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Abstract

Background. Glioblastoma (GBM) is the most common cause of primary brain malignancy. Recently,
many immune-related long noncoding ribonucleic acids (ir-IncRNAs) are indicated to be closely related
to the requlation of the immune microenvironment and immune cell infiltration of GBM.

Objectives. Through the joint analysis of multiple public databases, key ir-IncRNAs in GBM were screened.
The ir-IncRNAs were used to construct risk-scoring models and promote the development of novel GBM
biomarkers.

Materials and methods. In this study, we performed a three-way Venn analysis combined with a least
absolute shrinkage and selection operator (LASSO) regression analysis on all INcRNAs in The Cancer Genome
Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA) and Imm-Lnc datasets, and identified 10 ir-IncRNAs.
Multivariate Cox analysis was used to calculate the coefficient and construct a risk-scoring model.

Results. By plotting calibration curves and receiver operating characteristic (ROC) curves, the model showed
excellent prediction results. Based on the Tumor Immune Estimation Resource (TIMER) database, the cor-
relation analysis showed that 10 ir-IncRNAs risk scores were related to immune cell infiltration. The enrich-
ment analysis was subsequently performed, which showed that these ir-IncRNAs played an important role
in the progression of GBM. Among the 10 IncRNAs, we found that AL 354993.7 was highly expressed in GBM,
had not been reported, and was shown to be closely related to GBM progression.

Conclusions. In conclusion, the 10 ir-IncRNAs have the potential to predict the prognosis of GBM patients
and may play a vital role in the progression of the disease.
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Background

The most aggressive primary brain malignancy origi-
nates from oligodendrocyte or astrocyte precursor cells
and is known as glioblastoma (GBM). Although accurate
surgical resection, radiation and adjuvant chemotherapy are
now the conventional treatments for GBM, the prognosis
is still poor, and the median survival is just 8—15 months.!
Immunomodulatory therapy is a new and effective treat-
ment option.? The stemness features of GBM are strictly
connected to immune infiltration,® meaning neoadjuvant
anti-programmed cell death protein 1 (PD-1) checkpoint
blocking immunotherapy might improve the prognosis
of properly selected GBM patients.* However, GBM often
exhibits severe local immunosuppression, which limits
the efficacy of immunotherapy strategies.® To further ex-
plain the mechanisms of immune regulation in GBM and
offer a theoretical basis for GBM immunological treatment,
we evaluated effective immune-related prognostic factors
and constructed a prognostic model for GBM patients.

Long noncoding ribonucleic acids (IncRNAs) are a group
of transcripts with a length of more than 200 nt that primar-
ily function as regulators rather than protein-coding genes.®
The IncRNAs perform their biological functions in a variety
of ways, including alternative splicing, transcription regula-
tion, messenger RNA (mRNA) stability maintenance, chro-
matin modification, functional micropeptides, and interac-
tion with proteins or small RNAs.”~® The IncRNAs are also
crucial for GBM progression. The IncRNA HNF1A-AS1 was
shown to drive GBM progression through the microRNA
(miR)-22-3p/alpha-enolase 1 (ENOL1) axis.!” Indeed, IncRNA
miR155HG has been shown to promote GBM progression
by upregulating annexin A2 (ANXA2) as a competing en-
dogenous RNA (ceRNA) of the tumor suppressor miR-185.1!

Immune-related IncRNAs (ir-lncRNAs) are involved
in regulating the GBM immune microenvironment and
have unique prognostic value. According to reports, IncRNA
AC003092.1 is connected to the immunosuppressive en-
vironment in GBM.12 Moreover, maternally expressed 3
(MEGS3) levels are negatively associated with dendritic cell
infiltration and positively correlated with infiltrating CD8*
T cells. The survival of GBM patients was also significantly
correlated with the degree of MEGS3 variation in copies.'®
The heat shock protein family A member 7 (HSPA7) IncRNA
was found to promote macrophage recruitment to the GBM
tumor microenvironment and had a great prognostic value.!*
However, few investigations have established prognostic
models based on the identification of ir-IncRNAs in GBM.

Objectives

The ir-IncRNAs obtained from the Chinese Glioma Ge-
nome Atlas (CGGA; http://www.cgga.org.cn/) and The Can-
cer Genome Atlas (TCGA; https://www.cancer.gov/ccg/re-
search/genome-sequencing/tcga) were examined. The clinical
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prognostic model of GBM was developed after the least ab-
solute shrinkage and selection operator (LASSO) algorithm
identified the most critical IncRNAs. Additionally, the un-
derlying pathway of ir-IncRNAs in GBM was investigated.

Materials and methods
Data and resources

Both TCGA-GBM (n = 166) and CGGA cohorts (n = 140)
were used as public transcriptome datasets in our analy-
sis.!> Any case with a survival information null value was
eliminated. The UCSC Xena database was used to retrieve
the clinical information and fragments per kilobase per
million (FPKM) data for the TCGA-GBM cohort (https://
xenabrowser.net/). Transcripts per kilobase million (TPM)
values were obtained from all FPKM data. The RNA-se-
quencing (RNA-seq) data of 140 specimens were retrieved
from the CGGA data collection in addition to the clinical
data for use as a validation set. The TCGA database pro-
vided gene mutation data (MAF files) for the TCGA-GBM
group. The proportional hazards assumption test, linear-
ity assumption test and multicollinearity test assessed
the TCGA and CGCA cohorts (Supplementary Fig. 1-3).

Detection of immune-related IncRNA
prognostic signature

The ImmLnc database (http://bio-bigdata.hrbmu.edu.cn/
ImmReg/index.jsp) has collected 3115 GBM ir-IncRNAs.'
By evaluating the intersection of IncRNAs among the TCGA,
CGGA and ImmLNC datasets, we selected ir-IncRNAs.
To prevent overfitting and examine the ideal ir-IncRNA
signature for estimating the overall survival of GBM indi-
viduals, the LASSO was selected. The LASSO regression
analysis was performed using the “glmnet” R program. Every
sample’s risk score was determined from the formula: risk
score = expression value of IncRNA 1 x coefficient + expres-
sion value of IncRNA 2 x coefficient + ... + expression value
of IncRNA n x coefficient. Then, depending on the middle
threshold of the risk score, GBM patients were allocated
into elevated- and reduced-risk cohorts. The “Survival”
program of R software’s area under the curve (AUC) func-
tion was employed to verify the specificity and sensitivity
of the immune-related signature.

Nomogram

To anticipate the 1-, 2- and 3-year survival rates, a no-
mogram was developed after the independent prognostic
parameters were identified. Receiver operating characteris-
tic (ROC) curves were employed to assess the effectiveness
of the model. Additionally, calibration plots were shown
utilizing the rms tool to compare the model-predicted sur-
vival with the actual survival probability.


http://www.cgga.org.cn/
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Gene set enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG;
https://www.genome.jp/kegg/) and Gene Ontologygy (GO;
https://geneontology.org/) mechanisms that positively re-
lated to elevated- or reduced-risk scores were investigated
using gene set enrichment analysis (GSEA; https://www.
gsea-msigdb.org/gsea/index.jsp). Molecular Signatures Da-
tabase gene sets were obtained. Typically, 1000 permuta-
tions were used in the analysis, and pathways with a false
discovery rate (FDR) of less than 0.25 were detected.

Estimation of cancer immune
microenvironment

The Tumor Immune Estimation Resource (TIMER)
(timer.cistrome.org/) platform!” was employed to inves-
tigate the connections between risk score and immune
infiltrates, such as B cells, CD8* T cells, CD4* T cells,
macrophages, neutrophils, and dendritic cells, as demon-
strated by the purity-corrected partial Spearman approach.
Depending on gene expression patterns, the Estimation
of STromal and Immune Cells in MAlignant Tumor tis-
sues using Expression data (ESTIMATE) program evalu-
ated the stromal scores and immune scores.!® In addition,
we utilized the tumor immune dysfunction and exclusion
(TIDE algorithm; http://tide.dfci.harvard.edu/) to evaluate
each participant’s potential reaction to immune check-
point inhibitor (ICI) treatment.'”

Statistical analyses

The TCGA-GBM cohort contains 166 tumor samples
from patients with GMB, while the CGGA cohort includes
140 tumor samples from patients with GMB and normal
tissue from 20 patients. For the TCGA-GBM cohort, we di-
vided patients into 2 groups based on the risk score: high-
risk group (n = 83) and low-risk group (n = 83). In addition,
we used the TIDE algorithm to predict the responsiveness
of patients in the TCGA-GBM cohort to immunotherapy,
with 48 patients evaluated as responders and 120 evaluated
as non-responders. According to isocitrate dehydrogenase
1 (IDH1) mutation status, patients in the CGGA cohort
were divided into 2 groups: wild-type (wt) group (n = 100)
and mutant (mut) group (n = 40). Based on the co-deletion
status of x1p19q, patients in the CGGA cohort were di-
vided into 2 groups: Non_codel group (n = 128) and codel
group (n = 12). Additionally, patients in the CGGA cohort
were divided into 2 groups based on the expression level
of AL354993.1: low-expression group (n = 70) and high-
expression group (n = 70).

Continuous variables were tested for normality us-
ing Kolmogorov—Smirnov or Shapiro—Wilk tests. When
the sample size was <50, the Shapiro—Wilk test was em-
ployed. Otherwise, the Kolmogorov—Smirnov test was
used. The variables were considered to conform to a normal
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distribution when p > 0.05. When performing a difference
analysis for 2 sets of variables, an F-test was used to evalu-
ate the homogeneity of variance between the 2 groups.
The variance between the 2 variables was considered equal
when p > 0.05. The results of the tests assessing the as-
sumptions are provided in Supplementary Tables.

When the variables conformed to a normal distribu-
tion and the variance was equal, Student’s t-test was
used to compare between-group differences. If at least
one of the assumptions was violated, the Mann—Whit-
ney U test was used to compare the differences between
the groups. For Student’s t-test, we also calculated the test
values and degrees of freedom (df). For the Mann—Whitney
U test, we calculated the U and Z values. The x? or Fisher’s
exact tests were used to compare the differences between
the groups for categorical variables. When the total sam-
ple size was >40 and the minimum theoretical frequency
was >5, the x? test was used. When the total sample size
was >40 and 5>, and the minimum theoretical frequency
was >1, the corrected x? test was used. If the total sam-
ple size was <40 or the minimum theoretical frequency
was <1, Fisher’s exact test was used. The results of tests as-
sessing the differences between the groups are presented
in tabular form and illustrated using box-and-whisker
plots, which contain 5 lines representing the estimated
maximum upper quartile (Qu), median lower quartile
(Qu), and estimated minimum of the data from top to bot-
tom. Outliers were defined as a value greater than Qu +
1.5 x QR or less than Q; — 1.5QR, where QR = Qu — Q.

The Cox proportional hazards model was used to evaluate
the impact of clinical parameters on patient survival time.
In terms of parameter selection, we evaluated the clinical
parameters common to both TCGA and CGGA cohorts,
and age and gender were included in both. Therefore, we in-
cluded 3 parameters: patient age, gender and the risk score
calculated using the Cox regression model. First, we per-
formed the proportional hazards assumption test on all
3 parameters (Supplementary Fig. 1). When the Schoenfeld
individual test p-value was less than 0.05, the proportional
hazards assumption was considered valid. For the continu-
ous parameters, age and risk score, we performed a linearity
assumption test (Supplementary Fig. 2) and a multicol-
linearity test (Supplementary Fig. 3). When the fitted curve
was approximately linear, the linearity assumption was
considered valid. When the p-value of the correlation was
less than 0.05, these 2 parameters were considered to have
no multicollinearity. For each Cox regression result, we cal-
culated Harrell’s compliance index as the goodness-of-fit.

The sample size is labeled in the figure legends. The Ka-
plan—Meier technique (R package survival) was employed
to create overall survival (OS) curves, and the log-rank test
was used to assess alterations between the curves. This
study used p < 0.05 as a statistically significant criterion.
Statistical analyses employed R 3.6.2 (R Foundation for
Statistical Computing, Vienna, Austria) and IBM SPSS
v. 26.0 for Windows (IBM Corp., Armonk, USA).
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Results

Determination of ten survival-related
ir-IncRNAs in GBM

There were 14,038 IncRNAs in the TCGA-GBM da-
tabase, 1,082 IncRNAs in the CGGA database and 3,175
ir-IncRNAs in the ImmLnc database. After three-way
Venn analysis, 276 ir-IncRNAs that coexisted in all 3 da-
tabases were identified (Fig. 1A). To further screen for
effective prognostic markers, we used LASSO regres-
sion to finally select 10 ir-IncRNAs associated with GBM
prognosis, namely CHRM3-AS2, LEF1-AS1, AL354993.1,
AC034243.1, LINC00452, NDUFB2-AS1, LINC00571,
UNC5B-AS1, AC009093.1, and HOXC-AS2 (Fig. 1B,C).

G. Zheng et al. Immune-related IncRNAs are critical in GBM

The Kaplan—Meier examination indicated that elevated
expression of each ir-IncRNA was substantially related
to poorer OS in the TCGA database, except for NDUFB2-
ASI and LINC00571 (Fig. 1C).

Progression and validation
of the ten survival-related ir-IncRNA
signatures for survival anticipation

Based on the multivariate Cox regression model,
the above 10 ir-LncRNAs were integrated to create a risk
score model in the TCGA database. In the TCGA, the Ka-
plan—Meier examination revealed that OS was consider-
ably poorer in raised-risk participants than in decreased-
risk individuals (p < 0.0001, Fig. 2A). The risk scores and

Fig. 1. Identification of 10 survival-related immune long noncoding ribonucleic acids (IncRNAs) in glioblastoma. A. Venn diagram illustrates that 276 IncRNAs
were shared among 3 datasets; B. Distribution of least absolute shrinkage and selection operator (LASSO) coefficients for 276 immune-related IncRNAs; C. Partial
likelihood deviation of the LASSO coefficient distribution. Vertical dashed lines indicate lambda.min and lambda.lse; D. The Kaplan—Meier survival curves
comparing overall (OS) survival between high- and low-expression groups of the selected immune-related INcCRNAs in The Cancer Genome Atlas (TCGA) dataset

CGGA - Chinese Glioma Genome Atlas.
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survival status of every GBM specimen were represented
by the risk curve and scatterplot, respectively. The sam-
ples in the elevated-risk group had greater risk ratings
and mortality rates than those in the reduced-risk cohort
(Fig. 2C).

The ROC analysis revealed that the AUC for 1-, 2- and
3-year survival were 0.716, 0.803 and 0.852, respectively
(Fig. 2E). Therefore, the risk score model constructed us-
ing the 10 ir-IncRNAs was effective in predicting GBM
prognosis. Additionally, we developed and assessed the risk
score model using the CGGA database as the validation set
and acquired comparable outcomes (Fig. 2B,D,F).

Establishment and evaluation

of nomograms by the risk scores and

the prognostic value of medical variables
A univariate Cox regression examination was con-

ducted to determine whether the risk score model for
the 10 ir-IncRNAs and GBM-related clinical variables
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Fig. 2. Development and
validation of 10 survival-
related immune long
noncoding ribonucleic
acids (IncRNA) signatures
for survival prediction.

The Kaplan—-Meier survival
analysis of high-risk and
low-risk patients divided

by the medium value in The
Cancer Genome Atlas (TCGA)
(A) and Chinese Glioma
Genome Atlas (CGGA) (B)
datasets. The distribution

of risk scores, survival time
and status of patients

in TCGA (C) and CGGA (D)
datasets. Receiver operating
characteristic (ROC) analysis
of the prognostic signatures
to predict 1-, 2- and 3-year
overall survival (OS) in TCGA
(E) and CGGA (F) datasets

were prognostic factors. The results indicated that risk
scores (p < 0.001; hazard ratio (HR) = 13.68) and pa-
tient age (p < 0.001; HR = 1.02) were strongly correlated
with OS in the TCGA database (Fig. 3A). The CGGA
database was also used as a validation set for univariate
Cox regression analysis, and the ir-IncRNA model was
found to be a substantial risk factor for GBM individu-
als (Fig. 3B).

The nomogram with age, gender and risk score
was developed for the prediction of patient prognosis
in the TCGA dataset. We collected survival information
from all patients to anticipate the 1-, 2- and 3-year OS
(Fig. 3C). The calibration curve of the 1-, 2- and 3-year
OS showed that the nomogram had excellent prognostic
value (Fig. 3E). The AUC of the 1-, 2- and 3-year OS were
0.79, 0.82 and 0.91, respectively, according to the ROC
curve analysis (Fig. 3F). Similar prediction outcomes were
achieved in the CGGA validation set, supporting the no-
mogram’s effective prediction ability over the risk score
model (Fig. 3D,G,H).
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Fig. 3. Establishment and evaluation of nomograms using risk scores and the prognostic value of clinical variables. A. Univariate Cox analysis showed
that risk scores and age were significantly related to overall survival (OS) in The Cancer Genome Atlas (TCGA) dataset using Harrell's compliance index
(Gindex) as the goodness-of-fit. For the TCGA cohort, the Gindex was 0.69 (95% confidence interval (95% Cl): of 0.64-0.73), and for the Chinese Glioma
Genome Atlas (CGGA cohort), the Gindex was 0.6 (95% Cl: 0.54-0.65); B. Univariate Cox analysis showed that risk scores and age were significantly
related to OS in the CGGA dataset; C. Development of the nomograms for the prediction of patient prognosis in the TCGA dataset; D. Development

of the nomograms for the prediction of patient prognosis in the CGGA dataset; E. The calibration curve for 1-, 2- and 3-year OS of the nomogram

in the TCGA dataset; F. Receiver operating characteristic (ROC) curves displayed the area under the curve (AUC) for 1-, 2- and 3-year OS in the TCGA
dataset; G. The calibration curve for 1-, 2- and 3-year OS of the nomogram in the CGGA dataset; H. ROC curves displayed the AUC of 1-, 2- and 3-year OS

in the CGGA dataset

Enrichment analysis identified
ir-IncRNA-related biological functions
and signaling pathways in GBM

Based on the risk score, GBM participants in the TCGA
were separated into elevated- and reduced-risk cohorts.
Gene ontology and KEGG enrichment analysis were then
performed on the genes that were differently expressed
between the 2 groups. The outcomes of KEGG enrichment
investigations revealed that the differentially expressed

genes were primarily related to the activation of innate im-
mune response, cellular responses to chemokines, collagen
binding, cytokine secretion, humoral immune responses,
the Janus kinase (JAK)-signal transducer and activator
transcription (STAT) cascade, leukocyte migration, mac-
rophage activation, modulation of lymphocyte activity,
and T cell activation (Fig. 4A). According to the outcomes
of the GO enrichment analysis, these genes primarily
participated in the signaling pathways for cell adhesion
molecules, chemokine signaling, cytokine—cytokine
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receptor interactions, JAK-STAT signaling, natural killer
cell-mediated cytotoxicity, nuclear factor-kappa B (NF-kB)
signaling, nod-like receptor signaling, T helper (Th)17 cell
differentiation, tumor necrosis factor (TNF) signaling,
and toll-like receptor signaling (Fig. 4B). The knowledge
of the underlying pathways involving these ir-IncRNAs
in the development and progression of GBM was deep-
ened by these enriched biological processes and signaling
mechanisms.
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Fig. 4. Gene set
enrichment analysis
between high-risk

and low-risk groups

in the Kyoto Encyclopedia
of Genes and Genomes
(KEGG) and gene ontology
(GO) datasets

The ir-IncRNAs-related risk score
was correlated with the GBM immune
microenvironment

To additionally explore the function of the 10 ir-In-
cRNAs in the immune microenvironment, the TIMER
database was used to examine the connection between
the risk score and various infiltrating immune cell sub-
populations in GBM. It was shown that the risk score
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Fig. 5. The immune risk score was correlated with the tumor immune microenvironment. A. The correlation between risk score and immune cell infiltration;
B. The expression of chemokines between low- (n = 83) and high-risk groups (n = 83) (parametric test and the Mann-Whitney U test). The difference

in immune score (parametric test) (C), stromal score (parametric test) (D), and Estimation of STromal and Immune Cells in Malignant Tumor tissues using
Expression data (ESTIMATE) score (Mann-Whitney U test) (E) between low- (n = 83) and high-risk groups (n = 83); F. Assessment of associations between risk
scores and commonly used immunological checkpoints; G. Tumor immune dysfunction and exclusion (TIDE) scores between high- (n = 83) and low-risk group
(n = 83); H. Comparison of the risk scores between immunotherapy responders (n = 48) and non-responders (n = 118) predicted with TIDE (parametric test)

was closely related to the infiltration of CD8* T cells,
neutrophils, macrophages, and myeloid dendritic cells,
with correlation coefficients of 0.24, 0.25, 0.27, and 0.24,
respectively (Fig. 5A). It is well-known that chemokines
efficiently control immune cell infiltration in malignan-
cies. The expression of 16 immune-related chemokines
recognized to be linked with GBM development was com-
pared in elevated- and low-risk tissues to further examine
the relationship between risk scores and chemokine secre-
tion. The outcomes demonstrated that 14 chemokines were
differentially expressed (chemokine ligand (CCL)2, CCLS5,
CCL17,CCL20, CCL22, CCR2, CCR4, CCR5, CCR6, CCR7,

CXC motif chemokine ligand (CXCL)12, CXCL16, CXC
motif chemokine receptor (CXCR)4, and CXCR6) (Fig. 5B,
Table 1 and Supplementary Table 1).

Further calculations of the GBM patients’ immunologi-
cal, stromal and ESTIMATE scores in the TCGA dataset
indicated that the immune score of the reduced-risk co-
hort was much less than that of the elevated-risk cohort
(Fig. 5C-E, Table 2 and Supplementary Table 2). A strong
association between the risk score and commonly em-
ployed immunological checkpoints was determined us-
ing Pearson’s correlation analysis, indicating that the risk
score may have implications for immunotherapy (Fig. 5F).
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Table 1. The expression of chemokines between low- and high-risk groups

Gene expression

low risk high risk

(n=83) (n=83)
a2 5.84 £1.66 6.96 +£1.46 9.00E-06
ccLs 333+1.02 4.06 +£1.01 9.00E-06
ccLiz 0.83 +£0.60 1.10 £0.95 2.80E-02
CcL2o0 1.58+1.25 2344173 1.40E-03
ccL22 0.54 +£0.39 0.74 £0.63 1.40E-02
CCR2 0.74 £0.57 144 £0.97 7.34E-08
CCR4 0.29 +£0.22 0.59 +£0.54 7.00E-06
CCR5 231097 292 +0.79 1.60E-05
CCR6 0.02 +0.02 0.03 +£0.04 8.16E-04
CCR7 0.73 +044 1.17£0.70 4.00E-06
CX3CLT 5.35+0.83 531+0.72 7.28E-01
CX3CR1 545 +1.41 576 £1.21 1.28E-01
cxcLi2 3.24+£1.10 3.82£1.19 1.11E-03
CXCL16 6.60 +0.86 6.94 +0.57 2.97E-03
CXCR4 6.48 £0.97 6.74 £0.75 4.79E-02
CXCR6 0.59+0.50 1.03 £0.65 3.00E-06

Values in bold are statistically significant.
Table 2. The difference of immune score, stromal score, ESTIMATE score,
and TIDE score

Value

low risk (n = 83) high risk (n = 83)

Score items

p-value

Immune score —-318.36 +453.26 113.18 £556.25 6.00E-06
Stromal score 499.02 £700.96 993.86 £659.55 1.58E-07
ESTIMATE score 180.66 £1107.5 1107.04 £1171.6 5.00E-07
TIDE score 1.06 +0.46 0.09 +0.83 333E-16

ESTIMATE - Estimation of STromal and Immune Cells in Malignant Tumor
tissues using Expression data; TIDE — tumor immune dysfunction and
exclusion.

To further anticipate the reaction of GBM to immunother-
apy, we used the TIDE algorithm. A high TIDE score means
that the likelihood of responding to immunotherapy is low.
According to the findings, individuals with elevated-risk
GBM had reduced TIDE scores and were more likely to re-
act to immunotherapy (Fig. 5G,H, Table 2,3 and Supple-
mentary Table 2). The previous findings demonstrated
that the risk score associated with ir-IncRNAs was strongly
connected to the GBM immune microenvironment, and
it was anticipated that this relationship might be helpful
in targeting future GBM immunotherapy.

Alterations in the mutation landscape
between elevated- and low-risk groups

Tumor somatic mutation of commonly mutated genes
was profiled in GBM elevated-risk and reduced-risk co-
horts. Most mutated genes, including TP53, PTEN, TTN,
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Table 3. Comparison of the risk scores between immunotherapy
responders (n = 48) and non-responders (n = 118) predicted with TIDE

Score items NES Risk score p-value
non-responder
(h=118) 044 £0.23
TIDE score q 1.10E-02
responder
(n = 48) 061 +0.22

TIDE - tumor immune dysfunction and exclusion.

Table 4. Different risk scores divided by IDHT mutation
and 1p/19q codeletion

Mutation Status Risk score p-value
wt (n = 100) 045 +0.24

IDHT mutation 8.29E-09
mut (n = 40) 0.17 £0.22
Non_Codel (n = 128) 0.38 +0.26

1p/19q codeletion 2.23E-02
Codel (n=12) 0.20 +0.24

wt — wild type; mut — mutant.

EGFR, MUCI6, SPTA1, NF1, RYR2, and FLG, had high
rates of somatic mutations in both raised- and reduced-
risk groups. In particular, somatic mutation rates for RBI,
HYDIN, ATRX, and IDHI were greater in the low-risk
cohort (Fig. 6A,B). Notably, ATRX and IDH1 did not have
somatic mutations in the raised-risk cohort in the TCGA
dataset (Fig. 6C,D). In the CGGA dataset, the patterns
of risk scores for IDHI1 mutation and 1p/19q codeletion
stats were identified. According to the findings, those
with IDHI mutations had considerably lower risk scores
than individuals with IDHI wild type (Fig. 6E, Table 4 and
Supplementary Table 4). Participants who had a Ip/19g
codeletion also had a lower risk score than patients who
did not have a codeletion (Fig. 6F, Table 4 and Supple-
mentary Table 5).

Table 5. The expression of immune-related INcRNAs between normal
and tumor samples in the CGGA dataset

Gene expression

normal (n = 20)

IEF1-AST 0.126 £0.131 1.008 £1.196 3.20E-14
HOXC-AS2 0.011 +£0.036 0.335+0.630 1.63E-08
AL354993.1 0.601 £0.463 1.717 £2.179 5.86E-07
NDUFB2-AST 0491 +£0.171 0.570+0.320 9.70E-01
AC034243.1 0.372 +0.683 0.438 +0.726 6.99E-01
UNC5B-AST 0.877 £0.567 0.529 +0.693 4.82E-02
LINC00571 0.158 £0.253 0.238 +0.379 2.37E-01
CHRM3-AS2 0.062 +0.060 0.086 +0.111 1.44E-01
LINC00452 0.020 +£0.025 0.094 +£0.247 4.17E-02
AC009093.1 0.037 +£0.030 0.052 +0.065 7.99E-02

INncRNAs - long noncoding ribonucleic acids; CGGA - Chinese Glioma
Genome Atlas. Values in bold are statistically significant.
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Fig. 6. Differences in the mutation landscape between high- and low-risk groups. A. Oncoplots of tumor somatic mutations of frequently mutated genes
in the low-risk group; B. Oncoplots of tumor somatic mutations of frequently mutated genes in the high-risk group. Mutation rates of IDH1 (C) and ATRX (D)
were compared between low- and high-risk groups in The Cancer Genome Atlas (TCGA) dataset; E. The distribution of risk score between IDHI-wild type
(wt) (n =100) and /DHI-mutation (Mut) (n = 40) patients in the Chinese Glioma Genome Atlas (CGGA dataset) (Mann-Whitney U test); F. The distribution

of risk score between 1p/19g-codeleted (n = 12) and Tp/19g-noncodeleted (n = 128) patients in the CGGA dataset (Mann-Whitney U test)

AL354993.1 was recognized as a potential
marker for GBM

The expression of 10 ir-IncRNAs was compared between
normal and tumor samples in the CGGA dataset. The LEFI-
ASI, HOXC-AS2 and AL354993.1 were found to be signifi-
cantly overexpressed in GBM (p < 0.0001), among which
AL354993.1 has not been reported (Fig. 7A, Table 5 and
Supplementary Table 6). The overexpression of AL354993.1
suggested a worse GBM prognosis (p = 0.029) (Fig. 7B). Fur-
thermore, the expression of AL354993.1 was lower in GBM
tissues with IDH1 but not with Ip19g mutations (Fig. 7C,D,
Table 6 and Supplementary Table 7,8). To discover the bio-
logical function of AL354993.1, GBM subjects in the CGGA
dataset were allocated into 2 cohorts with raised and de-
creased AL354993.1 expression, and a differential gene

analysis combined with GSEA enrichment was conducted.
The outcomes indicated that raised AL354993.1 expression
might indicate the activation of the JAK-STAT pathway,
the extracellular matrix (ECM) receptor interaction path-
way, chemokine signaling mechanisms, and cytokine—cy-
tokine receptor interaction mechanisms (Fig. 7E). Hence,

Table 6. The different expression of AL354993.1 divided by IDH1 mutation
and 1p/19q codeletion

Mutation NEWS | Risk score | p-value
wt (n=100) 1.32 £0.0.96
IDHT mutation 3.00E-05
mut (n = 40) 0.72 £0.62
Non_Codel (n = 128) 1.17 +0.91
1p/19q 193E-01
codeletion Codel (n=12) 0.99 +0.98

wt — wild type; mut - mutant.
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Fig. 7. Identification of AL354993.1 as a potential biomarker for glioblastoma. A. The expression of immune-related long noncoding ribonucleic acids
(i-IncRNAs) between normal (n = 20) and tumor samples (n = 140) in the Chinese Glioma Genome Atlas (CGGA) dataset (parametric test and the Mann-
Whitney U test); B. Survival analysis of patients divided by low and high AL354993.1 expression in the CGGA dataset; C. The expression of AL354993.1
between IDHI-wild type (wt) (n = 100) and IDHI-mutation (Mut) (n = 40) patients in the CGGA dataset (Mann-Whitney U test). D. The expression

of AL354993.1 between 1p/19g-codeleted (n = 12) and 1p/19g-noncodeleted (n = 128) patients in the CGGA dataset (Mann-Whitney U test); E. Gene set
enrichment analysis between low and high AL354993.1 expression group in the CGGA dataset; F. The expression of chemokines between low (n = 70) and
high (n = 70) AL354993.1 expression group (parametric test and Mann-Whitney U test)

the relationship between AL354993.1 expression and che-
mokine secretion were further explored. The expression
of 16 chemokines known to be associated with GBM pro-
gression was examined in reduced- and elevated-expression
groups. The results showed that 13 chemokines were dif-
ferentially expressed (CCL2, CCL5, CCL17, CCL20, CCR2,
CCR4, CCR5, CCR6, CCR7, CXCL12, CXCLI16, CXCR4,
CXCR6) (Fig. 7F, Table 7 and Supplementary Table 9). These
outcomes indicate that AL354993.1 is related to GBM pro-
gression and might be a potential GBM biomarker.

Discussion

Glioblastoma multiforme is one of the most common
primary brain tumors, and survival rates are low despite
extensive treatment options (surgical resection, radio-
therapy and adjuvant chemotherapy).?® In recent years,
many studies carried out on immunotherapy for GBM

have failed to achieve ideal results due to the heterogene-
ity of GBM and the cancer immunosuppressive micro-
environment.??2 Numerous investigations have verified
that IncRNAs have a function in the modulation of GBM.
Several ir-IncRNAs have also been shown to be strongly
linked to the modulation of the immunological milieu
in GBM and the infiltration of immune cells.”' Therefore,
we created a medical prediction model using the TCGA
and CGGA datasets and evaluated the IncRNAs most rel-
evant to GBM to further examine the function of IncRNAs
in GBM prognosis.

In this investigation, we conducted a three-way Venn
examination of all IncRNAs in the TCGA, CGGA and Im-
mLnc datasets and found that 276 IncRNAs coexisted.
The LASSO regression analysis further identified 10 key ir-
IncRNAs, with the Kaplan—Meier analysis suggesting that
8 of the 10 were prognostic risk factors for GBM (CHRM3-
AS2, LEF1-AS1, AL354993.1, AC034243.1, LINC00452,
UNC5B-AS1, AC009093.1, and HOXC-AS2). Among
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Table 7. The expression of chemokines between low- and high-
AL354993.1 expression groups

Gene expression

low expression exphri:s:ion
(n=70) (n=70)

cCL2 546 £2.11 6.82 +£1.87 9.74E-05
CCLS 235+£1.10 3.18£1.15 2.58E-05
ccLiz 021 £0.27 0.28 £0.35 1.56E-01

CCL2o 091 £1.29 1.70 £1.95 5.45E-03
CCLz22 0.20 £0.19 0.24 £0.21 2.49E-01

CCR2 049 £047 0.98 £0.69 2.76E-06
CCR4 0.16 £0.19 040 £0.42 1.95E-05
CCRS 1.28 £0.78 1.89 £0.84 1.31E-05
CCR6 0.21 £0.22 0.34 +£0.33 4.99E-03
CCR7 043 £0.36 0.80 £0.51 2.94E-06
CX3CL1 444 £0.79 4.20 £0.71 5.55E-02
CX3CR1 3.94 £149 349 +1.57 8.56E-02
cXcLiz 3.28 £0.99 3.86 £1.24 2.61E-03
CXcLie 513 £1.03 5.57 +£0.96 9.31E-03
CXCR4 458 £1.16 548 £1.09 6.21E-06
CXCR6 049 £0.48 0.95 +0.72 2.17E-05

Values in bold are statistically significant.

these, LEFI-ASI was found to be related to the malignant
growth of GBM through increased EN2 by mir-543 via
sponge absorption.?* Besides, CHRM3-AS2, an immune-
associated IncRNA, has been recognized as a prognostic
risk factor for ovarian cancer and cholangiocarcinoma.?%2>
The LINC00452 has been shown to promote ovarian can-
cer by inhibiting ubiquitin-mediated degradation through
sponge absorption of mir-501-3p, thereby increasing
ROCK1.%6 Meanwhile, UNC5B-AS1 is involved in liver ma-
lignancy, prostate tumors and colorectal malignancy.?”28
By mixing with HOXC13, HOXC-AS2 regulates the growth,
cell death and migration of non-small cell lung tumors.?’
The roles of these ir-IncRNAs in GBM are worthy of fur-
ther investigation.

The coefficient was determined by employing multi-
variate Cox analysis, and a risk score model was developed
to categorize GBM individuals into high- and reduced-
risk cohorts. We discovered that the elevated-risk cohort
had a lower OS rate and that the risk score model was
beneficial in anticipating GBM prognosis. We also devel-
oped a nomogram that included sex, age and risk score.
The nomogram demonstrated excellent predictive per-
formance when calibration and ROC curves were plot-
ted. Since these ir-IncRNAs have independent prognostic
value in GBM OS, the risk prediction model constructed
by these ir-IncRNAs also showed strong prognostic value.
Therefore, we believe that monitoring these ir-IncRNAs
by liquid biopsy or tumor tissue collection for GBM risk
and prognosis assessment is a promising strategy.

G. Zheng et al. Immune-related IncRNAs are critical in GBM

Functional enrichment analysis was conducted to in-
vestigate the probable function and role of the 10 IncRNAs
in GBM formation. They were shown to be connected
with immune-related activities, including chemokine-
related mechanisms, the JAK-STAT signaling pathway,
cytokine-related mechanisms, and immune cell activa-
tion-related pathways, according to GO and KEGG en-
richment assessment. Additionally, they were connected
to the stimulation of immune-related mechanisms, such
as the Toll-like receptor pathway, the TNF signaling path-
way and NF-kB signaling. To further explore the poten-
tial impact of the 10 ir-IncRNAs on GBM immunity,
we examined the relationship between risk score and
immune cell infiltration in GBM tissues. The outcomes
demonstrated that CD8* T cells, neutrophils, macro-
phages and myeloid dendritic cells were substantially
positively correlated with the risk score. The relation-
ship between risk scores and chemokines was also in-
vestigated, with the raised-risk cohort related to a higher
chemokine expression.

Immunological checkpoint blocking has become one
of the frontiers of cancer immunotherapy,® and we dis-
covered that the risk score was substantially associated
with immunological checkpoint expression. The ESTI-
MATE and TIDE scores also verified the relationship be-
tween risk score and immune microenvironment. Muta-
tions in the IDHI gene are commonly found in GBM, with
the product of this mutated enzyme having a novel ability
to catalyze the production of 2-hydroxyglutarate, while
IDHI mutations are shown to be associated with more
favorable survival outcomes.3! In addition, 1p/19¢ code-
letion suggested a better prognosis.3? We found higher
rates of IDHI1 mutation and 1p/19q codeletion in GBM
individuals with reduced risk scores, while no mutations
were found in the raised-risk cohort. These results may be
the reason underlying the prognostic value of risk scores.
Furthermore, investigation is still required to fully under-
stand the precise pathway of the 10 ir-IncRNAs in GBM.

Among the 10 IncRNAs, we found that only 2 were
significantly highly expressed in GBM compared with
normal controls, namely LEFI-AS1 and AL354993.1,
of which AL354993.1 has not been reported. We found
that AL354993.1 had significant prognostic value in GBM
and was also associated with the tumor immune micro-
environment. In addition, AL354993.1 was closely related
to IDHI mutation and other clinicopathological factors.
Gene enrichment results suggested that AL354993.1 may
promote GBM progression through the JAK-STAT path-
way, the ECM interaction pathway, chemokine pathways,
and cytokine receptor binding pathways.

Limitations
There were some restrictions to this analysis since it was

retrospective and dependent on open-access databases.
Thus, more prospective clinical data are required for
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validation and future clinical applications. On the other
hand, the effect of AL354993.1 was only analyzed using
a database and should be verified by a series of wet experi-
ments in the future.

Conclusions

Through the joint analysis of multiple public databases,
we screened 10 key ir-IncRNAs in GBM and used them
to construct risk-scoring models and promote the de-
velopment of novel GBM biomarkers. In conclusion,
the 10 ir-IncRNAs have the potential to predict the GBM
prognosis and may play a vital role in the progression
of GBM.

Supplementary data

The supplementary materials are available at https://
doi.org/10.5281/zenodo.8311458. The package includes
the following files:

Supplementary Fig. 1. Proportional hazards assumption
test for age, gender and risk score of TCGA-GBM (A) and
CGGA (B) cohort.

Supplementary Fig. 2. A,B. Linearity assumption test
for age of TCGA-GBM and CGGA cohort; C,D. Linear-
ity assumption test for the risk score of TCGA-GBM and
CGGA cohort.

Supplementary Fig. 3. Multicollinearity test for age and
risk score of TCGA-GBM (A) and CGGA (B) cohort.

Supplementary Table 1. The expression of chemokines
between low- and high-risk groups (Fig. 5B).

Supplementary Table 2. The difference of immune score,
stromal score, ESTIMATE score, and TIDE score between
high- and low-risk groups (Fig. 5C-E,G).

Supplementary Table 3. Comparison of the risk scores
between immunotherapy responders (n = 48) and non-
responders (n = 118) predicted with TIDE (Fig. 5H).

Supplementary Table 4. The distribution of risk score
between IDH1-wild type (n = 100) and IDH1-mutation
(n = 40) patients in the CGGA dataset (Fig. 6E).

Supplementary Table 5. The distribution of risk score
between 1p/19qg-codeleted and 1p/19g-noncodeleted pa-
tients in the CGGA dataset (Fig. 6F).

Supplementary Table 6. The expression of immune-
related IncRNAs between normal and tumor samples
in the CGGA dataset (Fig. 7A).

Supplementary Table 7. The expression of AL354993.1
between IDH1-wild type and IDH1-mutation patients
in the CGGA dataset (Fig. 7C).

Supplementary Table 8. The expression of AL354993.1
between 1p/19q-codeleted (n = 12) and 1p/19q-noncode-
leted (n = 128) patients in the CGGA dataset (Fig. 7D).

Supplementary Table 9. The expression of chemokines
between low and high AL354993.1 expression group
(Fig. 7F).
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