
P R A C E N A U K O W E A K A D E M II E K O N O M I C Z N E J W E W R O C Ł A W IU
Nr 1081 ---2005

Nowoczesne technologie informacyjne w zarządzaniu

Bożena Jankowska

USER INTERFACE DESCRIPTION LANGUAGES FOR CONTENT
GENERATION ON HETEROGENOUS DEVICES

1. Introduction

The advances in wireless networking (in particular deployment of the so-called
Third Generation Networks), emergence of powerful mobile devices and the
increasing users’ requirements towards the availability of information are currently
the driving forces behind ubiquitous computing, i.e. providing access to data and
computing power independently of devices and locations. The success of
ubiquitous computing technologies does not, however, rely exclusively on the
improved capabilities of devices or mobile networks but requires also a radical
shift in the process of application design. Declarative User Interface Description
Languages (UIDLs) which are a relatively old idea, previously well-known and
applied mainly in the academic research [Szekely et al. 1995], may provide
valuable help in this respect. With the proliferation of heterogeneous devices, the
UIDL concept was suddenly revived and applied in many approaches for device-
-independent content adaptation.

This paper introduces and evaluates the most popular User Interfaces
Description Languages for device-independent content generation and is organized
as follows: Section two outlines the theoretical foundations of the User Interface
Description Languages concept. In section three an overview of the most important
UIDLs is provided. In subsequent section the described UIDLs are compared with
regard to the features relevant for device-independent approaches. Conclusions are
driven in the last section.

2. Concept of User Interface Description Languages

Development of applications for heterogeneous devices implies a considerable
effort since similar data have to be presented in a different, device-independent
way. In automated content adaptation approaches, the elements of a device

32

-independent description language are mapped to appropriate building blocks of a
device-specific description language. The mapping can follow the intersection
approach or the generic language approach.

In the intersection approach, the characteristics of the device-independent
markup language are restricted to the common features supported by all devices.
Elements of the device-independent language are translated into concrete, device
-specific counterparts and change as the underlying device-specific markups are
modified. In a generic approach, the device-independent format can encompass
characteristics not featured by all device-specific markups. The mapping to a
particular representation may be loose and the features of the generic language are
not restricted to those applied in device specific language with the “lowest common
denominator” capabilities [cf. Góbel et al. 2001],

In the UI development paradigm named model-based interface development a
generic interface is constructed using a high-level specification language. A
generic user interface is “an interface whose aspects may vary in different devices
while its functionality prevails in any of them” [Mayora-Ibarra 2002, p. 2]. The
interface is automatically rendered according to device characteristics. Such high
-level languages are called User Interface Description Languages (UIDL) and
express diverse aspects of the user interface, including its abstract and concrete
elements, the tasks to be performed by the user, and the user interface dialogue.

User Interface Description Languages are based on declarative models. A
declarative model is defined as “a common representation that tools can reason
about, enabling the construction of tools that automate various aspects of interface
design, that assist system builders in the creation of the model, that automatically
provide context sensitive help and other run-time assistance to users” [Szekely et
al/1995, p. 120], Well-known models include data/domain models, application
models, task models, dialog models, presentation models and user models. In a
model, information is usually categorized into three levels of abstraction [cf.
Szekely 1996]. The highest level encompasses task, domain and user models. The
task model describes the tasks to be accomplished by the user, while the data or
domain model provides a description of the objects the user manipulates and of the
supported operations. The user model provides information about a user or a group
of users.

The second and third levels of the model are responsible for presentation. The
second level corresponds to an abstract user interface and specifies the information
that will be shown in a window together with a dialog responsible for the
interaction with information (dialog model). The abstract user interface consists of
abstract interaction objects (AIO), information elements and presentation units1.
AIOs correspond to interface tasks such as selecting one element from a set, or

1 This classification is taken from [Szekely 1996]. Other approaches do not use this divison of
the abstract presentation model.

33

showing a presentation unit. Information elements represent information to be
shown, in form of constant values (e.g. label), or sets of objects and attributes
drawn from the domain model. Presentation units are an abstraction of windows
and describe a collection of AIOs and information elements displayed to a user.

The third level of the model, the concrete or final user interface specification,
denotes the style for displaying the presentation units, the AIOs and included
information elements as well as the layout of elements. It corresponds to the
interface in terms of toolkit primitives such as windows, buttons or checkboxes,
and graphical primitives such as lines or images.

UIDLs may have different levels of abstractions. The instance level means that
the user interfaces are runnable; the model level signifies that one or many models
are involved in the development of UIs. If a language specifies the models and
their semantics, it is at the meta-model level. The meta-meta-model level is
achieved, if for the meta-model level interfaces the fundamental concepts about
meta-model development are also provided [Souchon, Vanderdonckt 2003, p. 387],

2. Overview of existing User Interfaces Markup Languages
for heterogeneous devices

User Interfaces Markup Languages enjoy growing popularity and their number
is continuously increasing. Some interesting languages not described here include
USer Interface extensible Markup Languge (USIXML) [Limbourg Q. et al. 2004],
extensible User Interface Language (XUL) from Mozilla2, Alternate Abstract
Interface Markup Language (AAIML) [Zimmermann et al. 2002], SEESCOA
XML [Luyten, Coninx 2001] and Abstract User Interface Markup Language
(AUIML) from IBM [Azevedo et al. 2000]. However, due to their advantages
certain languages are more often used than others and are therefore described in
more detail in the subsequent sections.

User Interface M arkup Language (UIML). User Interface Markup Language
(UIML) [Ali et al. 2004] is one of the most popular approaches for delivering
information to different devices in a device-independent way. It is based on XML,
provides a declarative description of user interfaces and specifies a canonical
format for multiple devices. UIML was designed to separate user interface code
from application logic code, to facilitate the reuse of code and to make rapid
prototyping of user interfaces for multiple devices possible. Currently, UIML is
being standardized by the Organization for the Advancement of Structured
Information Standards (OASIS)3. An UIML document can consist of seven main
elements." <interface>, <structure>, <content>, <behavior>, <style>, <template>
and <peers>. The <interface> element embraces all other tags and represents the

2 Cf. http://www.mozilla.org/projects/xul/
3 Cf. http://www.oasis-open.org/committees/tc_home.php?wg^abbrev=uiml.

http://www.mozilla.org/projects/xul/
http://www.oasis-open.org/committees/tc_home.php?wg%5eabbrev=uiml

34

user interface. In the <structure> element the physical organization of the interface
and the relationships between UI elements within the interface are defined. The
<content> elements enclose the content of a document (e.g. text, images),
separating it from the UI structure. The <behavior> elements describe the behavior
of the interface by specifying conditions (e.g. occurrence of an event) and actions
associated with them. The <style> elements denote the presentation style of UI
elements and the <peers> elements associate widgets, methods, programs or
objects in the application logic with the user interface, combining application
presentation with its logic. The <template> elements help to describe those parts of
UI which are reusable [cf. Harmonia 2002 for the complete specification].

UIML document can be mapped to any type of user interface (e.g. Java AWT,
WML, VoiceXML, HTML) with help of appropriate Tenderers4. Most of the UIML
Tenderers are commercial software but the language specification is freely available
for public use and can be extended with additional vocabularies. For example in the
MObile multimodal Next-generation Applications (MONA) project specific
vocabulary for multimodal interfaces and a suitable Tenderer for graphical and
voice user interfaces was developed [Simon et al. 2004],

extensible Interface M arkup Language (XIML). extensible Interface
Markup Language (XIML) is another UIDL developed to provide a common
representation of multiple user interfaces [Eisenstein et al. 2000]. The language is
“an organized collection of interface elements that are categorized into one or more
major interface components” [Eisenstein et al. 2000]. XIML contains components,
relations, and attributes, whereby relations and attributes can be in form of
statements or definitions. Five basic components can be distinguished in the
language specification: task, domain, user, presentation and dialog. The task
component supports a definition of business processes and user tasks. The domain
component represents a collection of data objects and classes of objects structured
in a hierarchy. The user component specifies a hierarchy of users. The presentation
component defines a hierarchy of interface elements such as window, button, etc.
The dialog component describes a collection of elements determining user actions
associated with particular interface components. A relation in XIML is described as
a definition or a statement that connects two or more elements within one
component or across many components. Attributes are features or properties of
elements.

XIML was used in the MANNA (Map Annotations Assistant) project
[Eisenstein et al. 2000] for creation of multiple user interfaces for annotated maps
of geographical areas. In this work, additional concepts for better adaptation to
mobile devices were introduced: Abstract Interaction Objects (AIOs), Concrete
Interaction Objects (CIOs), Logical Window (LW) and Presentation Unit (PU). An
interaction object (also called a widget) is any element that helps to visualize or

4 Most of the Tenderers were developed by Harmonia company (cf. [http://www.harmonia.com]).

http://www.harmonia.com

35

manipulate information or to perform a task [Eisenstein et al. 2000], AIOs are
elements that cannot be executed on any platform and do not provide
implementation details. CIOs are executable components and can be mapped to the
platform on which they should run. CIOs are children of AIO; they inherit its
properties and give information about implementation details. A Logical Window
is a group of simple or composite AIOs (e.g. a window, a sub-window, a dialog
box, a listbox) and is itself a composite AIO. A Presentation Unit is a complete
presentation environment for enabling an interactive task and can consist of one or
many Logical Windows displayed simultaneously or one after another. This
presentation hierarchy can be used in a generation of platform-specific
presentations from platform independent presentation models.

Dialog Description Language (DDL). Dialog Description Language (DDL) is
an XML-based, device-independent markup language which describes a structure
of abstract elements [Hubsch et al. 2003]. The root <ddl> element of a document
may contain different elements such as: <include> for integrating external source
code, <DataTypeDef> for the definition of data types used for validation of user
input, <DataInstance> for specifying data instances for user input, <dialog> for the
definition of the dialog structure and <part> for modeling the structure of the
dialog. Furthermore, different classes can be assigned to various parts. A class is
defined as a set of <properties> (styles for presentation or abstract properties). The
content of DDL dialogs is enclosed in <content> tag. A data item can be defined

Fig. 1. DDL adaptation framework
Source: [Buchholz et al. 2002, p. 47]

36

The semantics of the properties is defined separately in a Document Type
Description (DTD) [W3C 2004] and can be extended. The container and the source
elements are particularly interesting; the remaining elements simply map to
traditional Web-based UI elements such as labels, textboxes, frames, forms, etc.
The container enables grouping of parts and specification of layout for them. The
source element enables the inclusion of non-interpreted (not DDL) device specific
source code (e.g. WML).

In order to apply DDL an adaptation framework displayed in Figure 1 was
developed. The framework is based on a chain of filters5 which perform the
adaptation according to the DDL specification. Three different types of filters were
applied: Request Modifiers, Generators and response Modifiers. The Request
Modifiers are processed at first and alter the HTTP request. The Generators supply
the requested content and the Response Modifiers transform the retrieved content
to the device. The sequence of filters is specified in a configuration file and a filter
may also determine its successor.

The most important filters implemented in this adaptation approach are:
ClientRecognizerFilter, URLGetterFilter, ServletRunnerFilter, XMLParserFilter,
DDLPreprocessorFilter, XSLTProcessorFilter, ImageTranscodingFilter, DDL
fragmentation filters and WMLCompilerFilter. The ClientRecognizerFilter is
responsible for the recognition of devices according to the User Agent String. The
URLGetterFilter retrieves a file and the ServletRunnerFilter invokes an external
servlet on the server. The XMLParserFilter convert the DDL document into
Document Object Model (DOM) instance, on which the subsequent filters work.
The DDLPreprocessorFilter is in charge of resolving external references and
inheritance hierarchies. It produces a simplified DDL document which is then
processed with the XSLTProcesorFilter and XSLT [W3C 2003] style sheet to
appropriate end output. The ImageTranscodingFilter produces appropriate images
that fit device capabilities. The DDL fragmentation filters fragment the dialogs,
perform user input validation and store input data. The WMLCompilerFilter
compiles the textual representation of WML into binary format.

Renderer Independent M arkup Language (RIML). Renderer Independent
Markup Language (RIML) is part of a CONSENSUS project (3G Mobile Context
Sensitive Adaptability - User Friendly Mobile Work Place for Seamless Enterprise
Applications), and it aims at the development of highly-usable mobile applications
[Ziegert et al. 2004], RIML combines elements from already existing markups with
new elements. In this language borrowed tags and concepts from XHTML 2.0,
XForms 1.0 and SMIL can be found [cf. Consensus 2004]. All three languages are
recommended by the W3C Consortium for device-independent applications.

5 As a part of Java Servlet specification the conept of filters was introduced. A filter is able to
intercept requests and responses to transform or use the information contained in the requests or
responses.

37

Fig. 2. The architecture of RIML adaptation engine
Source: [Consensus 2004],

The Adaptation Engine (AE) depicted in Figure 2 is used for converting RIML
to appropriate formats and consists of an Adaptation Controller, an Adaptation
Pipeline and some modules supporting session and context information (cf.
[Consensus 2004, pp. 98-100; Ziegert et al. 04]). The Controller is in charge of
request processing and forwarding requests to appropriate components. The
Controller communicates with the components responsible for storing Device and
User Information and with the SessionContext Container to determine the
appropriate adaptation for a particular device

In the adaptation process, the Adaptation Pipeline is the most relevant
component. It is composed of six elements: a Reducer, a Paginator, an XForm
Processor, a Markup Mapper, a Stylist and a Validator. The Reducer selects the
content to be displayed basing on the device characteristics. The Paginator is in
charge of splitting content into smaller units displayable on one screen and
generation of navigation links. All generated pages are stored in the Pagination

38

Store, from which all the pages are retrieved. The XForm Processor converts the
forms written in XForms language to a target markup, because the browsers do not
support this standard. The Markup Mapper translates RIML into appropriate end-
format: HTML, XHTML, WML or VoiceXML by applying the suitable marker.
The Stylist module applies style sheets to the generated markup language and the
Validator validates the output before sending it to the client device.

RIML handles device-dependent content selection, pagination, layout and
navigation. The layout of RIML documents is based on three types of containers:
rows, columns and frames. The frame container can only contain content and not
additional layout elements. Each layout definition consists of one or many frames.
The columns and rows containers organize layout vertically and horizontally,
respectively. The containers may be also nested. The containers can be paginating
or non-paginating. If the container is non-paginating, it is displayed on one page;
otherwise it is split into multiple fragments connected with navigation links. The
pagination is accomplished according to the implemented pagination algorithm.

The Adaptation Engine is an open-source software but requires considerable
installation and configuration effort in order to run properly [cf. Consensus 2003],
Up to now RIML lacks any available development environment, facilitating the
implementation process, although such support was announced. Without suitable
development tools it cannot be expected that RIML will gain widespread
popularity and will be used by users inexperienced in J2EE programming.

3. C om parison of UIDLs

Table 1. Comparison of UIDLs

M o d e ls M e th o d o lo g y f o o ls
S u p p o r t e d
la n g u a g e s

O p e n -
s o u r c e

T a r g e t /
A b s t r a c t io n

le v e l
UIML P re s e n ta t io n a n d

d ia lo g m o d e ls ,
p a r tia lly d o m a in
m o d e l

S p e c if ic a tio n o f
m u ltip le U I
p re s e n ta tio n s ,
fa c to r in g /
c o rre c tio n s

M u ltip le
re n d e rin g
e n g in e s , co d e
g e n e ra to r,
e d ito r

C + + , Jav a ,
V o ic eX M L ,
H T M L , W M L ,
P a lm O S , .N E T

N o M u lti-p la tfo rm
M o d e l level

DDL D o m a in a n d
p re s e n ta tio n
m o d e ls

S p e c if ic a tio n o f
m u ltip le UI
p re s e n ta tio n s

A d a p ta t io n
e n g in e

W M L , X H T M L ,
H T M L

N o M u lti-p la tfo rm
M o d e l level

RIML D o m a in a n d
p re s e n ta tio n
m o d e ls

S p e c if ic a tio n o f
m u ltip le UI
p re s e n ta tio n s

A d a p ta tio n
e n g in e

W M L , X H T M L ,
H T M L ,
V o ic e X M L

Y es M u lti-p la tfo rm
M o d e l level

XIML T a s k , d o m a in ,
u se r , d ia lo g ,
p re s e n ta tio n
m o d e ls

S p e c if ic a tio n o f
m u ltip le U I
d e sc r ip t io n s o r
g e n e r ic d e sc r ip t io n
o f U I

R en d e rin g
e n g in e , co d e
e d ito r

H T M L , W M L ,
J a v a

Y es M u lti-p la tfo rm ,
c o n te x t-s e n s it iv e
a p p lic a tio n s
M e ta -m o d e l-
level

Source: based on [Souchon, Vanderdonckt 2003; Van den Bergh 2004].

39

User Interface Description Languages may seem similar at the first sight but
they differ in many aspects. Table 1 provides a comparison of the described UIDLs
in terms of supported models, methodology for UI description, available tools,
supported languages, abstraction level and contexts of use (user/environment/
platform model). It specifies furthermore, whether they are open-source products or
commercial developments.

The choice of a UIDL for a particular project depends on the goals pursued by
this project and not only on the characteristics of a language. For example, XIML
can be regarded as the best alternative since it is an open-source, meta-model
language supporting many models. However, it lacks good tools’ support compared
with UIML or RIML. UIML Tenderers are commercial software while RIML
adaptation engine is provided at no cost6. The main disadvantage of all languages is
the fact that they cannot be used by an average user with the knowledge about
HTML, WML or XHTML to develop device-independent presentations because of
complicated language structure and steep learning curve.

4. Conclusions

With the proliferation of mobile devices server-side adaptation approaches in
general and the User Interface Description Languages (UIDLs) in particular have
gained increasing recognition. UIDLs describe generic User Interfaces, can be
easily extended with new elements and can be then rendered to appropriate formats
for devices for which they were not initially developed. These advantages came at
a price - the development of interfaces in such languages is usually difficult and
requires knowledge of a particular syntax and of the language’s peculiarities. Since
most of the developed UIDLs do not offer any programming tools, future research
and development should particularly focus on Integrated Development
Environments for these languages. Otherwise, they will share the fate of the old
UIDLs and will remain a powerful concept used mainly by academic researchers.
This is especially important for RIML which offers a rich functionality but is still
not applied by mobile content authors because of its complexity and lacking IDE
support.

References

Ali M., Pćrez-Quifiones M., Abrams M.: Building Multi-Platform User Interfaces with UIML, [in:]
Multiple User Interfaces: Cross-Platform Applications and Context-Aware Interfaces, eds.
A. Seffah, H. Javahery H.,Wiley & Sons, Sussex, 2004, pp. 95-118.

6 See http://sourceforge.net/projects/consensus.

http://sourceforge.net/projects/consensus

40

Azevedo P., Merrick, R., Roberts, D., OVID to AUIML - User-Oriented Interface Modelling, in:
Proceedings of the 1st Workshop Towards a UML Profile for Interactive Systems Development
(TUPIS’00), York, 2000. http://math.uma.pt/tupisOO/submissions/ azevedoroberts/azevedo-
roberts.html. Download: 2005-01-02.

Buchholz S., Gflbel S., Ziegert T., Schill A., Software Architecture fo r the Adaptation o f Dialogs and
Contents to Different Devices, “Proceedings of the International Conference on Information
Networking, Wireless Communications Technologies and Network Applications”, Cheju Island,
2002, pp. 42-51.

Consensus, Adaptation Engine: Installation and Configuration Guide, 2003. http://www.consensus-
online.org/publicdocs/D7public.pdf. Download: 2005-04-10.

Consensus, RIML Language Specification, Version 2, 2004. http://www.consensus-online.
org/publicdocs/20040317-RIML-II-Final-public.pdf. Download: 2005-04-01.

Eisenstein J., Vanderdonckt J., Puerta A.: Adapting to Multiple Contexts with User-Interface
Modeling, “Proceedings of the 3rd IEEE Workshop on Mobile Computing Systems and
Applications”, Monterey, 2000, pp. 83-94.

Góbel S., Buchholz S., Ziegert T., Schill A., Device Independent Representation o f Web-based
Dialog and Contents, “Proceedings of the IEEE Youth Forum in Computer Science and
Engineering (YUFORIC'01)”, Valencia, 2001. http://www.rn.inf.tu-dresden.de/scripts_lsm/
veroeffent_print/YUFORIC2001.pdf. Download: 2005-04-12.

Harmonia, User Interface Markup Language (UIML) Specification, Version 3.0, 2002.
http://www.uiml.org/specs/. Download: 2005-04-12.

Hiibsch G., Springer T., Schill A., Spriesterbach A., Ziegert T., Systemlosungen fur die Entwicklung
adaptiver Anwendungen fu r mobile und ubiquitare Infrastrukturen, “HMD, Praxis der
Wirtschaftsinformatik“, Heft 229, 2003, pp. 42-55.

Limbourg Q. et al., USIXML: a Language Supporting Multi-Path Development o f User Interfaces,
“Proceedings of the 9th IFIP Working Conference on Engineering for Human-Computer
Interaction”, Hamburg, 2004, pp. 89-107.

Luyten K., Coninx K., An XML-based Runtime User Interface Description Language for Mobile
Computing Devices, “Proceedings of the 8th International Workshop on Interactive Systems:
Design, Specification and Verification”, Glasgow, 2001, pp. 17-29.

Mayora-Ibarra O., Generation o f Device-Independent User Interfaces, “Proceedings of the
International Workshop on Research & Development of Human Communication Technologies
for Conversational Interaction and Learning”, Puebla, 2002, pp. 1-3.

Simon R., Jank M., Wegscheider F., A Generic UIML Vocabulary fo r Device- and Modality
Independent User Interfaces, “Proceedings of the 13thIntemational Conference on World Wide
Web”, New York, 2004, pp. 434-435.

Souchon N., Vanderdonckt J., A Review o f XML-compliant User Interface Description Languages,
“Proceedings of the 10th International Conference on Design, Specification, and Verification of
Interactive Systems”, Madeira, 2003, pp. 377-391.

Szekely P. et al., Declarative Interface Models for User Interface Construction Tools: the
MASTERMIND Approach, “Proceedings of the 7th Working Conference on Engineering for
Human-Computer Interaction”, Yellowstone Park, 1995, pp. 120-150.

Szekely P., Retrospective and Challenges for Model-Based Interface Development, “Proceedings of
the 3rd International Eurographics Workshop on Design, Specification and Verification of
Interactive Systems”, Namur, 1996, pp. 1-27.

Van den Bergh J., Luyten K., Coninx K., Evaluation o f High-Level User Interface Description
Languages fo r Use on Mobile and Embedded Devices, “Proceedings of the Workshop on
Developing User Interfaces with XML: Advances on User Interface Description Languages”,
Gallipoli, 2004.

W3C, Extensible Markup Language (XML), 2004. http://www.w3.org/TR/REC-xml. Download:
2005-04-13.

http://math.uma.pt/tupisOO/submissions/
http://www.consensus-online.org/publicdocs/D7public.pdf
http://www.consensus-online.org/publicdocs/D7public.pdf
http://www.consensus-online
http://www.rn.inf.tu-dresden.de/scripts_lsm/
http://www.uiml.org/specs/
http://www.w3.org/TR/REC-xml

41

W3C, XSL Transformations (XSLT), Version 2.0, 2003. http://www.w3.org/TR/xslt20. Download:
2005-04-15.

Ziegert T. et al., Practical Experiences with Device Independent Authoring Concepts, “Proceedings of
the Workshop on Advanced Visual Interfaces”, Gallipoli, 2004, pp. 17-24.

Zimmermann G., Vanderheiden G., Gilman A., Universal Remote Console Prototyping o f an
Emerging XML Based Alternate User Interface Access Standard, “Proceedings of the l l lh
International World Wide Web Conference”, Honolulu, 2002. http://www2002.org/CDROM/
poster/163/. Download: 2005-04-10.

JĘZYKI OPISUJĄCE INTERFEJS UŻYTKOWNIKA SŁUŻĄCE DO
GENEROWANIA TREŚCI DLA RÓŻNYCH TYPÓW URZĄDZEŃ

Streszczenie

Ewolucja jaka miała miejsce w ostatnich latach w dziedzinie systemów telefonii komorkówej,
rosnąca popularność urządzeń mobilnych oraz coraz większe wymagania użytkowników odnośnie
dostępu do informacji przyczyniły się do gwałtownego rozwoju metod pozwalających na dostarczanie
danych niezależnie od typu urządzenia. Z lamusa dawno zapomnianych metod wyciągnięto między
innymi koncepcję języków opisujących interfejs użytkownika (ang. UIDL), które nieoczekiwanie
znalazły szerokie zastosowanie w generowaniu treści niezależnie od rodzaju urządzenia. Niniejsza
publikacja opisuje najbardziej popularne języki typu UIDL oraz oferuje ich analizę porównawczą.

Dipl-Kffr. Bożena Jankowska is a research assistant at the Chair of Business Informatics,
Banking and Finance at the European University Viadrina, Frankfurt/Oder

e-mail: euv-6204@uni-ffo.de

http://www.w3.org/TR/xslt20
http://www2002.org/CDROM/
mailto:euv-6204@uni-ffo.de

	USER INTERFACE DESCRIPTION LANGUAGES FOR CONTENT GENERATION ON HETEROGENOUS DEVICES
	1. Introduction
	2. Concept of User Interface Description Languages
	2. Overview of existing User Interfaces Markup Languages for heterogeneous devices
	3. Comparison of UIDLs
	4. Conclusions
	References

