of the schedule {S', S, C, P) obtained from a given n.Let us define the critical path U and blocks Bab in G{^) in the same way as in Section 6.2. Unfortunately, neither block nor extended block notions are sufficient for introducing the advantageous reduction of the move set, see Properties 6.2 and 6.5. To obtain an analog of these properties we have to introduce some new notions. First, for U we calculate the extended critical sequence U* and extended 
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blocks B*b in the same way as in Section 6.6. For each extended block B£b, we define an anti-block Bb as follows: Bb = () (empty) if b = z or (ub,ub+1) € 
A*, and Bb = (ji,..., j/.+i) such that = u*b, jk+1 = sjk for k ,= 1,...,/,-, 
i = , otherwise. By the definition of A'(7r) such a sequence always exists and
jft+i = Denote by Bb the set of elements from the sequence Bb , and let= Us* cw* • 

ab —

Example 6.26. The graph ^(tt) for the Example 6.4 (each of the machine buffer has capacity of one) is given in Figure 6.17. The critical path is 77=(10,13,16,17,12,3, 20,21), w = 8, and the extended critical sequence is t/*=(10,13,16,17,12,3,14, 20,21), z = 9. There are five extended blocks in this sequence B^3 = (10,13,16), = (17,12), B^6 = (3), B^8 = (14,20), B^ =(2 1). Antiblocks B3 , B^, B8 , B9 are empty, whereas B^ = (3,15). OWe propose the following set of moves for tabu search methodW+(7r)= U U w+(tt) (6.31)jew*uw- ieMCjSets W^tt) C V^(tt) are defined, depending on extended blocks and anti-blocks, only for j G B*b U Bb C U* U U~. If j € B^b such that |F^| < 1 we define W^tt) in the way in exactly the same as Wj^tt), see Section 6.2, however with respect to extended block B^b. If j € B*b U Bb, > 1, and i Pj, we set FV^tt) = ^(tt). fn remaining cases, i.e. if i = Pj, a b, |B^“| > 1 we set: W+(tt) = Vji^) if j = u^; \ + Mu* - 1) if
j e B*b \ = ^(tt) \ A^u* + U.. - 1) if J € Bb \

WjiW = VhW \ ^^j) if 3 = = XhW \ Xj{xj,ni) if j = ru*.Among few theoretical properties of the proposed neighbourhood {?rv : v E ^+(7r)} we deal only with the most important. The reduction of the neighbourhood size is advantageous since the skipped part is “less interesting” if we take account of immediate improvements.
Property 6.11. For any overall processing order 7r„, v € V(tt) \ FV+(tt), we have either tf^ £ II* or C'max(7r„) > CmaxM- □

6.8 Comments and conclusionsThe proposed approach can be extended to more general cases which cover most of the practical applications in flexible flow lines scheduling problems and also in scheduling parts in a flexible cell production (work cells). The proposed model 
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has significantly small dimension than other models which can be proposed for the problem stated. Moreover, it can be modified without essential complication to include at least the following constraints: there is a time of job transport between cells, jobs arrive in various time moments, machines are available after their ready times, jobs must be finished before the given due date, jobs must be finished just in time, etc. Also the non-uniform machines as well as the machine set-up times can be included, see Section 3.3 for details, with all mentioned there consequences.The remaining components of the proposed algorithm (not discussed here) are presented in detail in [232] and have been selected from among many alternative constructions that were tested and examined by various researches papers [230, 231, 232]. Excellent computational results obtained for all problems from cited papers can be obtained also in all considered cases.Further research should be carried out to examine the remaining types of buffers already mentioned. Although some works have been devoted to this subject, Smutnicki [307], the proposed models should be improved, particulary for the case of machine buffers greater than two.
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Final conclusions

7.1 Industrial applicationsMany industrial applications of the considered models have been given. We mention only a few of them, reported in the papers already published:
chemical industry: problems of scheduling serial multi-product batch plants are modelled by means of classic flow shop model, flow-shop with NS, ZW, or LS (limited storage) policies, mixed NS/LS/ZW policy, cleaning times (set-up times), transfer times, shared buffer, etc, or appropriate models with parallel units per each stage [23, 53, 118, 155, 170, 177, 189, 243, 252, 265, 318, 330, 331],
building industry: the basic problem emerges from a factory in Poland and uses the flow-shop model with mixed NS/ZW policy [114], a more advanced model incorporates also non-bottleneck machines,
printed circuit assembly: the basic model refers to the flow-shop with set-up times [162] applied in a factory in Korea, more advanced model refers to flexible flow line with NS policy in an IBM division [337],
computer systems, telecommunication networks: a list of applications of flexible flow-line models is enumerated in [28, 149],
spaceship processing: this is the most incredible application of the flexible flow-line model with NS policy found in the Kennedy Space Center [149],
polymer, chemical and petrochemical industries: see applications in chemical branches and also [55],Further applications one can find in packing industry, transport, FMS, see also [149].
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7.2 Future research directionsThe results presented in this thesis do not exhaust neither theoretical problems arising in JIT systems nor appropriate solution methods. A rich variety of production structures has been observed in practice. As to the subjects, there are at least the following research directions with the immediate applications in manufacturing processes:(a) NS inventory control policy in a flexible job-shop (FJS) and flexible network (FN),(b) ZW inventory control policy for different production structures (FFS, FJS, FN),(c) comparison between NS and ZW for different production structures,(d) the influence of set-up times and transport times on inventory policy,(e) minimal WIP policy (with the best delivery performance based on due dates) linked with NS inventory control for different production structures,(f) minimal cycle time with NS and ZW inventory control,(g) buffer (store) size selection,(h) incorporation of more complex buffer structures, e.g. the shared buffer, dedicated part buffers, input/output buffers, buffering performed by transport system,(i) negotiation of delivery dates.All these problems can be analysed by using tools and approaches outlined in this thesis.
7.3 EpilogueThe models and methods known from the deterministic scheduling theory can be applied to analyse some selected problems of optimisation and control in JIT manufacturing. Simultaneously, JIT philosophy creates demands, addressed to ST, for new, advanced models of more complex manufacturing structures and efficient solution methods. Several types of local search methods and their application to automated and conventional JIT manufacturing have been considered and examined. Most of them belong the very new generation of fast methods 
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with very high accuracy, created on the base of SA or TS approach with the reduced neighbourhood and search accelerator. These methods express several important features: they ensure (in a range unknown up to now) a balanced compromise between the solution quality and the computational effort necessary to find a good solution, they allow us to solve industrial instances of a high size in a reasonable time even on a PC, can easily be adjusted to parallel computing. This is a step towards better algorithms of automated manufacturing control as well as semi-learned optimisation algorithms of new generation.
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