HGFIN deficiency exacerbates spinal cord injury
by promoting inflammation and cell apoptosis through
requlation of the PI3K/AKT signaling pathway
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Abstract

Background. Spinal cord injury (SCI) is a devastating neurological disease characterized by neuroinflam-
mation and neuronal apoptosis. The PI3K/AKT signaling pathway is related to the pathological process of SCI.
Hematopoietic growth factorinducible neurokinin-1type (HGFIN) is a transmembrane glycoprotein that exerts
neuroprotective actions in various neurodegenerative diseases. However, the potential role and mechanism
of HGFIN in the development of SCl are still unclear.

Objectives. To investigate the effect of HGFIN on inflammation and neuronal apoptosis as well as the un-
derlying mechanism in SCI.

Materials and methods. Arat model of SC| was established, and Basso—Beattie—Bresnahan (BBB) motor
function assay was performed to detect motor function. Expression of HGFIN was measured at 7 days after
injury by western blot and immunofluorescence. An HGFIN-shRNA-carrying lentivirus was injected into
the injury site to block the expression of HGFIN. The effects of HGFIN on neuronal apoptosis and the PI3K/
AKT pathway were analyzed by TUNEL staining and immunofluorescence. The Iba-1 expression and the levels
of pro-inflammatory cytokines were measured in spinal cord tissues by immunofluorescence staining and
real-time polymerase chain reaction (PCR) analysis.

Results. The SCl rats showed increased expression of HGFIN in spinal cord tissues. The HGFIN deficiency ag-
gravated SCllesions, as evidenced by decreased BBB scares. At 7 days post-injury, HGFIN knockdown promoted
neuronal apoptosis, accompanied by the increased expression level of the apoptosis effector cleaved caspase-3
and cleaved PARP. and decreased anti-apoptotic protein Bcl-2 expression. Moreover, HGFIN knockdown ag-
gravated the inflammation process, indicated by increased Ibal-positive cells. The HGFIN knockdown increased
the production of pro-inflammatory cytokines including IL-16, TNF-a and IL-6. Further analysis revealed that
HGFIN deficiency reduced the activation of the PI3K/AKT pathway in spinal cord tissue after injury.

Conclusions. Lentivirus-mediated downregulation of HGFIN exacerbates inflammation and neuronal
apoptosis in SCI by regulating the PI3K/AKT pathway, and provides clues for developing novel therapeutic
approaches and targets against SCI.
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Background

Spinal cord injury (SCI) is a devastating neurological
disease that impairs neurological functions and leads to ir-
reversible motor dysfunction.! The initial injury involves
mechanical trauma of the spine that provokes a series
of cellular and molecular events, including posttraumatic
inflammation, edema, motor neuron apoptosis, and death
of neurons.?? Although considerable effort has been de-
voted to understanding the pathophysiology of SCI, the un-
derlying mechanisms of the pathophysiological cascade
of SCI remain elusive. Extensive pathological hallmarks,
inflammation responses and neuronal apoptosis represent
the major characteristics of SCL.*> The phosphoinosit-
ide 3-kinase (PI3K)/AKT signaling pathway is closely re-
lated to the pathological process of SCI, and the activa-
tion of the PI3BK/AKT pathway delays the inflammatory
response and promotes neurological function recovery
in the progression of SCIL.%7

Hematopoietic growth factor inducible neuroki-
nin-1 type (HGFIN), an endogenous type I transmem-
brane glycoprotein, was initially isolated from a cDNA
library based on low-metastatic melanoma cells® and has
been found to regulate various biological functions.®~!!
Notably, HGFIN exerts neuroprotective effects by protect-
ing against neuronal apoptosis and enhancing neurogen-
esis through the regulation of the PI3K/AKT pathways.!?
In addition, HGFIN is upregulated in amyotrophic lateral
sclerosis and inhibits neuron cell death.!® It has been indi-
cated that HGFIN is significantly associated with inflam-
matory responses and is considered a negative regulator
of inflammation.*-® Hematopoietic growth factor induc-
ible neurokinin-1 type exerts an anti-inflammatory effect
in acutely injured kidneys and acute wound healing,!>1”
and attenuates the inflammatory response of astrocytes
and lipopolysaccharide (LPS)-induced inflammation.!®1
The inhibition of HGFIN suppresses pro-inflammatory cy-
tokine expression in LPS-induced microglia.?’ Importantly,
HGFIN expression has been observed to be significantly
altered in the progression of SCI and exert a functional role
in the regulation of neuronal death and neuroinflamma-
tion.2! However, the regulatory role and specific mecha-
nism involved in the effect of HGFIN on the pathophysiol-
ogy of SCI are still unknown.

In the present study, we aimed to investigate the impact
of HGFIN on the extent of the SCI model, including neu-
ronal apoptosis and the inflammation process. The ex-
pression of HGFIN in spinal cord tissues after SCI was
examined. In addition, the impact of HGFIN deficiency
on neuronal apoptosis and the inflammatory process was
explored following SCI. Moreover, the association be-
tween HGFIN and the activation of the PI3K/AKT path-
way was examined. We speculated that HGFIN exerted
its function through the regulation of PI3K/AKT signal-
ing. Collectively, the target transmembrane glycoprotein,
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HGFIN, might be a potential therapeutic strategy for SCI
treatment.

Objectives

This study aimed to investigate the effect of HGFIN
on rat SCI model. We examined the expression level of HG-
FIN in the spinal cord tissues following SCI. In addition,
we investigated the specific effects of HGFIN on the neu-
roprotective actions and inflammatory process after SCI.
We evaluated the effects of HGFIN on the activation
of the PI3K/AKT signaling pathway to further clarify its
possible underlying mechanism.

Materials and methods
Animals

All procedures involving the animals were approved
by the Animal Care and Use Committee of the Chaohu
Hospital at the Anhui Medical University (approval
No. KYXM-202207-009). Male Sprague—Dawley (SD)
rats (8—12 weeks old) were maintained under standard
conditions (22 +1°C, 45-55% humidity, and 12-h light/
dark cycle). The number of animals subjected to surgi-
cal treatment was calculated to be 6 per experimental
group. Rats were randomized into 4 groups: 1. Sham
group; 2. SCI group; 3. SCI+sh-NC group; 4. SCl+sh-
HGFIN group. The assessments were shown as a sche-
matic in Fig. 1A.

Lentivirus construction and animal
treatment

Lentiviruses containing HGFIN-shRNA (NM_053110)
were constructed and synthesized by Shaanxi YouBio
Technology Co., Ltd (Changsha China). The target se-
quence against HGFIN was as follows: 5-CGAAGGT-
GAAAGATGTGTATG-3". The virus titer was determined
as 1x10° TU/mL. For the establishment of the SCI model,
SD rats were anesthetized, and a T10 laminectomy was
carried out after making a 4-cm longitudinal incision and
careful dissection. Vascular clips were placed through
the dorsal intervertebral space of T8-T9 to compress
the spinal cord for 10 min in order to generate an in-
jury. Rats in the sham group had the surgical procedure
without spinal cord contusion. After surgery, the muscles
and skin were sutured. After sterile analgesic treatment
and ongoing monitoring, rats received bladder massage
3 times a day to prevent urological infection. Follow-
ing SCI, 10 uL of lentivirus containing HGFIN-shRNA
(1x10° TU/mL) or NC-shRNA (1x10° TU/mL) was lo-
cally injected into the injured site immediately using
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Fig. 1. Expression of hematopoietic growth factor inducible neurokinin-1 type (HGFIN) in the spinal cord after spinal cord injury (SCI). A. Experimental
protocol for SCI timing and outcome assessment; B. Basso—Beattie—Bresnahan (BBB) exercises scored at 1, 7, 14, 21, and 28 days after injury in the sham and
SCl groups (n = 6). Differences between group means in BBB scores at 28 days after the injury were identified using the Mann-Whitney U test; C. HGFIN
mRNA levels in spinal cord tissues after SCl were measured by real-time polymerase chain reaction (PCR). The Mann-Whitney U tests were used to calculate
the significant differences; D. Western blot results of HGFIN protein levels after SCI; E. Immunofluorescence staining for the expression of HGFIN in the grey

matter after SCI. Data are presented using medians (range)

**p < 0.01 compared to the sham group; WB - western blot; IF — immunofluorescence.

a microsyringe, while the rats in the sham group received
the same volume of normal saline. Behavioral testing
was assessed using a well-established Basso—Beattie—
Bresnahan (BBB) score assay at 1, 7, 14, 21, and 28 days.
The animals were euthanized using 30% volume/min

CO,. Spinal cord tissues at the lesion sites of the cord
were collected from rats on day 7 post-injury. All tissues
were quickly placed in paraformaldehyde overnight and
embedded in paraffin for further examinations. The as-
sessments are shown as a schematic in Fig. 2A.
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Fig. 2. Hematopoietic growth factor inducible neurokinin-1 type (HGFIN) deficiency aggravates injury to the spinal cord after spinal cord injury (SCI).
HGFIN shRNA lentivirus vectors were locally injected into the injured site immediately after SCI. A. Timeline of the experimental protocol; B. Basso-
Beattie—Bresnahan (BBB) exercises were scored at 1, 7, 14, 21, and 28 days after SCl in all groups (n = 6). Differences between the group means in BBB scores
at 28 days after the injury were identified using the Kruskal-Wallis test with Dunn’s post hoc test; C. HGFIN protein levels were detected by western blot

assay following injection of sh-HGFIN lentivirus in SCl rats

ns — not significant, compared to the sham or SCl+sh-NC groups; WB — western blot; IF — immunofluorescence; gPCR — quantitative real-time polymerase

chain reaction; HE — hematoxylin and eosin.

Real-time polymerase chain
reaction

For the real-time polymerase chain reaction (PCR) analy-
sis, total RNA was extracted from spinal cord tissues with
TRIpure™ solution (BioTeke, Beijing China). Reverse tran-
scription of the RNA samples was carried out using a PCR
system according to the protocol. Data were calculated using
the 2724t method and normalized to the housekeeping gene
GAPDH. Primers were as follows:

rat HGFIN
5-TAGAAGTCAACATCATCCAGGTA-3’ (forward),
5-ACGGACAGGAGGCACAG-3’ (reverse);

rat TNF-a
5-CGGAAAGCATGATCCGAGAT-3’ (forward),
5-AGACAGAAGAGCGTGGTGGC-3 (reverse);

rat IL-1p
5-TTCAAATCTCACAGCAGCAT-3’ (forward),
5-CACGGGCAAGACATAGGTAG-3’ (reverse);

rat IL-6
5-CAGCCACTGCCTTCCCTA-3’ (forward),
5-TTGCCATTGCACAACTCTTT-3 (reverse).

Western blot analysis

For western blot assay, total proteins were extracted from
spinal cord tissues and homogenized in RIPA lysates (So-
larbio, Beijing, China) supplemented with phenylmethyl
sulphonyl fluoride (PMSF). The protein concentration was
evaluated by the BCA assay kit (Solarbio). Proteins were
resolved on sodium dodecyl-sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) gels, transferred to the poly-
vinylidene fluoride membranes (MilliporeSigma, St.
Louis, USA), and blocked in the non-fat powdered milk.
The membranes were then incubated with primary anti-
body at 4°C overnight. After incubation with HRP-con-
jugated secondary antibodies, the blots were developed
with enhanced chemiluminescence substrate reagents
(Solarbio). Primary antibodies used in the present study in-
cluded HGFIN (1:5000; Proteintech Genomics, San Diego,
USA; 66926-1-1g), cleaved PARP (1:1000, AF7023; Affinity
Biosciences, Cincinnati, USA), cleaved caspase-3 (1:1000,
AF7022; Affinity), Bcl-2 (1:1000, AF6139; Affinity), AKT
(1:3000, 10176-2-AP; ProteinTech), and p-AKT (1:2000,
66444-1-Ig; ProteinTech).
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Immunofluorescent staining

For immunofluorescence staining, spinal cord samples
were embedded in paraffin. The sections were deparaf-
finized and blocked with 1% bovine serum albumin (BSA),
followed by incubation at 4°C overnight with primary
antibodies against HGFIN (66926-1-Ig; ProteinTech),
p-AKT (Serd73, 66444-1-1g; ProteinTech), and ionized
calcium-binding adapter molecule-1 (Iba-1, 10904-1-
AP; ProteinTech). Then, the tissues were nurtured with
Cy3-labeled secondary antibodies (IgG; Invitrogen,
Waltham, USA) for 60 min, followed by counterstain-
ing with 4’,6-diamidyno-2-fenyloindol (DAPI; Aladdin,
Shanghai, China) to stain the cell nucleus. After being
mounted, the immunofluorescent images were obtained
using a fluorescence microscope (Olympus Corp., Tokyo,
Japan).

TUNEL-NeuN staining

Double immunofluorescent staining with a TUNEL-
NeuN assay was used to detect neuronal apoptosis. In brief,
paraffin-embedded spinal cord samples were deparaf-
finized and permeabilized in 0.1% Triton X-100 (Beyotime,
Shanghai, China). The sections were repaired in citric
acid/sodium citrate solution for 10 min. Then, samples
were stained with TUNEL reagent using the In Situ Cell
Death Detection Kit (No. 12156792910; Roche Diagnos-
tics, Basel, Switzerland) according to protocols. Samples
were blocked in 1% BSA and incubated at 4°C overnight
with a primary antibody against NeuN (ab104224; Abcam,
Cambridge, USA) and visualized with FITC-labeled goat
anti-mouse IgG (ab6785; Abcam). The nucleus was coun-
terstained with DAPI and sections were sealed. TUNEL-
positive cells (labeled with red fluorescence) and NeuN-
positive cells (labeled with green fluorescence) in tissues
were captured under a fluorescence microscope. The ra-
tio of NeuN-TUNEL double-stained cells/NeuN-stained
cells was calculated for the quantification of neuronal
apoptosis.

Hematoxylin and eosin staining

The fixed spinal cord tissues were used for hematoxy-
lin and eosin (H&E) staining according to the routine
procedure. In brief, the paraffin-embedded sections
were successively deparaffinized, dehydrated and sub-
jected to H&E staining for conventional histopatho-
logic examination in SCI. The sections were incubated
with hematoxylin for 5 min, followed by flushing with
running water, and counterstained with eosin stain-
ing solution for 3 min. After dehydration, clearing and
mounting, the sealed slides were captured under a light
microscope.
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Statistical analyses

All calculations were performed by the GraphPad
Prism software (GraphPad Software, San Diego, USA)
with a probability value of p < 0.05 considered signifi-
cant; all values were expressed using medians (range).
The small sample size limits checking test assumptions
reliably. Nonparametric tests were used in the present
study. A Mann—Whitney U test was performed to analyze
data when comparing 2 groups. The homogeneity of vari-
ance was determined via the F-test. In the case of multiple
comparisons, a Kruskal-Wallis test with Dunn’s post hoc
test was performed. The homogeneity of variance was de-
termined via the Brown—Forsythe test.

In the present study, HGFIN mRNA levels were ana-
lyzed using the Mann—Whitney U test. The quantification
of TUNEL/NeuN, p-AKT positive cells, Iba-1 positive cells,
and levels of TNF-a, IL-1B, and IL-6 were analyzed using
the Kruskal-Wallis test with a Dunn’s post hoc test. Differ-
ences between group means in BBB scores were analyzed
28 days after the injury using the Kruskal-Wallis test.

Results

HGFIN expression is increased in spinal
cord tissues after SCI

An SCI animal model was successfully established.
We used BBB scores to assess motor function for 28 days af-
ter the SCI. Normal motor function was scored as 21 points.
Asindicated in Fig. 1B, rats in the SCI groups showed lower
BBB scores compared with the sham group. By the time
of injury, BBB scores increased progressively and recovered
toaround 9 at 28 days after SCI. The expression of HGFIN
in the spinal cord tissues after SCI was determined by west-
ern blot and real-time PCR assay. The HGFIN mRNA and
protein expression levels in spinal cord tissues were signifi-
cantly increased at 7 days in the SCI group compared with
the sham group (Fig. 1C,D). Furthermore, immunofluores-
cence staining was performed to detect HGFIN expression
in the spinal cord tissues of SCI rats, and the results indi-
cated that HGFIN was highly expressed in the gray matter
in the spinal cord tissues of SCI rats (Fig. 1E).

To further explore the regulatory role of HGFIN, lenti-
viruses carrying HGFIN shRNA particles were injected
into SCI rats to block HGFIN expression. Basso—Beattie—
Bresnahan motor function scores were performed to as-
sess motor function at indicated time points after SCI.
Results of BBB scores indicated that HGFIN deficiency
aggravated SCI lesions (Fig. 2B). Basso—Beattie—Bresna-
han scores in the SCI+sh-HGFIN group were lower than
those in the SCI+sh-NC group. Animals treated with sh-
HGFIN accelerated injury and as the observations contin-
ued, we noted functional recovery in the SCI+sh-HGFIN
group, and there were no significant differences in motor
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function at the end of observation on day 28 between
the SCI+sh-NC and SCI+sh-HGFIN groups. Western blot
assay revealed that HGFIN protein expression was up-
regulated in SCI rat tissues and when administered with
HGFIN shRNA exhibited significantly lower expression
of HGFIN (Fig. 2C).

Reduced HGFIN expression promotes SCI-
induced neuronal apoptosis

The impact of HGFIN deficiency on neuronal apoptosis
was assessed at 7 days after SCI. Double staining of TU-
NEL and NeuN revealed that SCI caused an elevated num-
ber of apoptotic neurons, and treatment with sh-HGFIN
further aggravated neuronal apoptosis (Fig. 3A). In ad-
dition, the ratio of NeuN-TUNEL double-stained cells/
NeuN-stained cells was quantified. A larger percentage
of apoptotic neurons was observed in SCI groups (p < 0.05),
and HGFIN knockdown further promoted neuronal apop-
tosis by increasing the percentage of apoptotic neurons
(Fig. 3B). As indicated in Fig. 3C, the levels of apoptosis
effector cleaved caspase-3 and cleaved PARP were found
to be significantly upregulated, while the levels of anti-
apoptotic protein Bcl-2 were downregulated at 7 days
post-SCI. The HGFIN depletion further promoted SCI-
induced neuronal apoptosis, as indicated by upregulated
cleaved caspase-3, cleaved PARP and downregulated Bcl-2.

Depletion of HGFIN activates the PI3K/AKT
signaling pathway

Next, we explored whether HGFIN deficiency was im-
plicated with PI3K/AKT pathway activation. To this end,
immunofluorescent staining for p-AKT was performed
at 7 days post-injury. As indicated in Fig. 4A, a reduction
of p-AKT was observed in the injured spinal cord tis-
sues of SCI rats compared to the sham rats. Knockdown
of HGFIN after SCI significantly reduced p-AKT expres-
sion in the spinal cord gray and white matter (p < 0.05;
Fig. 4A,B). Western blot assays further confirmed that
HGFIN deficiency decreased the protein expression of p-
AKT (Fig. 4C).

Depletion of HGFIN promotes
the inflammatory response after SCI

The Iba-1 immunofluorescent assays were performed
to assess the reactive inflammatory responses in the in-
jured spinal cord tissues. As shown in Fig. 5A, the num-
ber of Iba-1 positive cells in the SCI groups was markedly
increased (p < 0.05; Fig. 5B). Furthermore, SCI rats ad-
ministered with HGFIN shRNA showed a larger number
of Iba-1 positive cells in the spinal cord tissues at 7 days
post-SCI. Hematoxylin and eosin staining was performed
to assess the histopathological changes in spinal cord tis-
sues. The results of the staining showed the infiltration
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of neutrophils, congestion and structural damage
of the SCI, and the injury was notably aggravated follow-
ing HGFIN knockdown (Fig. 6A). In addition, the effect
of HGFIN deficiency on the expression of inflammatory-
associated cytokines was measured. The expressions
of pro-inflammatory cytokines, including TNF-«, IL-1p
and IL-6, were low in the sham groups and significantly
increased in SCI spinal cord rats. The inhibition of HGFIN
further promoted the production of pro-inflammatory
cytokines (p < 0.05; Fig. 6B).

Discussion

Spinal cord injury is a complex and multifaceted disease
process, and numerous therapeutic approaches against
SCI have generated successful results,>?%23 among which
neuroprotection and improving the immune environment
are promising strategies.?* Accumulating evidence dem-
onstrates that HGFIN has neuroprotective roles and is im-
plicated in inflammatory responses.'®! Thus, we explored
whether HGFIN exerts a regulatory function in SCI pro-
gression and can be a potential marker for SCI. In the pres-
ent study, a rat model of SCI was successfully established,
and the expression of HGFIN in the spinal cord tissues
of the SCI rats was detected. It has been indicated that
HGFIN was aggregated in the grey and white matter of spi-
nal cord tissue in amyotrophic lateral sclerosis patients.?
Consistently, in the present study, immunofluorescent
staining for HGFIN revealed that HGFIN was highly ex-
pressed in the grey matter of spinal cord tissue after SCI.
Hematopoietic growth factor inducible neurokinin-1 type
was found to be highly expressed in the spinal cord tissue
of SCI rats. Emerging evidence has indicated that HGFIN
is recognized as a potential neurodegenerative disease-
related marker and is found to be upregulated in numerous
neurodegenerative diseases such as Alzheimer’s disease,
Parkinson’s disease and amyotrophic lateral sclerosis.?6-?°
Therefore, lentiviruses carrying HGFIN shRNA were in-
jected into SCI rats to knock down HGFIN, and the ef-
fect of HGFIN deficiency on inflammation and neuronal
apoptosis was explored.

The destructive effect of neuronal apoptosis in neuronal
diseases, including SCI, has been well-documented.3%3!
It is generally accepted that apoptosis is important
in the pathophysiology of SCI, and apoptotic-related
signaling and mediators, such as caspase cascades, Bax/
Bcl-2, and TNF-a, in apoptosis, are shown to modulate
the SCI progression.3>33 Previous studies have indicated
that the expression of pro-apoptotic proteins was in-
creased after neuronal injury, and anti-apoptotic protein
expression was commonly decreased.3*3> Following SCI,
extensive activation of PARP and activated caspase-3 oc-
curred, and Bcl-2 expression was decreased in spinal cord
tissues.® These findings demonstrated that modifying
neuronal apoptosis and improving neuron survival might
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Fig. 3. Effect of hematopoietic growth factor inducible neurokinin-1 type (HGFIN)-deficiency on neuronal apoptosis after spinal cord injury (SCI).

A. Representative images of TUNEL/NeuN double staining after SCI by immunofluorescence in all groups; B. Quantitative analysis of the results in panel
A (n = 6). The Kruskal-Wallis test was used to calculate the significant differences; C. Western blot results of apoptosis-related factors, including cleaved
caspase-3, cleaved PARP and Bcl-2. Data are presented using the median (range)

*p<0.05 compared to the sham group; ns — not significant, compared to the SCl+sh-NC group.
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Fig. 4. Downregulation of hematopoietic growth factor inducible neurokinin-1 type (HGFIN) represses activation of the phosphoinositide 3-kinase
(PI3K)/AKT pathway after spinal cord injury (SCI). A. Immunofluorescence staining for p-AKT in the grey-white matter after injection of sh-HGFIN lentivirus
in SCI models; B. Quantitative analysis of the number of p-AKT positive cells (n = 6). The Kruskal-Wallis test was used to calculate the significant differences;
C. Western blot results of AKT and p-AKT protein levels. Data are presented using the median (range)

*p<0.05 compared to the sham group; *p < 0.05 compared to the SCl+sh-NC group.
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Fig. 6. Downregulation of hematopoietic growth factor inducible neurokinin-1 type (HGFIN) promotes the inflammation response after spinal cord
injury (SCl) . A. Hematoxylin and eosin staining of spinal cord sections in different groups; B. Relative mRNA expression levels of pro-inflammatory cytokines,
including TNF-g, IL-13 and IL-6, were detected by real-time polymerase chain reaction (PCR). The Kruskal-Wallis test was used to calculate the significant

differences. Data are presented using medians (range)

*p<0.05 compared to the sham group; *p < 0.05 compared to the SCl+sh-NC group.

be an important strategy for the improvement of SCI.
In the present study, the apoptotic mechanism was con-
firmed by evaluating the extent of apoptosis by TUNEL
staining. Consistently, SCI surgery promoted neuronal
apoptosis, and the apoptosis-related proteins were sig-
nificantly changed in the spinal cord tissues of SCI rats.
The impact of HGFIN on cell apoptosis was investi-
gated, and SCI rats subjected to LV-shHGFIN aggravated
the occurrence of apoptosis, accompanied by increased

pro-apoptotic marker expression and downregulated anti-
apoptotic marker Bcl-2. These data suggested that HGFIN
might exert an anti-apoptotic effect on SCI progression.
The activation of the PI3K/AKT signaling pathway
is crucial for neuron development, which exerts anti-
neuroinflammation and anti-apoptotic properties in neu-
rons.®3” Recent studies have focused on the PI3K/AKT
pathway in spinal cord neuron progressions, and targeting
PI3K/AKT may be an innovative therapeutic approach for
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SCL.338 The PI3K/AKT is a well-known survival signal-
ing pathway that has been shown to suppress neuronal
apoptosis, thus improving neural function.3*4® In the pres-
ent research, we have focused on the PI3K/AKT pathway
and explored whether HGFIN exerted function through
the regulation of PI3K/AKT signaling. It has been pro-
posed that recombinant HGFIN increased the expression
of phosphorylated ERK1/2 and AKT in amyotrophic lateral
sclerosis patients.?> Consistent with this finding, results
of the present study revealed that HGFIN knockdown
decreased p-AKT expression after SCI, suggesting that
HGFIN exerted its function partly through the regulation
of the PIBK/AKT pathway. However, the specific mecha-
nism of HGFIN associated with PI3K/AKT signaling in SCI
was not investigated in the current study.

Given the involvement of HGFIN in the inflamma-
tory responses that negatively regulate inflammation,!*
we speculated that HGFIN deficiency promoted the in-
flammation process in SCI. The Iba-1 is a key glial cell
activation marker that is generally used to assess the in-
flammatory response.*'*? Here, we found that HGFIN
knockdown increased the number of Iba-1 positive cells
following SCI. In addition, research on the progression
of SCI found that inflammatory cytokines, such as TNF-a,
IL-1p and IL-6, were significantly increased in spinal
cord tissues of the SCI model.* Consistently, the results
of the present study demonstrated that SCI rats exhibited
inflammatory responses, as indicated by the upregulation
of these cytokines in the present study. Moreover, HGFIN
expression repressed the production of pro-inflammatory
cytokines in macrophages.’® Here, we demonstrated that
HGFIN depletion aggravated inflammatory responses, in-
dicated by the increased expression of pro-inflammatory
cytokines and a series of histological alterations.

Spinal cord tissue was collected on days 7, 14 and 28 from
SCI rats, which were chosen to represent acute, followed
by a subacute phase involving inflammatory processes, and
intermediate phases of regeneration, respectively.*® The re-
sponse to injury starts at 12 h after injury and is peaking
on the 7" day. In addition, after 7 days, the spontaneous
functional recovery reached a plateau.** Therefore, we in-
vestigated the functional role of HGFIN on SCI at 7 days
post-SCL. In the present study, the increased apoptosis-
related factors and pro-inflammatory cytokines were de-
tected on day 7 post-injury.

Limitations

Our current study was mainly focused on the poten-
tial effect of HGFIN on SCI. Nevertheless, there were
several limitations. Our data indicated that HGFIN
knockdown promoted apoptosis and inflammatory re-
sponses, but the role of HGFIN overexpression in these
functions is lacking in the present study. This may po-
tentially assist in exploring mechanisms for neuron
functional recovery after SCI. Hematopoietic growth
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factor inducible neurokinin-1 type plays a dual function
in the inflammation process, thus, the underlying mecha-
nisms of the neuroprotective effects of HGFIN against
SCI need further research. In addition, we speculated that
HGFIN exerted its anti-inflammatory and anti-apoptotic
properties by regulating the PI3K/AKT pathway. The spe-
cific mechanism associated with the HGFIN-mediated
PIBK/AKT pathway should be more deeply evaluated.
In addition, the sample size of each group was small
and may have limited the generalizability of our results.
The nonparametric tests do not indicate significant dif-
ferences in the quantification of TUNEL/NeuN and Iba-1
positive cells.

Conclusions

Our findings provide evidence that HGFIN might at-
tenuate neuronal apoptosis and inflammation response
via regulation of the PI3BK/AKT signaling pathway, in-
dicating that targeting HGFIN in the spinal cord tissue
might be a promising therapeutic strategy for the treat-
ment of SCL
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