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Abstract
Background. Glioblastoma (GBM) is the most common cause of primary brain malignancy. Recently, 
many immune-related long noncoding ribonucleic acids (ir-lncRNAs) are indicated to be closely related 
to the regulation of the immune microenvironment and immune cell infiltration of GBM.

Objectives. Through the joint analysis of multiple public databases, key ir-lncRNAs in GBM were screened. 
The ir-lncRNAs were used to construct risk-scoring models and promote the development of novel GBM 
biomarkers.

Materials and methods. In this study, we performed a three-way Venn analysis combined with a least 
absolute shrinkage and selection operator (LASSO) regression analysis on all lncRNAs in The Cancer Genome 
Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA) and Imm-Lnc datasets, and identified 10 ir-lncRNAs. 
Multivariate Cox analysis was used to calculate the coefficient and construct a risk-scoring model.

Results. By plotting calibration curves and receiver operating characteristic (ROC) curves, the model showed 
excellent prediction results. Based on the Tumor Immune Estimation Resource (TIMER) database, the cor-
relation analysis showed that 10 ir-lncRNAs risk scores were related to immune cell infiltration. The enrich-
ment  analysis was subsequently performed, which showed that these ir-lncRNAs played an important role 
in the progression of GBM. Among the 10 lncRNAs, we found that AL354993.1 was highly expressed in GBM, 
had not been reported, and was shown to be closely related to GBM progression.

Conclusions. In conclusion, the 10 ir-lncRNAs have the potential to predict the prognosis of GBM patients 
and may play a vital role in the progression of the disease.
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Background

The most aggressive primary brain malignancy origi-
nates from oligodendrocyte or astrocyte precursor cells 
and is known as glioblastoma (GBM). Although accurate 
surgical resection, radiation and adjuvant chemotherapy are 
now the conventional treatments for GBM, the prognosis 
is still poor, and the median survival is just 8–15 months.1 
Immunomodulatory therapy is a new and effective treat-
ment option.2 The stemness features of GBM are strictly 
connected to immune infiltration,3 meaning neoadjuvant 
anti-programmed cell death protein 1 (PD-1) checkpoint 
blocking immunotherapy might improve the prognosis 
of properly selected GBM patients.4 However, GBM often 
exhibits severe local immunosuppression, which limits 
the efficacy of immunotherapy strategies.5 To further ex-
plain the mechanisms of immune regulation in GBM and 
offer a theoretical basis for GBM immunological treatment, 
we evaluated effective immune-related prognostic factors 
and constructed a prognostic model for GBM patients.

Long noncoding ribonucleic acids (lncRNAs) are a group 
of transcripts with a length of more than 200 nt that primar-
ily function as regulators rather than protein-coding genes.6 
The lncRNAs perform their biological functions in a variety 
of ways, including alternative splicing, transcription regula-
tion, messenger RNA (mRNA) stability maintenance, chro-
matin modification, functional micropeptides, and interac-
tion with proteins or small RNAs.7–9 The lncRNAs are also 
crucial for GBM progression. The lncRNA HNF1A-AS1 was 
shown to drive GBM progression through the microRNA 
(miR)-22-3p/alpha-enolase 1 (ENO1) axis.10 Indeed, lncRNA 
miR155HG has been shown to promote GBM progression 
by upregulating annexin A2 (ANXA2) as a competing en-
dogenous RNA (ceRNA) of the tumor suppressor miR-185.11

Immune-related lncRNAs (ir-lncRNAs) are involved 
in regulating the GBM immune microenvironment and 
have unique prognostic value. According to reports, lncRNA 
AC003092.1 is connected to the immunosuppressive en-
vironment in GBM.12 Moreover, maternally expressed 3 
(MEG3) levels are negatively associated with dendritic cell 
infiltration and positively correlated with infiltrating CD8+ 
T cells. The survival of GBM patients was also significantly 
correlated with the degree of MEG3 variation in copies.13 
The heat shock protein family A member 7 (HSPA7) lncRNA 
was found to promote macrophage recruitment to the GBM 
tumor microenvironment and had a great prognostic value.14 
However, few investigations have established prognostic 
models based on the identification of ir-lncRNAs in GBM.

Objectives

The ir-lncRNAs obtained from the Chinese Glioma Ge-
nome Atlas (CGGA; http://www.cgga.org.cn/) and The Can-
cer Genome Atlas (TCGA; https://www.cancer.gov/ccg/re-
search/genome-sequencing/tcga) were examined. The clinical 

prognostic model of GBM was developed after the least ab-
solute shrinkage and selection operator (LASSO) algorithm 
identified the most critical lncRNAs. Additionally, the un-
derlying pathway of ir-lncRNAs in GBM was investigated.

Materials and methods

Data and resources

Both TCGA-GBM (n = 166) and CGGA cohorts (n = 140) 
were used as public transcriptome datasets in our analy-
sis.15 Any case with a survival information null value was 
eliminated. The UCSC Xena database was used to retrieve 
the clinical information and fragments per kilobase per 
million (FPKM) data for the TCGA-GBM cohort (https://
xenabrowser.net/). Transcripts per kilobase million (TPM) 
values were obtained from all FPKM data. The RNA-se-
quencing (RNA-seq) data of 140 specimens were retrieved 
from the CGGA data collection in addition to the clinical 
data for use as a validation set. The TCGA database pro-
vided gene mutation data (MAF files) for the TCGA-GBM 
group. The proportional hazards assumption test, linear-
ity assumption test and multicollinearity test assessed 
the TCGA and CGCA cohorts (Supplementary Fig. 1–3).

Detection of immune-related lncRNA 
prognostic signature

The ImmLnc database (http://bio-bigdata.hrbmu.edu.cn/
ImmReg/index.jsp) has collected 3115 GBM ir-lncRNAs.16 
By evaluating the intersection of lncRNAs among the TCGA, 
CGGA and ImmLNC datasets, we selected ir-lncRNAs. 
To prevent overfitting and examine the ideal ir-lncRNA 
signature for estimating the overall survival of GBM indi-
viduals, the LASSO was selected. The LASSO regression 
analysis was performed using the “glmnet” R program. Every 
sample’s risk score was determined from the formula: risk 
score = expression value of lncRNA 1 × coefficient + expres-
sion value of lncRNA 2 × coefficient + … + expression value 
of lncRNA n × coefficient. Then, depending on the middle 
threshold of the risk score, GBM patients were allocated 
into elevated- and reduced-risk cohorts. The “Survival” 
program of R software’s area under the curve (AUC) func-
tion was employed to verify the specificity and sensitivity 
of the immune-related signature.

Nomogram

To anticipate the 1-, 2- and 3-year survival rates, a no-
mogram was developed after the independent prognostic 
parameters were identified. Receiver operating characteris-
tic (ROC) curves were employed to assess the effectiveness 
of the model. Additionally, calibration plots were shown 
utilizing the rms tool to compare the model-predicted sur-
vival with the actual survival probability.

http://www.cgga.org.cn/
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://xenabrowser.net/
https://xenabrowser.net/
http://bio-bigdata.hrbmu.edu.cn/ImmReg/index.jsp
http://bio-bigdata.hrbmu.edu.cn/ImmReg/index.jsp
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Gene set enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG; 
https://www.genome.jp/kegg/) and Gene Ontologygy (GO; 
https://geneontology.org/) mechanisms that positively re-
lated to elevated- or reduced-risk scores were investigated 
using gene set enrichment analysis (GSEA; https://www.
gsea-msigdb.org/gsea/index.jsp). Molecular Signatures Da-
tabase gene sets were obtained. Typically, 1000 permuta-
tions were used in the analysis, and pathways with a false 
discovery rate (FDR) of less than 0.25 were detected.

Estimation of cancer immune 
microenvironment

The  Tumor Immune Estimation Resource (TIMER) 
(timer.cistrome.org/) platform17 was employed to inves-
tigate the connections between risk score and immune 
infiltrates, such as B cells, CD8+ T cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells, as demon-
strated by the purity-corrected partial Spearman approach. 
Depending on gene expression patterns, the Estimation 
of STromal and Immune Cells in MAlignant Tumor tis-
sues using Expression data (ESTIMATE) program evalu-
ated the stromal scores and immune scores.18 In addition, 
we utilized the tumor immune dysfunction and exclusion 
(TIDE algorithm; http://tide.dfci.harvard.edu/) to evaluate 
each participant’s potential reaction to immune check-
point inhibitor (ICI) treatment.19

Statistical analyses

The TCGA-GBM cohort contains 166 tumor samples 
from patients with GMB, while the CGGA cohort includes 
140 tumor samples from patients with GMB and normal 
tissue from 20 patients. For the TCGA-GBM cohort, we di-
vided patients into 2 groups based on the risk score: high-
risk group (n = 83) and low-risk group (n = 83). In addition, 
we used the TIDE algorithm to predict the responsiveness 
of patients in the TCGA-GBM cohort to immunotherapy, 
with 48 patients evaluated as responders and 120 evaluated 
as non-responders. According to isocitrate dehydrogenase 
1 (IDH1) mutation status, patients in the CGGA cohort 
were divided into 2 groups: wild-type (wt) group (n = 100) 
and mutant (mut) group (n = 40). Based on the co-deletion 
status of x1p19q, patients in the CGGA cohort were di-
vided into 2 groups: Non_codel group (n = 128) and codel 
group (n = 12). Additionally, patients in the CGGA cohort 
were divided into 2 groups based on the expression level 
of AL354993.1: low-expression group (n = 70) and high-
expression group (n = 70).

Continuous variables were tested for normality us-
ing Kolmogorov–Smirnov or Shapiro–Wilk tests. When 
the sample size was ≤50, the Shapiro–Wilk test was em-
ployed. Otherwise, the Kolmogorov–Smirnov test was 
used. The variables were considered to conform to a normal 

distribution when p > 0.05. When performing a difference 
analysis for 2 sets of variables, an F-test was used to evalu-
ate the homogeneity of variance between the 2 groups. 
The variance between the 2 variables was considered equal 
when p > 0.05. The results of the tests assessing the as-
sumptions are provided in Supplementary Tables.

When the variables conformed to a normal distribu-
tion and the  variance was equal, Student’s t-test was 
used to compare between-group differences. If at  least 
one of the assumptions was violated, the Mann–Whit-
ney U test was used to compare the differences between 
the groups. For Student’s t-test, we also calculated the test 
values and degrees of freedom (df). For the Mann–Whitney 
U test, we calculated the U and Z values. The χ2 or Fisher’s 
exact tests were used to compare the differences between 
the groups for categorical variables. When the total sam-
ple size was >40 and the minimum theoretical frequency 
was >5, the χ2 test was used. When the total sample size 
was >40 and 5>, and the minimum theoretical frequency 
was >1, the corrected χ2 test was used. If the total sam-
ple size was <40 or the minimum theoretical frequency 
was <1, Fisher’s exact test was used. The results of tests as-
sessing the differences between the groups are presented 
in tabular form and illustrated using box-and-whisker 
plots, which contain 5 lines representing the estimated 
maximum upper quartile (QU), median lower quartile 
(QL), and estimated minimum of the data from top to bot-
tom. Outliers were defined as a value greater than QU + 
1.5 × QR or less than QL – 1.5QR, where QR = QU – QL.

The Cox proportional hazards model was used to evaluate 
the impact of clinical parameters on patient survival time. 
In terms of parameter selection, we evaluated the clinical 
parameters common to both TCGA and CGGA cohorts, 
and age and gender were included in both. Therefore, we in-
cluded 3 parameters: patient age, gender and the risk score 
calculated using the Cox regression model. First, we per-
formed the proportional hazards assumption test on all 
3 parameters (Supplementary Fig. 1). When the Schoenfeld 
individual test p-value was less than 0.05, the proportional 
hazards assumption was considered valid. For the continu-
ous parameters, age and risk score, we performed a linearity 
assumption test (Supplementary Fig. 2) and a multicol-
linearity test (Supplementary Fig. 3). When the fitted curve 
was approximately linear, the linearity assumption was 
considered valid. When the p-value of the correlation was 
less than 0.05, these 2 parameters were considered to have 
no multicollinearity. For each Cox regression result, we cal-
culated Harrell’s compliance index as the goodness-of-fit.

The sample size is labeled in the figure legends. The Ka-
plan–Meier technique (R package survival) was employed 
to create overall survival (OS) curves, and the log-rank test 
was used to assess alterations between the curves. This 
study used p < 0.05 as a statistically significant criterion. 
Statistical analyses employed R 3.6.2 (R Foundation for 
Statistical Computing, Vienna, Austria) and IBM SPSS 
v. 26.0 for Windows (IBM Corp., Armonk, USA).

https://www.genome.jp/kegg/
https://geneontology.org/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
http://tide.dfci.harvard.edu/
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Results

Determination of ten survival-related  
ir-lncRNAs in GBM

There were 14,038 lncRNAs in  the TCGA-GBM da-
tabase, 1,082 lncRNAs in the CGGA database and 3,175 
ir-lncRNAs in  the  ImmLnc database. After three-way 
Venn analysis, 276 ir-lncRNAs that coexisted in all 3 da-
tabases were identified (Fig. 1A). To further screen for 
effective prognostic markers, we  used LASSO regres-
sion to finally select 10 ir-lncRNAs associated with GBM 
prognosis, namely CHRM3-AS2, LEF1-AS1, AL354993.1, 
AC034243.1, LINC00452, NDUFB2-AS1, LINC00571, 
UNC5B-AS1, AC009093.1, and HOXC-AS2 (Fig. 1B,C). 

The Kaplan–Meier examination indicated that elevated 
expression of each ir-lncRNA was substantially related 
to poorer OS in the TCGA database, except for NDUFB2-
AS1 and LINC00571 (Fig. 1C).

Progression and validation  
of the ten survival-related ir-lncRNA 
signatures for survival anticipation

Based on  the  multivariate Cox regression model, 
the above 10 ir-LncRNAs were integrated to create a risk 
score model in the TCGA database. In the TCGA, the Ka-
plan–Meier examination revealed that OS was consider-
ably poorer in raised-risk participants than in decreased-
risk individuals (p < 0.0001, Fig. 2A). The risk scores and 

Fig. 1. Identification of 10 survival-related immune long noncoding ribonucleic acids (lncRNAs) in glioblastoma. A. Venn diagram illustrates that 276 lncRNAs 
were shared among 3 datasets; B. Distribution of least absolute shrinkage and selection operator (LASSO) coefficients for 276 immune-related lncRNAs; C. Partial 
likelihood deviation of the LASSO coefficient distribution. Vertical dashed lines indicate lambda.min and lambda.lse; D. The Kaplan–Meier survival curves 
comparing overall (OS) survival between high- and low-expression groups of the selected immune-related lncRNAs in The Cancer Genome Atlas (TCGA) dataset

CGGA – Chinese Glioma Genome Atlas.
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survival status of every GBM specimen were represented 
by the risk curve and scatterplot, respectively. The sam-
ples in the elevated-risk group had greater risk ratings 
and mortality rates than those in the reduced-risk cohort 
(Fig. 2C).

The ROC analysis revealed that the AUC for 1-, 2- and 
3-year survival were 0.716, 0.803 and 0.852, respectively 
(Fig. 2E). Therefore, the risk score model constructed us-
ing the 10 ir-lncRNAs was effective in predicting GBM 
prognosis. Additionally, we developed and assessed the risk 
score model using the CGGA database as the validation set 
and acquired comparable outcomes (Fig. 2B,D,F).

Establishment and evaluation 
of nomograms by the risk scores and 
the prognostic value of medical variables

A  univariate Cox regression examination was con-
ducted to determine whether the risk score model for 
the 10  ir-lncRNAs and GBM-related clinical variables 

were prognostic factors. The results indicated that risk 
scores (p < 0.001; hazard ratio (HR) = 13.68) and pa-
tient age (p < 0.001; HR = 1.02) were strongly correlated 
with OS in  the TCGA database (Fig. 3A). The CGGA 
database was also used as a validation set for univariate 
Cox regression analysis, and the ir-lncRNA model was 
found to be a substantial risk factor for GBM individu-
als (Fig. 3B).

The  nomogram with age, gender and risk score 
was developed for the  prediction of  patient prognosis 
in the TCGA dataset. We collected survival information 
from all patients to anticipate the 1-, 2- and 3-year OS 
(Fig. 3C). The calibration curve of the 1-, 2- and 3-year 
OS showed that the nomogram had excellent prognostic 
value (Fig. 3E). The AUC of the 1-, 2- and 3-year OS were 
0.79, 0.82 and 0.91, respectively, according to the ROC 
curve analysis (Fig. 3F). Similar prediction outcomes were 
achieved in the CGGA validation set, supporting the no-
mogram’s effective prediction ability over the risk score 
model (Fig. 3D,G,H).

Fig. 2. Development and 
validation of 10 survival-
related immune long 
noncoding ribonucleic 
acids (lncRNA) signatures 
for survival prediction. 
The Kaplan–Meier survival 
analysis of high-risk and 
low-risk patients divided 
by the medium value in The 
Cancer Genome Atlas (TCGA) 
(A) and Chinese Glioma 
Genome Atlas (CGGA) (B) 
datasets. The distribution 
of risk scores, survival time 
and status of patients 
in TCGA (C) and CGGA (D) 
datasets. Receiver operating 
characteristic (ROC) analysis 
of the prognostic signatures 
to predict 1-, 2- and 3-year 
overall survival (OS) in TCGA 
(E) and CGGA (F) datasets
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Enrichment analysis identified  
ir-lncRNA-related biological functions 
and signaling pathways in GBM

Based on the risk score, GBM participants in the TCGA 
were separated into elevated- and reduced-risk cohorts. 
Gene ontology and KEGG enrichment analysis were then 
performed on the genes that were differently expressed 
between the 2 groups. The outcomes of KEGG enrichment 
investigations revealed that the differentially expressed 

genes were primarily related to the activation of innate im-
mune response, cellular responses to chemokines, collagen 
binding, cytokine secretion, humoral immune responses, 
the Janus kinase (JAK)-signal transducer and activator 
transcription (STAT) cascade, leukocyte migration, mac-
rophage activation, modulation of  lymphocyte activity, 
and T cell activation (Fig. 4A). According to the outcomes 
of  the  GO enrichment analysis, these genes primarily 
participated in the signaling pathways for cell adhesion 
molecules, chemokine signaling, cytokine–cytokine 

Fig. 3. Establishment and evaluation of nomograms using risk scores and the prognostic value of clinical variables. A. Univariate Cox analysis showed 
that risk scores and age were significantly related to overall survival (OS) in The Cancer Genome Atlas (TCGA) dataset using Harrell’s compliance index 
(C-index) as the goodness-of-fit. For the TCGA cohort, the C-index was 0.69 (95% confidence interval (95% CI): of 0.64–0.73), and for the Chinese Glioma 
Genome Atlas (CGGA cohort), the C-index was 0.6 (95% CI: 0.54–0.65); B. Univariate Cox analysis showed that risk scores and age were significantly 
related to OS in the CGGA dataset; C. Development of the nomograms for the prediction of patient prognosis in the TCGA dataset; D. Development 
of the nomograms for the prediction of patient prognosis in the CGGA dataset; E. The calibration curve for 1-, 2- and 3-year OS of the nomogram 
in the TCGA dataset; F. Receiver operating characteristic (ROC) curves displayed the area under the curve (AUC) for 1-, 2- and 3-year OS in the TCGA 
dataset; G. The calibration curve for 1-, 2- and 3-year OS of the nomogram in the CGGA dataset; H. ROC curves displayed the AUC of 1-, 2- and 3-year OS 
in the CGGA dataset
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receptor interactions, JAK-STAT signaling, natural killer 
cell-mediated cytotoxicity, nuclear factor-kappa B (NF-ĸB) 
signaling, nod-like receptor signaling, T helper (Th)17 cell 
differentiation, tumor necrosis factor (TNF) signaling, 
and toll-like receptor signaling (Fig. 4B). The knowledge 
of the underlying pathways involving these ir-lncRNAs 
in the development and progression of GBM was deep-
ened by these enriched biological processes and signaling 
mechanisms.

The ir-lncRNAs-related risk score 
was correlated with the GBM immune 
microenvironment

To additionally explore the  function of  the 10  ir-ln-
cRNAs in the immune microenvironment, the TIMER 
database was used to examine the connection between 
the risk score and various infiltrating immune cell sub-
populations in GBM. It was shown that the  risk score 

Fig. 4. Gene set 
enrichment analysis 
between high-risk 
and low-risk groups 
in the Kyoto Encyclopedia 
of Genes and Genomes 
(KEGG) and gene ontology 
(GO) datasets
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was closely related to  the  infiltration of CD8+ T cells, 
neutrophils, macrophages, and myeloid dendritic cells, 
with correlation coefficients of 0.24, 0.25, 0.27, and 0.24, 
respectively (Fig. 5A). It is well-known that chemokines 
efficiently control immune cell infiltration in malignan-
cies. The expression of 16 immune-related chemokines 
recognized to be linked with GBM development was com-
pared in elevated- and low-risk tissues to further examine 
the relationship between risk scores and chemokine secre-
tion. The outcomes demonstrated that 14 chemokines were 
differentially expressed (chemokine ligand (CCL)2, CCL5, 
CCL17, CCL20, CCL22, CCR2, CCR4, CCR5, CCR6, CCR7, 

CXC motif chemokine ligand (CXCL)12, CXCL16, CXC 
motif chemokine receptor (CXCR)4, and CXCR6) (Fig. 5B, 
Table 1 and Supplementary Table 1).

Further calculations of the GBM patients’ immunologi-
cal, stromal and ESTIMATE scores in the TCGA dataset 
indicated that the immune score of the reduced-risk co-
hort was much less than that of the elevated-risk cohort 
(Fig. 5C–E, Table 2 and Supplementary Table 2). A strong 
association between the risk score and commonly em-
ployed immunological checkpoints was determined us-
ing Pearson’s correlation analysis, indicating that the risk 
score may have implications for immunotherapy (Fig. 5F). 

Fig. 5. The immune risk score was correlated with the tumor immune microenvironment. A. The correlation between risk score and immune cell infiltration; 
B. The expression of chemokines between low- (n = 83) and high-risk groups (n = 83) (parametric test and the Mann–Whitney U test). The difference 
in immune score (parametric test) (C), stromal score (parametric test) (D), and Estimation of STromal and Immune Cells in Malignant Tumor tissues using 
Expression data (ESTIMATE) score (Mann–Whitney U test) (E) between low- (n = 83) and high-risk groups (n = 83); F. Assessment of associations between risk 
scores and commonly used immunological checkpoints; G. Tumor immune dysfunction and exclusion (TIDE) scores between high- (n = 83) and low-risk group 
(n = 83); H. Comparison of the risk scores between immunotherapy responders (n = 48) and non-responders (n = 118) predicted with TIDE (parametric test)
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To further anticipate the reaction of GBM to immunother-
apy, we used the TIDE algorithm. A high TIDE score means 
that the likelihood of responding to immunotherapy is low. 
According to the findings, individuals with elevated-risk 
GBM had reduced TIDE scores and were more likely to re-
act to immunotherapy (Fig. 5G,H, Table 2,3 and Supple-
mentary Table 2). The previous findings demonstrated 
that the risk score associated with ir-lncRNAs was strongly 
connected to the GBM immune microenvironment, and 
it was anticipated that this relationship might be helpful 
in targeting future GBM immunotherapy.

Alterations in the mutation landscape 
between elevated- and low-risk groups

Tumor somatic mutation of commonly mutated genes 
was profiled in GBM elevated-risk and reduced-risk co-
horts. Most mutated genes, including TP53, PTEN, TTN, 

EGFR, MUC16, SPTA1, NF1, RYR2, and FLG, had high 
rates of somatic mutations in both raised- and reduced-
risk groups. In particular, somatic mutation rates for RB1, 
HYDIN, ATRX, and IDH1 were greater in the  low-risk 
cohort (Fig. 6A,B). Notably, ATRX and IDH1 did not have 
somatic mutations in the raised-risk cohort in the TCGA 
dataset (Fig. 6C,D). In the CGGA dataset, the patterns 
of risk scores for IDH1 mutation and 1p/19q codeletion  
stats were identified. According to the findings, those 
with IDH1 mutations had considerably lower risk scores 
than individuals with IDH1 wild type (Fig. 6E, Table 4 and 
Supplementary Table 4). Participants who had a 1p/19q 
codeletion  also had a lower risk score than patients who 
did not have a codeletion (Fig. 6F, Table 4 and Supple-
mentary Table 5).

Table 1. The expression of chemokines between low- and high-risk groups

Gene
Gene expression

p-valuelow risk 
(n = 83)

high risk 
(n = 83)

CCL2 5.84 ±1.66 6.96 ±1.46 9.00E-06

CCL5 3.33 ±1.02 4.06 ±1.01 9.00E-06

CCL17 0.83 ±0.60 1.10 ±0.95 2.80E-02

CCL20 1.58 ±1.25 2.34 ±1.73 1.40E-03

CCL22 0.54 ±0.39 0.74 ±0.63 1.40E-02

CCR2 0.74 ±0.57 1.44 ±0.97 7.34E-08

CCR4 0.29 ±0.22 0.59 ±0.54 7.00E-06

CCR5 2.31 ±0.97 2.92 ±0.79 1.60E-05

CCR6 0.02 ±0.02 0.03 ±0.04 8.16E-04

CCR7 0.73 ±0.44 1.17 ±0.70 4.00E-06

CX3CL1 5.35 ±0.83 5.31 ±0.72 7.28E-01

CX3CR1 5.45 ±1.41 5.76 ±1.21 1.28E-01

CXCL12 3.24 ±1.10 3.82 ±1.19 1.11E-03

CXCL16 6.60 ±0.86 6.94 ±0.57 2.97E-03

CXCR4 6.48 ±0.97 6.74 ±0.75 4.79E-02

CXCR6 0.59 ±0.50 1.03 ±0.65 3.00E-06

Values in bold are statistically significant.

Table 2. The difference of immune score, stromal score, ESTIMATE score, 
and TIDE score

Score items
Value

p-value
low risk (n = 83) high risk (n = 83)

Immune score –318.36 ±453.26 113.18 ±556.25 6.00E-06

Stromal score 499.02 ±700.96 993.86 ±659.55 1.58E-07

ESTIMATE score 180.66 ±1107.5 1107.04 ±1171.6 5.00E-07

TIDE score 1.06 ±0.46 0.09 ±0.83 3.33E-16

ESTIMATE – Estimation of STromal and Immune Cells in Malignant Tumor 
tissues using Expression data; TIDE – tumor immune dysfunction and 
exclusion.

Table 3. Comparison of the risk scores between immunotherapy 
responders (n = 48) and non-responders (n = 118) predicted with TIDE

Score items Status Risk score p-value

TIDE score

non-responder 
(n = 118)

0.44 ±0.23
1.10E-02

responder 
(n = 48)

0.61 ±0.22

TIDE – tumor immune dysfunction and exclusion.

Table 4. Different risk scores divided by IDH1 mutation  
and 1p/19q codeletion

Mutation Status Risk score  p-value

IDH1 mutation
wt (n = 100) 0.45 ±0.24

8.29E-09
mut (n = 40) 0.17 ±0.22

1p/19q codeletion 
Non_Codel (n = 128) 0.38 ±0.26

2.23E-02
Codel (n = 12) 0.20 ±0.24

wt – wild type; mut – mutant. 

Table 5. The expression of immune-related lncRNAs between normal 
and tumor samples in the CGGA dataset

Gene
Gene expression

p-value
normal (n = 20) tumor 

(n = 140)

lEF1-AS1 0.126 ±0.131 1.008 ±1.196 3.20E-14

HOXC-AS2 0.011 ±0.036 0.335 ±0.630 1.63E-08

AL354993.1 0.601 ±0.463 1.717 ±2.179 5.86E-07

NDUFB2-AS1 0.491 ±0.171 0.570 ±0.320 9.70E-01

AC034243.1 0.372 ±0.683 0.438 ±0.726 6.99E-01

UNC5B-AS1 0.877 ±0.567 0.529 ±0.693 4.82E-02

LINC00571 0.158 ±0.253 0.238 ±0.379 2.37E-01

CHRM3-AS2 0.062 ±0.060 0.086 ±0.111 1.44E-01

LINC00452 0.020 ±0.025 0.094 ±0.247 4.17E-02

AC009093.1 0.037 ±0.030 0.052 ±0.065 7.99E-02

lncRNAs – long noncoding ribonucleic acids; CGGA – Chinese Glioma 
Genome Atlas. Values in bold are statistically significant.
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AL354993.1 was recognized as a potential 
marker for GBM

The expression of 10 ir-lncRNAs was compared between 
normal and tumor samples in the CGGA dataset. The LEF1-
AS1, HOXC-AS2 and AL354993.1 were found to be signifi-
cantly overexpressed in GBM (p < 0.0001), among which 
AL354993.1 has not been reported (Fig. 7A, Table 5 and 
Supplementary Table 6). The overexpression of AL354993.1 
suggested a worse GBM prognosis (p = 0.029) (Fig. 7B). Fur-
thermore, the expression of AL354993.1 was lower in GBM 
tissues with IDH1 but not with 1p19q mutations (Fig. 7C,D, 
Table 6 and Supplementary Table 7,8). To discover the bio-
logical function of AL354993.1, GBM subjects in the CGGA 
dataset were allocated into 2 cohorts with raised and de-
creased AL354993.1 expression, and a differential gene 

analysis combined with GSEA enrichment was conducted. 
The outcomes indicated that raised AL354993.1 expression 
might indicate the activation of the JAK-STAT pathway, 
the extracellular matrix (ECM) receptor interaction path-
way, chemokine signaling mechanisms, and cytokine–cy-
tokine receptor interaction mechanisms (Fig. 7E). Hence, 

Fig. 6. Differences in the mutation landscape between high- and low-risk groups. A. Oncoplots of tumor somatic mutations of frequently mutated genes 
in the low-risk group; B. Oncoplots of tumor somatic mutations of frequently mutated genes in the high-risk group. Mutation rates of IDH1 (C) and ATRX (D) 
were compared between low- and high-risk groups in The Cancer Genome Atlas (TCGA) dataset; E. The distribution of risk score between IDH1-wild type 
(wt) (n = 100) and IDH1-mutation (Mut) (n = 40) patients in the Chinese Glioma Genome Atlas (CGGA dataset) (Mann–Whitney U test); F. The distribution 
of risk score between 1p/19q-codeleted (n = 12) and 1p/19q-noncodeleted (n = 128) patients in the CGGA dataset (Mann–Whitney U test)

Table 6. The different expression of AL354993.1 divided by IDH1 mutation 
and 1p/19q codeletion 

Mutation Status Risk score p-value

IDH1 mutation
wt (n = 100) 1.32 ±0.0.96

3.00E-05
mut (n = 40) 0.72 ±0.62

1p/19q 
codeletion 

Non_Codel (n = 128) 1.17 ±0.91
1.93E-01

Codel (n = 12) 0.99 ±0.98

wt – wild type; mut – mutant.
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the relationship between AL354993.1 expression and che-
mokine secretion were further explored. The expression 
of 16 chemokines known to be associated with GBM pro-
gression was examined in reduced- and elevated-expression 
groups. The results showed that 13 chemokines were dif-
ferentially expressed (CCL2, CCL5, CCL17, CCL20, CCR2, 
CCR4, CCR5, CCR6, CCR7, CXCL12, CXCL16, CXCR4, 
CXCR6) (Fig. 7F, Table 7 and Supplementary Table 9). These 
outcomes indicate that AL354993.1 is related to GBM pro-
gression and might be a potential GBM biomarker.

Discussion

Glioblastoma multiforme is one of the most common 
primary brain tumors, and survival rates are low despite 
extensive treatment options (surgical resection, radio-
therapy and adjuvant chemotherapy).20 In recent years, 
many studies carried out on immunotherapy for GBM 

have failed to achieve ideal results due to the heterogene-
ity of GBM and the cancer immunosuppressive micro-
environment.21,22 Numerous investigations have verified 
that lncRNAs have a function in the modulation of GBM. 
Several ir-lncRNAs have also been shown to be strongly 
linked to the modulation of the immunological milieu 
in GBM and the infiltration of immune cells.7,16 Therefore, 
we created a medical prediction model using the TCGA 
and CGGA datasets and evaluated the lncRNAs most rel-
evant to GBM to further examine the function of lncRNAs 
in GBM prognosis.

In this investigation, we conducted a three-way Venn 
examination of all lncRNAs in the TCGA, CGGA and Im-
mLnc datasets and found that 276 lncRNAs coexisted. 
The LASSO regression analysis further identified 10 key ir-
lncRNAs, with the Kaplan–Meier analysis suggesting that 
8 of the 10 were prognostic risk factors for GBM (CHRM3-
AS2, LEF1-AS1, AL354993.1, AC034243.1, LINC00452, 
UNC5B-AS1, AC009093.1, and HOXC-AS2). Among 

Fig. 7. Identification of AL354993.1 as a potential biomarker for glioblastoma. A. The expression of immune-related long noncoding ribonucleic acids 
(ir-lncRNAs) between normal (n = 20) and tumor samples (n = 140) in the Chinese Glioma Genome Atlas (CGGA) dataset (parametric test and the Mann–
Whitney U test); B. Survival analysis of patients divided by low and high AL354993.1 expression in the CGGA dataset; C. The expression of AL354993.1 
between IDH1-wild type (wt) (n = 100) and IDH1-mutation (Mut) (n = 40) patients in the CGGA dataset (Mann–Whitney U test). D. The expression 
of AL354993.1 between 1p/19q-codeleted (n = 12) and 1p/19q-noncodeleted (n = 128) patients in the CGGA dataset (Mann–Whitney U test); E. Gene set 
enrichment analysis between low and high AL354993.1 expression group in the CGGA dataset; F. The expression of chemokines between low (n = 70) and 
high (n = 70) AL354993.1 expression group (parametric test and Mann–Whitney U test)
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these, LEF1-AS1 was found to be related to the malignant 
growth of GBM through increased EN2 by mir-543 via 
sponge absorption.23 Besides, CHRM3-AS2, an immune-
associated lncRNA, has been recognized as a prognostic 
risk factor for ovarian cancer and cholangiocarcinoma.24,25 
The LINC00452 has been shown to promote ovarian can-
cer by inhibiting ubiquitin-mediated degradation through 
sponge absorption of  mir-501-3p, thereby increasing 
ROCK1.26 Meanwhile, UNC5B-AS1 is involved in liver ma-
lignancy, prostate tumors and colorectal malignancy.27,28 
By mixing with HOXC13, HOXC-AS2 regulates the growth, 
cell death and migration of non-small cell lung tumors.29 
The roles of these ir-lncRNAs in GBM are worthy of fur-
ther investigation.

The coefficient was determined by employing multi-
variate Cox analysis, and a risk score model was developed 
to categorize GBM individuals into high- and reduced-
risk cohorts. We discovered that the elevated-risk cohort 
had a  lower OS rate and that the risk score model was 
beneficial in anticipating GBM prognosis. We also devel-
oped a nomogram that included sex, age and risk score. 
The nomogram demonstrated excellent predictive per-
formance when calibration and ROC curves were plot-
ted. Since these ir-lncRNAs have independent prognostic 
value in GBM OS, the risk prediction model constructed 
by these ir-lncRNAs also showed strong prognostic value. 
Therefore, we believe that monitoring these ir-lncRNAs 
by liquid biopsy or tumor tissue collection for GBM risk 
and prognosis assessment is a promising strategy.

Functional enrichment analysis was conducted to in-
vestigate the probable function and role of the 10 lncRNAs 
in GBM formation. They were shown to be connected 
with immune-related activities, including chemokine-
related mechanisms, the JAK-STAT signaling pathway, 
cytokine-related mechanisms, and immune cell activa-
tion-related pathways, according to GO and KEGG en-
richment assessment. Additionally, they were connected 
to the stimulation of immune-related mechanisms, such 
as the Toll-like receptor pathway, the TNF signaling path-
way and NF-ĸB signaling. To further explore the poten-
tial impact of  the  10  ir-lncRNAs on  GBM immunity, 
we examined the relationship between risk score and 
immune cell infiltration in GBM tissues. The outcomes 
demonstrated that CD8+ T cells, neutrophils, macro-
phages and myeloid dendritic cells were substantially 
positively correlated with the risk score. The relation-
ship between risk scores and chemokines was also in-
vestigated, with the raised-risk cohort related to a higher 
chemokine expression.

Immunological checkpoint blocking has become one 
of the frontiers of cancer immunotherapy,30 and we dis-
covered that the risk score was substantially associated 
with immunological checkpoint expression. The ESTI-
MATE and TIDE scores also verified the relationship be-
tween risk score and immune microenvironment. Muta-
tions in the IDH1 gene are commonly found in GBM, with 
the product of this mutated enzyme having a novel ability 
to catalyze the production of 2-hydroxyglutarate, while 
IDH1 mutations are shown to be associated with more 
favorable survival outcomes.31 In addition, 1p/19q code-
letion suggested a better prognosis.32 We found higher 
rates of IDH1 mutation and 1p/19q codeletion in GBM 
individuals with reduced risk scores, while no mutations 
were found in the raised-risk cohort. These results may be 
the reason underlying the prognostic value of risk scores. 
Furthermore, investigation is still required to fully under-
stand the precise pathway of the 10 ir-lncRNAs in GBM.

Among the  10  lncRNAs, we  found that only 2  were 
significantly highly expressed in GBM compared with 
normal controls, namely LEF1-AS1 and AL354993.1, 
of which AL354993.1 has not been reported. We found 
that AL354993.1 had significant prognostic value in GBM 
and was also associated with the tumor immune micro-
environment. In addition, AL354993.1 was closely related 
to IDH1 mutation and other clinicopathological factors. 
Gene enrichment results suggested that AL354993.1 may 
promote GBM progression through the JAK-STAT path-
way, the ECM interaction pathway, chemokine pathways, 
and cytokine receptor binding pathways.

Limitations

There were some restrictions to this analysis since it was 
retrospective and dependent on open-access databases. 
Thus, more prospective clinical data are required for 

Table 7. The expression of chemokines between low- and high- 
AL354993.1 expression groups

Gene

Gene expression

p-valuelow expression 
(n = 70)

high 
expression 

(n = 70)

cCL2 5.46 ±2.11 6.82 ±1.87 9.74E-05

CCL5 2.35 ±1.10 3.18 ±1.15 2.58E-05

CCL17 0.21 ±0.27 0.28 ±0.35 1.56E-01

CCL20 0.91 ±1.29 1.70 ±1.95 5.45E-03

CCL22 0.20 ±0.19 0.24 ±0.21 2.49E-01

CCR2 0.49 ±0.47 0.98 ±0.69 2.76E-06

CCR4 0.16 ±0.19 0.40 ±0.42 1.95E-05

CCR5 1.28 ±0.78 1.89 ±0.84 1.31E-05

CCR6 0.21 ±0.22 0.34 ±0.33 4.99E-03

CCR7 0.43 ±0.36 0.80 ±0.51 2.94E-06

CX3CL1 4.44 ±0.79 4.20 ±0.71 5.55E-02

CX3CR1 3.94 ±1.49 3.49 ±1.57 8.56E-02

CXCL12 3.28 ±0.99 3.86 ±1.24 2.61E-03

CXCL16 5.13 ±1.03 5.57 ±0.96 9.31E-03

CXCR4 4.58 ±1.16 5.48 ±1.09 6.21E-06

CXCR6 0.49 ±0.48 0.95 ±0.72 2.17E-05

Values in bold are statistically significant.
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validation and future clinical applications. On the other 
hand, the effect of AL354993.1 was only analyzed using 
a database and should be verified by a series of wet experi-
ments in the future.

Conclusions

Through the joint analysis of multiple public databases, 
we screened 10 key ir-lncRNAs in GBM and used them 
to construct risk-scoring models and promote the de-
velopment of  novel GBM biomarkers. In  conclusion, 
the 10 ir-lncRNAs have the potential to predict the GBM 
prognosis and may play a vital role in the progression 
of GBM.
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risk score of TCGA-GBM (A) and CGGA (B) cohort.
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between IDH1-wild type (n = 100) and IDH1-mutation 
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Supplementary Table 6. The expression of  immune-
related lncRNAs between normal and tumor samples 
in the CGGA dataset (Fig. 7A).

Supplementary Table 7. The expression of AL354993.1 
between IDH1-wild type and IDH1-mutation patients 
in the CGGA dataset (Fig. 7C).

Supplementary Table 8. The expression of AL354993.1 
between 1p/19q-codeleted (n = 12) and 1p/19q-noncode-
leted (n = 128) patients in the CGGA dataset (Fig. 7D).
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between low and high AL354993.1 expression group 
(Fig. 7F).
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