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Nr 20 Politechniki Wrocktawskiej Nr 20
Monografie Nr 10 1988

Ryszard GONCZAREK *

QUALITATIVE EFFECTS GENERATED BY FERMI LIQUID INTERACTION IN
SUPERCONDUCTING AND SUPERFLUID SYSTEMS

The monograph is devoted to theoretical investigations on proper-
ties of superconducting and superfluid systems. The qualitative
effects generated by the Fermi liquid interaction are subject of
particular interest. The Green function theory, including the
presence of a strong magnetic field, has been elaborated. The mono-
graph contains the most essential results defining properties of
superconductors, superfluid 33, and 3ge-%He mixtures in strong
megnetic fields et T = 0 and T close to T.. Moreover, BCS and BW
type systems in the linear response approach have been examined.
The developed theory permits to teke into account edditional pair-
ing harmonics, dipole-dipole interaction, influence of temperature,
high frequencies and strong inhomogeneity of a system.The applied
epproaches ellowed us to obtain several qualitative results, In
the last part some mathemetical methods extended by the euthor are
presented. '

LIST OF UNIVERSAL SYMBOLS

ay, Al' bl, Fg, Ff - Landau parameters,

F - Meki and Ebisawa function®¥®,
fl, € - pa;ring parameters,

-4 - dimensionless dipole contribution parameter,

H - externel magnetic tield!*,

Hp - paramagnetic field,

HT - total magnetic field,

h - total magnetic field in energy scale®¥,
Hc' H°1, ch - oritical magnetic field, .

J, M - quantum numbers of two-particle states™ ",

k - wave vector,
M, Mp - paramagnetic magnetization!*,
Md' M - diamagnetic magnetization,

N - total number of quasiparticles!*,

* Tngtitute of Physics, Technical University of Wrociaw, Wybrzeze
Wyspiadskiego 27, 50-370 Wrockaw,

**most often appearing.



Nn - number of normal quasiparticles,
Ns - number of superfluid quasiparticles,
p0 - Formi momentum,
v - Fermi velocity,
A\ - superfluid velocity,
A - energy gap,
ep - Fermi energy,
Es) = Riemann’s E -function,
8(x) - Heaviside step function,
" - Ginzburg=-Landau paremeter,
kg - Bohr’s magneton,
W% - Bohr's effective magneton,
v(E) - density of states with definite spin,
Yo =2v (0)
EP - cut-off paremeter,
50 - coherence distens,
O _ unit matrix (2x2),
ol - Pauli matrices, ‘
b ij - spin susceptibility tensor,
xg = v0 ug - peramagnetic susceptibility of a free electron gas,
‘xg = - 1/4n - diamegnetic susceptibility of a Meissner superconductor,
w - frequency

- Debye characteristic frequency,
<..;9 - averaging over spherical angles,
<...> p - averaging over R - vector space.

INTRODUCTION

Theoretical investigations of the present problems concerning many
-body systems sre dominated by two research methods, i.e., numerical and
enelytical ones which can be characterized as follows:

Numerical method comprises standard physical theories, highly compli-
cated numerical computations and numerical results, whereas the analytical
one covers non-trivial and still improved physical theories, far edvanc-
ed mathematical methods end analytical solutions which can be examined
in the numericsl way. The edvantage of the latter method becomes perticu-
larly visible while researching small qualitaelive effects, since such
effects could be misleadingly interpreted on the ground of the numericsl
results only. Moreover, the analyticel method makes it possible to in-
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spect microscopic processes and to eliminate the insignificant effects
taking place in the system under consideration. Hence, the analytical
research should precede the numerical elaborations, particularly in
fundamental investigations. Besides, extensive application of modern
theories to theoretical and experimental investigetions of real physical
systems requires a fresh approach to the course of problems.

The present monograph is devoted the search for qualitative effects
connected with the quasiparticle interactions in the superconducting and
superfluid Fermi systems. Hence, the Fermi liquids are the principal
objects of our interest. The formalism is déveloped within Landau’s con-
cept of quasiparticles [74-76, 87, 106, 122] which states that the macro-
scopic properties of the strongly interacting (normal) Fermi liquid may
be mapped onto a ges of elementary excitations, the Landau quasipartic-
les. The interactions of these quasiparticles ere described in terms of
the scattering amplitude for binary collisions. After permission of the
pairing interaction, the quasiparticles are coupled in Cooper’s pairs
[e2, 56, 78, 79].

All the presented considerations are performed in the Green func-
tion formelism which is developed in two main directions: the linear
response of the system in the most comprehensive form, and the non-
-linear inclusion of the strong megnetic field.

In the former case we based our considerations on the formalism de-
veloped by Larkin, Migdal [79] end Czerwonko [22]. Although their origin-
al works concerned the zero-temperature case, Leggett [81] has shown
that the whole Larkin and Migdal formalism cen be applied in non=-zero
temperatures if some characteristic functions appearing in the basic
equations of the theory are replaced by the appropriate temperature-de-
pendent functions. The possibility of epplication of the modified Czer-
wonko formalism to the non-zero temperature case was demonstrated in [%9,
40, 43].

The equations formulated by Maki and Ebisawa [93] were also obtain-
ed by the microscopic approach and can be resolved into the form of
Czerwonko s equations after some transformetions connected with the used
symbols. All microscopic approaches are then coherent. Since in the
presented formelism we do not impose any restrictions on the frequency
and the wave vector, the temperature dependence of the formalism is gi-
ven by means of four characteristic functions, which in turn can be
always expressed by the so-called Maki-Ebisawe function which was com-
puted correctly for the first time in [43].

The main advantage of the Green function formelism is manifested
in the fect that the particle-hole interaction, i.e., the Fermi liquid
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interaction and the total perticle-particle interaction, which can be
composed of the pairing and dipole-dipole interactions, can be included
in the straight meanner.

The latter developed direction is connected with the reconstruction
of the Green function theory in the presence of a constant strong magne-
tic field. The magnetic field is included by means of the nuclear para-
magnetic term in case of the neutral systems and by the Pauli paramagne-
tic term and the vector potential in case of the charged BCS;systcms.

In the present approach the static case of the theory is diséussed with
particular care. Basing on standard properties of the normel eand ano-
malous Green functions and on the fundamental equations of the IMC theory
[22, 79] we define principal paremeters of the system and find their in-
terrelations. While considering the quesiparticle interactions we state
that the inclusion of the dipole-dipole interactions is realized in com-
position with the pairing interaction by the gep equation, whereas
taking account of the Fermi liquid interaction requires a special treat-
ment.

The developed formalism is based on the IMC theory which is valid
within the pale of the weak coupling model with the spherical Fermi
surface, where all the considerations are performed in the collisionless
regime, Thus, these assumptions shift automatically. On the other hand,
we simultaneously determine the possibilities of regerding some ordinar-
ily neglected effects such as the particle-hole asymmetry [101, 102],
strong coupling correotions, feedback effects [85, 112, 136] and the
effects connected with the dependence of the quasiparticle scattering
amplitude on the length of the quasiparticle momentum i.a., in the mass
operator or the pairing interaction [112-115, 124], which ere ordinarily
neglected as small effects limitrophe to acocuracy of the theory. As we
shall show these four kinds of effects can give new qualitative results
probably of the same order, thus they should be considered jointly. The
developed formalismis kept in the spirit of the Landau quasiparticles.
It constitutes consistent reconstruction of the existing microscopic
theories [22, 79, 87, 106] in the presence of strong and constant extern-
al megnetic field. Therefore we concentrate only on some essentisl
problems which lead to new results and we omit the whole formal dis-
cussion of the applied theory which was precisely described in [3, 22,
35, 79, 82, 86, 106] . In order to achieve the intended purpose we apply
the self-consistent renormalizing procedure in which superfluid proper-
ties of the aystem are considered also in the presence of the strong
magnetic field. The recomstructed quasiparticles conserve general proper-
ties of initial particles, though some characteristic parameters can



be renormelized. The quesiparticles are still the fermions gifted an
effective mass, which conserve the charge. The interaction of the magnet-
ic moment of a cherged quesiparticle with the magnetic field differs
from the corresponding quantity of a free quasiparticle since the for-
mer interaction is realized through the magnetic moment and the motion
of the electric charges. Hence in this cese, Bohr’'s magneton must be re-
placed by its effective value [100]. The individuaal problem is connect-
ed with microscopic estimation of modified paremeters. However, com-
plexity of processes occurring in reel many-body sysfbms does not allow
us to compute them precisely.

The developed theory is employed twofold. We investigate dynamic
properties of the superconducting BCS and superfluid BW systems apply-
ing the linear response approach when the external additionel megnetic
field is excluded. The theory after strong magnetic field is included
becomes the non-linear theory end is applied to investigate statis sys-
tems only. With smell modificetions it is edapted to the superfluid 3He
end almost isotropic superconductors. It can also succeed in 3He-4He
mixtures with s-wave-pairing [112].

The principal purpose of this monograph is to show the significance
of the Fermi liquid interection in the superconducting end superfluid
systems which ere considered with in the frame of the theory based on
Landau quasiparticle concept. We study the quelitative effects due to
the Fermi liquid interaction with a specisl solicitude and prove that
they ere determined by certain velues of the Landau persmeters. It is
indicated moreover, that fundemental properties of the system must be
independent of the applied formelism end must be assigned univocally
before being reveeled in some suiteble conditions. We do not introduce
eny additional paremeters and confine ourselves to the ones existing
in the initiel theories. We consistently develop the Creen function
formalism meking it coherent within all known limits. We also demon-
strate that the reconstructed formeslism creaetes great chences to reveal
the effects which can occur in the superconducting or superfluid systems
if some asdditional conditions are fulfilled. The suitable remaerks are
given in comments C) . The applied Green function formelism required
the development of special mathematical methods which ere inserted in
the last part of this monograph. We consider only volume properties of
the systems and all the presented calculations refer to the unit volu-

me.



Part One
GREEN FUNCTION FORMALISM
I. Forms and properties of Green functions

1. Remarks on applicebility of the theory

The developed formalism is founded on the concept of the TLandau
quasiparticles ‘which express the low-lying excitations of the system
with e small energy if compared with the Fermi energy. Therefore all
the perameters appearing in the theory and expressed in the energy scale
must be small also with respect to Epe However, the inequalities T <<€
and A <<aF are alweys fulfilled in the superconducting and superfluid
systems end we only have to demend the total megnetic field expressed
in the energy scale to fulfil the relation h'<<er. As to the linear re-
sponse of the system it cen be considered correctly if the slow-varying
field fulfils the conditions k<<pp and w<<ey where k is the wave vec-
tor expressing the inhomogeneity of the external perturbation end ® is
the frequency of this perturbation., Within the freme of the applied
formelism no extra relations among the parameters A , T, h, kv and @ are
required. However, if h or w is of order of A then the Cooper pairs
are destroyed [44, 45, 50-52], whereas in the Pippard limit the Cooper
phenomenon is not observed [22, 39].

2. General principles of the magnetic field inclusion [51]

In order to make the reconstructed formalism reliesble, we begin our
consideretion &b ovo, i.e., from the Hamiltonian. It will not be quoted
here in an explicit form. We assume, however, that it is a typical Ha-
miltonien adequate to the appropriate system and write down only the
term which in such & Hamiltonian eppears in the presence of the external
magnetic field. That aedditional term has the form

*g = -bp D, Eogp ®p,a%p,p (1)

where iip denotes Bohr’s megneton, H is the external magnetic field and
ol are the Pauli matrices (66, 85]. The form (1) of the Hamiltonian
allows us to derive directly the Fourier-transform of the one-particle
Green function and to obtein the free-particle Green function in the
form
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gO(p'—H']!:) = [(e = 52)"0 + pgHo+ 10+sgneo°]'1 (2)

where p 1is four-vector energy € and momentum p, ep is the particle
energy (5p = (|p) - pb)v), 00 15 the unit matrix (2 x 2). Using the Dy-
son equation we find the Green function (only its singular part) of the
interaction system in the form

6(p,h) = z[( e -£)0° + ho + 10%sene co]-1 (3)

‘0
E=12 (1 + —%— QE——l>e
o dlpl/ &
is the free quasi-perticle energy measured from the Fermi level,
<- azo)-1
Z= -
de
is the discontinuity of the particle density on the Fermi surface
i
Z (1 k -ig— H
= -
Er 355 3Hg -

is the total magnetic field obtained in the linear approximation (the
normal state). All the derivatives are taken on the Fermi surface and
for H = 0. The mass operator is of the form

where

$(p,H) = 2°(p,B2)a® +2¥ (p2,H) ol.

v We also aésume that in the supercoﬁducting or superfluid system the to-
tel magnetic field can be of ‘the energy-gep order and that it fulfils
then the relation 0 < h< h_whered < h <<€F. Moreover, we can suspect
that the external and total megnetic fields are of the same order, accord-
ing to which H is the strong megnetic field. The function G(p, h) can be
trensformed into a more convenient form

(e-£)0%ho

G(p,h) = 2 ()

@b£+10+sgne)2-h2
from which some retarded.and advanced Green functions or the appropriate
Metsubara Green functions can be easily obtained. Moreover, from now on
the paremeter Z defining the discontinuity of the particle density on
the Fermi surface will be ignored in all expressions, since it can always
be eliminated from the final results in the systemetic manner (cf. [S1,
53, 86]). Hence, we can put it equal to one in the above expressions.
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3. General properties of superconducting and superfluid
systems [51]

Although general properties of the normal and anomalous one-particle
Green functions of superconducting and superfluid systems can be con-
sidered jointly if the vector potentiel is omitted, the inclusion of
strong megnetic field requires a particularly careful treatment. To this
end we distinguish the fdllowing types of the Green functions: gn is a
normel Green function, i.e., the Green function which is renormalized
by the Fermi liquid effects in a normel state, G is a quasi-normal
Green function, i.,e., the like normel Green function which, however, is
renormalized by the Fermi liquid effects appearing in the superconduct-
ing (superfluid) state, and G 5 is the superconducting (superfluid)
normel Green funétion. (Such differentiation of the Green functions Sn
and gq is not obligetory if a megnetic field.is excluded). Moreover §1
end F, are the anomalous Green functions connected with creation and
anihilation of the quasi-particle pairs, respectively, and Aq, A2 are
the related matrices being the irreducible ggrts of the appropriate Dy-
son equations (cf. [3, 22, 79, 86]). They have the following symmetry
properties referred to time inversion

= -0} . (1)

and A >

+
=1 =2 1

Using the above symbols the superconducting (superfluid) Dyson equations
cen be written in the following two quite equivéalent forms

+GAF., G =FpAG+G,

Gg = &+ 8OF,, Gy =IL8y
B, = 88,6, Ey =Che, | (2)
gg =.G_Ag§s' !.2 =Qé§

where éymbol "-" over the normel (quasi-normal) Green function G denotes

time inversion. All Green functions are complex matrices which in the
case of the function G is due to the spin dependence. That is why the
time inverse operation induces the synchronous conversion of sighs of

the following quantities: & , p, h,9 and the function G receives the

form

— (s+5)o°+gg
_C:(P) == . (5)

(e +E+10*sgne )21

Appylying the typical procedure to Eqs. (2) we can express the function
Es in two equivalent forms
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=1 _ 71 -15-
g, = [(®™ -3 28,178 (4)
and
g, =87 [(@)" - 4,583, ()

which depend only on the well-known functions G and two complex matrices
_A1 and 122. Using the obtained results, the functions gh and 32 can
be performed in the analogous way. In order to make our general considera-
tions complete we introduce the gap equation in two quite equivalent

forms

b, =Y, or A, =F7V, (6)

=2 =4 =34

where V is the pairing interaction which can be supplemented by the dipole-
-dipole interaction. We define some extra symbols, namely

— ~a L
_éa = A then -A-a A‘l = =44 » (7)
and
— 2 AZ —_ A'] A4
EZZIT then L—TI . (8)

Although the above formalism is common for superconducting and super-
fluid systems, the particular considerations can be continued only in
the individuel wey. Nevertheless, the obtained results are ocoherent and
relatively simple. Moreover, the tangible difference between the normal
and quasi-normal Green functions becomes subsequently obvious. ‘

4, The normel and anomalous Green functions [51]

a) The neutral BOS system

Hereafter in order to make our calculations simpler we fix the
coordinate system so that h = h?, and if possible we return to the gener-
al vectorial notation. Such a procedure is fully justified because the
final results cennot depend on the coordinate system choice.

We consider the standard BCS system (pure S-pairing) in presence of
strong external magnetic field (AﬁaxBH ). The matrix 3 ¢an be taken in
the form

A

A = ai07 (1)
Using Eqs. (3.1) and the desired commutation rules for Pauli matrices
we get

6 =Gb -G[(e+E)0® + no?]™" . 2no®a . (2)
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Inserting Eq. (2) into Eq. (3.4) and applying Eq. (3.3) after some
evaluations we obtain

% - -
84(p) = (e3 - EZ)(e2 - E2)™

x{&e+g)(ez-E2-h2) + 25h2] qo - [ﬂ€+€)2-h2 + AZ]}EE.v (3)
where

E, = [Esh], B =E%2.4% ¢ -esi0'sgne 4)

0

and according to the introduced convention we replaced ho? by hg. In
similar way, using Egs. (3.2), (3.8) and (3), we find

S - -
#p) = -a(ed - B2)71(e2 - g2
x [(€2 - 82 + n®)0® - 2eng]. (5)
b) The superfluid system

In order to consider in the possibly most general way the super-
fluid system with the pure P-pairing in the presence of a strong ma-
gnetic field;we must choose the equilibrium state as the non-unitary
state [10, 11, 85, 98, 99]. Then the order parameter can be written in
the form

A

A =adgioY (6)
where the complex vector d is a linear function of the unit vector ﬁ,
i.e., di = diaﬁa’ and the real vector

1=dd xd" (7

expresses the non-unitarity of the equilibrium state.

We begin our consideration with computing the superfluid Green
functions. Using Egs. (3.3), (3.4) and (6) and the commutation rules for
Pauli matrices we can find that

A - -
é—g =GA-G [(e+ E)oo + hoz] 1 2hdz aig?, (8)

Proceeding in the similar way as before, i.e., inserting Zg. (8) into
Eq. (3.4) and taking into account 2q. (3.3), after the arduous and rat-
her complicated evaluations we get the normal Green function in the form
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o, (B) = (2-82)""(e2-52) "
x {[(e+8)(e3-E2-12) + 2£12 - A2n1]d0
- [(e® - 22 - b®) & 28(e+ &) ho
+ 8%(e+E) 10 +(ba*)(g0) + (nd) (a% )]} (9)
where
E, = [E2 + 12 2 (821 - 2En)2 4+ 442 lgglé]"/z , (10)

E = &2+ 421817

eo =€+ 10+sgn€ .

and

Again, using Eqs. (3.2) and (9) we derive the anomalous Green function
in the form

P 2 -1(e2 2=
F(5) = - 8(e2 - 27N (ed - £2)™

2

x {-2¢hdc® + (? - E® - v®)30 + 2(dh)(ho)

+ 1[(a%1 - 28n) x g] g} (a)™, (11
where the term (gg)'1 is connected with the chosen form of notation.

¢) The charged superconducting system

The problem of the charged superconductor in a strong magnetic
field should be considered in connection with space-inhomogeneity of the
system. The problem formulated in this way proves to be very complicated
end it finds solution only in some specific limit, i.e., in the local
limit or in the Pippard limit [35, 124] . Now we consider slightly in-
homogeneous systems only (the locel limit), for which we formulate two
related approaches.

1° The generalized Gorkov approach [54]

In order to derive the explicit forms of the normel and anomalous
Green function we have to solve the proper Gorkov equations [35, 57,
124]) . While passing to the centre-of-mass coordinate system we first re-

place the coordinate r, end I by

1

=
2=y =gy sl R=s g o) (12)
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and next we perform the Fourier transformation by r. The new representa-
tion is diagonel in momentum with in the local epproximation limit, i.e.,
if we assume that the gradients of the quantities A , Yo and h disappear
and the functional dependence on R can be made implicit. In general case
we must, however, include the space inhomogeneity of the system. This can
be done e.g. by means of the perturbation method. The state constructed
in this way is inhomogeneous and the fermion pairs possess the non-vanish-
ing total momentum (cf. [37, 80, 89, 124, 138]).

In order to derive the normel and anomalous Green function we re-
peat the formalism developed in Section 3, Restricting ourselves to the
superconducting systems only (pure S-pairing state) the basic equations
for the normal and anomalous Green functions reduce to the forms

g, =0 -08AF,

(13)
P =0Ag,
where we assume that the order parameter is of the form
A= -g1807 (14)

Such an assumption allows us to eliminate the additional differentation,
connected with creation and annihilation of the Cooper pairs, by putting

A
L=p,=-8,=-8 ed F=F, . (15)

Let us note that Eqs. (13) are equivalent to Gorkov's equetions [57] and
that they can be rewritten in the form

2-1—3+ A!'1 ’
" (16)
'§-1I + —g-s =0
where the quasi-normal Green function should be taken in the following
form
G = [(eo -£ - _g!s)co + ha]™? (17)
end
Y =YX - — 4 €. =¢t+ i0%sqne
-8 m - ! 0 1] (
2 18)
2 7 ov’
Eaf-w, wWep-—2, roty =--3 H

whore Y, is superfluid velocity end X is the phase of the order parame-
ter. We emphesize that the superconducting velocity is the gauge invar-
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ient due +to its physicel meaning in opposition toXx and A. Let us
note that now the function G should be identified with the quasi-norm-
al Green function G  since the parameters Y0 X o h are connected with
the superconducting state i.a. by the Fermi liquid interection and the
electron-phonon interaction which is consistently omitted (cf. [37, 80,
89, 124, 138]). Moreover, we assume that now the symbol "-" over the
quasi-normal Green function denotes the time inversion of the microscop-
ic variables only, then we have (cf. [22, 79])

g = [(— g —E+ Ezs)oo + h] i (19)

The assumed form of the Green function G ellows us to eliminate the
phase dependence from all the other functions G, E end A in Egs. (13)
and (16) which become the real matrix functions. Hereafter we again
assume fthat the external magnetic field is chosen along 2z axis,whereas
the direction of the superfluid velocity is quite arbitrary. Now apply-
ing the previous methods we cen derive the normel end enomalous Green
functions, Their forms cen be obteined from Egs. (3) and (5) by the
following repleacement

€e—€ - pyv_ (20)

which also results from the forms of Egs. (13) and (16). Putting ¥, =0
we will restrict ourselves to the paramagnetic effects.

C) The anomalous Green function obtained in the generalized Gorkov
approach combined with the gap equation allow us to notice that the
presence of the external magnetic field can lead to .the appearance of
the triplet state Cooper’s pairs if the pairing interaction contains
also the first harmonic responsible for the creation of triplet state
pair. However, in such a situation the equilibrium state should be a
mixed state composed of the pure S- and P-pairing statese

2° The paramagnetic approach

In competition to the Gorkov-type approaches [31, 37, 54, 57, 62,
80, 89, 132, 138] we formulate also the accessory independent approach
based on the assumptions of the LMC theory [50, 55]. This approach
is also in opposition to the consideration of the paramagnetic field in
superconductors presented in [18, 19] (cf. [138]).
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Let us specify main assumptions of the paramagnetic approach. It
is assumed namely that the total influence of the magnetic field on
the system can be expressed by means of paramagnetic térms only and
the omitted interaction of the magnetic field (vector potential) with
the quasiparticle charge can be compensated by the renormalisation of
Bohr’s magneton. Hence, the conformable equations of the paramagnetic
theory keep their forms and only Bohr’s magneton is replaced by the
effective Bohr’s magneton.,

The constructed formalism is set in the centre-of-mass coordinate
system. It also can be applied to quite homogeneous systems in extreme-
1y broad range [50] . Moreover, similary as before, if considerations
are carried on in the local limit, the suitable quantities become
the functions of the centre~of-mass co-ordinate R creating the inhomo-
geneous state (c¢f. [37]). From now on all the calculations will be
carried on in the centre-of-mass coordinate system. Hence, some quanti-
ties must be replaced by their reduced forms.

5. Pundamental quantities of the formalism [51, 54]

Let us define now the fundemental quantities characterizing the
superconducting or superfluid system in the strong magnetic field. Try-
ing to stick to the Landeau gquasiparticle concept we should consider only
the quasiparticles localized near the Fermi surface. Due to such an
assumption the number of quesiparticles teken into acoount is of the
order of v(0) A(0O) which is in opposition to the approaches based on
the Gorkov equations [54] . However, according to Feynman's view [36] the
numbers of quasiparticles are solely the edxiliary quantities which
cannot be treated too literally. Therefore we permit of another approach.

a) The paramagnetic approach

The total number of quasiparticles and average paramagnetic field
can be derived from the following equations

ie &
NatT &{Z S e 2 ra® g (5)
sn 1212I>P°

-ie & o
+Z 2 e 2 trd® Ss(p)] ’ (1)

PlRI<P
en - 0
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Hy = QVIBTT‘TB Z Z 2 9%4(3). (2)

s—~o* €,

Hence, the paramagnetioc magnetization is expressed as follows

M, = xQH,. (2)
The gep equation, acoording to (3.6), can be written in the form
A ie 8 A ~
= - e =
A = la > >e [, - &(p)] tr T F (B) (4)

6—>0 en '

where Ep (A<<§p‘<<€F) is a so-called cut-off paremeter and it is
identified with the Debye frequency wp
Equation (4) is common for both discussed approaches.

for the superconducting systems.

b) The generelized Gorkov approach

In the Gorkov-type epproach the number of quasiparticles is defined
in the form

N="T lim ZZ ntro‘ﬁ(p) (5)

where the summation is extended over the deep region within the Fermi
sphere, hence the density of states cannot be put constant. However, we
need not derive the value of the expression (5) since we assume that the
total number of quasi-particles N is constant and equal to % v(0) Epe
Moreover, the average current can be derived from the equation

ie &
=27 1j 8 e 009 (5
3 = 6—:10" Z % (2+mvs)e ro s(p) (6)
n

and the peramagnetic megnetization keeps its previous form. Let us com-
plete the above equations with the expression allowing us to evaluate
the thermodynamic potential difference of the superconducting (super-
f£luid) state reletive to the normal state. According to the formula
given i.a, in [35] it is of the form

A
- S LA Ay i B
AQ = /aA(A) ™ (81) (7)
0

where 8y is the parameter of the peiring interaction and employing the
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gap equation; it can be expressed as a function of the energy gap A and
e few fixed peremeters: H,n, T, Ep.

6. The quesiparticle interactions

In the developed formelism we coasider three types of the quasipar-
ticle interactions, i.e., the Fermi liquid interaction, the peiring in-
teraction and the dipole-dipole interaction. However, the latter one is
e weak spin interaction, so it can modify only the triplet part of pair-
ing 1nte§action. Hence the full interection in the particle-particle
channel V is formed from the pairing and dipole-dipole interactions and
is of the form [43-45]

o>

: 1 &, 4
T==17 2+ =5 ¢ (1)
where

A A

P_ij(P:P ) = 513 = 5(31 = 13;_)(53 = 63)/'3 = f)’lz .

Other properties of the dipole-dipole interaction are discussed in
detail in Section 32. The dimensionless peiring interaction hes the form
[22]

& =0,(10")(107) +2_, (T1g)('1dV) (2)

where the spin entisymmetric (singlet) and spin symmetric (triplet)
pairing interactions are of the forms [22, 49]

[ =)
Q‘,] = Z (21+‘1)f?_ Pl(ﬁﬁ’) ’ ()
1=0
and
(e <)
o_, = > (21+1)1] P (5F) (43
1=0
where

-1
eals) _ (ln —(-ET;ES ) (5)
1

end all ra(s)EE 0 for odd (even) 1, respectively, then the suitable
fla(s)EE 0 according to the Pauli exclusion principle. Therefore, below
we omit the superscripts. Morgover, the dimensionless parameters fl are
often represented in the form

fl = v(o)gl' (ﬁ)
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The interaction in the particle-hole channel expresses the Fermi
liquid interaction and can be performed in the form [22]

o .. ’
a® 4 Bog (7)

Qs>

=£0

where its spin direct and spin exchange perts are of the forms

A= 2 (2141) &, P, (BB"), (8)
1=0

B = Z (2141) by P, (5"), (9)
1=0

and a; and bl are the Landau parameters denoted also by Fi and Fi or
by ‘1 and Bl then we have
s a _ _

Fl = Al = (21+1) a) and Fl = B1 = (21+1)b1. (10)
Such specified quasiparticle interactions can be easily introduced to
the linear response theory and the pairing and dipole-dipole interac-
tions to the gap equetion. However, the problem of the Fermi 1liquid
interection inclusion to the static non-linear theory requires an in-
dividual approach. We consider it below,

7. The Fermi liquid interaction in the
non-linear theory [51]

In order to consider general properties of the Fermi liquid 4in-
teraction inclusion to the theory containing the strong and constant
magnetic field we construct the self-consistent approach.

Using the Dyson equation we can write

-1 _ At
En = go lgn) (1 )
-1 -1
G = G - IG
=q -0 =8 ()
and eliminating go we obtain
-1 _ -1 _ -
gq = g.n l((_}.s En) (5)

where we assume thet within +the frame of the epplied formalism the mass
operator L can be performed in the form [35]

Ey= I8, (4)

and I is the irreducible part of the effective two-particle interac-
tion, According to the Bethe-Salpeter equation we have
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=1+ (631, (5)
then multiplying both sides of Eq. (3) by
w
1+ 2, (6)
after some transformetions we obtain
“1 _a=1 _ _ w -1 _ a1

where we also include that

2 -1 w
IMe®elq) =L 8a(q) (8)

and

@" - @* =8, (9)

and that & is equivalent to the four-dimension Dirac delta. The sym-
bols w and k denote the appropriate limits, The dimensionless ampli-
tude of the Fermi liquid interactions is of the form

¢ = av(o)r®. (10)

The above consideration is carried on in relation to the full forms of
the Green functions when the matrix notation is applied.

From now on we can restrict ourselves to the singular parts of
Green functions and assume the functions G and gq in the forms:

Q;I = [(e-¢ o + ho],
- (11)

¢! = [(&-2)0° +7a].

Let us note that (usuel notation)
: -1 -1 .
> SR (g’ - g = Bla -T)od, (12)
e, R

hence Eq. (7) reduces to the form

(f-&)oo +7(-g= (5—& )00+ }_19' +
2176 0 0, 2nTe " n -
g S Zg tr(0 (g5mgq)) > - 5o (B 2, trloteggg)] Gud -<p¥e )

(12
where we separate the integration over spherical angles and after exploit-
ing relations

2—\’1—(-65 <B L, tl‘('ggq)>=<B77>: (14)
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and

b = pgH -<Bh>, (15)
for a normal system, we obtain:

1
= ¢ - .~ <adn> , (16)
X = pgHp - Ba_) (17
BgE BpY, < s )

where

4T <{a Z, tr[co(gs - gq)] > =<4én_>,
4T (B I, tr(08.)> = 4-<Bu,> ,
B

and N = {n> is a number of quesi-particles; M = {(m)> - a paramagnetic
magnetization. It is easy to note that the obtained Egs. (16) end (17)
are also valid for the normael systems where

én = 40T 2, tr[@%g, - g,(0))] (18)

and

M BpYol . (19)

Moreover, Eq. (17) represents the development of the molecular field
approximation and reduces to it if we put B = F2, whereas Eq. (16) after

ol
being rewritten in the form

58 = &€ - —— <AbD> (20)
0

can be used to obtain the following Word s identity

aN Yo
3 = a (21)
e =G 1+FO

where we assume that

v068 = 8n and (Aén):FgéN.
II. Basic equations and their principal properties in the theory with
the magnetic field

The developed formalism, especially the obtained forms of the Creen
functions, are the starting point to a coherent generalization of the
IMC theory [22] in case when the external strong magnetic field is re-
garded. It is obvious that all the vertex equations keep their forms,
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however, detailed calculations induce some complications connected with
mutual transpositions of the Green and vertex functions which are the
matrices. Consequently, each of the generelized L,M,N,0 kernels will
have a few matrix forms, adequantely to the performed transpositions.
Therefore, detailed considerations are usually carried under additional
assumptions end for the select systems, e.g., for k = 0 (the NMR condi-
tions) [83, 85, 93] . Moreover, renormalizing impact of the Fermi liquid
interéaction, especially on the strong totael magnetic field, makes an
important problem in the generalized IMC theory (being connected, e.g.,
with the Larmor frequency and the Knight shift, cf. [22, 63, 93, 104] )
which cannot be appropriately constructed by means of the linear
approximation. In Section 41 we give a precise generalization of the
theory for the normal Fermi liquid. It illustrates the essence of the
problem. At present a static case of the theory is developed for the
neutral and charged Fermi systems with the pure s-pairing(BHe-qﬂe mix-
tures and superconductors) and for the neutral Fermi systems with the
pure P-pairing for an arbitrary non-unitery state (superfluid 3He). We
also assume that the systems under consideration can be slightly inhomo-
geneous. The problem specified in this way constitutes non-linear de-
velopment of the theory towards the strong magnetic field. The obtained
results allow us to examine principal properties of the system under
discussion. We also show that some assumptions teken in the spirit of
the Landau quasiparticle concept lead to very interesting results. The
formulated approach gives the possibility to include the particle-hole
asymmetry. However, this effect is neglected until it delievers gualita-
tively new results. So we assume the full symmetry of a description and
we restrict ourselves to the quasiparticles above the Fermi sphere.

8. Neutrel BCS system [51]

We employ results of Sections 4 end 5. According to the accepted
assumptions the pairing interaction is of the form

T - - eTel (1)

Before we pass to the principel considerations, let us notice that
since the partiel derivatives of the expression haeve the following
properties

B, g (2)
= = E + h) — ,
gz— sgn( bt ) ¥
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3E
hd A
s = sgn(E + h) 5 (3)
9E,
—5E = zxsea(E & h), (#)

an arbitrary differentiable function f£(x) must fulfil the following
equations

1 3af(E+) 1 af(E+)
3 38 & 3E ) (5)
ar(E+) E af(E+) (
Tem "t T 6)

Now substituting the anomalous Green function into Eq. (5.4) and perform-
ing the appropriate integrations, the gap equation reduces to the form

g
. 9 E, 3E, E_ 3E_
A=—E—g0\/(o)j da thﬁ.ﬁ"’thﬁ—a‘z‘ . (7)
-E :
It is easy to notice that Eq. (7) cen be rewritten in the more compact
form
A = A Te Viny = ° d€ 1n h % oh o (s
=72 “80%(0) Ta chareizr)- )

%

Using Eq. (5) we obtain one more equivalent form

g
0
A=_Z~"*‘4o"(0)“J '%E(th%%*m%)‘ (9)

E;0

The obtained equations allow us to find the relationship between the
magnhetic field, temperature and energy gap. As it may be noted the
energy gap is an even function of the magnetic field. According to Egs.
(25.14) end (9) the magnetic field does not deform the energy gap at
T = 0. as long 4s h <A, This is due to the fact that there are no free
quasi-particles and the magnetic field does not interact with the
Cooper pairs until it starts destroying them. That is why at T = 0 the
weak and medium magnetic fields cannot cause ony effects in BCS sys-
tem,

Let us consider now the peramagnetic magnetization for the discuss-
ed system. We act in the similar way as before, but now we insert
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the normal Green function into Eq. (5.2) and after some integrations and
transformations and using Eq. (4) we get

+oco

1 v E+ BE+ E_ 3E_
M=Tu'BO g thm—a—ﬁ +th2—T—aE (10)
-co

and can transform it again to the compact form

+o00
1 d E+ E.
M 2—2— “BVOT——a-E d& 1n Ohm Gh'ET' (1")
-l
where the lest expression should be understood in the formel way, i.e.,
400 +3
3 _ ) £
3% it = _}_n;o -3E as . (12)
-0 -8
On the other hand, using Eq. (16), we can rewrite (10) inh the form
i e . E+h E-h (
M= [TH, ) ag(th — - th — |, 13)
"B f 2T 2T
-0

The obtained equetions express the dependence of the paramagnetic magne-
tization on h 1in the strong-magnetic-field approach. Let us consider
now the obtaeined results in some specified limit.

1° The limit T = 0

After applying Egs. (35.14)-(35.16) the paremegnetic magnetization
reduces to the form )

M= bgvy y/n2 - 8% B(n-a). (14)

According to the obtained result the paramagnetic magnetization appears
only if h > A , Thus, in the caese being discussed it must be investigated
together with the gap equation (9) [50, S55].

2° The medium h 1limit

We consider the magnetizetion at non-zero temperatures assuming
that A > h, Applying some trigonometric rules we transform Eq. (13) to
the form

M =— HgY Sh‘%‘j ’ (15)



25

which after the series expansion takes the form

o o
M = uyVT sh g Z (-1)3 ond %f ax en” %) /22 4 (a/m® . (1)
3=0 o
However, by applying (15), which turns out to be more convenient for

our calculations, end computing the suitable derivatives we derive the
paremagnetic magnetization up to the third order in h in the form

) .
1 h :
M= uBVO Yo h + -5 HB\{) (ZYO- 5Y,2) ;é- . (17)
Taking into acoount the Fermi liquid interaction (Section 7) in linear

approximation we obtain the well-known expressions [82, 85]

kgl Y o¥o

he———— @and X = (18)
1+bOYO 1+bOYO
which combined with (17) give
2 4
nev. Y v 2. - 3%,
X owbB20 g “Bao- °b = B (19)
1+bo!o 12 T (1+ OYO)

and can be employed in experimental investigations. We emphasize that
the vector of the paramagnetic field is always parallei to the external
megnetic field direction and no other additional direction is distingui-
shed in the system. Thus the spin susceptibility tensor (xij_ami/aﬂ
is proportional to the Kronecker delta.

In order to complete our considerations we enclose the following
equation expressing the number of quasi-particles N (Bq. (51))

;- 3 E+ E-
N:vofda 1 -7 3 1o (oh =4 ch 57 ), (20)
0

from which we derive

A+h =
N = VOT].D. (ch > ch §T—> + V T21n (21)

as & function of A , T and h. Equetion (20) together with Eq. (11) can
be employed to define the gquesiparticle distribution function and we
obtained it in the form [50] (Fig. 1)

E+h E-h E+h E-h
A1 1 3 ]
D= — aol:-§<th—2T+ th_ZT)E]+O <thﬁ-thﬁ—> .

(22)
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In most cases we consider it only for § > 0.
The results obtained above can be applied immediately to the charged
systems in the paramegnetic approach.

9. Superconducting system - the generalized
Gorkov epproach [54]

We employ the results contained in Sections 4 and 5. Substituing
the snomelous Green function into (5.4) and making some trensformetions
the gap equation reduces to the form

w +1
D
v(0) E+h+xp Vv E-h+Xxp,.V
_ o) ag s 0_s
1= — f 5 f dx<th—ﬂl—+th =7
_mD -1

+th ————0 5 4 th — 0 8 (1)

where the other integral expresses the averaging over spherical angles
and can be easily computed. Then we obtain

E+ h - XpoVg E -h - xpovs>

w, E+h+p. Vv E-h+p. v
D 0 s Q0 s
2 p, Vg -'f -Q;In ch ——g— ch =i iy
9(555 T = E B+h-p v E-h-p v_ °
(>o s s
0 ch ———§TQ—— ch _—_iTQ__

It is easy to observe that the obtained espression is invariant while
changing the signh of h or vs. Let us consider now the total number

of quasiparticles, the average current and the paramegnetic field. After
substituting the normael Green function of the superconducting state and
making eppropriate transformations we obtain

1 +co
N = —2;— f ax f ag v(&) [1 + g, (&, x)] , ()
-1 -K
jmelWy, - oy, (4)
1 +oo
Hp = Py 1‘1* [ dx f ag &_ (§: x) (5)
B
-4 -0
where

E+h+xp .V E-h+xp. v
g, (€,x) =£‘; (1 + %) <th - 88 4 n - 0 s>




27

E+bh - xp Vv E-h-1xpvVv
:%—(1'%) <"h——§r—u:*h"——ﬁ—°—s> (6)
and
+o0
N.D. = r%NT f dx x f d& g+(5,x) (7)
0 s

can be identified with the number of the normal (uncoupled) quasipar-
ticles.

In order to calculate the paramasgnetic field Hp and the number
of the normel quasi-particles we have to notice that owing to the
symmetry the perts of the integrels (5) and (7) contaning the term &/E
vanish. Hence we have

E+h+xp Vo E-hwxp Vg
P16 by nB
-1 -oco
E+h - xp v E -h - xp Vg
+ th———zT——J'—" th ’ (8)
+0co

v(0)p E+h+ xp Vv E-h+ xp Vv

= I o N
LA -arv"f“‘f‘“(tb_z'r—"—“‘h 5T

-0

E+h -
_r_.L _ET_Q_ (9)
where Hp is directed according to the externel magnetic field. It is

easy to verify that the obtained functions have the following symmetry
properties

Hp(h,vs) = - Hp(- h,vs) = Hp(h,-vs),
(10)
Nn(h.,vs) = Nn(-h,vs) = Nn(h,-vs) .

Hence the paramagnetic field and the normal current cannot depend on
the directions of ¥, end h, respectively. After computing the first in-
tegral in Eq. (8) it reduces to the form

Py
d¢ 1n T+ h-pv E-h+pyv . (11)
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Unfortunately, such procedure cannot be repeated directly for Eq. (9)
and integration by parts leads to divergent integral expressions. HOW -
ever, using Eq. (8) we can rewrite Eq. (9) in the form

N HeH h = B

n, B s o a& dzz(th&'-z--th-E;z- (12

N 1_v£—p i .y >7 57 ) ¢ )
0 's 08 o Bp ¥

10. Superfluid systems with the P-wave-pairing
(°He) [51

We employ Egs. (4.9)-(4.11) end Section 5. The full interaction in
the particle-perticle chénnel is taken in the form (cf. Sections 6,‘40,
42)

A A,

2
Vig = - e, [(14B0)8 8, - Bal6 8,y + 86500 Bbr )

Let us begin our investigation with the consideration of the possible
partial derivatives of the expressions (4.10). They have the forms

B, T (2h - 8%L)n (
F = T E i 3 ’ 2)
| V821-210)? + 4a?1gn)2
% T (28, -Az_lj)i + 82(an*a, + waaj)
3E; © E, s 5 2 e ’ (2)
: L 1/(A 1 - 2£Eh)2+442|gp)2
B, 2 [, 16%(1 x @), -2i(h x a); + 2ndh,
2 - ZE, d & = ' ) (4)
7L V(621 - 26m)2000) ani?
and
A BE1 . aEi ,
- = 4. 5
2 04 I 34" )
b
where the square root in the denominator can be performed in the form
1
B2 - B2 = 2 /(821 - 2&p3+ 447 (na1? . (6)

We also have

2
+ - EJ)

2
E+-E2"h2_=1%(E . (7)
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Substituting the anomalous. Green function into Eq. (5.4) and using above
equations we derive the gap equation in the form

" q 0 an:+ E_ 9E_

which can be also transformed into a more compact form

2 3 Eo
o - -2 {x 5% |
i

which is analogous to (8.8). Although the further considerations can be
continued if the dipole forces are regerded, they are neglected to make

E E
dE 1n <ch 2—% ch 21}) > . (9)

0

our considerations more convenient end explicit. In such a case Eq. (9)
reduces to the form

2 A 3 EO + E-
A dia = 390g1T <P¢l ;cﬁ[ d& 1ln ( —T T>>, (10)

0
hence, using Eqs. (5) and (7), we obtain

%

E E_
A=1§v0g1Ta—i—<j d€1ln <oh§,} ch?r>>, (11)
=
and

5

5 E

4°<1> = -1Vg1 <_ x—a—f d§ 1n cthh_>- (12)
0

Equation (11) is almost the seme as Eq. (8.8) and can be used to derive
the external-megnetic-field end temperature dependence of the energy
gap, whereas Eq. (12) allows us to prove that the vector 1 is an odd
function of the magnétic field h end it vanishes if h tends to zero.
That conclusion is obtained eutomaticelly if we notice that  the
quasiperticle energy E+ is invariant during simulteneous alteration of
the signs of magnetic Field h and the non-unitary state vector 1.

Let us pess now to another point of our considerations, i.e., to
the derivation of the superfluid-system average magnetization. Insert-
ing the derived form of the normal Green function into Eq. (5.2) and
aprlying Egs. (3), (6) end (7), after some algebra we obtain
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+ co
E E
M, - _%_ ngT <ﬁaq f d&v (£)1n (ch-zi} ch 5%>> (13)

where the assumed form of the state density allows us to take into
account all the effects which arise due to the particle-hole esymmetry.
According to Eq. (12) the right-hand-side part of Eq. (13) depends on
two macroscopic direétions h eand (1)> and one microscopic direction
d. Then, the total magnetization is determined by those directions and
need not be parallel to the vector h. In spite of the full analogy in
forms obtained for superconducting and superfluid systems the inner
structure of Eq. (13) is far more complicated then that of Eq. (8.41),
and the former equation is investigated only for small values of h, We
also precede them with the introduction of the following indication

E#
f:(g) = 1n ob »x . (14)
Then we have
B
+
'—EEI' - g °
and (15)
E+ E+
2%t, () th—= 8%, och®—= oE  oE,
- - 2T . = 2T | = . Fﬁ:
: 2 )
ahy ahj 21 3h,d hj 47T i b

and putting h = 0 we have

82 = Ve2ea20a2 5 111,

a2 .
e ry %0- 11 »
ah

i +

20 A A
2%, £2 ‘s 1[6 25?(5ij-1111)+A?(did;+d;dj) (169

& = + —|6. .+
0y2 17} ij= 2

9h, dh, (1:1) Eg AC|1]

where ii(= li/ll]) is the unit vector elong the 1 direction. Using
Eqs. (15) and (16) the magnetization (13) in the lineer approximation
reduces to the form
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+ 00
-2 2
=5 Hgb <li f%th%.g—v->+ p’B<rljh : (17)
and
d ar + a a. 3
df . -2 E
iy = %4yt am [ °n _2’1')' (18)
0
Blj =<rij>

where in order not to exceed the accuracy of the theory, we .also res-
trict ourselves to the first term of the expansion in |1l. The first

term of maegnetization depends linearly only on the vector 1, and accord-
ing to the previous remarks it also depends lineary on h, hence the m&-
gnhetization must vanish if the external magnetic field is excluded.
Moreover, this term appears only if the particle-hole asymmetry is
edmitted. While deriving the other term we consequently neglect the
particle-hole asymmetry. The presented results are obtained within the
frame of the self-consistent formalism, where the magnetic field affects
the equilibrium state by dipole-dipole interaction effects. From Eq.
(18), applying (7.17), we can find the static spin susceptibility for

an arbitrary state. For the states Heing discussed by leggett [84] as

the best ground-state condidates when the dipole-dipole interaction is
included, the following results are obtained (ecf. [1, 39, 85, 127, 135,
149]).

1° The isotropic-BW state [15]

Q= (- B, + /A5 Bt + G(-f VA5 {05 + 8,8,

2

la|€ =1, 1=0, Ty = 511 - (1-g))didj .

_ 2 . 1

Rij =83 §+32%),

hence
2 %(1+b2Yb)+%Yo(1+b2) 5. .
Y137 %8 %0 Zog )(14D57, )+d (14, ¥, ) (14
g1+, ) (14075 43148, 75 ) (14D,)

2° The exial-ABM state [11, 12]
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2 =q/30, + 153, 182 =300 - 8Dy,

l’ol rzj=6z;] »

= -8 & 5 &
By = g5 = 0458590 * ®45%55%0,2 »

hence
xi.ngvo[" B, -8,5 )+ Y255].
! TR Ty gy) AT, S Wy
3° The planar-2D state [7]
a=y82x8, 1aP-30-8), 1-0, 5, =5,

1 1
Byy =305y +8,,8,.) + 30855 - 8,827 »

hence
1
2 3(1+% ;) S 1
X =BV | = % (6 -6 & 6 & .
g ] BO “"%bo““o,_a) ij iz J-z) *+ 1+% iz jz

4° The polar-1D state

g = ﬁsz"y‘, lg,_]z = 33?, 1.' =0, ij = 621 N

(6, -5.5 5 6
Byy = 045 = %45°%59) * ®15°%5%0,1 ,
hence
oy [ -8 8yl 8 6 (
Xij BO |TT+B, ' 1] iy 3y +"+oo1 iy gy| 193
?

It must be noticed that in the cases 2°-4° we have restricted oursel-
ves to the molecular field approximation. However, taking into account
the fact that the external magnetic field is chosen along the z-axis we
should concentrate on the xzz-component of the spin susceptibility ten-
sors, which is derived exactly end. possesses the i1dentical following
form 5

v
x = 152_9_ i (20)

2z
b
1+o

The presented results (19)-(20) differ from those obtained when the dipole
-dipole interaction is neglectéd, because now the axes of the coordinate
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system are rotated in a special way. It causes that the standard value
of the static spin susceptibility for the 1D-state is given by xyy-com-
ponent.

The magnetization investigations can, of course, be executed up to
an erbitrarily chosen order of h. The problem becomes simpler if we re-
strict ourselves to the unitary states (1 = 0). Then, the guasi-particle
" energy reduces to the form [52]

E, = [( 2, a2 ldzla N h)'2\‘ 82(1a)? - ldzlz)]va (21)

and

E,(h) = E_(-h).

It allows us to state that the integrands in Egs. (9), (41) and
(13) become the even functions of the magnetic field., The obtained form
of the magnetization makes possible the investigations of the nonlinear
magnetization of the)superfluid Fermi liquids for arbitrary equlibrium-
-state systems. The number of quasi-perticles N, which is the last point
of our considerations, can be expressed in the form analogous to Eq.
(8.20) if we replace the quasi-particle energy according to (4.410) and
keep the average over spherical angles. Then after some calculations we

get

N = VT <1n <oh é&‘, ch £§>>+ Vo T21n2 (22)
where

A, = [A?lgl"’ + 0% s %12 4 4!9912]1/2 :

The obtained result (22), identically as for (8.21) under assumption
that the number of quééi-particles participating in superconductivity
or superfluidity is constent and independent of temperature in the ab-
sence of magnetic field, ellows us to formulate the following reletion

8, 181> = g’r <].n ch —%L%—'>+ Tgln 2 (23)

where AO = A(T = 0) and |d| =1 for BOS state. Hence, for isotropic
states energy gap as a function of temperature is derived in the form

A - T21n2 A - T2ln2 g
A = 2T 1n [exp =g 4 f P g =1 ),

which in the limit cases reduces to the forms

(22)



/ / T
A = 2 AOTO 1 - —T; if TG - T<<T° (25)
A

_ o
b = 8- 2Te T if T<<T, (26)

and

where we also employed the relation

by = Tcg 1n g, (27)

which can be obtained froam Eq. (24) by putting T = Tc' and A = 0. Let

us remark that the above relation is im good conformity with the

experimental data obtained, e.g., for gallium. Obviously, our assumption

is very elementary, the obtained results show however the proper trends

of the system being discussed. Moreover, taking into account that En =
(2n + 1)IT we note that the Fermi liquid interaction can renormalize

the temperature and the new effective temperature is of the form

Teff = k7% (28)

where T®X denotes the real temperature of the system. The coefficient k
is connected with the Fermi liquid interaction and expresses the indivi-
dual properties of the system. Substituting (28) into (27) we find it in
the form

%

k= X 2 1n 2 !
c

which allows us to define its velue by meens of the experimental data,

Comparing the obtained results with the BCS-theory results we state a

good egreement between the two forms of the energy gap in phase transi-
tion vicinity (Eq. 25) if the femperature is replaced by effective tem-

perature. The coefficient k derived from Eq. (28) is equal to 1.27.
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Part Two

FERMI SYSTEMS IN STRONG MAGNETIC FIELDS
III, Superconductors

11. Preliminary remarks

The subject of our primary interests is connected with the type-II
superconductors. We can determine the basic properties of the super-
conducting systems by using some characteristic quantities, i.e., the
Ginzburg-Landau paremeter » and the penetration depth A or the coherence
distance &0. Moreover, we identify the value of the critical magnetic
field for which the energy gap (superconductivity) vanishes with Hoa
and we apply some results of the Ginzburg-Landeu theory. Then we have
(35, 38, 92, 124, 129 130]

Ha=H°J§'u, (1)
Cc
A
x=<——‘3—) V2, g e — (2)
4nNse2

and since
¥(r, H) ~ A1, B) ~ N, V2, (=)

we can write

a ? = N Ns
A(0) N (4)
where the factor m should be of the order unity. Moreover, we have
T (2
H (T) = H (0) |4 (—T;) ] (5)

and

Y4anv (0) a(o). (6)

Since for type-I1 superconductors the relation

H, (0)

H5

> H, implies x>1/42 , (7)
c
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then the latest relation can be exploited to settle the type of super-
conductivity in case the value of the Ginzburg-Landau parameter n is
known., The quantities % and Ns can be always derived within the frame
of the formulated approachas. Then, by applying (2) the penetration
depth A and the coherence distance Ec can also be found. Iet us note
that Eq. (4) caen be used to test the correctness of every formalism.

In the developed approaches not all intermediate phenomena, such
as the electron-phonon interactions end electromagnetic interactions
connected with the motion of the charged fermions, which lead to the
Oooper's peir creation are teken into account. We assume only that the
considered quasiparticles are coupled in the singlet spin state. However
the superconductivity is the collective phenomenon where the moving
electrons are locked into a phase-coherent state. Some 6f the left out
interactions can also cause the renormalization of the fundamental
magnitudes expressing the properties of Cooper's pairs. Therefore con-
sidering the paramagnetic model we assume that the ignored effects renor-
malize the value of Bohr’s magneton in case of quasiparticles coupled in
Cooper’s pairs., This assumption is quite justified on the grounds of the
Ginzburg-Landau theory, thus - based on the evaluation of the free ener-
gy - we find the following relation

’
0
xq|2

Xp

a:]
by

(8)

where xg (= - 1/4n) is the diamagnetic susceptibility of an ideal super-
conductor in the Meissner state and ¢ is the paramagnetic susceptibi-
lity of the normal Fermi liquid (cf. [go]).

Let us note that the introduced assumption is consistent with theory
of the normal Fermi liquid and that the approach to the superconducting
state from the normal phase is well-defined in the phase transition point
(ef. [35, 62, 92, 124]).
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12. A general outline of the paramagnetic approach [55]

The present formalism allows us to consider the phenomenon of super-
conductivity in the interior of the system volume without defining the
system surface. The total magnetic field is introduced to the calcula-
tions by means of the paramagnetic terms. The interaction of the mag-
netic field with electric-charged quasiparticles is compensated by
the renormslization of Bohr s magneton. Let us now specify the
principal ideas of the paramagnetic theory. The pafamagnetic theory
refers +to the type-II superconductors in the mixed state.  The quasi-
particles under consideration are situated nearby the Fermi surface. We
assume that there exists a full particle-hole symmetry in the system. It
allows us to restrict our considerations to the quasiparticles above the
Fermi surface. In order to discuss the achievements of the paramagnetic
theory we restrict ourselves to the homogeneous and zero-temperature case.
The principal result which permits us to construct the paramagnetic theory
is the equation of the internal paramagnetic field (cf. Eq. (8.14))

HP=1/H,%-(%§.>2 9(%";?})' (1)

This field is generated by discoupled and polarized quasiperticles
which appeasr in the vicinity of the Fermi surface in the strong megnetic
field (H > H). Such an assumption allows us to explain the process of
pair destruction as follows. Cooper’ s peir stops to exist when the strong
magnetic field flips the spin of oné quesiparticle and both quesiparti-
cles heve the same spins directed according to the magnetic field. Hence
the peramsgnetic field appears. Let us note that the number of disco-
upled (normal) quasi-perticles is proportional to the paramagnetic field,
thus we have

N, = 2v(0) T8 Hy=2v (0)em, (2)

where m is the paremagnetic field expressed in the energy scale. The
distribution function of quasiparticles in the superconducting state has
the form (Fig. 1)

-
!
F]I (]

if gl > m
n_= % ()

28,4, it [E] < o,
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Fig. 1. The distribution function of quasiparticles with spin "up" o,
and "down" n_4, in the presence of the strong magnetic field for the
type-II superconductors at T = 0, a) H< H°1, the Meissner state, all
quasiparticles are coupled in Cooper s pairs; b) and ¢), H._<H <H

the mixed state, there exist only the quasipartic}es with spin "up"
near the Ferml surface; they cannot create Cooper s pairs; all other
quasiparticles are still coupled; d) H > Hca' the normal state

1

where a = + 1 defines the position of the spin, i.e., "up" or "dowa",

respectively, and E = 52 + Aa . Applying (3) we can state that the

number of superfluid quesiparticles is given by the expression

» A \2 .
Ns‘”‘”“s[H'r' Ay - (Tg)']=“(°)“B(HT‘Hp) (4)

and the total number of quasiparticles

N =0Ng+ N, (5)
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is equivalent to the relation
A(0) = up(Hp + Hp) (6)

which is in agreement with electrostatics laws [36] and is identical
with the gap equetion (14.2). Such properties of the developed formalism
allow us to congider space-homogeneous as well as space-inhomogeneous

in the local limit superconducting states, although the condition of in-
homogeneity is the most important assumption of other approacres [2, 3,
17, 29, 30, 35, 88, 89, 124, 13%8] . The equations of the paramagnetic
approach keep their forms in both limits, however, in the local limit,
the suitable quantities A, HT’ Hp and Hd become slow-varying func-
tions of the position R (or the vector of inhomogeneity g, cf. [37,
124]) and their average values have physical meaning, only. It will cause
slight modification of results in comparison with some obtained in the
homogeneous limit, i.e., there should appear an additional factor of the
order of the unity connected with the averaging over configuration space.
As it is shown below the space-homogeneous system constitutes an ideal
type~-II superconductor. Therefore to consider the real systems we must
include the effects of inhomogeneity.

13. Bquations of the paramagnetic theory [55]

We apply Bgs. (7.15), (8.9) and (8.13). We emphasize once more that
in the local limit the quantities HT’ HP»and A are slow=-varying func-
tions of position R, whereas the quantities H, 4 (T), u% and the Fermi
liquid interaction are always space-~homogeneous. Therefore the above
equations become the microscopic equations. It causes that now we cannot
divide the both sides of the gap equation by A to eliminate it. The ma-
croscopic quantities are obtained after averaging over configuration
space hence the macroscopic gap equation is of the form

W
0 2 * - »
2 1 2 d& 2+ uglp &= pghp
<a >R=-§v(0) gO<A f T(th—T"th_—é_T—' g (1)
R A R

In order to be able to consider the magnetic properties of superconduct-
ing systems we have to give the definition of the diamagnetic magnetiza-
tion. We assume that the total magnetic field is composed of the para-
magnetic and diamagnetic fields. Hence, the microscopic diamagnetic field
is of the form

p = Hp = Hp (2)
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and the average diamagnetic magnetization can be expressed in the form

<M>p = - 7o <Bydy (3)

Let us remark that the diamagnetic magnetization is proportional to the
number of superfluid quasiparticles defined by Eq. (12.4).

14. A space-homogeneous case [50]

The space-homogeneous case, when T = 0, makes it possible to solve
the problem in the largest range. Employing the relation [3, 22, 35, 96,
124)

ZwD
1= v(O)go in 270) (1)
we reduce Eq. (6) to the form
»
uB(Hp + HT) = A(0). ‘ (2)

Equations (13.5), (13.8) and (2) form the complete set of non-linear
equatigns for which two qualitatively different types of solutions are
possible (cf, Section 43). As the first one, we consider the Meissner
state, i.e., the case when the energy gap is constant and vanishes for the
fixed value of the magnetic field Hc such that Hc-s Hc1’ The dependen-
ce of the energy gap and paramagnetic field on the external magnetic
field can be described by the following equations

a(0) if H<H, <H,,

A = (3)
0 if H>H,
and
0 if H<H,
H, = (4)
Ha if H 2H.
1+F0 ’ c

The diamagnetic magnetization is of the form
H if H<H,
G . c
M= X,d (5)
0 if H >Hc.

The value of the external magnetic field Hc for which the energy gap
vanishes can be derived from the Gibbs free energy evaluation and we get
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b3 H, =7/ 501 + F2) 4(0). (6)

Let us consider now the other case when A tends to zero in the con-
tinuous way and it vanishes when H = ch. Since for H<:Hc1 the lMeissner
state is realized, we discuss below only the mixed state when Hc1 < H
< ch. After some calculations we obtain the following functions

H-H
Hp = _a__gl , (7
FT -1
0
F2 41 H
8% = 4%(0) 2 <1 - —> (8)
Fo -1 ch
where the critical magnetic fields have the forms
a(0)(1 + F2)
H, = JLLQl and ki b« (9)
c1 Ty c2 »
B 2;13

Since the type-II superconductivity is realized when Hc1 < ch, we ob-
tain the following condition
>4, (10)
0
Let us assume now that for an ideal superconductor we can write

H 7
H =H v2 n H = c (11)
c2 c e c V2%

and

H, = ¥ 4= v(0) 4A(0). (12)
Then from Eqs. (9) we get

V1 +Fg’

Ke—g (13)
and

* ‘P " . 1
kp —r——-—-—n_'z n“'v' (0' ) ( 4)

Note that according to the obtained relations we have
* 2
up Hop = 28(0) %, (15)

Applying Egs. (2), (7), (8) and (13.2) wé obtain (cf. [17])
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i T2 2(H_, - H)
HM = [—A'(ﬁ')'] Hc1 = _—;T"?‘—T (16)
0

and hence inserting (13) we have (Fig.2)

H2-H

e (17)
HM 2w - 1

In order to calculate the Gibbs free energy difference we employ £gs.
(5.7) and (1), (2) where Hp + Hp as a function of A and H can be de-
rived from the following relation

2
B, ¢ B = O g ——medt (18)
B\'T P Y
HB (HT+HP)
where
* a
o - My H ~ F2 -1
= 4 ¥ e |,
Fo + 1 F2+1
After some calculations we obtain
AG=——J—-)-\2’?1 ( p2+q_A2 -p)z‘ (19)
and hence
2 2
(5, - H) (H,, = H)
86 = -1 €2 - .1 _o°3 __ | (20)
4n F® =1 8n 2%° - 1

Now we state that AG is always negative if Fg:>1(u >1/v2) and H<H_,,
and AG = 0 if H = Hc2. For H = Hc1 the Gibbs free energy difference re-
duces to the form
2
H
A6 = - 21 (2x2 - 1) (21)
8xn

and it tends to zero if n —1//2. Moreover, we have

o ol (22)
The same result (20) can be also obtained in the typical way. Then
H ‘ i g2 2 ?
AG=--8—E--II~IdH=-§;t—(Hc—HC1)— fMdH (25)
0 H

c1
where we replace
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o
2 v(0)%(0) by .

Note that if we put H =H we get the relation

c1,
B 2
1 ()
8G{Hey) = - 3 (;z - Hm) (22)

which can be employed to derive Hc1 when AG is obtained by means of the
formule (5.7). Now, of oourse, H, = H02/2u2. The same problem can be
considered also in dependence on the magnetic induction B. Then,
after applying the following relation

H—B:HT—HP (25)

in snalogy to the previous results, we obtain (cf. [17])

B
Hp = =—, (26
B Fg + 1 )
22 = 4%(0) (1 - Hﬁ;), (29)
HM=2(H°2 - B) -Hoa-B,
F@ 4 1 2 %° (28)
0
1 (B, - B)2 1 (Hy, - B)?
AF = = = £ = m— , (29)
a 2
4 n Fo + 1 8n a2n
and if B tends to zero Eq. (29) reduces'to the form
5
AF = - . (20)
8n

Moreover, the following relations are fulfilled

A =-N, (31)
2 B
AF:-B:‘-]MGB, (32)
0
and
AG = AF + 2nM2, (33)

It is worth reminding that the obtained results concern the mixed state
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only when Hc1 < H<H,e Therefore, now AG as well as AF  vanish

when H or B achieve their critical values ch = Bc2' Moreover, we
state the full consistence of the obtained results. However, the Helm-
holtz free energy difference does not imposes any restrictions on the
Ginzburg-Landau parameter, therefore it possesses small practical mean-
ing., In this way the problem of when the particular states are realized
is solved univocally. The state with the energy gap existing for the
magnetic fields H >>ch is more stable than the one with the vanishing
energy gap, because its Gibbs free energy is lower. Such a state can
only be realized when the inequality (10) is fulfilled, since in the
opposite cese this more prefersble mixed state is forbidden.

15, A space-inhomogeneous case - the local limit [55]

a) The zero-temperature limit

In order to consider a real superconductor we must take into acco-
unt the inhomogeneity of a system. We again assume that the energy
gap is a continuous and decreaesing function of the magnetic field which
vanish in the whole volume coincidently when H = ch. Thus, all other
quantities become the space-homogeneous, hence the local limit approxima-
tion is well-defined at least in the vicinity of the point Hce’ Therefo-
re we can treat the effects of inhomogeneity as a small perturbation of
the homogeneous state and apply the perturbation method. Then we can
write

ug(HT + HP? =p(1 + V1 -¢) (1)
h
where 42
R
pom XD e=s(1- -5
1-nh A
and
P S . . -
c2 (1 + h)

A is given by Eq. (14.8) and the energy gap AH has the same proper-
ties as the wave function of Cooper’s pair, Note that since h fulfils
the condition 0 < h <1, hence 0 < s <1.

Employing Eqs. (8.9), (8.13), (13.2), (14.18 - 19) we cean write

2

AR

{Hy”> g = 5= ; (2)
E <(“B)2(H‘I‘+HP)>E
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2 2
86 = - 4 v(O)q< °8 >
";3(HT + Hp) R (3)

and, moreover, <B>§, (HT> R’ <HP> R can be found from the relations

{B>p =H -<HyVp, ()

B> g = < H ¥ p ¥ (5)
R="7 CHp+Hp+Hy g

KHp> g = =3~ Hp + Hp = Hy > p . (6)

In order to derive the above quantities we have to solve the gap equa-
tion (13.1) which now can be reduced to the form

2 A (0)
AS 1n = 0, (7)
< B uey (Hp + Hp) >

After some calculations in the third order of the perturbation method we
obtain

H. -H
CH >y = —2 . v, (8)
7R T i - 1)
2
(H - H
oot 2B o
8n 32(211 - 1)
2 X H HOZ—HY (
= +_—T 10)
HT+HPB .2_1? 522u

where Y and Z are polynomials and have the forms

_ ) 2 9 2.2 __10 ,2
T=1+—35 1165+81:1<:15+——2ha3 3 ha4,

L}

2 +
Z 1+h05+4h03+ hcx5 hd

B . (5 )

After applying Section 33, we state thet o >0 and g >1 and the

and
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equalities are attained for the homogeneous system only. It is easy to
verify that the following condition is satisfied

9AG

= =-<{M> 11
aH B 1)

and hence the polynomiesls Y and Z amust fulfil the relation

1 32
Y=2+—h—. (12
y dh :
We cannot derive the factors °n in the frame of the presented approach.
However, employing the results of Abrikosov’s theory [2] with respect to
the strongly localized Cooper’s pairs we obtain

B
—ng -2 (12)
By V'

where 92 derived for the triangular or  square lattice is equal to, re-
spectively, (of. [17])

By = 1.1596, B, = 1.1803. (14)

Employing the above results and Eq. (14.24) we can derive H°1 as a

funotion ». In Figure 4 there is presented the function E, Where

"
(x) = 2 g, (15)
E(xn) ;o

Analysing this function we state that g (41/ vZ2) = 1 and that for » 30.8
it ocan be approximated by the linear function of the following form

E(n) = An + B (16)
where
_ 1.3670 |77/ _ 1.1966
A= 2[(1 B2 >] ’ =78,

sSo

g, = 0.1975% + 1.0319,

(17)
g, = 0.2709% + 1.0138.

The obtained interpolations give correct results only for the medium va-
lues of » when

H )
( -Hﬂ> << 1, (18)
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Fig, 2. The diemagnetic fields and Gibbs free energy differences of the
ideal type-II superconductors

In order to illustrete the obtained results we give some examples
of the diamagnetic fields and Gibbs free energies defined for a few fixed
velues of n, In Figure 2 the diamagnetic fields and Gibbs free energy
differences of ideal iype-II superconductors are presented for u =1/4/2,

% =1, nw=1.25 and n = 2. The case = 1/ ¥2' constitutes the limit case
of type-II superconductors. Note that the graphs of the diamagnhetic
fields and Gibbs free energy differences constructed for the Meissner

and mixed states intersect at the same points H = Hc/ Y2'w. It causes

c1
that the diamagnetic field is a continuous function of +the external
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<HY> <AG>
K=1
1 1
1 1
0 083 141y 0 083 141 y/p,
K=125
1 1
I 1 —
0 072 Y 0 0.72 77 W,
K=2
1+ 1
A d A |
0 051 H/H, 283 O 051 H/Hc 283

Fig. 3. The diamagnetic fields and Gibbs free energy differences of the
real type-II superconductors, 62 = BA

: 2
Fig. 4. The function g,= 2x" H_ /H_,

megnetic field., It is also a linear function in the mixed state. In Fi-
gure 3 the diamegnetic fields and Gibbs free energy differences of
real (i.e., inhomogeneous in the mixed state) type-II superconductors
are presented for u =1, % = 1.25, % = 2. Thé limit cases » = 1/¥/2 co-
inicide. The diamagnetic field in the mixed state is no longer @ linear
function of the external magnetic field. However, the flexion up of the
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curve is almost invisible in scale of the figure since such curve lies
close to the straight line obtained in the homogeneous case in the whole
range. Analysing the graphs of the Gibbs free energy differences in the
Meissner and mixed states we notice that the curves intersect at the
point H:>Hc/‘v@?u which can be identified with Hc1' (Note that the
mixed state cannot appear for H<:Hc/15?n whereas the Meissner state
can be realized exclusively). It causes that the phase transition from
the Meissner state to the mixed state should be of the first order as
it is shown in the graphs. The influence of temperature will cause the
softening of the diamaghetic field leap, which is observed experimen-
tally.

In Figure 4 we present the function E(wx) for the triangular latti-
ce. In the homogeneous case £(u) = 1. Now E(1/VZ) = 1 and for about
n 20,8 it can be approximated with the linear function according to

Eq. (17).
b) The Ginzburg-Landau limit

In the presented paramagnetic theory we still consider the quasipar-
ticles concentrated near the Fermi surface. Their total number is almost
constant within the whole interval of temperatures discussed. At tempe-
rature increasing from zero to To there appear some uncoupled quasipar-
ticles in the superconducting system. Thereby the external magnetic field
can infiltrate the system. The paremagnetic magnetization appears at the
weak magnetic fields [51]. However, this phenomenon does not destroy
Cooper’s peairs until H<Hc or ﬁ°1. The number of the coupled quasi-
particles is fixed by the square of the wave function of Cooper’s so it
is proportional to the energy gap in the square, i.e., Ns = A2. The
energy gep is a slow-decreasing function of temperature at a large range
of temperatures and it tends rapidly to zero in the vicinity of T° there-
by the number of the superfluid quesiparticles substantially decreases.
In this region (if the superconductivity is expected to exist) the quan-
tities A and uB HT become small in comparison with Tc' We however
assume that the critical total magnetic field (expressed in energy sca-
le) divided by Tc becomes a small quantity of second order, i.e., (cf.

[35] and Section 21)

£ _(T A(T)] 2 A(T
B c? ) - [ )} << ___) (19)
T T T

Therefore, we have to treat the totel magnetic field as a perturbing
term in the temperature-dependent gap equation and hence the effects of
inhomogeneity should be of the same order. Let us consider now the para-
magnetic field and gap equation. After expanding the integrands in a
power series the above equations reduce to the forms (cf. Section %9)
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H [1 - _TT7C(3) ] &5 (20

p HT 4n= T ’ )
T 7¢(3) 2 .2

Aln—T:= A{BnT [A B) HT]

95c(5) . 635¢(7)
- a* + 84
128 nF TV [ v elup) H%] 1024 %0 10 8 ] i)

where we restrict ourselves to the sixth order terms of aA/T (‘*B HT
(A/T) ) in the gap equation (cf. [95, 102]). We also give Eq. (7.15)
which now reduces to the form
a
H. F Hc2 7¢(3) ,2

0
Hp = + (22)
T Fg + 1 (Fg + 1) 12 472

where we put the criticel values of the magnetic field in order to keep
the assumed accuracy of caelculations. According to Eq. (19) we cannot
essume that A venishes for H, (cf. [92]). However, we can assume that
Eq. (21) becomes an identity if we put H = Hce(T)'

Comparing the terms of the same order in Eq. (21) we obtain

T, 7¢(3)
s T - 22 (7) {23
T e T2 )
and
7¢(3) 93¢(5)
2 (np)® o = proa g LD (21

c

where we omit other insignificent relations. Teking into consideration
Egs. (22) and (23) from Eq. (24) we get - (cf. [95, 120, 128])

T
Hca('l’) = aaf??HO(O) (1 - —T;-)n (25)
where number factor is

o 8% _[186L(5) _ ;4 043 (26)
75(3) 7g(3)

and could be identified with the unity, keeping the accuracy of the

developed theory. We can also take into account thet in the temperature
regime under consideration we have [35]
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Hy(T) = H,(0) 2 (1 - -.}.';): H,(0) [1 - (—%—)2] , (27)
hence

Hyo(T) = a;/?uHc(T) (28)

and, moreover,

adH (T
< g )> = = 17.92uyv(0) , (29)
T

drT

The presented method allows us to avoid the introduction of the addi-
tionel parameters (relaxation ratios) and can be applied also for pure
systems (cf. [88, 138)). Employing the above results we can consider
the dependence of the system on the magnetic field when H is close to
Hoe‘ Note that according to (22) appearing effects are of the fourth
order., Applying Eq. (20) we find the following formula of the diamegne-
tic field

~7%(3) H°2A2 (30
& Sl Fe >9)

Substituting Equation (22) into Eq. (21) end teking into account Egs.
(23) end (24) and remarks given above wé get the following equation

Hﬁ2 -H = B> (HM>B

«[re - 2320) (g8 4 4y , B22L(7) (F°+1)] (31)
[0 98¢ 2(3) © 26082(3)5(5) O
and hence we obtain the diamagnetic magnetization in the form
1 H,-H
M>p = = — 2 . (32)
- 4 n 52(2.06 ®E = 1)

In order to refine the obtained results we can introduce Maki’s [88] no-
tation, then

L =1.013n, u2=1.016u. (33)

Moreover, employing Eqs. (22) and (14.25) we find the average magnetio
induction, paramagnetic field and total megnetic field in the forms

B>p = H- <HY g, (24)
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<HP> B S —— (35)

I

To
<HT>B. . <HM>_11 . (z6)

+
Fe a
0+ 1 FO 1
The obtained results reveal esnalogical properties in both discussed li-
mits, though they differ in some deteils. However, if the diamagnetic
magnetization is to be negative, additionel conditions. for the parameter

X are obtained.

C) The presented formelism of superconductivity allows us to ex-
plain all processes taking place in the mixed state. The presented
approadh refers to the systems which cean be described in the Termi
liquid terms. Thus one should restrict itself to the almost isotropic
systems., However, in the static limit only Fg parameter of the Termi
liquid interaction modifies the results. This psrameter defines the mear
value of gpin exchange quasiparticle interaction and can be identified
with the intreetomic exchange integral in Hubbard model [140]. So, it
can be correctly defined for the other systems with "non-spherical" Ter-
mi surface. Moreover, the preserted formalism can be easily developed by
permitting the particle-hole asymmetry [101, 102] and by including a
pure pairing interaction into isotropic systems in a more general form
dependent on the momentum vector (not only its direction) (ef. [114]).
It cen be elaborated according to the prescription given in [M24].

16. The generalized Gorkov approach [54]

The presented formelism constitutes the generalization of some
other approaches when the Fermi liquid interaction is included. Moreover,
we assume how that the paremagnetic end orbital terms can be considered
as quantities of the seme order (cf. [37, 5S4, 80, 9%]).

The results of Section 9 have been employed here. We complete the
above equations with the Fermi liquid interactions effects. Applying

. the formalism developed in Section 7 assuming the quasi-normel GCreen
function in the form (4.17) we find the suitable relations in the form

1 s Ny
vs = VS = g F1 vs - (1>
HT=H-F8HP (2)

where the quantities vy and HT' being now renormaelized by Termi
liquid interaction in opposition to Vs and H, appear effectively in all
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the expressions considered below. It is worth noticing that because of
the inclusion of the Fermi liquid interaction in a quite general form
all harmonics of the interaction give the renormelizing contribution to
the form of the quasi-normel Green functions which results from the an-
gular dependence of the zeroth Green function. Therefore, all higher
Landau parameters should in fact be neglected in the presented considera-
tions. Moreover in order to consider the obtained results in detail we
restrict ourselves to two standard limits.

a) The gero-temperature limit

In the zero-temperature limit, after applying the relations (35.14,
15), all integrals defined in Section 9 can be computed explicitly and
from (9.2), (9.11) we obtain

a = A(0) it pyvg+h <4,
A 2 2
(p.v_ -nh) 1n -1/(p_v + h)T - &
0's A(0) e
2 2

. PoVg + h + —;/(POVS+h) -4 _

+ (p.v_+ h) 1n =0
0s a(0)

if |pOVs - b

1
|pgvg = h| + 1/(povs -n)2 - a2

a(0)

sgn (pgVg = B) [lpovs -h|1ln

2_ ,2
_ : P Vv_ + h +9/(p.v_+ h)"=- A
- 1/(povs = B)® = Ag} + (75 + b) 1n Qs A 0 s

aA(0)
2 2 ;
- 1/(po.vs + h) -4 =0 it A< [povs - h| (3)
and Hp:o if povs+h<A,
1 PV, + h \
H, = + — 'y/(P v_ + h)? - 42
P PV 0®
4B 0's
2 2!
) : Jmevs+h+-l/(p0vs+h) - A ]
DoV a
if ]povs -h| <A <pgvy +hy
pP,V_ + h >
0 om ) 0's 1/Qp v+ )2 - a2
D 4 * DV o8
B P57s

2 2 2
p.V_~h A PV +th+ 3/ (p v _+h)}“ -4
_l O's l /(povs_h)?._AZ _ 1n -9 8 O s
vas Pg

Vs Ivas-hl +-|/(p0vs—h)2—A?

if A<|p0vs-hl (4)
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and
Nn =0 if povS + h<a
N 6(u 3)%H Hy ho\ 2 A \2] 32
—r—a 7= |+~ ) -5
N p0 Vs 0 s 0o 8
if |p0vs - h|<A <povs + h,
2§ 6(n )R H, (1 R [ s \2] 32
+ = + —) -
B P, Vs Po7s ) Po’s
n \2 A\ 21372
+ o6n (pg7g = B) TP Vs) T \PyTs

if A < |py¥g - B (5)

In order to derive ch we put A = O, then we obtain

1 h ] b
2_ 1 - ) i (1 + >
| l ( ols (pgvg + b) LA TITORINO!

povs -h
H, = Hyp (n
N =N (8)

and assuming that

Bo¥s ™ wp Hx (9)
after applying Egs. (1) and (2) we obtain the following relations
uEH H
povs = 1——+—%—F—$' and HT = T FS’ . (10)

Substituting them into (6) we find the critical magnetic field in the
form

1 1
) e - 1) “d )
Hy, = 240 (4 +F3)|1 -ll 1+ (11)
20 0 c c
B
where
1+lF1s
LS S
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In order to derive the Ginzburg-Landau parameter we assume that the ge-
neralized effective Bohr’s magneton can be written in the form (14.14),
Then we obtain

1
s ] z(c - 1) ; —%(c + 1)

() a
xg = -F-(1 + FO)’1 - EI (1 + E) (12)
where we introduced Maki’s notation [88].

Let us consider now the obtained expression in relation to the
magnetic properties of the normal system. Assuming that the total magne-
tization is the sum of the Pauli paramagnetism and the Landau diamaghe-
tism we can specify the following cases.

If the normel system reveals the strong diamagnetism, then

Fg >> 1 + % Ff and Eq. (12) reduces to the form (Fig. 5a)

ny = 11— e{1 + %F:). (12)

If the maghetic properties of the normal system are comparable with
the free electron gas, then % F: = Fg and Eq. (12) reduces to the form

1/4
_ A =) 1S a
n, = T1/§ [(1 + 31'"1)(1 + Fo?] ) (14)
and if the normal system shows the strong paramagnetism, or if there

exist heavy fermions in the system, then % F: >>1 + Fg and Eq. (12) re-

duces to the form

x, =% (1+ Fg). (15)

The latest result i1s identical with the results achieved in Sec-
tions 14 end 1%, thus the approaches are eantirely consistent for heavy
fermions system (cf. [89, 123, 138]).

b) The Ginzburg-Landau limit

In order to investigate the discussed system in the region nearby
T, we consider 2gs. (9.1), (9.8) and (9.9). Assuming that the following
quantities 4, h and povS are small in comparison with T, which is
close to the phase transition temperature Tc, we can expand all the in-
tegrands in a power series neglecting the higher order terms. Then from
2gs. (9.1), (9.8) and (9.9) we obtain, respectively, (cf, [95])
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1n-§2=§:1(% (A2+2h2+ %—pgvg)

- 32; 2 (8% + © 2202 + §- 4% o2 ¥2

N )
HP=HT[1 -ﬁéﬁ% Aa]. (17)
Nn:-aN [1 -ﬁ%% Az] (18)

where the applied relations are defined in Section 39.
Transforming Equation (18) we obtain the relation

p 72 462 W, N,
[Tm] =TEEy WO 4w (19)
thus n = 1.51.
Equation (16) defires the temperature dependence of the energy gap in the

presence of the perturbing magnetic field, comparing the terms of the
same order we obtain

T
1o — = Z&{3) ,2 (20)

T 8n T°
and
78(3 2 1 2 2 93¢(5) ,4
J—é—% bh” + pL Ve )= A (21)
472 ( T3 To s ) 1287 T

where other insignificant relations are omitted. On the other hend,each
term of the series expansion is obtained under assumption that the other
terms disappear, then the quantities h and vy cen be identified with
their critical values which express themselves by means of the critical
magnetic field Hca' (The total magnetic field h and the superfluid ve-
loocity should be considered jointly). Taking into cosideration Egs. (9),

(10) and (20) from Eq. (21) we get (cf. Egs. (15.26, 27))
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) (1+—F)('1+F)

H,(T) = aV2 HO(O)('I - 5 - (22)
1/(1 + 375 y 3(1 + Fp)
Hence, we find the Ginzburg-Landau parameter in the form (a = 1)
(1 + 3#%)(1 + F2 o)
2
*a= -!? 3- = - (23)

1/%(1 +—F + (1 + Fg)2

Estimating the obtained expression (23), in the limits as before, we
have (Fig.5b)

1= TWE (e D £ FS >>1 4 162, (24)

x
1]

et [F S FDa e |2 ar War (e
L Fd) if %Fj >>1 + Fg. (26)

According to Eqs. (24)-(26) and (13)-(15) the Ginzburg-Landau parameter

M is a function of the Landau parameters F: and FS. Its value can

decrease when temperature increases from zero to Tc‘ and we have
(T ) /
c 15 : a 1 s
= = 0.80 if F_ > F
'K(O) o o~ 3 1 (27)
and

N.(Tc) _ 1
n (0) - >

(28)

which are in good agreement with the results obtained in other approaches
(cf. [35]). So, we can state thaet temperature can slightly modify the
type of superconductivity only in the first and second discussed cases,
and that it does not influence the type of superconductivity in case of
the heavy fermion systems.

In conclusion, let us remark that the first and second cases coinci-
de, thus only the heavy fermion case (m*: m(1 + %F:)) is particularly
distinguished. Moreover, in case when the Fermi liquid interaction is
excluded (F; = Fg = 0) the type-I superconductivity can be realized in
the system only. This result confirms the advantage of the considered
formalism in opposition to the other Green function approaches neglec-
ting the paramegnetic effects (cf. [30, 21, 37, 57, 89, 92, 120, 124,
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132, 138]). However, in order to take stock of this approach let us com-
pare the results obtained in zero-temperature limit with the Gibbs free
energy difference. Applying the formula (5.7) and Egs. (1), (2), (4),
(5), end (14.1) in the small A 1limit (A —= 0) from Eq. (4) we obtain
(ct. Fig. 6)

Fo 4
type - 11
superconductors
) F1
1 1 -
-3 -0.79
L1 Fy
s
type - 11
superconductors
-1
] N
- 0.46
3 F:
-1

Fig. 5. The curve ny = 1/ ¥2' in the plane of the ILandau parameters F‘,sI
and F2, The type-II superconductivity is realized in the region above
the curve. a) The case T = O, The minimum is achieved at the point F1s =

0.51,'Fg = 0.33. For F?l = 0, F§ = 0.35. b) The case T < T,
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Fa

e

3l

/
/
/
o il
- 11 <

\ ]
3 043

,a—‘é’ 11 F3

Fig. 6. The plot of the function I = 0. The type-I1 superconductivity
is realized in the lined regions (AG < 0). The curve from the right
possesses the vertex at the point F: = 4,84, F? = 1.13 and the minimum

at the point Fj = 7.74, F§ = 0.92. For Fﬁ = 5.13, Fg = 1. The leap visib-

le on the curve from the left happens in the region contained between
the points F5 = -1.85, Fg = -0.53 end F} = -1.57, Fg = -0.50. For ¥
-1.28, F§ = 0. The asymptote is of the form Fg = 0.325 rj

8 (0) ——1—1{2“4}2 (

G =-v(0 z 29)
8(np)° By

where

i (1+%F§)2 {1 o1

1
z ——— L -3 1P (1 -8 (1 -] .
1 -=¢ 1+1Fs
371
2 1 2,2 1
L=(‘l—c)[6-601na+-2-c1na(3+—c-2-)]
and
c+ 1
8 = ——m—n ,
lo = 4l

In the two limits specified previously Eq. (29) reduces to the forms
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8G = - & v(0) 1 ig P54 4158 (30
2 e 42 (0) 1+ 382 9 20 !
g
and
4
8°>R 7o - 4
AG = - v (0) = it FS >>1 + FO. (71
2 2%(0) 1+ T 1 0 o

Hence AG 1is negative if F$:>— 0.4% or F8:>1, respectively. Since
the type-II superconductivity should be realized if AG 1is negative,

we state that in the generelized case the obtained results (12) and (291
are not coherent. This situation can be expleined if we include Maki’s
classification [88]. Then Equation (12) defines x,, whereas from Eg.
(29) u, can be derived. Note that u, tends to ", only in the heavy

fermion limit.

17. Conclusions

Due to the inclusion of the Fermi liquid interaction the critical
magnetic field ch and. hence the Ginzburg-Landau parameter ny become
the functions of the Landau parameters which can be estimated correctly
in the normal state.,

The obtained results and the present classificatidn make is possible
to predict the superconductor properties of some metals (elements or
alloys) on the grounds of their normal static spin susceptibilities or
electronic paramagnetic resonance (EPR) (cf. [113]), i.e., one can ex-
actly foresee the type of the possible superconductivity, but one
cannot determine whether the superconductivity will appear at all. Let
us remark that although the present formalism concerns the superconduc-
tors with the almost spherical Fermi surface, nevertheless, some of their
aspects should be revealed in a large scale. For example, pressure, de-
fects or impurities can modify the Yermi liquid interaction, hence they
should change some superconducting properties of the system, such as the
type of superconductivity or values of the critical field. On the other
hand, the same factors (pressure, defects and impurities) can also modify
the value of the energy gap 4(0) and hence the critical magnetic fielas
(ef. [111, 129-131]).

For these reasons the type of superconductivity is the property of
the system determined already in the normal state and it can be predicted

as well as framed by means of the research on paramagnetic properties of

the normal system. As to the alkali metals it is known that F? is always
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positive, whereas Fg is negative {Ne and K) [116], thus only the type-
-I superconductivity can be realized. So far, however, the phase transi-
tion (the first order) to the superconducting state has been observed
only in Cs (end probably in Rb) [124]. Let us note that both the
approaches are fully coherent merely for the heavy fermion system, i.e.,
if Ff >> 1. Moreover, we can state that the elimination of any type of
magnetic effects is achieved when the suitable Landau parameter tends

to infinity.

We remind that the parameter Ff modifies also the density of sta-
tes by means of the effective mass.

Comparing the presented formalism with the other Green function
approaches we can state that the inclusion of the Fermi liguid interac-
tion is equiponderant to some other formal actions (connected, e.g., with
impurities) which modify Gorkov’s equations and lead to renormalization
of the system parameters [37, 62, 80, 89, 124, 132, 138].

Although such parameters can be often eliminated from final equa-
tions they always exist in some intermediate relations in an implicit
manner (cf. [2, 3, 17, 35, 96, 124, 129, 130]). Thus, our assumptions
about renormalization of Bohr’s magneton are entirely justified. Moreover,
the presented actions exploit only the existing parameters of the Fermi
liquid theory, therefore such an approach should find broad application,
€.8., in EFR and NMR investigations when the Larmor frequency and Enight
shift are to be derived.

IV, Superfluid -He

18, Stable states in the strong magnetic field [52]

Stability of individual phases of the superfluid 3He is directly
connected with their magnetic properties. However, because of the complex
form of the order parameter for the system with the P-pairing all the
investigations of 3He are carried out in the weak magnetic field for the
initially postulated stable or metastable phases [22, 39, 85, 121, 135,
151] . Since general forms of equations for arbitrary non-unitary states
and non-zero temperatures in the presence of the strong magnetic field
are too complicated to be solved in an analytic way, we restrict our
study to the unitary states and zero-temperature limit. The imposed re-
strictions are minor since they leave large possibilities to choose the
ground state from among the unitary states which are the main candidates
to become stable [34, 58, 66, 73, 85]. We again consider the equations
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of magnetization and order parameter (energy gap). The considered equa-
tions are variational derivatives of Gibbs free energy and form the sys-
tem of nonlinear integral equations which can be precisely solved. The
obtained solutions allow us to derive the magnetization and order parame-
ter as the function of the external magnetic field and the Fermi liquid
interaction parameters. Since the considered integral equations are non-
linear there appear some bifurcation points at which the solutions split
(Section 43). However, stable phases are determined by the supreme values
of energy gap, which is always confirmed by the evaluation of the Gibbs
free-energy difference.,

In the presented consideration we fix the direction of the external
magnetic field and denote it by " || " (parallel). The perpendicular direc-
tions are denoted by "l".

In order to derive explicit forms of magnetization and gap equations
we have to compute a few characteristic integrals.

Since the computational methods are analogous in both cases we dis-
cuss them in detail, deriving the magnetization only. The applied forms
of elliptic integrals are to be found in Sec. 38, All other appearing in-
tegralsg can be computed in an elementary way, thus they are given without
comments.

a) Paramagnetic magnetization and gap equations

The parameter of an arbitrary unitary state can be introduced in the
form

A= 440y o (1)
where d 1is the complex vector being the linear function of the unit
vector D, i.e., 4y =dy, Sa , and satisfies the condition
=0, (2)

A 1is the energy gap which is a function of the external magnetic field
only. The assumed restrictions allow us to write the following relation

I = dxg'

23* « 8342 (3)

where the obtained expression is proportional to the unit matrix. Moreo-
ver, we have introduced the following symbols

Ep=Aldl, & =34 B, = Ald (4)

.LI ’ |||

where gl and d, are the components of the vector d, perpendicular
and parallel to the direction of external magnetic field, respectively,
and
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12. (5)

By virtue of the above assumptions and results inserted in Section 10,
the paramagnetic magnetization can be expressed in the form

Hpgvo ( _ VvV 62 + Aﬁ +h
=—r da
o LV it 8
Ve? +A% -h
1/21/52 + Aﬁ - h)2 + Ai

Substituting

x = 52 + Aﬁ v (7)

the exvression (6) reduces to the form

BpYo <if° dxx(x+h) j dxx(x+h) (&)
M= 8
2
4 V22 V(xem)? + 'l/x - 82 Vxn)2r?,
1 .
where we have also replaced X Dby -x in the other integral in order

to compute only one type of the integral in the appropriate limits. In-
tegrating (8) by parts, we get

(x + h)Vx (=1 )Bco
=0 V(x+n)? 4+ a2 (-1)BA
1 (-1)P= Vo = i
ZS f ax - An :>
3/2

o (-198s,  [(x+m)?+22]

|a? = |4, | + |4

s (6)

HpV
M= BY0

(9)

The value of the first sum, which can be easily calculated if we replace
x by 1/y and use the de 1’Hospital’s rule, is equal to zero. The non-
vanishing part of Eq. (9) can be presented in the form

1 (-1)P oo i
g =0 (-1)3A" 1/?;7 - A )[Rx + h)2 + A ]

dX(A + he 4 2hx)
(-1)Ps [+ w2+ 8] V2 - 4 [ix + w2 4 3]

which permits us to remark that general form of the magnetization can be

4BVo 2
Hemeg—4 4]

(-1)Pe
(10)
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expressed sole}y by means of elliptic integrals. In order to solve the
specified problem and to simplify the subsequent calculations we introduce
the following denotations

N = (a2 + n%)? - 4n? a%,

I %

Q= A§+h2+'l/l?,
R=-a24+0% 49,
S= a2-1n% 4vFW. (11)

Let us note that the defined expressions are always positive for arbitrary
gtructures of the order parameter. Now we substitute

X = prrey (1+t—g—). (12)
Then the following relations are valid,
VN dt (13)
ax =. —
B (t + 1) ’
Vx%- a5 [(x+n)%+ 23] = ______1ng - 1/(1 -2 B)[e? B,
2h°(t+1)
SVYN
(x +1)2 + A2 - (1+t2-—R—). (15)
2h(t+1) s
Substituting equations (12)=(15) into Eq. (10) we obtain
-1
1
kYo / 2 2h =
M==-55=(A Z = ), i
p=o | VOS5 (-1P/T ~|/(1-t2 g-) <1+t2 %)
a3 at(t2- 1)

. (16)

Z WP

S8ince the functions under integrals are even functions of the variable t,
we can reduce the limits of integration. Hence, we obtain



and introducing the new variable

-/1-+¢%,

Eq. (17) reduces to the form

-1

M= ugv, N1/4(1 - x?) j

z{. V- )

where

%0

dz

dz

(1-x222)/(1-22) (1-K%22)

QR

4h

and k%< 1
While examining the first integral of Eq. (19) we show that it can
be expressed in a simpler way

1

g

29

<1.

(41 - k252)

’ zo='|/1-_g_l

f dz _ 12 k2 z: 1-20
S k222) (12 (1-6%%) 1K V1522
0

1

1

dzz2

2 f .
f - z2)<1 K252) V(1-22) (1-k%22)

%0

%0

hence Eq. (19) reduces to the form

M=

HpYo

N1/’4k2

Z 1=2

dz

Y(1-22) (1-k222)

14
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7

(18)

(19)

(20)
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y dz2>

- f : (21)

2 %1 - zz) (1 - k252

0

Introducing the next variable ¢ defined by the equation

sing = 2z (22)
we obtain finally
n/2
R d
_ 1/4 2 s
M-quoN [m-(“"k) f -_—
?0 'V1-k2 sinzw
n/2
+ f a1 - K2 sinzivjl> (23)
0
where

¢y = arc sin (2N1/4/1/C—2‘).

Both integrals are the so-called elliptic integrals. Applying the
form (cf.

symbols introduced by Legendre we can rewrite Eq. (23) in the
Section 38)

R
M = qu0<N1/4{m - (1 - k2) [F(k) - F(q)o’k)]
+ [E(k) - E(¢O.k)]}> .

Keeping all general conditions specified above, the gap equations

o L3 4 €p .t v ES: Aﬁ ddy+hay 85,
;= g4VvnP P
i 4 =170« a / 1/52 + Aﬁ (./;’2 + Azll + h)2 + A_ZL

0

Vi VEZ + 0R 2di-hs, &y,

+ / ag - : — ). (25)
0 ‘|/§?+ A|2|‘|/('7§2 + o) - h)2 + Af_

Since the parameter §g_ fulfils the condition gp >> A it can be put

equal to infinity in all convergent integrals. In our calculations this

principle is automatically applied. Multiplying equation (25) by Ad;

(24)

reduce to the form

and averaging over spherical angles we obtain
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Ep [T 72 a2 . 12

A2 _ 84Vo ), - E° + B AT + haj
-4 )
0 I/§2+A|2|1[V52+Aﬁ+h)2+1}i

°p VEZ 4 85 2 - naf

+[ dg =
0 1/57+ AEI‘V(’I/EZ + A|2? - h)2 + Ai

‘Dividing equation (25) by A (that is permitted when A £ 0) we obtain
the equation which refers to the structure of the order parameter only.

Because of the rich structure of the energy gap form the value of
energy gap and its structure can be considered independently. Let us re-
mark that the integrals over £ do not disturb the structure of Zq. (25).
The order parameter equation can be always reconstructed from the simpler
Eq. (26). Such a possibility allows us to restrict ourselves to the in-
tegration of Eq. (26).

All the transformations carried out in this section are the same as

. ( 26)

the former ones. Thus, we restrict ourselves to the presentation of some
intermediate stages. At first we transform Eq. (26) to the form

g4V L & )ﬁxp
B=0 (-1 )BA" ]/x2 - Aﬁ (x+h)2 + O
(-1)Px
[ —
(-1 )BA" ‘|/x72 - A|2| (x + h)z. + A‘zl_

which again contains one type of the integrands. Applying the following
relation

—:—x- ln[‘sz - Eﬁ + V(i + h)2 + AE]

x+h h (x+h)2+Bi
* 53 Y-y =2 | (28)
V- 2) [(xen)24 2]  Bp+h +2nx x° - by

Equation (27) reduces to the form

dxx

(27)

2
+A"h

1 B
2 81 VO 2 \ \ (-1) xp
4% = 4 <BZ(:) {ATln('l/xz-Aﬁ+1/(x+h)2+Ai)

-1 Py
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-1)8
a2h o *p dx [(X+h)2+ Af_]
+ Bp _ _
(-1 )BA" (A%+h2+2hx) ']/(xz_ A%) [(x+h)2+ Ai]
=1 )Bxp (=1)Peo
dx 2 dx
) j 2 zme |~ M Y, (29)
(—1)BA" St eeh (-!;BA" Téxz- Aﬁ)[}x+h)2+Ai]

whence after putting h = O and dividing by Ag we can obtain the
equation

1= g,v(0)< |d0|2(ln2§p - 1nAy)> (30)

where the symbol "O" denotes the quantities appearing in the absence of
a magnetic field. We would be in agreement with the existing estimations
if we assumed that the Balian-Werthamer state appeared in the absence of
a magnetic field and zero-temperature limit. We extend, however, the pro-
blem under consideration assuming that the order parameter fulfils one
of the following relations:

ENER (31)

or

ENEIEIE (52)

Then, other states the structure of which is constant ana does not fluc-
tuate with the magnetic field can exist. The conditions (3%1)-(32) and Zq.
(30) allow us to rewrite Eq. (29) in the form

88(1n ayp = = 1o W)
(-1)Px

oly 12 A2 [ P ax [(x+n)%+ 42]

z t 2.4 2, 4o 2 27

=0 (-1)%" (A3+h®+2hx) 1/(x - ay) [(x+h) + Al]
(-1 )BXD (=1 )Bco
‘ —EJ%%——_ 2 ax 3

B [ - A‘L I ) =0, (jj)

(-1)BA" Ap+h+2hx ('1)6Nﬂkx2—Aﬁ) Bx+h)2+ Ai]

whence, using 2gs. (9)-(13), we obtain

<A%(ln Mgp = = 1n N)
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0
2 212 J’ dt

1 1/(1-152 g) (1+t2g)‘

where we have used again the fact that integrands have turned out to be
an even function of +t. Now, applying (18) and (22) we obtain, respecti-
vely:

=0 (34)

1

<i T(lnAOT 7 1n N)+ AThz N 1/4 1im {V1—k2zg j

(zz-zz) V1

y~o*
5"
1 1
2
-zof s ke z} AthN‘V"j dz =0 (35)
Za=2" ¥ 1-2 2 2.2
z -y 0 .. V(1-z9)(1-k"z°)
0 0
and
2 1
AT(ln AOT - 1n N)
/2
82174 f do
v - kzsin2¢ + 1 sing
%0
T,
+ a2yt 4 f (36)
Y1 - k 51n P
where
2 Aﬁ
1= = —— &
v

Tquation (36) analogously to 2q. (24) can be written in the form (cf.
Section 38)

, 2
<A§,(1n Bop - —%— In N) - 6ZhN 1/4[(}(1,1() - Glp,1.k)]

+ a2V Rk - FlpysK)] D = 0. (37)
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The obtained results allow us to reconstruct the form of the structural
gap equation. Hence, we get

(8, {4;(tnagy - 410 ¥) - 4,84 [6(1,k) - &gy 1,k)]

-1/4 _ 20
+ (8 = a8y N A [R(k) - Fg K]} D = 0. (38)
This is the way the magnetization and gap equations are derived.
b) Stable states

The parameter h expresses the value of the total magnetic field
and can be defined by means of the relation (cf. Section 7)
oo
PR N ILICION (39)
1=0

1
B

where m(p) is defined by the equation

A
M =<mn(p)D . (40)
Each of the following equations (24), (37)-(39) is a function of the
quantltles A, d and H and a few additional parameters AO, id |

and Fl‘ While examlning the specified equations and the condition (2) we
find that they constitute a closed system of nonlinear integral equations
which should be solved simultaneously. A precise solution of this system
would allow us to derive the order parameter, i.e., A and dla' as the
functions of the strong external magnetic field. The results would de-
termine the phases of the superfluid 3He in the magnetic fields. However,
such solutions can be obtained solely by a numerical computation. That is

why we consider some limiting cases below.
1% fThe weak magnetic field limit, i.e., h << &

The introduced parameters reduce to the forms

& - &
F:L%+-—K§-h2,

T
2 2
T T I
T &2 Fy ’
8y T
a2 82—32
2 AL lh
a3
zai )
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=t o (41)
% T "2

where we apply the formulae

_ . __r _1 < 2 LR _ _,2
Py = arc sin z, = —— - 7 arc sin 2z01/1 2y ® 3 201/1 ze (42)

Inserting equations (41) into 2gs. (24), (37) and (38) we obtain

2

b
M = ugv, <;—2 h> . (43)

T
<A%(lnAOT - 1ln AT)> = 0, (44)

and
{p, [4;(1n B p=1nay) -}ﬁ(zd aZa )> =0 (45)
pa[i or~it4p) + 7 Alni'T||5i1|]>-- .
T

Squation (43) is the well-known result which in connection with £q. (30)
allows us to derive static spin susceptibilities for the fixed states.
BEquation (44) proves that the energy gap is constant and independent of
a magnetic field, provided that it is sufficiently weak.

Assuming that EBq. (44) allows us to neglect the first term in =£q.
(45), we obtain

2
A B 2 2
<z, K (ajjd; = agdy 85> = o. (46)
7

Since the above equation cannot be fulfilled by BW state and is always
fulfilled if one of the order parameter components d; or d, vanishes,
it can be suspected that in the discussed region the magnetic field in-
duces the phase transition of the first type. Moreover, let us notice
and emphasize the fact that for arbitrary states (AT = AT(ﬁ)) the con-
dition h <<3AT can be fulfilled completely if and only if h = O (see
below).

2° The limit of the very strong magnetic field (h >> AT)

The introduced parameters reduce to the forms:

YT = 1né 4 Af - Aﬁ .
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k2 =1,
2 a3
12 - =5,
h
aj
zy = sing =1 - pre (47)

Inserting the obtained relations into Eqs. (24) and (37) and computing
directly all integrals (they are of elementary type) we obtain

. 42
]
M= ugy, <h (1 - -2-h¢2>>, (48)
2
2d1na 1n|n 81 - 4
AT n Agp = 1n 1 + -———ZZFT—_-
2 w2
- ( = Al)ln[Z (1 + A") + I 0 (49)
2n2 2
where - »
2
2 2 .
I= a2 (12074 f dg
= 2h2 | cos8¢Q
%6
and
0 5 if 4, =0,
2 Ay h .
I= &y < - 2—h§>ln(2 -Z—l-) if C_lu = 0, (50)
o in other cases.

Then the sole state which can be in fact realized in the very strong
magnetic field limit is the one-dimension state for which d, vanishes.
However, such a state can be considered precisely in an independent way.

The states with d, = O are in general two-dimensional states and
can be reducedye.g., to the ABM or planar states, whereas the states
with gi = 0 are one-dimensional and can be reduced,e.g., to the polar
state,

3% In the two-dimensional limit (8, = 0) we obtain

2 3 z
VN = b + A, Kk =1,

(51)

2 2 2 T
1= =0, R® = 2h". QG =TT
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hence

M= ugvg <n>, (52)
<Ailn(AO/ Al)> = 0. ‘ (53)

From equations (39) and (52) we derive the magnetization in the form

= ply —H (54)
M—uBVO1+F""
0

The obtained expression is identical with the one for the normal state
(cf. Bq. (10.19)). In order to discuss the gap equation (53) we assume
that (cf. #8q. (3))
2 2
a2 - a%4,| (55)

where (cf. Section 33)

Igllz = —g— 1 - x2) and X = cos 9.
Substituting (55) into the gap equation (53), it reduces to the form

inmn, = ’l’ <|Q¢|2 injd, %> (56)

where

A
n =—2
A

and after integration we obtain

lnni=71-—ln6—%-. (57)

Hence

;
n = [6 exp (- —%)]E = 1.06. (58)

Since the free-energy difference derived by means of the formula (5.7)
in case when H = 0 is of the form

1 0 2
AF, = - =~ v(0) & -0.44v(0)ag, (59)

we state that AF, > AFg, (ef. [13, 151).

4° 1In the one-dimensional limit (o] = 0) the following cases must
be considered independently:

4° a) h < A This condition need not be fulfilled in the whole
momentum space since g" is a function of S. Therefore we restrict our
consideration to quasi-particles, creating Cooper’s pairs from the sub-
space ® in which the condition h < A" is fulfilled. Then, we obtain
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V¥ =082 -1%, k¥ -o,
2.
2 Ay :
1 =—y——>, R=0,
s - n
o gy - L (60)
sin ¢, = a; =1 - 60

Hence, the average magnetization arising from quasi-particles from ¢&-
-subspace eguals

Mg = O, (61)

and the gap equation in &-subspace is of the form (h = ”‘BH)
2 5
<81n(agp/ 80D, = O (62)

thus it is independent of the external magnetic field for all values of
H<H, = 8g/up-

4° b) h > A”. Let us note that this condition is fulfilled in the
whole momentum space for sufficiently strong magnetic field. If the ma-
gnetic field is too weak we have to consider the appropriate subspace.
Now, we have

ﬁ=h2"A", k2=1,
2
2 Ay 2
1° = 5>—>3, R= 2n%
h ‘A"
n? - a2
sin 9= —Hm " (63)

assuming that the inequality is fulfilled in the whole space, we obtain

R (64)

and
(8%1n[agp/n +¥n% = 42| ) = o. (65)

Investigating the obtained expressions in the limit V (Aﬁ) <<AO we can
compute again all the averages and derive the magnetization, the energy
gap and the Gibbs free-energy difference as functions of the external
magnetic field in che following forms

-a \ T
(By¥o + 2 - 8, - 2Hq

(66)
R.(1 + ¥) (72 = 1y

M=2 u%v(o)
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1+ F2 o
A(H) = a 1[———9—]/ - £, (67)
. Bu(Fg =1 ch

and
a
A6y = === v(0) Sy A
* 0
1 4+ F2 2
1 2 0 H
= = —— v(0)pA, ————— (1 -—> (68)
: © By (¥2 - 1) o)
where
(1 + FS)AO
By = =2 (69)

is the critical magnetic field, B, being the average B, = <|g“|4> ful-
fils the conditions B, > 1. et us note that AG, < 0 if Fj >1 and

H< Hc"’ Moreover, the obtained results describe the phase transition of
the second order and they are physical solely if the following condition

is fulfilled

a
Fo> 1. (70)

For that reason we have to consider the opposite case:
4°¢) h >4, and
15 (1)
0]
Now, non-zero energy gap cannot exist and has to vanish rapidly for the
chosen direction of the unit vector ﬁ at the point H = A"(ﬁl/uB. Hence,
we have

A = O (72)
and
M = p%v o . (73)
0 1 + FS

The solution discussed in the case 4°%°c is correct also for the case
4°b, when two physical solutions are possible, because the point h = 4
is a standard point of bifurcation. We neglect the other solution as me-
tastable and impossible, since the system prefers solutions with smaller
Gibbs free energy (larger energy gap).

Such a behaviour of the system determines the phase transition of
the first order. For both the cases discussed above we have also assumed
that
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<Ai (Il)lnAOT> =<A_2L (||)> 1nd. (74)

where

8, =n1/<AgT> 5

Then according to the imposed conditions (31) and (32) we have, respecti-
vely,

n =1 for BW state, (75)
n>1 for the other "constant" states,
ieeey n o= 1.065 and n; = 1.241.

Although the precise derivation of stable states can be carried out only
by means of the numerical calculations, we try to make some estimations
according to the obtained results. First, let us note that the state
which for the fixed magnetic field possesses the highest value of the
energy gap possesses also the lowest Gibbs free energy and is preferred
by the system. Thus Cooper’s pairs in the state described in 4°b are
always preferred by the system over the 4%c-state pairs if the condition
(70) is fulfilled. It should also be explained that V <Aﬁ > must be
small in comparison with AO’ since only Ag and Hc" are constant and
independent of A and H.

According to the remarks given above A is a function of the unit
vector ﬁ and the inequality h < 4, can be realized only in some parts
of the momentum space. Such a situation complicates our problem. However,
in order to solve it we can consider the appropriate averages over the
proper parts of the momentum space (spherical angles). Taking into
account Eqs. (60), (64), (66) and (73) we can note that the magnetization
of the one-dimensional state achieves the non-zero values already in the
weak magnetic field, and, if for instance the condition (71) is fulfilled,
then the Cooper’s pairs exist in the subspace ¢ only. Hence,the magnetiza-
tion is of the form

2 ,
T
ie —% a%p, (76)
+
0 All(3)<hr
which, e.g., for the so-called "polar" state (a,=4+/3'A |cos 9| ) reduces
to the form

2
I V- - (71)
B0 HF? 4+ H
0] cl

where
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H, = 1/5‘1%5 1+ Fg) (78)

is the critical magnetic field in the case when the system passes to the
normal state in its whole volume. While discussing the problem of the
energy gap we note that though the energy gap is constant in the subspa-
ce &, this subspace is a decreasing function of +the magnetic field
and this fact must be expressed in the free energy terms. Hence, €.g.,
for the same "polar" state in the limit H-—*-H;l, we obtain

upHey
V31 + 8232

A(H) = . (79)

The analogous considerations can be carried out for the case when the
condition (70) is fulfilled. They, however, are more complicated because
Cooper?’s pairs exist also outside the subspace ® and if it vanishes we
obtain the case discussed in the point 4°b. In conclusion of this section
we can state that the transition of superfluid 3He to the normal phase

in the strong magnetic field can be only of the second order. Moreover,
the order parameter distinguishes three qualitatively different struc-
tures, i.e., three-, two-, one-dimensional structures, according to the

conditions:
3-D gl # 0 and g" # 0,
2-D gl #0 and g” = 0, . (80)
1-D d =0 and 4, # 0,

and the transitions between those three kinds of phases (if they exist

at all) are of the first order (the qualitative change of the order pa-
rameter). However, the 3-dimensional state (BW) can exist in weak magne-
tic fields exclusively, whereas in strong magnetic fields only 1-dimensie
nal state is permitted. ]

Applying the developed formalism to the superfluid jHe we have to
take into account the real value of the Landau varameter Fo. According
to the data presented in [125] the value of Fg is negative within the
whole range of the permitted pressures being -0.76 < Fg <-0.67. Then
only the condition (71) is fulfilled, and the suitable behaviour of the

system is determined.

C) Although the above considerations are carried out in molecular
field approximation they can be directly developed for the case when the
higher ¥Fermi liquid interaction harmonics are included. Then obtained
results will be modified by the other lLandau parameters and additional
relations will appear.
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19. The solution of the gap equation in the presence
of dipole forces if H = 0 [43]

Now let us consider extra the system with pure P-pairing withcut a
magnetic field when the dipole-dipole interaction is included (cf. [85,
88, 104, 126, 127])). The problem specified in this way allows us to de-
termine equilibrium states which can be employed in linear response in-
vestigations. The inclusion of dipole forces causes the change of rota-
tional symmetry of the problem, The system is no longer invariant under
the separate rotations of spin and momentum variables. Thus, we have to
express total interaction in the particle-particle channel in spherical
tensor representation. Employing results of Sections 6, 33 and 41 we get

_ - - ik #*jn
Vig = - 31, [(1 - 2a) BSo Boo

ikg® jn 1 o) BiEpNRE 37
+ (1 + a) B1§B1M + (1 - '3'“)32M32M kPn 2

where a = v(O)go/f1 and & <<1. As we can note this interaction is split
according to J and is independent of M which reflects the symmetry
of the problem. Let us rewrite Eq. (1) in the form more convenient for
the discussion of the gap equation:

vij = = 3f1 "%"'(1 = 2“)5ik63n + —%—(1 + a)(éijékn - 5ik5jn)

+ (1 = = @) (8 gbyn + Bynbyk - 72‘5ik53n)] PPy - (2)
The gap equation has the form
4y Py = - <vijn(’ﬁ)d3n3n> (3)
where
A(p) = a(T)o*ay ppic?,
p
BG) - [ ag BEAD, 5. [, 3@ 2DV 4)
0

In order to solve Eq. (3) within the frames of the applied approach,
the form of the tensor.dik TESt be known. It, however, can be constructed
from the spherical tensor BJM according to the following ideas. The
spherical tensors describe the possible two-particle states in the system
with the full rotational symmetry. If the symmetry of the system is bro-
ken by distinction of one direction, the equilibrium state becomes a
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linear combination of spherical tensors with the fixed M which is
still a good quentum number (M = 0, +1, #2). In this way the thermodyna-
mic phases can be classified according to the quantum number M [41,
73].

C) After distinguishing more then one direction in the system,
6.g., inhomogeneity end the external strong magnetic field, no quantum
number is a good quantum number and the equilibrium state should be con-
structed from ell rine spherical tensors.

Below we consider the equilibrium state when M = 0, which is iden-
tified with B phase [15). The tensor d;) hes the form

A A ~

djy = ad;, + b(6;, - 3k K ) + ceyy ko (5)
where Q is a unit vector of the distinguished direction. If a, b and
¢ are real numbers or they have the same phase, the state described
above is unitary. Let us choose a, b, and ¢ as real numbers; then the
following conditions are fulfilled:

2 2 2 2

a + 2b° + —3— c = 1, (6)
» AN
dij 85 = 45,95, = Ady + Bkpky (7)
where
L= (a+ 1)+ o2, B = 3b2 - 6ab - c2,

(e)

Now, if we estimate the free energy of the system in the state (5),
AF ~ A% - 2A, then for A = 1(B = 0) it is minimel, i.e., in the isotro-
pic state. Solving equations 8, we obtain

a = % (2cose + 1), b = % (cos®- 1), c =+ sine@, (9a)
a = % (2cos8 -1), b = % (cose+ 1), c =+ sin®,. (9v)

The first solution can be interpreted as a rotation in momentum space
about the ﬁ axis by en angle +8 , respectively, end the second solu-
tion es the analogous improper rotation,

According to Leggett’s considerations, the free energy of the
equilibrium states (2) is minimized by dipole forces if the angle © =
= cos™! (-1/4) in the first cese (9a), end the angle 8 = cos  (1/4) in
tLe second one (9b).
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For the case of the isotropic gap |( ﬁ(§)|2= const), H(ﬁ):const:ho
(cf. Section 33) and from Eq. (3) we get the following equalities:

a(1 - 2a)hof1,

o
"

B(1 - = a)byt,, (10)

c

c(1 + a)hof1.

These equalities cannot be fulfilled simultaneously if a # O, except the
case when 8 = 0 for (9a) or @€=n for (9b). In order to solve this prob-
lem let us assume that the gap is slightly anisotropic (A = 1 - €; B=3g)
and hes the form of IX(S)l2 = Aa[j - € + 5(£§)25]. Since € is small, we
can apply in our calculations the following expansion of the function
H(P) = HelP):

He(P) = H_ + H, [3(’l;p)2 -1e

0
where

Ep
2 aF 3 th(E/2T)
Hy =4 f “é%‘ o) E .
0

Now, from Eq. (4) we obtain

a=1£,(1-20 Bhya + (a - 2b)h5] . (120)
b=1t(1- —%—a)[;hzb - (a - 20)n,] (12b)
o = f1(1 + a)3h,e (12¢)

where b2 and h5 agree with the notetion given in Section 33, From
Equation (12¢) we find that the following equality has to be fulfilled:

1= 3h2,(1 + ). BNCEY

In order to examine the solution of Eqs. (12) we introduce the following
notations:

a=a,+ 8.,
where 8y bO’ o2 are taken in the form defined by (9) and =&
do not exceed the order of a@.

Equations (12) at the limit a = O cen be fulfilled only if ¢ = O,
a -2b =0, or h3 = 0., If there appear the dipole forces, a - 2b does
not exceed a. Keeping the accuracy of our calculations we find that

b = bU + b1, c=c,y+ 0y

1° “9t 4
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Eqs. (12) are fulfilled if ay = b, =0 {c =+ g), i.e., in the ordinary
2D state. The condition h:5 = 0 cen be fulfilled if B = 0(A = 1), i.e.,
in the isotropic state. Using Equation (13), after some calculations,
from Eqs. (12a) and (12b) we obtain

+ —g— eH) = 3aHja,, (14a)

2

e 6 (14b)
+-—5- CH1 =_5- aHObo.

The plus and minus signs are connected with the two possibilities of the
choice of @&, and b,. Equations (14) give us the relation ay= -(2/5)b0,
which can be fulfilled if and only if cos @ = + 1/4, respectively. We
recall that these are Leggett’s conditions of the free energy minimiza-
tion, If we now ingert ay =% % or b, = ¥+ 4/15 into Eqs. (14) we obtain

€ = %aHy/H,. (15)
Returning to Eq. (11), we can rewrite it in the following form:

H() = Hy[1 - <o+ —}ﬁa,(kp)z_]- (16)
Substituting H(P) given by (16) into the formula (13), we obtain

Hoe, (1 + a/2) = 1. (17)

The factors a, b, and ¢ can be calculated from Egs. (8). Taking into
account that a) = & 1/6, by = ¥ 5/12, and cy = (+) ¥15/4, after some
transformetion we obtain

a = %(1 + 10€ + 15§),

I+

+|

b =7 (5/12)(1 - %e - 35), (18)

c = (£)( VA5/4)(1 + 6)

where § is an arbitrary number of the order of €. The free energy of
the state described by Eq. (18) depends on € linearly. Hence, it has to
increase or decrease for nonzero €. Following Leggett’s estimations
[85], we see that the free energy will be modified only by its dipole
part AFdip ~(6a2 + Bb? - c2) ~ =(0e1 - €) and it will decrease if ¢
is negative. This occurs, according to Eq. (15), if H1 < 0, since a and
Ho ere positive, It seems to be of interest to find the relation HO/H1
and its dependence on temperature and gp, though this relation is
probably always negative. The free energy is independent of §. Hence,
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the equilibrium state of the system is degenerated, or rather, it |is
not defined in a unique way. Such a consideration of the problem is most
general aslthough it can be also interpreted in terms of simultaneous ro-
tation end diletation [104, 126].

Let us return now to the interaction in the particle-particle
channel. This interaction can be rewritten in a new form, equivalent to
the previous one,

Vig = - 38014 a)' [616kn = Y(8;56kn + B5x85pn + 51nbjk)]§kp;1 (19)

where ¥ = 3a/5(1 + @) and y <<1. This expression can be treated as a
kernel of the integral operator )

F=-t1+ @) (1 - D, (20)

If we remember that y<<1, the inverse operator can be found immedia-
tely in the form

i"’ = -Hy(1 - a/2)(i + Yﬁ) (21)

where we also used Eq. (17). In Equation (21) we neglected quantities

of the order of En/f1 for n > 2. These kinds of dimensionless quanti-
ties will appear in further consideretions. They satisfy the following
relations:

H0>>aH0>>e ~ealy ~ 6. (22)

In order to be consistent with our previous calculations, the quentities
of the order of € should be treated as being negligibly smell, Hence,
the gap, if multiplied by a factor of the order of aHO, should be re-
placed by

dy =238y, T (5/12)(0y, - 3Rik,) - [£(AE/4)] €5 knky (22)

in order not to surpass the accuracy of the equations.

Comparing the results of this and previous sections we state thet
the two-dimension state 2D is the best candidate to replace the BW state
if the magnetic field is included (cf. (7]).

V. 3He-qu mixtures

20, Properties of 5He-“He mixtures

z n
According to the theoreticel investigations [112] in -ile-'He amix-

tures S-peiring is preferred for the concentrations x < 5%, with & grow-
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ing tendency to P-pairing for higher concentrations., The estimated va-
lues of the phase transition ‘temperature T°<; 5.10'6K at concentrations
x =1,3% and x = 5%. Moreover, the Landau parameter FS becomes po-
sitive (it is negative for 3He), although it is small Fg ~ 0,09, Never-
theless it should be a function of pressure. Such tendencies of 3He-‘He
mixtures allow us to consider them as neutral superfluids with the sin-
glet- or triplet-state Coopers’s pairs for low or high concentrations,
respectively. Below we consider only neutral BCS systems which consti-
tute the qualitatively new problem.

21. A neutral BOS system

We consider the problem applying the results contained in Sec. 8
in the case of the particle-hole symmetry. Since all vectorial quanti-
ties are parallel we neglect their vectorial structure and consider
their positive values only. In case of the homogeneous BCS-system none
of the used quantities depends on the direction of the momentum vector,
hence the totai magnetic field can be written in the form

HT=H-F8HP. (1)

We emphaesize that Fg is the sole paerameter of the Fermi liquid
interaction which modifies the total magnetic field.

a) The zero-temperature limit [50]

In order to solve the specified problem in the enalytic way we put
T = 0, The reduced forms of the paramegnetic field and gap equation are
enalytic functions of Hp (Eqs. (12.1), (14.2)). Analogously as in Sec-
tion 14 we state that the investigated problem possesses two qualitati-
vely different solutions which have to be considered as two indepen-
dent cases, i.e., (cf. Section 43):

I) when A is constant (A = AO) and it rapidly vanishes for

H = Hy < H,= Ao/p,B, and

II) when A is constant (A = AO) for HKH
value iA a continuous way for H 2 H

1 and it chenges its

1
In the former case we have

A6 if H<H6<H1,
A = (2)

and



0 it H<H,
0
M, =X, (3)
o it H>Hg.
1+ F

Since the parameter HO defines the value of the magnetic field
when the system approaches the normal state so it can be found by Gibbs
free-energy compaerison from the relation

1 2 vlowd H

TV(O)A0= 0

T (#)

1 + Fo

Hence we obtain

H, = H, 1/% (1 + Fg) (5)

and because of H. < H

0 1 we get

ng 1. : - (e)
In this way we state that if the system possesses the type-I proper-
ties, the inequality (6) has to be fulfilled. In the latter case the
gap equation reduces to the form

Hy = Hy + Hy (7)

and substituting this into Eq. (1) we can derive the paremagnetic magne-
tization for H 2 H in the form

1
H-H
0 1
M o= 0 —2, (e)
P P po _
FS -1
whence, we find
02
a2 - B2 (1 + FoE, - 21] . (9)
Fo- 1 L

The demand of positive paramagnetic magnetization implies the following
inequality

FS > 1 (10)

which ensures also that the energy gap becomes the decreasing function
of the external magnetic field. On the other hend, Bq. (2) @llows us to
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derive the value of the critical magnetic field H2 for which the ener-
gy gap A vanishes. We find it in the form

Hy, = —3—(1+ FOH, (11)
where the condition (410) ensures that IH < H2.

In the limit caese, when Fg = 1, the critical magnetic fields H1
and H2 become equal and the system shows the properties sttributed to
the first discussed case. Then the critical maegnetic field Hc is equal
to H1.

In order to sum up the obtained results we emphasize that the ener-
ey gap can tend to zero in the continuous way only if the Landau parame-
ter Fg > 1; then, the energy gep and the paramegnetic magnetization are
expressed in the following forms

1 if HK H

10
(1 + FOH, - 20 /2
b = A, S if H, < H<SH, (12)
(7 - NH,
0 if H>H2.
and
Y if H < Hy,
H-H
M, = x9 . if H, <HSH, (13)
Fy -1
H
if H >H,.
1+F8' .

Let us estimate now the Gibbs free energy difference for the magnetic
fields H when H, < H <H,. Employing equation (£.7) and Egs. (13.18)
we obtain in turn

AG:-—vég)-< p2+qA2 —p>2 (14)
q
where
2 a
B pit FO-‘I
PrIL e YR
0 o)

and
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(H, - H)

+ Fg)(Fg -1 !

AG = - 2v(0) ug 0 (15)

hence we state that AG is always negative if Fg >1 and H < H2. and
AG =0 1if H = H2. For H = H1 the Gibbs free-energy difference reduces
to the form

2 -1

F
1 2 0
AG = - - v(0)a®(0) ;g:—:‘- . (16)

The latest relation demonstrates that the Gibbs free-energy difference
is equal to zero if H = Hc and Fg =1, i.e., for type-I systems. In
this way we have proved that the neutrel BCS-systems reveal the para-
magnetic duality which is determined by the values of the Landau para-
meter FS; it Fs < 1 the energy gap vanishes and the appearing paramag-
netic megnetization attains the seme value as for the normal system
for the fixed value‘ Hb(HO < H1); if Fg > 1, then while the external
magnetic field changes from H1 to H2 the energy gap decreases from
the value Ao to zero and the paramagnetic magnetization increases

from zero to a value of the normal state. Since the other discussed sta-
te is more stable in comparison with the first one it is always realized
if Fg > 1., Moreover we can assume that w= %(1 + Fg) then H, = Hou

and the following condition

n > 1 (17)
is equivalent to Eq. (10).

b) The Ginzburg-Lendau limit

16 In order to consider the system in this limit we can employ
the results of Seotion 16b after putting vy = 0 or F: equal to in-
finity or results of Section 15b. In the formalism developed there end
based on.thermod&namic potential estimations it is assumed that in the
Ginzburg-Landau limit the following relations have to be fulfilled

W v (T) a(T)
-th- < EEE%——— << —— << 1. (18)
(] (4] c

These relations allow us to treat the magnetic field as a small
magnitude in comparison with the energy gap and to apply a perturbation
method to solve the gap equation (15.21) or (16.16). Then we get
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By(m) = @B (0) (1 - =) (14 Q) (19)

where

P ]/186“5) = 1.01.
7¢(2) 7¢(3)

On the other hand, comparing the thermodynamic potential we obtain (cf.
Eq. (4) and [35])

HO(T) = IYH,l(o) (1 - -%—)-,/1 + Fg (20)

c

where
2 e°
" 7g(3)

Now, just as in the zero-temperature case, we can assume that the ty-
pe-I1 superfluidity is reelized in a system when the critical magnetic
field H2(T) fulfils the relation

Y = 1.23.

HO(T) < HZ(T). . (21)

This relation, asfter applying Egs. (19) end (20), implies the following
condition

5 .
Fo >e-1 (22)
where
Y \2 _ 98 £3(3)
€ = (—-) = = 1,47,
a 9z ¢ (5)

In the limit case, When F§ = e - 1 = 0.47, we have Hy(T) = H,(T) and

introducing Hc(T) in the form

B (T) = aeH (0) ( --%':) (2%)
(xe = 1.48) we can write
1 + Fg :
Ey(T) = I (T) ——— . (24)

€

Hence, the wu-peremeter can be defined as follows
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1+ 72

(T3 = —;—-9 . (25)

According to the obtained results (10) and (22) we state that the magne-
tic properties of 3He-“He mixtures can be altered (type-I systems become
the ones of type-I1) when temperature tends to Tc and FS is contained
within the intervel (e - 1, 1). Moreover, after regard Eq. (25) we can
apply the other results of Sec¢tion 15b.

2° Let us emphasize that the seme problem is usually treated in
very formal way, while one assumes that the energy gap has to vanish
(A = 0) when H = H, (92, 95, 120]. Then employing the gap equation
(15.24) and Eqs. (1), (15.20), (15.23) we obtain the following results

Hy(T) = «H,(0) (1 - —%—c) 12 (4, 59) (26)
and
(T A(T) 1 + FS
H2 By 1/? ) (27)

However, now the critical exponent is equel to 0.5. This value being in-
consistent with thet obtained from termodynamic potential estimation.
Therefore we cannot compare Eqs. (20) end (26) and separate the w-para-
meter.

In this way we prove that the results obtained in the former appro-
ach are consistent and coherent, whereas the results of the latter
approach seem to be incorrect. Therefore the presented method becomes
competitive to typicel approaches [92, 95, 120] and we prefer it in our
considerations, though in the case of superconducting systems we apply
Eq. (15.27) instead of Eq. (23).
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Part Three

LINEAR RESPONSES OF BCS AND BW SYSTEMS

The generalization of the Green function microscopic theory for-
mulated by Larkin, Migdal [79] and Czerwonko ([22] for non-zero tempera-
ture systems [39, 40], the correct derivation of the Maki and Ebisawa
funotion [43, 47], the inclusion of the dipole-dipole interaction [43-
45, 53] and the development of some special mathematical methods (Part
Four) allow us to state new significant properties of the superfluid
and superconducting systems, which appear in the linear response theory
and which are due to the Fermi liquid interaction.

In Chapter VI we investigate the homogeneous BCS and BW systems
with the full pairing interaction and we define the relations between
the paremeters of the pairing and Fermi liquid interactions.

In Chapters VII end VIII the phase B (4, 5, 8, 12, 15, 67, 85, 97,
107, 108, 137, 139] of superfluid 3He is considered in the presence of
the dipole-dipole interaction., Since we do not impose any restrictions
on the frequency, wave vector, and temperature, we have to assume that
all Landau paremeters disappear, except a few first ones [40, 42]. The
suitable equilibrium state is derived in Section 19.

VI. Influence of the Fermi liquid interaction on possible two-particle
States [49]

22, Statement of the problem

The general rotational symmetry of superconducting and superfluid
systems allows us to describe the Fermi liquid interaction by the ex-
pansion of Legendre polynomials where, as far as the appropriaete fac-
tors, i.e., the Landau parameters are concerned, we assume only that
they have to fulfil the Pomeranchuk {117] inequalities and become small
for sufficiently high terms of the expansion. So far these restrictions
are satisfied by the experimental data eand the Landau parameters become
negligibly small already for quite low expension terms [139]. On the
other hand, there exists one more quasiparticle interaction in the
superfluid and superconducting systems: the pairing interaction. Accord-
ing to the seme symmetry conditions the pairing interaction can be re-
presented in the analogous way, i.e., by meens of the Legendre polyno-
miesl series, where some parameters of the expansion have to be equal
to zero according to Pauli exclusion principle.
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In most of the cases discussed so far the authors restrict
themselves to the one pairing harmonic responsible for the creation of
the quesiparticle pairs in the ground state. Now, we consider super-
conducting and superfluid systems with fixed ground states of the BCS
or BW type, respectively, in which the Fermi liquid and pairing inter-
actions are included in gquite general forms. Such a procedure is fully
justified if we assume that the pairing energies of all other two-par-
ticle states are lower than energies for the BCS or BW state, respec-
tively. Hence, there appear some restrictions imposed on the pairing
interaction parameters relative to the ground state harmonic.

The energy spectrum of all possible two-particle states has to be
placed between the ground state energy levels of the superfluid and
normel liquids. Since the above two levels differ by A per quasi-par-
ticle, the excitations of the ground state pairs to other available
two-particle states by the energy charges smaller then 2 A become po-
ssible.

We investigate the possibilities of such excitetions in the linear
response approach.

It allows us to discuss the linear response of the system to the
external mechanic perturbations of quasi-paerticle density. Our main
purpose is to find the dependences between the Landeu and pairing in-
teraction paremeters. We also give an interpretaﬁion of the obtained
results with regerd to experiments.

Our original considerestions were carried out in the zero tempera-
ture limit since all Cooper’s pairs are locked then into the ground
(BCS or BW) state, respectively. In case of non-zero tempersastures
Cooper’s pairs should occupy other higher locelized permissible two
-particle states. Therefore, the order parameter connected with the
thermodynemic equilibrium state should be modified edequately. If, how=-
ever, we neglect this effect [144] the results of [49] are velid for
non-zero temperatures provided that the temperatube form of the Maki
and Ebisawa function is teken into account (Section 74). Suitable chen-
ges are performed below,

23, The system in BCS state

We consider the superconducting system in the BCS state at the

homogeneous limit (k 0) in the case when the full Fermi 1liquid and

i

pairing interactions are included. Some rather superfical investiga-
tions of this system were performed by Larkin [78]. Now, together with
the far more complicated superfluid BW system, we consider it in detail
and discuss the results obtained.
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The basic equations, necessary to deal with the problem under con-
sideration, can be easily obtained from the equation given by Czerwonko
[22] end have the form

T=14+{i(-FT+ tFT))> ,
T =0, [(t°F + 25T - tFT]D (1)

where t =w/(24) is the reduced frequency.

Such a simple form of of equations can be achieved after using the
symmetry properties of the initial equation. Some symbols used have more
precisely determined meenings, as defined below., The normal vertex func-
tion is of the form

(= o]
T = Z (23 + 1) T;py,
j=0
and Tj = 0 for all add j. The anomalous vertex function is of the form
T =

Z (23 + 192,2,,
j=0

and TJ = 0 for all odd j. From the spin direct Fermi liquid interaction
only its symmetric part f is taken and QH is the spin antisymmetric
pairing interaction (cf. Section 6).

We leave out an account of the autocorrelation function equetion,
since we are not going to use it immediately, but we still keep in mind
that the poles of the autocorrelation and vertex functions are equiva-
lent.

Using the symbols introduced we obtein from Eq. (1) after some cal-

culations
=08 _. - a,(T. - tT,
Ty =805 = 2307 $F
-1
Ty fj(tTj ‘TJ.)tF + 2,85 Ty, (2)

The obteined equations are separated with respect to the quantum number
jeo This, of course, takes place only in the homogeneous limit. Still, in
the quasi-homogeneous limit we can separate with a good accuracy the
collective excitation spectre and obtain the collective excitation gaps
from Eqs. (2). Since the excitetions are connected with the poles of the
appropriate vertex function it is sufficient to derive the mein determi-
nant of the above system of equations. Then we have

(ln —éL - tZF) (1 + ajF) + ajtZF2 =0 (z)
3
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where r. can be interpreted as the value of the pairing energy per
quasiparticle in the state with the fixed quantum number j. Moreover,
3 < A for 1l £ 0 and ry ® A,

We assume that the collective excitation spectrum in the quasi
~homogeneous limit has the form

r

2 2

2
t to + Ku (4)

]

where u = kv/(2A) is the reduced wave vector which makes the system to
be inhomogeneous and u<3:t0 but K can be of the order tg. The value
of to should be found as a solution of the equation

A

t2F(t) - [1 + o,F(t) lu]g— = 0. (5)
- 3

Let us notice that if ‘j = 0 and rj —— 4, then t0—>0 which is in

agreement with the assumed conditions. Let us note furthermore that: if

the geps of the real physical excitation are smaller than 24, then the

value of to has to fulfil the following inequalities

O<to<1. (6)

We exclude *the equality on the righ-hand-side of Eq. (6) as leading to
the ground state degeneracy.

The Landau parameter aj has to satisfy the following Pomeranchuk .
[M17] conditions:

-1 < aj < oo (7)

for all j = 0, 1,2,.0- .
From Equation (5) we derive
2
a. = t - 1 » (8)
I in zs/rJ F(t)

and assuming that

a =A3(t)o (9)

J

we can investigete Eq. (8) in relation to the inequalites (6) and (7).

Then we obtain

F2(t) + G(t) 1n-‘-;—
b]

da, (t)

= . (10)
a(t?) F2(t) 1n —}-
J

Since the functions F(t) and G(t) are always positive if 0 < ¢t < 4
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(of. Sections 34, 35), A,(t) is a monotonically increasing function
within the whole interval éonsidered. Hence the following inequalities
are justified

-1
1 A
AJ(O)-_--ﬁ < Aj(t) < (111 —r_j> =AJ(1), (11)
and they lead to the relation
1 A\
-1—.2 <aj< <1n —r-J-> ’ (12)

in which the Landau and pairing interaction parameters are combined. It
is easily noted that the above restrictions are equivalent to the ones
in Eq. (7) provided that r; tends to 4, end T = O.

The éxistence of additional states, which has to be manifésted in
collective excitations with the gap, cen have an essential meaning, e.g.,
for determining the heat capacity.

The value of the gap determines the energy levels of the two-par-
ticle excitetions, According to the obtained results these 1levels are
modified by Fermi liquid interaction and for a positive large enough
Landau perameter the two-particle states cannot be created, whereas for
ell negative values of the Landau parameter such excitations become
possible and their gep tends to the value ts > 0 defined by the equation

Aj(ts) = -1 (13)

and ts >0 if T >0, even for the Landau parameters taken on the border
of stebility, i.e., if they tend to minus one (cf. Section 35). Such a
situation seems to be quite understandable, since the positive values
of Landau parameters are connected with the repulsive part of the Fermi
liquid interaction, whereas the negative values describe its attractive
part, Due to the superposition of these two interections the attractive
effects connected with the pairing interaction can be totally neutraliz-
ed by repulsive Fermi liquid interaction effects. Such a situation
takes place if the gap assumes the value 2A, which in our symbols is
equivalent to t =.1. All these above remarks allow us to formulate the
following conclusions.,

The collective excitations with the gap, which are connected with
the transitions to other gtates, are possible only if there exists ean
appropriate harmonic in the pairing interaction and if the eppropriate
Landau perameter 1s either sufficiently small or negative. In the oppo-
site case, i.e., for a strong repulsive Fermi liquid interaction if
a‘,j > (1nA /rJ)'1 the possible two-particle states become unstable and
simply cennot appear.
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As to experiment the above conclusion permits us to either exclude
or include some pairing interaction harmonic. Namely if the value a;1 is
negative and, according to experimental evidence, there are no appro-
priate collective excitetions with the gap, such a harmonic should be
excluded from the pairing interaction by putting f. equal to zero; if,
however, there exists the appropriate collective excitation with the gap
and a, is positive, then using Eq. (12) we can estimate the parameter
rJ and obtain

rj>Aexp (-—;_j). (14)

In such a situation the pairing interaction creates the additional two
-particle states if the energy parameter rj satisfies the inequalities

Aexp (— -—;—) <r;<a. (15)
J
24, The system in BW state

Adcording to the formalism developed by Czerwonko [22] in the
homogeneous limit the system of initial equations has the form

721 +{3(-FT+ tF-:“Bn)> )
SR CINR (G DL ) R S S vrp, 7>

where, as before, J is the normel vertex function, v% is the anomalous
vertex function which can be expressed in the form

(1)

Then

7= Z (2. + 1)TjPJ,

j=0

T = z (25 + 1)T,Py,
§=0

8= z; (25 + 1)8,Py
J=

where TJ =T, =0 for all odd j eand ej = 0 for all even j. & is the
symmetric part of the spin-direct Fermi liquid interaction, 0_1 is the
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spin symmetric part of the pairing interaction and r, = A (cf. Section

6).

1

After substituting Eq. (2), and some algebra Egs. (1) reduce to the
forms

7= 1 +CREET 4 (T von ) )
Tw +8 =<°_1 [(tZF + f;1)(Tw’ + G) + Fe(w’e + 1) - tFT"]>D (4)

AA,

T+ 0w = (P57) @_, [(+°F + £

+ Fow - 771>+ wd@_, {[(t7 - 1) F + 2770} (5)

where w = ﬁﬁ and Eqs. (4) and (5) are obtained from one initial equa-
tion due to its vector structure. Applying the recurrence formula (%3,5)
and using the linear independence of Legendre polynomials we obtain

(21+1)(1+8 F) Ty +(2141)a) tFT) -1a tF @) -(1+0) & TFO), , = &,,, (6)

2p, =1
L2 tFT) o+ (141) 2 tFT) +1[1-2, (£5F+27 )] Ty,

2 - B
+(1+1) [1-2 (82Fe22 )] T, +(2141) E—fl(t21r-xr+f11)
_ o 2174211 F] o ¢ 1=1) ¢ PN 6 X DY 53 RO

1 2N (21+3) e P <y '2'%;3‘“ 1 1e2 = &
(7)

[ieg _+ (e JerTe{(20en)- [Ley_+(Len)ey, J(87maesh ) my

1+1

F 2 -1
+ 1 {1 - SEm ey eney, 3o [2-0rel T} oy

(1) {1 - 51'1‘-+-1-[fl_1+(1a,1):’l+1]-1~1+1 [(t2-1 )mrf]}el+1 =0. (8)

To make the above system of equations more symmetric, the number 1 in
Eq. (7) is replaced by 1 + 1, then

(1 + 1)fl+1tFﬁi + (1 + 2)fl+1tF71+2

2, o1 2, o1
# (L) (-2 (P2 T] T+ (Le2) [1-£y  (85F+227)] Ty,

141
12

- 2 =1 2 1+3
€ ABL43) [Ny (W = F & £,7) = £y (2‘I+‘1‘i+(2?++§)] ® 141
. 1(1+1 } (1+2)(1+3 _
B —1'-22 - F 81 - T _—2f+_T_)' FBy o2 =B (9)
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The system of equations obtained is far more complicated than the one
given in the previous section. Before we begin to solve it we have to
make some modifications in order to eliminate the cut-off parameterf .
This will be done by eliminating the normel vertex function, inserting
T, derived from Eq. (6) into Eq. (9) and dividing the result by f

149°
Then after some calculations we obtain
A t°F A t°F
(1+1) (1n - T.+(1+2) <}n - T
T4 1+91F 1 rl+1 I+el+2F 1+2
1141) [ t2a F A 5
- W 1 - 'T;?F FBl_,l +{(21+3) [ln rl " - (t - 1) F]
+
(141)2 t2a P (1+2)2 t%ay, F
-3 G 1- T+8,F F - e 1= Tvay, F Fr 8,4
(1+2)(1+3) t%a, _F tF
= 1 -2 170, , = - s O " (10)
2145 1+al+2F 143 ~ 1+%)F 10° 1

As this procedure cannot be repeated for Eq. (8) we can only reduce it
to the form

a t2F 1
r1-‘1‘{1 (ln T, 3+alF> Ty *+ 2hA

2
x|(21+1)1n b = 1{1 - Z—El; F-(21+1)(t2-1)F )
T1-1 1+a; 1-1

1(1+1) taalF
- (VT TeF ) Tl

+

t°F
{(1 1) (1o =8 T
t + &
144 T TeF) T

1(1+41) t2alF 1+1 A taalF
= o 4 = Tra,F O, .+ 5T57 (21+1) 1n 1, -(1+1)(1- I:EIF T
tF Y
2 _ = - . (11)
- (21 + 1)(¢ 1)F] I } m o= L, 1+aO? 10

We need not be interested in the details of the rigth-hand-sides of Egs.
(10) and (11), since the main problem of our calculations is to derive
the poles of vertex functions. While analyzing Eqs. (10) and (11) it
can be noted that their structure ellows us to rewrite them in the

following way
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RiatS1=% (12)

and
£, 4Ry *+ £1,45; = £.X; (13)

where the symbols Rl, Sl and Xl can be easily identified by means of
Eq. (11). The expression Xl is independent of the functions Tl and 6 1
and it vanishes if 1 > O. After inserting S; derived from Eq. (12) into
Eq. (13), the latter is reduced to the form

£1-4B1 = f144F140 = O (14)
Since 1_1 = 0, we have Ba = 0, whence
Ry =0 end S, =0 (15)

for all 1. Let us rewrite Eqs. (15) in an explicit form. Then we have

2
L t2r . Loa L t%a,F o
s v B R T, - re U 1+alf +(1-t5)F 811

P14 Ay
1(1+1) t2a P (
- 1 = ——— | FO =0 16)
21 1+a,F 1+ !
t2F 1 t2a,F
1o T)4a - 1+31F Ty -7 (1 - 1+a1F_ LS
A 1+1 tzalF 2
+ |1ln 1‘17 = 1 - —-;]-:-a—lir F + (1-19)F Gl+1 =0, (17)

in which for the general case the number "1 can take all values from
zero to infinity. In such a way we obtain an open system of equations
which can be solved only simultaneously and this tesk being rather com-
plicated. Despite +this fact a special case of a small gap was investi-
gated in the so-called acoustic limit [119].

In the following we limit ourselves to some particular cases which
seem to be of interest from physical point of view, i.,e., to the case
where for e fixed even number n all parameters fn+k disappear or to
the case where only two parameters f1 and fn-1 differ from zero. In
the first case we have

£, £ 0, £y P 0,0eesfy 4 £0, foeq = 00 fn+5 = 0, o,

hence

']_‘n=0, Tn+2 = Ogeoney
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and

n+1 = 0, (] = o, see o (18)

n+>

Although the above assumptions make the system of Eqs. (16)-(17) closed,
the solution of the problem is still very complicated. However, if we
put 1 = n from Eq. (16) we obtain
A n t?anF >
n|ln 3 = mgp |1 = ey F+(1-t°)F|e@ peq ™ O (19)
n-1 n
and hence the following gap equation

A n t2a, F(t) 2
1n RS m 1 - m F(t)'l'(']‘t )F(t)

n-1

0 (20)

Proceeding in a similar way as in the previous section we derive

nt2 1 .
a, = = > - TF(EY ¢ (21)
(2n+1) 1n = + (n+1)(1-t)F(t)
n-1
and assuming
L = Ap (%) (22)
we find
da (¢t
n{®) = { n(n+1)F2(t)En+1 (t)
2 s AL
a(t<) 2n+1
[ 2 2
+ (2n+1) 1n nFe(t)+2(n+1) (1-tT)F(t)G(t)
n-1

-2
+(n+1)(1—t2)F(t)] F-2(t).
(23)

The function E (t) is defined and discussed in Sec. %5. Since the func-
tion E (t) is positive and all other quantities are also positive to if
t <1, the derivative dA (t)/d(tz) is also positive for every n. 1In-
vestigating the limits of the function An(t) we obtain

_4a A
+ (2n+1)ln - G (t)]} B2n+1) 1ln o

1 A (0 _ - A -
-ITTx < )< 4, (8) <4 (1) = =57 (o 3 - . (24)

Thus, the kind of excitations caused by the last pairing harmonic leads
to the following.inequalities
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-1
- g <8, < —2E (ln r:_1) . (25)
The inequalities obtained are anelogous to the ones given by Egs.
(23.12) and the remarks contained in the previous section are also
valid.

Let us pass on now to the second case mentioned, i.e., of only
one additional pairing harmonic which does not vanish. Then we have

£4 £ 0, £3 = 0,000,835 =0, fhq FO, £, =0, con, (26)

and according to Eqs. (16) Tk =0 k1 = 0 for all k 2> n. Since for n > 6
the system of equations obtained can be separated, the above problem
should be considered for two independent cases. Firstly we consider

the case for n > 6 and from Eqs. (16) and (17) we obtain

'T—Ff? (T, +8,) =0, (273
o
t°F s tzaZF - 6 t%aF \
-ZTTE?TZ—521-m-5(1-t)F81-5<1-7175? F95=0,
) (28)
A a E anF 2
n [111 = - =T (1 - TTa T F+(1-t°)F 8,4 =0, (29)
n-1 n
i t2F n-2 t%a, ¥
1n Tpq - Tva, ¥ Thea - 2n-3 1- 1+an;;F FQn-B
2
A il ¢ °n-2F> 2
+ |1n = - F+(1-t“)F |0 __, = O. (30)
l: Tp-1  2n-3 < +ap ot A=3

Putting 1 = 2 in Eq. (17) end 1 = n-2 in Eq. (16) we ascertain that the
obtained identities are correct if

T, =-0; and T == 8 5. (1)
Hence, Equations (28) and (30) reduce to the expressions
2 t%a 7 2
- - 2 (1 - TI?Z-F F-5(1-t5)F (T2 + 91) =0 (z2)

and

A il t%a, o 2
ln ¥ : - 5% 1 - Tie_ T F+(1-t°)F (Tn_?_ +8n_1) = 0, (53)

n- n-2
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Equation(}Z)does depend on the pairing parameters. Equation (29) is
equivalent to Eq. (20), which is in agreement with our expectation.
From equetion (33) we obtain one more gep equation

i n-1 t%a,_,F(t) .
1 T4 - zE=3 |1 ?IE;:;ngT F(t)+(1-t)F(t) = 0. (34)

Although Equation (34) is enalogous to Eq. (20) it nevertheless cannot
be obtained by an eppropriate change of the number n. The same proceed-
ing es before yields

2
ﬂn_a = (n-1)t : _ __F%r , (35)
(20-3)1n z—= + (n-2)(1-t3)F(t)
D=
hence
-1
-y <o <2 (=) 7 (z6)

From the results given by Egs. (29) and (33) we can conclude that there
is a dispersion in the excitation spectrum. Owing to the rich spin struc-
ture and the properties of the angular momentum, the number of two
-particle statesvcreated for a given type of the pairing interaction
mey be greater then one. Such new states are usually not degererated,
though it cen occur that some of them are degenerated. The existence of
additional two-particle states, which cen be realized due to some ex-
citetions in the system with pure P-pairing, was investigated in [43-
-457], With the reference to above papers we can notice that due to the
lack of degeneracy end the dispersion of the energy levels connected
with it there appeers sen energy gap in the collective excitation spec-
trum, So the edditional states are situated at higher energy levels and
the difference in energy is exploited to rebuild the spin-angular mo-
mentum structure of the ground stete pairs. Since some excitations to
the higher states are realized by means of special external fields, in
the case studied some trensitions can be forbidden. A1l these forbidden
states are not good candidates for teking part in the equilibrium state,
unless some extra external conditions ere taken into account, The in-
fluence of the Landau parameters is the seme as before, i.e., that the
gap equations (20) and (34) are modified in such a wey that the distan-
ces connected with the peiring energy aend the dispersion of the state
fluctuate simultaneously. It can also occur that the states diseppear

or become degenerated. Moreover, it is worth emphasizing thaet the transi-
tions within the same split level result only in tke rebuilt energy.
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Let us now consider the last case, i.e., for n = 4, We have

L, £ O, f3 £0, f-. =0, £y, =0, ..o,

b

= 0 for all k >4 and Eqs. (16) and (17) reduce to the

forms
t°F
T Teg ¥ (To+8,) =0, (38)
e " t2aF 5
"2 Trar T2t |1 Ay ) 211t ey
2
t%a
_§(1 2>F93 (39)
t°F a F
A 2
5(“3;"@) ( Tra T >F°1
A
.3 [}n & é > F+(1-t )F] 85 = 0, (40)

0. (#1)

"

2
t%e,F
A 4 4 2
4 [ln I‘;— - 3 (1 - T:—EZF>F+(']-t )F] 85

While analysing the structure of the derived equations we notice that
the main determinant vanishes only when one of the following equetions

is fulfilled

2
2R (¢
??E‘éT%T = 0, (42)

0
2
ta,F(t)
1o ;éL - % [} - ?:E%FTTT} F(t)+(1-t2)F(t) =0, (47
t2a F(t)] t3F (1) 2a F(t)] .
1 - 2 + 1 - 2 - £(1-t2)
T+aF(%)| Tra F(E) T D) | T 3
B 2R (t)
S o 6 I (44)

Since Equation (42) is gepless snd Eq. (43) is equivalent to Eq. (20)
we consider only Eq. (44) which after some elgebra reduces to the form

ey {12 2 [P (eRe () FlavaF(6))] 412 (-8 (0] = 0, (45)
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hence
. - 2l 5(t2- ¢) . o
% f%‘ 3(1-4%)P(t)
Assuming
o, = 4,(t) (47)

and differentiating the righ-hand-side of Eq. (46) we get that the de-
rivative

an,(t) 5 2E5/5(%)
-2 + - (48)
a(t®) 5, & 3(1-t%)7F(%)
r
3
is a positive function of + if 0 <t <1,
Since
4,(0) = - oy end A,(1) = +oo (49)

we 4o not obtain any extra connections this time. This result seems to
be quite understandable, since the possible two-particle state is now a
superposition of two other states which in the previous case were des-
oribed independently by Eqs. (32) and (33), end the state connected
with the P-pairing exists for the all valués of the Landau parameter a
Thus in this case there exist only two additional two-particle states,
which can be achieved by two-particle pairs during the perturbation with
the weak and inhomogeneous definite symmetry external fields.

In conclusion, we ought to emphesize that the large number of two
-particle states which arises from their rich interior-angular momentum
struacture becomes the reason for their mutual mixing end creation of
the composite two-particle stetes which depend on many pairing inter-
action peremeters. Such & situation is already determined by the forms
of Eqs. (16) and (17).

The extra problém is connected with the high terms of the expan-
sion., Since for the large value of 1 the parameters a, and fl must

20

become small and thus ry must become small,too, it mey happen that one
of the inequelities (25) is fulfilled and then there appear the shallow
two-particle states (cf. Eq. (23.12)).

It may be noticed that although the two-particle states are creat-
ed owing to spin-symmetric peiring 1nteraction,their forms ere determin-
el by the interior spin-engular momentum structure and their existence
decided by the Fermi liquid interaction, In the case of the spin-anti-
symmetric peiring interaction (which is found in all superconductors)
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the two-particle states have & poor spin-angular momentum structure and
for the fixed pairing harmonic they can be realized only in one  way.
Moreover, all the possible two-particle states are independent; they

do not mix and do not split. Precisely: One pairing harmonic can give
only one single two-particle state, the bound energy of which is mofi-
fied by an appropriate Landau perameter. The predicted properties of
5He-4He mixtures in dependence on concentrations [112] allow us to ex-
pect broad application of the developed formaelism,

VII. Spin oscillations of 3He-B in the presence of dipole forces

25. The spin susceptibility tensor [43]

In order to calculate the spin susceptibility tensor 1j we apply
the IMC theory [22, 79]. Since we do not impose any restrictions on the
frequency, wave vector, and temperature, the kernels L,M,N,0 are non
-analytic functions of the variables kv end w(cf. Sec. 27), For this
reason the final results will contein an infinite number of Landau para-
meters if any restrictions are imposed on them, On the other hand, in
the limiting ceses where w=0 or k=0, or T = 0, these kernels be-
come analytic functions of kv or g, or kv and g, respectively.
This alone allows us to obtain the final results in @& closed form
without any restrictions on the Landau parameters, although the cases
w =0 and T = 0 demend some extra restrictions imposed on kv, If
kv<<w eand T # 0, the kernels L,M,N,0, become analytic functions alo-
ne of kv, end though in this limiting case any restrictions need not
be imposed on the Landeu perameters, the obteined results are valid for
some frequencies only. Thus, in order to solve the problem we should
assume thet all the Laendau paremeters b1 are equal to zero for 1 > 10.
From the experiments we know (Section 30) that the main part of the in-
formation about the 3He system is conteined in the zeroth Landeu pera-
meter, The contributions of the remaining Landau paereameters are smaller
and ceuse only small quantitative alterations, That is why we confine
ourselves to the case 1O = 0., For the sake ofsymmetryAwe also . assume
that the wave vector is parallel to the unit vactor k introduced in
Section 19. The basic equations necessary to solve such a problem have
the following forms:

k

i i A A
Ty =845+ b <(L-O)Tj+20'fjdkmpmdinpn

k A
- AME TP (1)
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1 A
Ty M {[N +0 - H(D)] -:;‘

m A A n A

- 20T4ap,PpdgyPy = 2M ckmn"rjdnrpr}> ’ (2)
__p 2 _ i ky A A
Xi5 = =B 5% (L 0)Ty+ 207 4, pd; b,
k A
-2 ey T;ldmnpn> (3)

where 3'1 and t; are the normal and anomalous vertex functions.

Let us introduce the following notation:

A A AA i im A
q = dimpm’ w = kp, Tj = TJ ™ (#)
and, according to Eq. (19.23), we have
A A A
Aypky = &£ kyo  dpdyp =8y, W= 1 k. (5

The average over 3 can be easily replaced by an average over a in
Egqs. (1) and (3). This procedure allows us to estlfate the tensor dik
from thése equations. Multiplying Equation (2) by 2-1, and taking acco-
unt of the remarks given in Section 19, we can also eliminate dik from
the right-hand side of the obtained equation. Now, the kernel of the
operator ﬁ has the form

Ugy = (8338, + 344955 + d-nidkj)aka;l . (6)
The expression 'J’i and T?Il;n/l\:i can be calculated from the transformed
equation (1) via the application of the averaging formules (Section 33),
Next, substituting these expressions into the transformed equations (2)
and (3) and performing all the averaging procedures, we obtain very
complicated formulas., To simplify them, }et us introduce several sym-
bols. First, we introduce the 7-vector T of the third-rank tensors

where

T, = (1/ ﬁ)cikﬂkkkj,

A A

'I'2 = (1/ ﬁ)ainkj’

A A A A

Ty = (1/ V&) (8;, - 3k;k; )k,

A 1 A A A A

Ty = z(&;gpdky + € kK, (M)
A 1 A A A A A
T5 + 2(6ijkn + 6njki - 2kiknkj),
A 1 A A

Tg = 5(6ijkn - anki)'

A 1 A A A A
Ty = 5(€ 4 b ky = €pynkiky).
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It is worth emphasizing that the tensor T ‘can be expressed via ten-
sors n (section 40).

Hence, the tensors Ta are connected with the exciteation to the
states (cf. [90, 103, 104, 127, 134])

%1: T=1, M=o,
T,: J=0, M=o,
'1‘3: T =2, M=0,
T,o T=1, M=, (8)
%5: J =2, M=+,
%6: J=1, N-=4+1,
T, T =2, M=zl

Below it will be shown that the excitations with M = 0 are independent
of those with M = + 1, This fact can be easily interpreted if we take
into account the symmetry of the system. All the excitations can be
classified in terms of the two-particle states with the following quan-
tum numbers: 0 £ J <2, MI<J, L =1, S = 1. Since in the system the
direction ﬁ ig distinguished, the total angular momentum J is no
longer a good quantum number (M is still a good quantum number). For
this reason the states with the same number M mutually mix. All lon-
gitudinal effects sre related to the excitations with M = 0, whereas the
transverse or circuler ones are related to those with M = + 1,

Let us introduce the 7-vector S such that

1 A
‘tjn= SeTq (9)
and the operator al(l = 0,e0s, 11) such that
A A _ 4\(1) A(l) _ A A
T, =10y ema T = {Q1}, Tg - (10)

The matrices {al}aﬁ (e, =1,...,7) have the following forms:
A Q, 0
Q z| ——— | e (11)
@ -S|

{Ql ap * anﬁ =1,2,3; {61}(13 ] @B = 4,5,6,7

where

o)
£ 350008y Babpr- 2EO, 8, 28, 480

5 :
+ (8,54 #° as’pe) * %(5015 865+ 8y Sp7)

1

7 V15(6048p5 *84584 ~ a6bp7 " Sq78p6)*

I+
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G
{Q2}a6 =8yg = 208485 + B8y + Bycbpg)s

{a5} ap = 384505

{Qg} ap = {Q%}ap = {Qg}aﬁ {Q7} ap " {Q’H af
2 1
= 3800800+ $0585 - 3 V(655855 + 845 8g,)
1
{Q4 ap " ‘2( 6aB +8¢ 4667 +8 a56§6 *+ 846 835+ S8at 584)'

{615}.,5 = {a;}pa = %({a;}aﬁ - ‘5¢4557
+ Basbpe Beedps *8y 784 )

{Qs}aﬂ = - {62}‘;5 E 25(15 )

{Qs}af {Q} pa =842 8p2 28 283

{10} qp = - 2 5a15mv' |

@) ap = 0 (12

A .
The action of the operator Ql on T;n should be understood in the
followiing way

A 1 A A A A
Qoj” = ASqTa = Sa{81)apTp (13)

The 7-vector C 1is defined by (cf. Section 33)

9 [rrr 0,0, =r‘b—r2 —Ezr] (14)
= - = - ij
where I2 = 1o oq * 202, I1 = 12 + 203, and the 3-vector X of the
second rank tensors is defined by

A 3 N A A A A
xH = kL, 855 - Kk, + €5 nkg ]

(15)
The plus sign should be used if we take the gap in the form defined by
(19.98) end @ = +cos-1(—1/4) or if we take the gap in the form (19.9b)
and 0 = -cos'1(1/4). The minus sign should be taken in the opposite ca-
se. R

Let the operator Et be defined by the formulas
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A
E

t:i‘a = é(at) and §(at) = {%1}«5 %;J (16)

where a = 1,...,7, B=1,2,3; t =1,2,3; and
A
{Byag = -2(804852 + 844882 = 846%3):
A
{Ex) ap = - 824%p2 * Sasdps * Sacbps =87 g2 » (17)
A
{Bs}ap = ~28448p4

and let two 3-véctor Y end Z be defined by

2 -1
= T [m,, o, 2b m,05(1-bT,) 1. (18)
g = [11(1-1;011)'1,12(1-1:012)“',0]. (19)

We also introduce the factors Dl(l = 0,..wx11), which in the transform-
ed equation (2) appeared near the tensors Ta.'They will not be defined
now because they are necessary only for the calculation of the P aa(5°°
below). We only emphasize that Do and D4 depend on g. Using all the sym-
bols introduced above, from Eqs. (1)-(3) we obtain

A A A
SaP1{Q)}4pTp = ST » (20)

xyy = #ey [2 - s Yt{Et}aa] tat)
Since the @a, are mutually orthogonal, we can rewrite Eq. (20) in the
form

SaPag = Op (22)
where

E= Dl{al} e

The matrix P has an analogous block structure to that of the matri-

ces {61}.

-1

Let us introduce the inverse matrix R =P where
R
op IIM II/IIPI! (23)
and
= "M "/"eP" , e =0or1 (24)

where H...Ildenotes a determinant.
It is evident that the matrix R has the same block structure es

A
the matrices P and {Ql}.



108

From equation (22) we determine S; inserting it to Eq. (21), we
£ind the following spin susceptibility tensor:

X4 =u%v[Za - CB{P'1} 'BYYt{%t}'{a:l%:}xj . (25)
The poles of this expression are determined by the condition

IBll=0 (26)
which is equivalent to

lepll = 0 where e =0 or 1. (27)
If equations (27) are fulfilled, the extrae conditions are obtained

EgllMgyl=0 v (28)
for alla and Y. These conditions can be very useful to calculate

"Ngh" in the vicinity of poles.
The second part of expression (25) can be written as follows:

-1 A .
Oy (P ug Yo{Eripy = Wy (29)
where
2
W o= ___:Efg___z R,
1 (1 - bo‘I1) 11
-2

z " >
(1-byL,) [(2o, + m,)°R,, + (2my + m)my (R, + Byy) + oS80 ],

W

2

2 2
W3 = ?::;;I;EE ané + ma? Byg + (2m2 + mB)mB(R45 + R76) + m3R75] .

A
Now, let us write down the matrices eg = Dl{Qi} in their explicit
form:

Pag O B3

Op= | 0 Paa Fa3 (z0)

Pz Pp3 Py

9 2 -1 o
P11 = 7e + 81b(m2 + m3)(1 - bOIZ) - n, o, 40g,
P15 =+ (9 v5/20)e,

1 1
P = 3I5 + 1006 + (50/5)07 = 112 = 02 - 3’115 - %°7D
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Pys = - (1/?/5)(13 + 1@07 = n; - 03),
2 o
Pys = (9/20)g + §I, + 4oy + (28/3)0, = n, - o, - %05 - &n,,
N 2 _ 2 _ -1 _ -1
I, = 4b°[é3 gbomao5(1 % 14) ] (1 boIs)
and
Pay Fas 0 Py
Fas  Fss  Fsg O
1
P = 0 49 14 -P45 (21)
P
56 0 Py Peg
where
R T -1
Pyy = = 8y = 05 = =i, 303 + 2b0(2m2 + m5)m3(1 - bvoIZ)
5 8b0m§(1 - b,1,)7"
Bys = & (3 4/15/20)g,

S R | -
P4'7 = f& - 305 = 305 + 2bom3(4m + oy Y (1 b 12) .

S TERR. . ' -
P55 = %g ny=0 =305 - 505 + 406 + 807 + 2bom3(1 bOIe\
Pop & = 25 = o +2bm(2m +-m)(1-bI)-1
se = T & T 383 T 3% 2~ Ta 072

Here the rule according to which the sign is to be chosen is the same
as for (15). Matrices M?I can be easily obtained from ef. The solu-
tion of the equation I e_I_’ I'= 0 is a good problem for numerical computa-
tion, That is why only some limiting cases of

X.. = p.2v[Z - W ]}Qij (22)

ij B o al a 2
will be considered (cf. Section 37). First, let us consider the acoustic
limit at T = 0 assuming g << 1. In this case

_ 2q . 2 11
By = By =31 + Ehy)

-1
2
%, = Z,lme[w‘2 - 2'7132 g (1 + —B-bo) - %kzv 2(1 + % O)] »

-1
2, [w® - 2%20 « o]
0. (33)

=
i
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In the homogeneous limit (k = 0) we obtain

2, =2, = 72_ F(1 + —%— bOF)'1, (34)

= 2 (—51)2 [—%— ¥ - (_31)2 v g g]
e [ G5 o3 s )]

W [ - ) 7 :5)

=
n

x

+

x
—~—
e
—
:Ie
N
N
| |
pe
-
[}
N
>le
~——
N
L
]
e
2y

w3 = 0, (27)

In the static limit (w = 0)

- - -1 = - - -1
Z1 = 11 (1 b:I1) » Z2 12(1 bCIE) (38)
where
- 2 — = e F. - - F
11 = 1 = Fa' I2 i 2 0 6 2

and

Wg= 0. (39)

Let us enalyse the formula (32) in two cases:
(1) For g =0, i.e., whén the dipole-dipole interaction is
disregarded: in this case

W= 8n2(1 - byI) 7" [(nye 0% 40g)(1 = BGlI,) - 8by(u+ m‘;)] -,

W= -2(1 - bOIZ)-Z l}2m2+ m3)2P55- (2m,+ m3)m3(P47+ Pgg)

2 -1
* "‘BPMJ (PyaPys= PypPsg) s (40)

W,= 0, Za as in Eq. (19).

3
(i1) 'For b
disregarded. In this case we obtain P47 = P56 and hence

0= 0, i.e., when the Fermi-liquid interaction is
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W5 = 0. (41)

In order our problem be analysed completely, let us discuss Wé in
detail. The expressions for "Nlaaucan be found from (31). Using Equa-
tions (24) and (29), we obtain W3 in the form

Wy = F V158(F,, - Pgg)L,[5(1 - bT,07] 70 e ] (42)
where
2 . 2
I, = (2’m2 + mB? P55 - (21112 + mS)mB(PlP? + P56) + m3P .
Hence
Wy = T (4 415/5) @ bommsT, (1 - oIy 2 I TRl (43)

As we see, this effect is strongly coupled with the Fermi-liquid inter-
action, If we take now m; in the form given in Section 37, we obtain

_ 27 w \2 rkvy2 -3 el -
W, =T e g bo(ﬂ) (ﬂ) FpP ()14 (1 = byT) 21071, (44

Comparing (15), (22) and (42)-(44) we state that the response of the
system is indépendent of the choié¢e of the equilibrium state (c¢f. Sec-
tion 19). Assuming that all the terms gn can be neglected for n > 2,
we see that the inclusion of the dipole-dipole interaction modifies only
the spectrum of the longitudinel spin waves in which there appears a
gap, whereas the spectrum of the transverse spin waves does not change.
With the above assumption we obtain that in the homogeneous limit 22=w2,
due to which the transverse part of the spin susceptibility vanishes
(cf. Section 26). The static limit is completely independent of the
dipole-dipole interaction.

The circular component which appears in the spin susceptibility
tensor is analogous to the components of the dielectric tensors respon-
sible for the circulaer dichroism of optically active substances. The
role of this component can be characterized in the following way. If a
monochromatic and polarized electromagnetic wave is trensmitted through
a sample of superfluid 3He-B,the polarization plane will be rotated,
This is a result of the composition of two orthogonal vectors, which
characterize the magnetic oscillations. This rotation is proportional
to the velue of g and its direction (right or left) depends on the
sign of bo. A similar situation will teke place for the transverse
collective excitations. In such & cese the magnetic vector of the pro-
pagating mode will rotate tracing a helicoid, and for bo < 0 a suitable
mode haes positive helicity.
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26. Dynamic properties of the system
in the homogeneous limit [45]

Let us complete the above considerations with the results obtained
in the homogeneous limit (k = 0), connected with the dynamic properties
of the spin susceptibility end the properties of the spin collective ex-
citation gaps. The new dynamic properties, i.e., non-zero response of
the system in homogeneous fields, are due to the broken spin-orbit symme-
try, which tekes place if the weak dipole-dipole interaction is not ne-
glected.

The inclusion of the dipole-dipole interaction leads to the quanti-
tative and qualitative changes of the spin susceptibility temsor.
Although now no edditional restrictions imposed on the Fermi liquid in-
teraction perameters are claimed, the final results hold only two Landeu
paremeters bo and b2. Let us discuss now the spin susceptibility tensor
in two specific limits., In the static limit, when k = 0 and w—0, we
have (cf. Section 34)

2u 2v
X .. = 3 o1y (1)
1 - 2 2 1 1 ) !
1 + 3b0 - 31‘)0}{ + 3\)2 - Sbax

It is the function of temperature and its value changes from the static
spin sugceptibility value at T = 0 to zero, when the temperature increa-
ses to Tc'

In the limit w— 24, when the function F(w) tends to infinity,
we get

Kk b (8, -k k
X4 = - 9gp 2y 1 + 2ebs ii__i_j). ] . (2
13 B0 [2-9e(by+by)  2+28b,(1-6en -3eb,)

The expression (2) is constant for all temperatures, but, as we remem-
ber, w (= 2A0) essentially depends on temperature. This feature can be
helpful in determining the temperature dependence of A . The longitudi-
nal part of the spin susceptibility reveals the diemagnetic properties
of the system, whereas the transverse response depends on the sign of
the Landau parame ter b2.

If we neglect the perameter g2 (cf. Section 42), the dynamic
spin susceptibility is of the form

-18p 2y gtk k.
LT e : e 1-1_3 , (3)
w“-27gA El+3-b0F(m)+3b2F(w)]/F(w)
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since the disregerd of the elements proportional to 32 causes the
transverse part of the spin susceptibility to vanish. The magnetic re-
sonance is connested with poles of the spin susceptibility (3) and is
achieved if the following equation is fulfilled

w2 = 27gA2[1+%b°(1—X)+%b2(1-X)_] (1-x)7 (4)

where we restrict ourselves to the first iterative step. Since the ex-
pression ‘A?(1 - X)-1 tends to zero alike A if temperature tends to Teo
the resonance freqiency tends to zero if temperature tends to Tc' The
expression (3) has no antiresonances (cf. [26, 27, 61, 68]) which are
not detectable if 'ga is too small., In the static limit, the longitudi-
nal part of the spin susceptibility is the seme as previously in Eq. (1),
whereas its transverse part is always equel to zero. In the limit w24,
we obtain again the longitudinel part alike in Eq. (2).

An investigation of the spin collective excitaetion gaps creates a
separate problem which can be evaluated by means of extrapolation of the
spin collective excitation spectrum. If we regard that the parameter g
is smell, then the geps of the longitudinal and trensverse spin collec-
tive excitation can be obtained from the following equations

w21+ «Esz(w)] = 2420 + bR (W] [1 + 27¢/8F(w)] , (5)

w2t s %baF(“)] = %Aa.[ﬂ + b F(w)] [1 - 9e/4F(w)] . (6)

Let us denote the solutions of these equations by w, and W, wg is
the solution of Eqs. (5) and (6) in the limit g = O. The accuracy of the
applied formalism allows us to éssume that w" and wl if compared with
wq are modified by the quantities A and p of the order of g, and can
be taken in the forms

@, =wo(1 +\ ) end QL=wo(1 1 ). (7)

Inserting Equations (7) into Egs. {5) eand (6) we find A and p (cf.
Section 35)

A= 27&/1632/5(‘0 0)4 p= - 9%/81‘32/5(0)0) (8)
where

® o= —%_(2‘%* 0 b L=}
Using (7) we get

wymwy
— = 45g/16E2/5(wd, (10)
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then the following inequelities are valid

® < u°<u". (11)

The r.h.s. of Eq. (10) achieves its meximum if w_ = 2+/2/5A , i.e., if
b2 = 0 (cf. Section 35). Since b2 is probably small (cf. [6, 60]),
split of the spectrum is not the effect to be neglected (cf. [128,150]).
An inclusion of the dipole-dipole interaction leads to changes in
the spin-wave spectrum. Although the transverse spin weve remains the
gapless mode, in the longitudinal spin wave spectrum there appears a
gap which can be expressed by Eq. (4). This gep vanishes if the tempera-
ture tends to To' Moreover, the non-commutativity of two kinds of the
static 1limit, i.e., w= 0, k—=0, end k = 0, w—=0 is a worth emphasiz-
ing effect. Both static susceptibilities split over T = 0 and the first
one tends to the normal spin susceptibility value whereas the second
one decreases to zero together with T-——>Tc. Hence, the static response
of the system becomes completely univocel at T = 0, only.

VIII, Autocorrelation Functions and Spinless Oscillations in 3He—B

27. The density-density autocorrelation function [53]

We developed the microscopic Green function formalism for a case
when the two first harmonics of the spin symmetric Fermi 1liquid in-
teraction, i.=s., AO and A1 and dipole-dipole interaction are included.
The scantiness of the number of Landau parameters is caused by the fact
that no additional restrictions were imposed on the wave vector and tem-
perature. In such a situation the specified problem can be solved only
when the number of Landau parameters is finite. However, the influence
of the higher Landau parameters is set off by the temperature and in-
homogeneity effects and it can be neglected if the mentioned parameters
or effects are small, The presented calculations are carried out without
any additionel restrictions imposed on the frequency and wave vector.

It causes the obtained results to be more precise in comparison with
those given in [27, 65, 90, 91, 105, 145-147, 150] and they allow us
e.g. to penetrate the deep (in the frequency end wave vector) region of
spin-less collective excitations., Simultaneously we can eliminate some
collective excitations which ere not determined by poles of the auto-
correlation functions.

Since the present methods differ in many details from the ones
applied in the previous chapter we have developed them independently.

In the specified case the proper vertex equetions reduce to the forms



s S a
T=1+a (L -0)T+ (L4 0)T- 2wk, D,

’T A p_,L <pi [(I. = 0)’.T+ (L + 0)‘]’ omcEd kJ>

A A A A
-}‘:(VM [(N -0 -H)gls 20-;nqnql + 2M(T4 ’?‘)ql]>,

and the density-density autocorrelation function is of the
form

00 8 a A

s =y L = O)T+ (L + 0)T - 2m¥g,>

S
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(1)
(2)

(3)

(4)

a

where ¥ and. J are the symmetric and antisymmetric parts of the normal
vertex function, respectively, tk is the anomalous vertex functions,
and qk = dknp . V is full interaction in the particle-particle channel

(section 19) and the kernels L.M.N.0. are given in Section 37,
Introducing the additionel symbols

] a .,
7= (T, T, =3<TER>, e F a3,
and taking into account (Section 19)

A A Aa
pp = aq, kn = dnpkp and kp = kq

we can transform Eqs. (4), (2) and (4) to the forms
¥ =14+ A (1l =-0.)T.+ 1.7, - 2A -:11- 13;&3&
0 o'to = %) Jo* %1171 o 2hymy v kyky,

A A
‘J'1k1 = A1l1'J'ok + A (l + 05 + l3 + 03)9'11:1

A 1'A 14 'n A A
-2a, [m, (v9k, + v Vg + o9k + mgdd kjknki].
00 ii _ 134 4
s = vo[(lo + oo)‘J'o+ 113‘1 - om, v 2m3-: kikj]’
hence multiplying Eq. (8) by i“i we obtain

7y = A,]l,]?'o + A,](l2 + 0,5 + 13 + 03) T‘I

ii 154 4
- 24, I-_m41: + (2m4 + ms)-;- kikj] .

(5)

(6)

(7)

(8)

(9)

(10)

A
By multiplying both sides of Eq. (3) by ¥ 1 and after some algebra,

we obtein
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3 eind koo 2 jo_mn

e kpkym - eUiyv = (ny-0,+204) 73420 (314" 13

inp 4 nis *4 jn? 4 . nj?
+ (n5-05+207)1 knkj+207(1 knkj+ vk kg Yk k itT knkm613+t kikj)

N

nml\l\ A
+20g knkmkikj+236(m2513+m3kik )+ZT

m,, 1j+23;(2m4+m5)§1ﬁj (11)
where the parameter g is an invariant of the theory (Section 42)., In
order to solve so prepared problem we proceed in the following way:

From equations (7) and (10) we express the normal vertex functions
T and T by means of the anomalous vertex function 113 combined with
the Kronecker delta and the unit vector k. Substituting the derived
expressions into Eq. (11) we obtain the tensor equation which is analo-
gous to Eq. (11) where the sole unknown quantity is the anomalous
vertex function. In order to make our notation consistent we present
this equation in the following operator form

B,Q, % = cpryd (12)
where 61(1 = 0,...,10) are the operators transforming the structure of
the anomalous vertex function according to the relations occurring in
Eq. (11). B denote the appropriate coefficients which are the respec-
tive functions of the frequency, wave vector, Landau parameters A_ and A
and the dipole interaction parameter g. The terms TlJ(B = 0,1,2) de-
note the possible linearly independent tensors of' the second rank that
possess the rotational symmetry in relation to the distinguished direc-
tion k. These tensors generate the three-dimension space; we choose

them in the forms

ij __a_s ij . e % iy _ 2 -2k K

o =5 u "5 inj%qr T2 = 1@(513 Zkiky), o (43)
which ensure their orthonormality. In such a case they fulfil the re-
lation

1jpdj '
T = o

T, 8 éaB . (14)

Moreover, such a choice of the tensors TéJ allows us to classify the

adequate collective excitations in terms of the two-particle states,
and we have (cf. [42, 43, 90, 134])

i 57 =0, M=o,

t3: 7 <1, w=o,
3: 7 =2 wm-=o. (15)



117
However, in the inhomogeneous systems distinguishing one external direo-
tion ﬁ, J ceases to be a good quantum number which causes the collec-
tive excitations to mix mutually, hence they can be separated solely in
the quasi-homogeneous limit [42].
The coefficients cB are of the forms

23

GO = —— {(3m2 + ma)E1 - A1(12 + 0,5 + l3 + 03)]
-1

+ A1l1(5m4 + ms)} v,
c, =0,
C, = - 2-“ = {m [1 - 48,(1, + o) + 1; + 03)]
2 3 U3 1\ 2 2 3 3

+ A111(2m4 + ms)} w! (18)
where

W= [1-8(15-00)] [1-8, (1 %0,+15405)] - 44,15,

According to equations (13) the anomalous vertex function tij can be ex-
pressed in the form

11.1 - DﬂTiﬂj' (17)
then Eq. (12) reduces to the form
ij ij
D‘,‘Bl{?;;l}m3 T e 0Ty (18)

where the matrices {61} constituting the representation of the operators
61 in the three-dimension space generated by the tensor '1‘1"j are of the
forms

5 228
a2’p2 * 72 a3553

5+/2 5 & s 395 s
=5 Bpabps + 8 fpa) £ (8045 + 45850,

A =2 12
{Qo}aa = g 6@16B1 + yry )

I+

{Q1}aﬂ = saB i

{6;2}0‘B = 848~ 284,8p2s

{Qf}aﬁ = 55&1 631 »

{Q"l-}aﬂ = {QS}aB= {QS}as = {Q'?}as = {Q'IO}aB
2 V2
= 201 1 + § Sazlp; - 5 (8a1%g3 + 84351
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A A
{QS}OIB = {°9}Ba =8418p1 - "/55(11553' (19)

In order to simplify Eq. (9), we introduce the following symbols: ﬁn
A
and II, where the operators of contraction Rn(n = 1,2) are such that

A A A 3

Rt - (84844 + énzxikj)'r“. (20)
Then

A i A

BT cj = {Bn}a (21)
where

A A "/31 2
{31}4: = V38,4, {Ha}m =384 - 1/;6113'
and the matrix I is defined by the relation (cf. [44])
A .
= 38{Q} , (22)
the elements of which are of the forms
1 2
nﬂ --(nz-oa) -3(53-03) -1006--5—07-3-08
4 2
+ 3{A0(3m2 + my) [ - 4,01, + 05 + 15 4 03)]
2
+ 4,(5m, + mng) [ - a4(1, - oo)]
+ ZAOL111(5m2 + m3)(5m4 + m.).)} v,
o0 =0 =0,

12 = V21
V2
l:[_ﬂ5 = n31 = - [(n3 - 03) + 2007 + 208]
8 2
. —;—-{Aom}ﬂmz + HB) [1 - A,](l2 + 05 4+ 13 + 05)]
+ A (2m, + mg)(Sm, + mg) [1 - A {1 - o) ]
+ AOA111[m5(5m“+m5) + (5m2 + m3)(2m4 + ms)]} w1,

Lz = 4 € - (55 - 0,),

" 9 V5
23 = H32=:—1-6—g,

9 2 16 4
O35 =35 € = (8p = 9) = 35y = 05) - 4og = == 05 = 5 04
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+ g{Aomg [ - 4,005 4+ 0, 4 1, + 05)]
+ 4,(2m, + ms)a[‘l - Ao(lo- qo)]
+ 2Aop111m3(2m4 + ms)} w1l
Now, inserting the expressions To and T1 derived from Eqs. (7) and (10)

into Eq. (9) and epplying the above symbols, we obtain
00

A .
s =vol(e -1, {R} D) (23)
where
2\ g
{(l -o)[‘l-A(l +02+15+o)]-Al }W i
and
_ - -1
I, = 2{m2 [1 - 2,00, + o, + 1, + 05)] + A111m4} W,
_ - -1
I, = 2{;115 [ -4a,(1, + 0, + 1 + 05)] + 4,1, (2m, + ms)} W,
Exploiting equation (18) we find the terms D, in the form
-1
= I
Dy = 9afpys , (24)
where II-'1 is the inverse matrix fulfilling the relation
-1
= 6 2
Tup "5y ay ' ey

end by substituting the obtained expressions into Eq. (23), the auto-
correlation function Sooreduces to the form

s?9 = vy (& - K), (26)
where

> 1 -1 -1
V3(1, + 31,)(C 077 + 0, I3))

2 -1
- 1/‘;12(00 3+ Cal ),

and the suitable elements of the inverse matrix I~ can be expressed
in the following way

=7 2
moy =3y = =I5 Ly/Iiml ,

Mos =0, O/ 00l , (27)
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where [ I denotes the determinant of the matrix I and

2 2
Imll= Mg Dopl 53 -0 4305 = Hqq Da3e (28)

Using the above relations the autocorrelation function can be transform-
ed to the form

0

0 2 2
s av, {E - [03 (m,, 155 - 135) (29)

- 200, N5 Oy, + 02 0, Wyp]/ 0},
which becomes more readable after applying Section 33, Finally we obtain

00

s%. 2 v -, (30)

where
Vallp - og)[1 - 4,1, + 0)] + 4,27,
We 1 - A,‘(lp + op) - AOV,
2 2
X = (Wg)° [m (W O,5) - n23w]

- 2(W0Q) (W0,) (W Iy5) T + (W0)2(WH )M 55,

Z = (WD) Dpp(W55) = (WI5) M p - W mp)n 55,
2 3

Wy = —x— {mo[ﬂ - ‘1(lp + op)] + A1l1m1} i

WO « ’l/?{(mo' mp)[1 = ay(1, + 0] + Aly(m, - 3mp))

and

Wn11 = - %(no + oo)w + % Aom20[1 - A,I(lp + op)]

+

4, 2 8
7h, 04 [t - aplly = 0g)] + 3 AOA,‘l,]mom,],

/2
Whys = 53 {[2(:.1p - ngy) - 50

o* 80p - 5oq]w

-8am (m - m_o? - a0+ op)]

00 P
- 8am (3m, - m) [1 - A1, - oo)]
= 8A0A111 (mpm,‘ + Bmomr - 2mom1)} .

#ho

1 1
O, = g-E(no- oo) +g-(np- op),
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9 V%
Tz=t—2p &

Wi 1 5
33:[ g-g(no+oo)—%np+gop-éoq]w
+ % {A (m - mo)2 [ - A1(1p + Opﬂ
+ 4,0, - 2)% [1 - 4414 - op]

+ 2A0A111(mp - mb)(er - m1)}.

The assumed structure of the autocorrelation function ensures all the
introduced expressions V, W, X, 2 to be of the polynomial-type and they
have no poles. Hence, the collective excitations which are always de-
termined by the poles of the correlation functions can be derived from
the following equations

W=0 ad Z =0, ' (31)

The first equation defines the collective excitations of the normal com-
ponent whereas the other one refers to the collective excitations eppear-
ing in the superfluid BW systems only. The obtained form of the auto-
correlation function S00 is very extensive and its involved structure

is due to the presence of the dipole-dipole interaction. We can reduce
the number of the introduced symbols replacing the factors li; my, Dy,

oy by the frequency, weve vector and the approprieste averages of the
function F (Sections 33, 34, 36, 37).

Let us consider now the possible spinless collective excitations
determined by the poles of the derived density-density autocorrelation
function (30) when the dipole-dipole interaction is omitted.

Putting g = 0 we have stated that the autocorrelation function

okeeps its structure (20) and the terms V, W, X, Z reduce to the
forms

Vo= (D, -1+ 30, - 34F,) - 4,s°RT,, (32)

W= (1+485- 45T (1+ —;—A,‘ - %A,]Fa) - A1S?'1 + AF OTo0 (33)
2

X = (&) [(1 + 29 - 8T E - 852,57 12 ]

2 .
x{[-5F2 + 2F, + (z“-’A) F, - £ (%)2 F4] (Fy £+ 3a,7,7,)2

[< A) : (57\)] o (Tp8 + £4,7,1))°
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+

g(FOE + % AT ) [(Fy - F T+ %A1(F2 = §F4)r2]

x

[% (gl)a Fo - lé’ (%)2 F, - 28 + 2F, - F4:|
" <%)2 (EFoF, - § 750 x}' (24)

{

2
_% <%) Fo(1 + g = 4Ty + % Ay)

- 45?1, [(2%)2 Fo - 3 (%)2_ (- AoFo)]}

2
x {(2%) (1+ %A,l— %A1F2) [(F0+F2)(1+A0-AOI‘O) -~ A o(n - F2)2]

2 2
) (ﬁ: (148 5h o To) [Grpr €1 (1x Ja,- 30,750 + 2, 3F, - #7,)°]

- 3(F, - €80 (1 + a5 - A, T+ 34, - 4,7))

N
[}

2
(&) Fotr - aF1 v Fa, -3 4wy

2
2 w - 2
R [(“2,:) (% + Fp + 385F5F, - & F3)

2
_ 1 [(kv¥ o - 2 _
e (ﬂ/ (SF, + 9F, = SAGFF, + 274 F F, + 10AFS - 184 F,F,)

- 3(F, -8 T+ AOFO)]}

2
= {(%) (FgF)(1-4, 5, )1 + 3 4, - 3 &,F,)

2 .
= (§%> (%F2 - 27,)(1+8 -4 T (1 + %A1)

ul
+ (Fg - 2F, + F)(1 + &y - 8 T + 38, - 38,7,)

- A°T, v [('7323)2 (Fo-Fa) - (E—X)a (37, - & 7,)

2 2
1 kv o z
-3 (5) BF,(F, - 2F) + 201+ AOFO)(FO 2F, + F4)]} (z5)

where
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and

£=1 +%A1 --13-A1F2-A152r2. (26)
The functions F21 and ro are defined and discussed in Section %6, It
is easy to prove that the obtained form of the autocorrelation function
°° reduces to the well-known forms in some specific limits [22, 27, 44],
In order to derive the spectra of the longitudinal spinless excitations
appearing in the B-phase of superfluid 3He we have to solve the latter
equation (31). That equation can be rewritten in the form

2
2,2, - 25 = 0 (27)

where 2 (1 = 1,2,3) are the factors defined in Eq. (35). Let us note
thet tbe factor Z3 is proportional to (kv) thus it must be omitted
in the acoustic and quesi-homogeneous limits. Hence we can state that
the collective excitations of the types J = 0, M = 0 (zero sound) and

J =2, M = 0 connected with the factors Z1 and Zz' respectively,
separate themselves within the mentioned limits. Applying the formulae
or Section 36 we can refine the developed problem extremely. However,
at least at non-zero temperatures, the problem cannot be solved to the
end in an enelytic menner. Therefore, it is necessary to investigate
Eq. (37) in some specific limits.,

10, The acoustic limit (w, kv <<j)

After neglecting all terms of the higher order in w and kv then
the square ones we have stated that Eq. (37) is satisfied if Z1 = 0,
Hence, the zero sound dispersion can be derived from the following
equation

szﬁ

f’!o +PE(\!0-1)] [1-A 2(10-1)]

x

[1+ 8,28 8201 =g 2wy - 1) + § 4,282]

s %5-332§52(1-52)( !o-1)-§_5 ](1+A -A P SICR %A1)
- A,]sa{sa[‘l - Py, + PEZ ¥, - 1]
- 30 - ko + aoP Y- a5fe% gy - 1]} Ry, - 1) (38)

A
where &= E/e, the integral operator P and the function YO are given
in Section 36. Although in the general case the velocity of the zero
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sound v 0= sv (v is the Fermi velocity) can be derived in numerical way
only, this disadvantage cen be omitted by assuming that s > 1 (out of
the Landau damping).

As far as the superfluid 3He-B is concerned the assumption is cer-
tainly proper for sufficiently low temperatures (cf. [22, 27, 91, 145,
146] and Section 30). It allows us to expand the function Yo in uniform-
1y convergent series (Section 36).

Hence, neglecting all terms proportional to s in the negative
powers, after some calculation, we get

2 = %(1 + 81 + %A1) + 5'; AOA‘].YS & *15 A4Y5

A Y Y -Y
2 2
We remind that according to the assumed conditions the above result re-
meins valid for sufficiently low temperatures when the functions Yi(i =
= 2, 4) are small, In the limit T = 0, Eq. (39) reduces to the well
-known formula obtained in [22, 90, 91, 94, 105, 145-147, 150].

o

2~ The quasi-homogeneous limit, i.e., kv<<gy ~ A

A similer problem was considered in detail in [27, 90, 91, 147,
150] . Bence,We present only the most essential results. Since the term 72
is still small and it must be omitted and Z1 = (92, then Eq. (28) is -
fulfilled if 22 = 0, Hence the dispersion lew of the collective excita-
tion with a gap is given by the relation

2

w?:—%—z-A2+77-.=k2v2(1+1785351+%h) (40)
where we put w= 12/548 in all expressions on the BHS of Eq. (40) in

order not to exceed the assumed accuracy. The obtained result describes
the spectrum of the collective excitations to the state J =2, M = 0,
therefore it is independent of the zero Landau perameter, Moreover, the
last factor in Eq. (40) is positive for ell permitted values of the Lan-
dau parameter A1. ’

Let us consider now the dispersion law of the collective excita-
tions if all the quentities w, kv and A are of the same order. Such a
problem seems to be of a perticular interest since the frequency of the
collective excitations should increasse if the wave vector tends +to in-
finity. Then we can expect that the curve of dispersion will have & lo-
cal minimum for sufficiently large value of the wave vector k0 when
the term Zg cannot be neglected any more. In order to specify the ade-
quete problem in the analytic manner we differentiate Eq. (27) with re-



125

spect to kv (w is a function of kv) and put dw/dkv = 0, Then we obtain
the relation

3z
e = —2.
—~ (2,25) = 225 — (1)

A simulteneous reaslization of Egs. (37) and (41) will allow us to
derive the position of the local minimum, i.e., the positions of ) and
kg on the ourve of dispersion, Due to the existence of the minimum in
the collective excitation spectrum the suitable collective excitations
are preferred. As an analogy to the effects interpreted in superfluid
4He we can identify the distinguished excitation as rotons where w, is
the gap of the roton excitations., The both characteristic quantities ko
and wg depend on the Landeu parameters end it is probable that the
appearance of the local minimum is possible only for the particularly
chosen values of the Landau parameters. Such additional restrictions
imposed on the Landau parameters will create the criterion of the rot'dn
stability. However, the very complicated forms of Eqs. (27) and (1)
cause thet a more precise analysis can be performed by means of the nu-
mericel computations only.

28, Transverse collective excitations [53]

The formalism developed in the previous section can be easily re-
peated in order to compute the autocorrelation function of the transver-
se current. Because of the existence of only one type of the collective
excitations (J = 2, M = + 1) the whole problem is considerably simpli-
fied and the suitable basic equations become independent of fhe ILandau
parameter Ao [22, 26]. Since the question. of the modification of the
energy gap by the dipole-dipole interaction is considered independently,
we put g = 0, Then the transverse current-transverse current autocorre-
lation function is of the form

v p_0_2
11 L %y
e v -
S W, 1 " (1)
where
1 2 1
v, == I‘2(1-S)'—6-(F2‘1). (2)
Fo=1 -4, , (3)
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z, - () o+ -3 (&) e 3my

2
(Fo-TFp+ g”'n)]'ﬁ - 2‘1(%) (3r, - % F4)2}

x

[(g-A)a(ro + %1!‘2) = %(%‘-2)2(1‘2 ¥ qu_) - (Fy + %Fa)]

[(;1)2“'0 - ) - 5 2@1’2 - #7,) - (¥, - Fz)]2 LA (5)

Although the accurate form of the collective excitation spectrum
can be, of course, derived by numerical computations only, nevertheless,
some estimations can be performed in the quasi-homogeneous limit. Accord-
ing to Eqs. (1) and (5) the denominator of the function S++L can be
written down ia the form

2
2, = T2 - ZgW, (89

where the factor Z6 is proportional to (kv)e. While examining Eq. (4)
we state that the numerator XL is proportidnal to Z.. Hence the collec-
tive excitations defined by equation Z4 = 0 are the only type of excita-
tions available in the quasi-homogeneous limit., Their dispersion law ex-
presses itself in the form

A F
2 12 , 2 2 ,2.2 1 1 1 h
) =-5-A +-5k7 l;1+7:]-h+-75 7 . (7)
1+=4,(1-7F)
6 “1 h
Let us consider also the poles of the autocorrelation function s**
connected with the normal component. Putting T = Tc( A= 0) the system
approaches the normal state and the function St reducesto the form
PQ2 Vi
i1 _ - 0\
S -Vo(m) w-J_ (8)
where now

VL=-%+%( !o-!032+82),

W, =1- A1Vl and 10 = s.

Hence, after solving the equation W, = 0, we may find the dispersion
law of the transverse sound in the normal Fermi liquid. However, for
all temperatures below the phase transition the function S'+ attains
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the finite value if the denominator W, tends to zero. This limit value
is a function of the Landau parameter A and can be expressed in the

1
form
p 2.2
i om v @7 (2o o)
1
where
w .2 1 v,2
Z, = (zx-)° (Fg + 3 Fp) - 3 ( ) (F, é F,)
- (Fp -F, + EF,)
and
v.l.wJ_=0=—1;' (10)

In this way we have proved that no extra collective excitationsconnected
with a normal component of superfluid 3He can appear in the phase B,
Therefore the transverse sound appears only in the normal phase and it
is suppressed rapidly after the phase transition.

29. Gaps of spinless collective excitations [44]

Since the parameter A2 is strongly connected with the gaps in
spectra of the density and trensverse current collective excitations,
this problem will be discussed additionally taking account of the dipole
-dipole interaction. The values of the gaps can be derived <from the
following equations:

2[1 + _25 AZF(“,)] 1242[1 +z A F(w)] [1 + 9g/41"(w)] (1)

w?[1+ Zg aF(W)] = 22 %[+ T aF(@)] [1 - 3e/2F(w) ] - (2)

Let the solutions of these equations be denoted by w, and W, and by
Wy if g = 0.

The accuracy of our calculations allows us to assume that the values
of w, and w, if compared with that of Wy are modified respectively by
quaentities A and p (of order of g) end can be written in the form:

w, o=y (1 +n ) end @ =wy (1 4p). ()

Substituting the first formula of (3) into (1) end the latter into (2),
confining ourselves to the terms up to the order of g and eliminat-
ing A2 from the first order terms we obtain
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A= 93/8!:3/5( (l)o). B= -38/4E545(w0)- (4)
hence,
6, -®
and
Wy = —;— (2«»' + 3w,). (6)

Since the function E (w) (Section 35) is positive then from Egqs. (%)
-(6) we obtain the folléwing inequalities:

® < % <w, . (7)

The function Es(u) atteins its minimum value for g
for Aa—* 0.

According to equation (5), the difference @, - w, is proportion-
al to the function mO/EB/B( wo)which has @ sherp maximum in the vici-
nity of wg = 2 1/3/5 a. For this reason the dipole interaction is the
most important if 12 ‘1s close to zero.

The developed formalism allows us to state that the density auto-
correlation function vanishes in the homogeneous limit (k = 0) even
without the extra assumption about gn. We also state that the inclu-
sion of the dipole interaction does not change the zero sound spectrum.

@ The strong coupling effects which are connected with the mutual
interaction of the two-particle states lead to the effects analogous
to that of the dipole-dipole interaction in the collective excitation
spectra with the gap [136]. On the other hand, we can generalize the
total interaction in the particle-particle channel (19.2) assuming it
in the form

0 = 2vs 5, i.6.,

1 1
vij = - 5f1 3(1 + 11)61]{632. + 5(1 + 12)(613 6k.ﬂ. = 6111531{)

1 : _2% A Ay

+ 2(1 + a5)(5“6k_n + Ginéjk 3 iks,]n)] Pkpn
where |a1| <<1 which can be positive as well as negative. Their velues
should be fitted independently, e.g, from experiments. Let us note that

this interaction is the rotational invariant in the total spin-momentum
space (of. Seoction 40)e
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IX. Remarks on the Obtained Results

30, The vaelues of the Landau parameter in 5He

In order to illustrate the research of the obtained results we in-
sert some informetion on the Landau parameters. All Landau parameters
have to satisfy the Pomeranchuk inequalities [117]

3 F°
-1<§I—+—-?<C!D and -1<-2_1_+—T<°° (1)

and the Leggett condition ([83]
a s
¥y <Fg. (2)

Moreover, they heve to tend to zero if 1 +tends to infinity. The Landau
parameters depend on the pressure but do not depend on temperature,even
after the phase transition. According to the experimentel data [8, 9,
21, 59, 109, 110, 125, 139] their values for 1 =0 and 1 = 1 range within
the following intervals

10,07 < Fg < 94,13,

6.04 < F: < 14,35,

- 0.67 >Fg >-0.76,

- 0.21 >F: >-1.2 (3)

which are specified according to ‘the growing pressure. The respective
values of F; estimated for high pressure in [118] and [60] are

F3 = 0.3 & 0.5,

Fg -0.32 + 0.25, (4)
Thus the absolute velue of F; is rather small although its sign is
uncertain, As to F; we can only state that it is unlikely that s

2
exceeds 5 [20].

31. Quntative and qualitative effects generated
by the quesiparticle interactions

That is well-known that the Fermi liquid interaction modifies
quantitatively the characteristic quantities which describe the Fermi
liquid systems [22, 24, 26-28, 39, 40, 42, 64]. On the other hand, the
Landeu parameters must satisfy solely the Pomeranchuk inequalities
[(117] and the Leggett condition [83] end no additional restrictions
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arising from the stability conditions also for superconducting and
superfluid systems have been found [25, 27, 28, 45, 46, 48, 141-143].,
The only exceptions ere the ferromegnetic Fermi liquids [23, 69, 70],
bat there the form of their Fermi-liquid interaction is defined in
another way.

In the presented considerations we have shown that besides the
obvious quentitative results there exist some qualitative effects in
superconducting and superfluid systems, which are due to the TFermi
liquid interaction. These effects can be classified ammong three groups:

1° The types of superconductivity and the behaviour of superfluid

5He and mixtures 3He-qu in a strong magnetic field are determined by
the Landau parameters. Hence the Lendau paremeters determine the order
of a phase trensition from the supercocnducting (superfluid) to the
normal state (cf. [18, 19]). If the Fermi liquid interection is omitted,
the first order phase transition is reaelized only in charged and neutral
BCS systems.

20

branches of the collective excitations when the pairing channel contains

The Landeu parameters determine the existence of additional

additional harmonics. Then for sufficiently large Landau perameters no
extra collective excitaetions cen sppear.

3

tive excitations of the helical type, and the trensverse response of

9 Considering 3He-B we state that the circular dichroism, collec-

the system on the threshold of the quasiparticle destruction are not
available if the Fermi liquid interaction is excluded. Hence, the Tendau
parameters (Fa, F;) decide on these effects and their orientations. The
fact that the spectrum of the spinless collective excitations possesses
the roton minimum dependent on the Landau parameters Fi is plesusible.

Let us note that the rest of the quasiparticle interactions, i.e.,
the dipole-dipole and the pure-pesiring interactions are the ceuse of
qualitative effects such as the splitting of the collective excitation
gaps, the appearance of the gap in the longitudinel spin wave spectrum,
the non-zero response of a system at homogeneous magnetic fields, and
the suppression of the transverse sound in the superfluid phase.

High precision Mf the performed calculetions allows us to eliminaste
a few types of collective excitations which are generally discussed.
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Part Four

MATHEMATICAL METHODS AND APPENDICES
X, New mathematical methods

Theoretical investigations of the superconducting and superfluid
systems required the development of new computing techniques whifh
would permit us to derive some composed integral expressions. The prin-
cipal advantage of the developed methods was connected with the qualifi-
cation and utilization of symmetry properties of expressions being con-
sidered. Due to the high degree of complexity of the theory there appear
some non-stendard integrals connected with temperature series expansion
and some new functions the properties of which should be defined in-
dependently. All these and other purely mathematicel elements of the
theory are collected and elaborated in this chapter.

32. Integral techniques of the Green function formalism [51]

In the presented considerations we use the temperature Green func-
tion formaelism. In such & case the summeation over possible quentum-me-
chanics states ( €n, p) concerns the Matsubara Green functions. In or-
der to derive suitable sums we always apply one of the two following
methods which can be reported as follows:

4° The Eliashberg method [33]

1S DeE) e —1 2 |
€n P €n

di
g ~ ’ ~
(03 9(p, )% (p))

. %—TZIS—g [arvers i, 80, (1)
€
n

Using e residue theorem we can replace the summation over 1gn by in-
tegration over € and transform expression (1) to the form

3
gl (a8 jd;v (%) J’ae > ey (2)
1=1

where the expressions =] and xl have the forms:
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&, = SplBGR(B), & = ga(B,)g,(B.),
e_ﬂ
] ] A % 2
83 = (_}_A(P+)§A(P_)o 1 = h —ET_ L]
€+ g 5"% €+ g
Ay = th —mg— = th —my— , Ay = - th —sr— . (3)

2° The residuum method [35)

lim T z Z °iisn6§(5)

s§—o* €, P

+ie & ~
— lim %— Tj%gjdgv(g) Ze 2% (p)

ot
& 0 €

— %f%‘jdgv(a)z Res[‘% (?;) (1 ¥ th -g—T)] (4)
< v

where all the residue ere taken for the poles of the Matsubara Green
function '$ only, end

B+ = (_p = % k, ien 1% 1“"::n’-l-ln)'
% 1

p, =(p 3k e:%w.ﬁ)a

€, = (2n + 1)nT, w = 2mrT,

All the Green functions ere the matrices and Sp end G, are the retarded
and advanced Green functions, respectively. Moreover, we assume that
each of the Green functions G , g_q, &, E (section 3) can be substituted
for the functions or %§'.

33, Averaging end recurrent formulase [40,42,43,53)
In order to simplify the notation the average over spherical angles

are denoted by

1
Coeo? ol

0\_.;)

n
ag [ 48 8in@ ... (1
0
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and in the case when only one direction is distinguished in the system,
the integral over spherical angles can be reduced to the form
1

<.ao> =T1' f dx eoe (2)
-1
where cos @ is substituted by x.

The integration of all the appearing expressions constitutes an
essential difficulty of calculations. However, applying the symmetry
properties of the integrated expressions we obtain the following very
helpful formulae:

(2n-1) 11

A A 1
P eeoe P = — 6 eo e 6 (3)
< oy %on (2n + 1! ZS ak1 ak2 ak2n_1 aan

where the product of deltas conteins n factors and summation is ex-
tended over all possible sequences of deltas ([40, 43]).

1° The Legendre polynomiaels are of the form

1
1 a 2 _ 1
P = ( -1 (4
10 =T T [ ] )

and fulfil the relations

(1 + 1)P1+q(w) = (21 + 1)wPl(w) - 1P1_1(w), ()
and
8, .
AA AA _ i AA
<Py (38Y Py(BK) D = 5374 P, (PK). (6)
If the function C 550(553 can be presented in the form
-
A
C = D (21 + 1)eq Py (D), | (7)
1=0

then we have [42]

{C> = Cqs

Al A
e p;> =c, b; ,

ALA, 1 A A
<C Pin> =3 (CO - 02) 5ij + c, plpJ,
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AP AAASL As 1 2 1
<e PyPibybp ) = (g cp = =57 o5 + 35 ) (8538, + 8,85,

+8 4485,) + =50y = ©,)(B;B,8,, + ByB6,,
+ E)lﬁﬂajk + ﬁaﬁkéin + ﬁ,]ﬁn&ik + ﬁkﬁﬂai;])
A A A A :
+ 4 PiPyPyP,. (8)
2% The function expressing the dipole-dipole interaction is of
the form [43]
A AL _ - A o A A-A,, A A 2
Dyy (PyP7) = 834 - 3(by - j)(B-py) /[b - P (9)
and it fulfils the relations
Dij (ﬁaf") = Dji (.6:-6‘) and Dii (f’)ﬁ’) = 0. (10)

By series expension we get

A . 2 A A AL As A A
Dy (B,87) = D [2n+ 1t 2 <<pyy (B,F7) By ...By > By euBy >
=0 1 n 1 n

Al A, A A
x p ees P p sse P (11)
k1 kn 11 ln
and employing the reletions

<oy, B> =4 8, -4 Bby, (12)

) A A, . - 1 : A 1 A A
<D‘ij (Po.p ) pk> = o 6ijpk + - (6jkPi + 6ikpj)
1 A A A
- =~ PyPyPy (13)
we f£ind two first fators of the series expasnsion (11) in the forms

Koy 6,6 =0, (14)

A A, Al A 1
Kby (B.27) BBy > = - % ifun * 25 G 8, + 8585 (15)

The other tensor terms of the series expansion cen be found in a similar
menner after applying symmetry rules.
It is worth noticing that the contraction i = j of each series
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expansion tensor must be always equal to zero, since Dii (ﬁ.f") = 0,
This statement implies, e.g., Eq. (14).

5° If A= A(Akp) is an arbitrarfy function of the scalar product
f&p, the suitable averages have the forms [53]

<A>=1nq,
(ABY = Ak,
ARBSD = hpbyy + h3fsifsj.
B> = a8k + 8k v 85k v agkkk,,

<Apipjpkpn> =Ag 8580 + 854850 + 83085)

+ k,?(&ijkkkn + 6ikkjkn + éinkjkk + éjkkikn
+ éjnkikk + 6knkikj) + Askikjkkkn. (16)

The terms )‘0""'}‘ g Bare not independent linearly, however, by in-
troducing the following denotations

A, = 3{a(kp)2 ),
)\q = 5<A (kp)4> ?
A =<a (kp)>) (17)

they can be expressed in the forms

A2=—‘:I§—7\0 _—:’];_)\p'
K%:——;—Ko +—;—7\p,
A L T
xc=-_§._ Ayv =5 A, (18)

>‘
~
1]
]
S
>
o
+
*‘l“
>
L o]
]
ml_\
>
Q
-

where
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nqy =<a (kp)) (19)
and then the functional factors Ao Ay Ap» Ag» Ay are linearly
independent.

4% 1¢ Q is an arbitrary scalar or vector function of vectorial
varieble q then we can write

2
LQ1® - xiQi®3 Qi > Iy D
q q

where {...> q denotes averaging over q vector space. Equation (20) im-
plies the relations

(20)

\Y
o

ﬂi—i <<By ﬂn—aj (21)

where

N b

n<j<

and

2n
1A%y
{iq12 8
1

Employing (21) we state that

Bn Bo=p1"

8 k+?g
n-
B > X e
B n-k-1
where

0<k<n-1

thus for k=n - 2 we get

Bn > Bo . (23)

Note that the equalities are attained only if the function [Q(q)l is
constant, -

34, The Maki and Ebisawa function [43, 47]

The function F, so-called the Maeki and Ebisawa function, is de-
fined as follows:

Fe4T D0 > Fp,) Fe) (1)
€, IP]
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where ¥ (p+) 1is the anomalous Matsubara-Green function taken in the
limit H = 0, In order to calculate the function F we apply the method
formulated by Eliashberg [33]. Then after some algebra we obtain

+ oo E_
v 2Ida —E—tghﬂ u®- b
= A .
- [0® - 0)?]4E° -02) + 442 (kp)?
E
= y . teh E% w2+ 2E kv (
A 2
: TR LT - (EDY R -ed) + wal(En )

-0

where

B, =[(zx —*})a . IAI2]1/2 : (3)

The obtained integrals (2) exist, in generel, (i.e., for arbitrary va-
lues of w and kv) in the sense of principal values only, therefore the
change of variable is forbidden. Let us consider now some other repre-
sentations of the function F which turn out to be convenient for

analytical eveluations and numerical calculations. After expanding the

expressions
E+ E_
s and ~——— (4)
+ B

in the Taylor series we can rewrite Eq. (2) in the form

o T ag
F = 4A2 Z 1 ( -—> j
2 @ =z [0%- (k0)2] (45°-w?) v 42 (k)2
0

E
420 [teh Sy 42041 [teh ==

|02 —5 + n)® gty — =l (5)
g ag E

Puttingw = kv in Eq. (5) we can easily obtain the following property
of the function F

F=1 1f =kv. (6)

This property is very important because of the term (F-1 )/(.,-.l_ui) appear-
ing in the lineer response theory. Employing Equation (6) we can trans-
form Eq. (33) to the form
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<o

o 2n
1 kv ag
2 2 aY
[ ] n=zo (2n)! \2 w 2(4E2-

)= (£7)2 (4g 2w

E
- 420 [teh =w . ) 42041 tgh%
< |0 g8y o |——— o ) d—am(———-) .7

The obtained Eqs. (5)-(7) allow us to determine the forms of the func-
tion F in some specific limits., In the homogeneous limit (k = 0)Eq. 5
reduces to the form

Fh:[da E 42 - w2 (e)
0

The function Fh, which becomes a function of veriables @ and T, is an
increasing function of the argument w. Its vaelue increases from

F(0) =1 - X, (9)

where

— de -2 E €
X=Y2 and Y f 7 ch” =7 \—§ ) (10)
(0]

up to infinity if ¢ tends to 245.

The function Fh(w) decreases to zero for the fixed w if tempera-
ture tends to Tc‘ Consequently, if temperature fluctuates from zero to
Tc’ the functions Y
tion

21 increase from zero to unity and fulfil the rela-

Y,. <Y

o if 1 >j end O<T<T,. (11)

2]

In the static limit (= O) the function F reduces to the form

E
= 2n 2n+1 2T
F_ =1 Z lev/2)™ _a_ 4 th 77 (12)
s & (2n+ 1!y ag?™ \ g

where YO- is the Yosida function.

The function FS is a decreasing function of kv and its velue
tends to zero if kv tends to infinity (the Pippard limit), It is also
a decreasing function of temperature, so it never exceeds the unity,
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The function F in Egqs. (5) and (7) is given in form of a series.
This series is rapidly convergent and in some problems we can limit
ourselves to a few of its terms. The most often applied reduction is
the so-called acoustic limit (i.e., small w and small kv 1limit). In
that case all terms but one sre neglected and the function F reduces
to the form [81]

¢ ag E \"2 ;2 w2 - (1_11)2
i Izr <°h ?’I‘) e - By A

(o}
Putting w or kv equal to zero, Eq. (13) reduces to the form given by
Egs. (9) or (12), teken, in the same limits. The small kv and-great
w case is an often used specific limit. In this cese the function F

F =

(13)

becomes an enalytic function of (51)2 and we can expend it according
to powers of (kg)?, and limit ourselves to a few terms of the series.
Then we obtain

kv \2 kv \' ky
F = F(O) + (Z) 1(1) + (Z) F(a) + <E:> F(B) 4+ oo (14')

where F(O) is given by Eq. (8)

= E
teh zp 16E2(252 - A2) +u2(4§2 +5 ") (
F(qy = 168" | ag : - S e
13 E W (3E° - °)
0
and
2n a"F
Flny = 24l . 210 : (16)
a n! 3 [(kv)<]" | kv=0

In the quasi-homogeneous limit (kv <<gy) the reduced function F can
be written down in the form

(l_sz)z, (
F=Fh 1 -7—' 17)
where
“2 F
1
h=-+l- (12)
44 Fh

The function F 1is a non-analytioc function of the variables w
and kv for finite temperatures. Its limits do not commutate if
and kv tend to zero in various ways. This fact introduces large com-
plicetions to the existing formalism. However, in the limit T = O the
function T becomes an enalytic function and has the form



140

arcsin g
F e — (19)
2
BvY1 -8
where
2 2
kv
=7 (2x) '(5:) : {20)

First it was calculated by Vaks et al. [133]. The form of the function
F given by Eq. (19) allows us to expand it according to the powers of
(m/ZA)? and (gg/ZA)a, and to cut off the expression if the terms become
small., All the presented forms of the non-zero temperature function F
correspond to some analogous ones obtained from Eq. (19), which was not
achieved by Meki and Ebisawa in [93].

The forms of F-function given by Eqs. (5) and (7) allow us %o pro-
ve the existence of many interesting properties of the investigated
function, they, however, ere inconvenient in the numerical calculations,
since the function F is defined by means of the series, Therefore, we
propose to use in numerical computations the following forms of the
function F:

dx
Fe— R - 3
(t© = u®)(1 + = - t5) + u
-00
tgha X tghaX_"
- +2 [ v + ., < J
+ -
tgha X+ tegha _
+ xu - - > — , (21
+ -
+co ax
1 2 2
F=1—-4—(t-u)J t2(1+x2-t2)—u2(12—t2)
-0
tehaX teh aX_
x (x2 - t2) ¢ L 4
+ -
tgha X+ tgha X _
+ —E— (1 + x° - ta) X, X ' (22)

1 + X

and oo
f dx tehay1 + x°
0
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in the homogeneous limit where the quantities

w kv A
b=z 4=z, *=2T)
£

/ 2
x=—, X =91+ (xzu) (24)

form the set of dimensionless variables.

By introducing the above notations the whole temperature dependen-
ce in the function F can be reduced to one parameter a, Such a re-
normalizetion allows us to use the function F even when we do not
know how A depends on temperature. Assuming that @ is & number chusen
from the interval [0,00) we can find the value of function F for given
t and u.

To give the full image of the function F we performed numerical
investigations using Eqs. (21)-(24). The research was carried out for
t = /24 and u = kv/2A taken only from the unitary intervals, and

for three chosen values of the paremeter a, i.e., for a equal 500, 1

or 0,1, The first case (a= 500) corresponds to very low temperatures
and with great accuracy can be identified with the case T = 0. The se-
cond case (a@= 1) is connected with middle-range temperatures, and the
last one (g = 0.1) defines temperatures very near to the phase transi-
tion., The dependefice of function F on t and u for fixed @ can be
illustrated by some particular surfaces shown in the Figures 7-9.

These figures allow us to give some extra properties of F-function,
namely, with the increasing temperasture function F decreases in the
large part of the considered square, and it increases only in those
parts of space whére t is near to u, hence,there eppears a hummock
on the appropriate surface. The more temperéture increases, the steeper,
narrower and higher the hummock becomes. The maximum of hummock is con-
stant for fixed a and always lies in that part of space where t |is
smaller than u, although it comes nesr to the line t = u if the tempersa
ture tends to Tc'

Moreover ,from Figs., 7-9we can also see that in the discussed re-
gion of quentities t and u there exist some locel minima of the
function F., We do not consider them because they heve probably no phy-
sical meaning.

Let us define now some other charascteristic functions being the

generalization of the Yosida function. They have the forms
|

1 e 1/52 + 28201 - =)
YO'2 = j dx j Uy Ch‘2 Uy 2 (25)
0 0
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= (26)

0 (o}
and
'y 2
_ [ & -(2+1) +
T,= fﬂ ch —Lmr— (27)
0
where
Y =Y.
20 0
Ae
kv
28
Fige 7. F-function dependence
on t =w/2A8nd u = kv/24 ta-
ken from the unitary square.
Here @ = 500 (range of very
low temperatures). The hummock
w is npot perceptible yet
k1
F
/7 <,/
; &
kv
28
~— i

Fig. 8. F-function de-

pendence on t and u. Here,

a =1 (range of middle

temperatures). The hummock
is low and wide
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kv

L
25

Fig. 9. P-function dependence on t and u. Here, a = 0.1 (range of
temperatures nesr to phase transition). The hummock becomes narrow and
high

35, Some other characteristic functions
and equaetions [44, 45, 49, 51]

1° Besides the function Fh(w) (BEq. 34.8) the two following func-
tions are strongly connected with fthe superfluidity studied in the ho-
mogeneous limit, namely

E
aF(w) ¢ th —r 464t

G(&)) = 4A2 = ag —

d(w®) )2 1)

(4E° - &)

which is always positive and increases from

o0 - - r0 - o [ 0§ o Gy @)
0

(the latter term disappearg at T = O and T = Tc) to infinity if w tends
from zero to 2ApAend T < Tc' and

s @er e (- 970w [ - (&)] [ - (&)] (3)

where

0 <s< 1.
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After applying the integral representations of Fhﬂn) and G(w) the
function Es(w) can be rewritten in the form

& th —=
—2r 2 212
2 ae 2 _A% o
Talw) = 168 IT (48° - w?)3 {e +its [ -] } a

(o)

While anelysing the function Es(u) we find that its minimum value is
reached at

nm=21/?A. (5)

Since Fhﬁn) is an increasing function, the function G(w) is always po-
sitive, hence the values of Es(u)-function are greater than those of
Ih(g)-fu.notion if w<wg, and smeller if @ >w . The fanction Es(u) is
also always positive and for w=6, its value is equal to Fh(wm).

At the zero-temperature limit the ebove functions reduce to the
forms

dwy = [+ - 2 zp?] mpw '

(6)
2612 [1 - (£93)
GOy = 'g' (7)
and
s - (g-p"’
+ — 1 -F (“) ’ (8)
2% (1 - ) 0 -yl
1 - « s
B,(0) s 20, (5
1 -8
2° Let us consider now the following integral equation
w21 + 8aF, (w)] = 4sp2 1 + AF, (w)] . (10)

Since the parameter s in Eq. (10) is a fixed number, its solutions
are examined in dependence on the velue of the pareameter A . The frequ-
ency g is a solution of this equetion provided that the following
equation is fulfilled

A=A (w) (11)

where
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Alw) = [1 - -i- (;A)a] {[(gz)z - 1] Flw }'1 :

Differentiating the function A(w), Wwe obtain

(1 - s)E_w)
d A(w) s
= (
a(w?) 5[1 - (5—"2&)2]21?2(») 12)

Since the derivative of A(w)-function is always positive, A () is the
monotonously increasing function of . Its value increases from (X -
o 1)_1 < -1 for w= 0 to infinity when ®W tends to 2A. If the parame-
ter A\ is required to satisfy the condition

A > -1 (13)
(the typical stebility condition of the Fermi systems) then the values
of solutions of Eq. (11) begin from certain frequency &,p(o < "’p< W),
if T >0, or w= O+, if T = 0 on the border of stability of a system,
and tend to infinity if A tends to infinity, too. If)\ = 0O or T———Tc,
the solution is given by Eq. (%).

30 Let us specify now: the main relations employed in the zero
-temperature limit

lim th '%T = sgh X, (14)
T=0
lim 2T 1o ch —3p = Ixl, (15)
T=0
1 x| + [yl Ixl = 1yl
T=0
= e[+ (ix1 - 1y1)] (16)
and the ihtegrals
+oco
E+ X E-x
j da th —2111'— - th T = 41, (17)
+ oo
fdg [sen (g+ x) - sgn( g- x)] = 4x. (18)

- o
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26. The averages containing the Meki and Ebisawa
function [43, 53]

All appearing averages can be expressed by the following terms

Fyy = (21 + 1) {F(Ep)Z) (1)
and
r "t (1 F)> (2)
0 =<02 - k2v2(’1“6)2

which cen be computed by the methods developed in [40] . We introduce
the following notations

Y =0 h° - (kp)2171>, (3)
+1 .
—nln 1 - - % imme(1-n%)  1f 2 >0,
n-
'0 = 1 s (4)
“Inl arcte ™ if n°<o,
1-1 .
2(1-3)
v erlin e 3 A (5)
21 o S0 @&+
where
2 o of
2 2 4E° -
n _ =3: -] - (6)
48 - w
and
E2=52+A2, s=-%—r.

The imeginery part of the function !0 is responsible for the
Landau damping where its threshold is modified according to Eq. (6)
then it never exceeds its normel-phese value (s = 1).

If Inl >1, then function ¥,, cen be presented as

Y21=ZE(I+3S+1' (7)
i=0

Applying equations (3)-(5) the expressions F,; and I‘o reduce to the

forms
>2n f
45 - W
0

2 i 1 kv
F = 4(21 + 1)A (
21 & (emt \ 2
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E
on [P 3w

-2
:: ( ¥o(n+i)™® ¥ 2(n+i41) ag28 E
g-2 ¥ a2n+1 € E
* oneq  2(n+i+) 3E§n+1 (-; i —2';) (8)
or
52 ; 2n < aE
P, = 4(21 + 1)a° —-3—("> f—z——-——é
- n_o(an)! 2 4E° - w
o 0
E
& ;2 (PR ET
X 2(n + 1) aEZE E
E
-2 2n+1 th —>m
+ 2By i (9)
2041 2(n+i+1) 652n+1 E
and
oo 2n oo
kv
1
"o~ 2, T =) fd“ 2
n=0 * 0
2 th
2n+1 4 A 2n 2T
a8 (4 E) _ |
| T T 2 (E kh "Z‘T) 4E2-'w2.a.52n( E ) (10)

In the acoustic limit, i.e., when w, kv <<A, the expressions(8) and
(10) reduce to the forms which are obtained by putting = 0 at the

dendéminator (4E2 - ua) end in the term n and with taking only one n=0

term of the series. Then we get

A -2/\
Foy =1 = (21 + 1)(BY,5-5" B ¥5(,.44), (11)
= Py,

)

where ﬁ denotes the integral operator defined as follows

oo 2
A ag  _ E
Po (g) = f — cn™? (——-)(—g—> o(g), (12)
2T 2T/ \ E

and
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According to equation (S) the function !21 for i > 0 can be expressed
by means of the functions ¥  and Y21 (Eq. 34. 10). In the quasi-homo-

geneous limit the expressio&i F21 and Po reduce to the forms
2i+1
Fyy = Fy ( - i s h) . (13)
Tp = (1-F)) + —%— (1 -F,+F - h)s-z. (14)

37. The kernels L, M, N, 0 [43]

1° The kernels L, M, N, 0 in the matrix rotation are defined as
follows:

L=g,(p,)¢ (p_) - (€%(p))",

¥=g_(p,)E(p.),
v=g_(p,)e (p) - a,(P)E(p),
Q= F(p,)E(p_) (1

where the functions G, G, end F are taken in the limit H = 0. In order
to compute these kernels we can utilize the Eliashberg method (Section

21). Then we obtain [22, 40, 43, 81]
kv 1 w+ KV

L= — - o e T

w-kv 2 w-kv

© + kv
M= -——F,
4 A
[ma-(gg)a 1}F
N = - —_— .
a a2 2
0=—1E-F. (2)

2° The type (33.30) averages of the above kernels can be expressed
by the terms Fai and Eo combined with the frequency w ari1 the wave
vector k. Some -examples of such procedure used in some characteristic
limits are given below, In the general case we obtain

10-00--1+I'o,

m2 = =0 (Fo ‘_%—Fa)/aAo

lIl5 =w(FO - F2)/8A,
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n, + 0, = [w 2F0 - %(m2 + 112‘72)13‘2 + %k2v2F4]/8 A2 ’

Dy + 03 = = [wzFo - W2+ %kavz)Fz + §k2v2F4]/8 a2

1 1 1
-8 Fo * w T2 - g Fu
1
og = =3 Fo"zg‘Fz*"Z'sF'

O1=04=05=0. (3)

[o]
~
|

In the acoustic limit (w, kv<<2A) and at T = 0 these expressions reduce
to the form (F= 1 and Fai =1, r'o= 0)

N R TR SO ey
2
my = 05 =0, =o0g =0, (4)

In the homogeneous limit (k = 0) the expressions (3) have the forms

10’°0=-Fh,

2
1 w
By + 0 = 3 (‘Z) Fro
1 _ 1

OO_TFh' Oz—tho

.
% = 730 “h’
m3=n5=03=o7=08=0. (5)

In the static limit ( w= 0) the expressions (3) have the forms
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lop-0=-1

2
By v o= -4 () - 21,

by e oy = () -3,

m, =m; =0, o, as inEgs. (3).

In the quasi-homogeneous limit (w >>kv) the expressions (3) reduce
the forms

oo [ 3 ()3 (5

=t A [ -3 &) ]
2.2
m = i T

oy e (B n b

oot [ -3 (2 o] o,
o = = vty (& 7on,

= 04 = 05 = 08 a Q,
All other terms cen be obtained in the analogous manner.,

38, Elliptic integrals [52]

The elliptic integrals introduced by Legendre are following:
The elliptic integral of the first type is of the form

(6)

to

(7)
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% iy

)

j / 2 2
1 - k¥sin

) P

F((pok) =

and

F (—;— ,k)EF(k). (1)

The elliptic integral of the second type is of the form
%o
E(gg k) =f dg 91 - k% siny ,
0
and

B (5 k) = (0. (2)

The elliptic integral of the third type is of the form
?
0 do

n(¢0 »0,k) = I

o (1 +n sinzq: YY1 - K2 sin2¢

The function H(q;o,n,k) is divergent if n is negative and fulfils the
condition

(2)

< - 1/sing . 4
n /sncpo (#)

In order to omit the appearing disadvantages we have introduced an addi-
tional type of integral
?

0
G(wollak) = j‘ dw

L]
0 v - K> sinaq) + 1 sing

and

G (—g-,l,k) =a(1,k) (5)

which is convergent and cen be expressed by means of elliptic integrals
in the following way

G(Q,l,k) = ‘% [KEF(QIK) - lel_l(q,,n,k)]

~ COS?‘ 1+ = I
+ 11/ k4D 10 | . Inl 1+4 2
2V =ato+ 1y n 1+ * o (6)

coseg + 31+ %
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where
n == (k2+ 12)-
39. Temperature expansion [54, 55]
Standard integrals which appear in the theory of the superconduc-

tivity and superfluidity when the temperature expansion nearby Tc is
applied have the forms (cf. [66, 73])

mD/ZT
dx _ “n Wp 4e° _ Wy Te
j —x—thx-ln?rthﬁ+ln——n-—~-ln—m+—.r—-, (1\
0
WD/QT . wp/2T
[ ek (@) cu@- [ s
¢ 0
ZmD .
=1-1n + 1n —¢ (2)
A(0) c
where

-C

A(0) = T.me ()

and C = 0.577 215 is Euler's constant. Moreover

T a d th 3 g _ L (=
j -?JE I (—x—x> = - 16T z I m = o= L_"f_é—ll (41
0 eI.l 0 n

)

__14C(z) (s
+“] (), 3

oo 2 oo
f_ﬂ 4x _ g1’ [Z f ———§—2
0 eﬂ. 0

0

r dx 4 [1 4 (th 5 2 d 228 (5 -

f "i'x"di[i—ﬁ(_x—l)]=256lr z f(sz s - el (c)
n

(0} 0
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+62€n2f—2'£r¢=m7$2' (7)
€ (e, +&7) n
)
oo q- [= < oo
dx d"th x _ 5 ag 2 14
4x = 768T f - 12 f
f x 4 [z (e or £2)° Z LI BAICRELIT
(v} 0 0
+162e4J’—2———-5d5 =284t (5) (8)
e, o (e ©+ &2) nt
n n - -

- - s1ua1” D f & . 20958 (7) -
o (e,“+ &%)

€ R

where €, = Trn (20 + 1), n is an integer of any sigh or zero, §(s) is
Riemenn’s & -function., We also use the following formulae

2T Z e;s = :»Ts (1 -27%)g (s), (10)
€ =T
o
oo
ax __® (on - 1)1l [
T 2.0+1 - 2 oo t11)
(1 + x°) P
0
Moreover we state that
F 2
d thx
ax — (—) =0 (12)
j dx 2 !
0

°° a -2_) = 0, (13)
a (ch
g xd—x-z C. X

Since the terms wD/2T>>1 or EP/ZT >>1, 1£ P < T, {where v, is the
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Debye characteristic frequency end ;p is the cut-off paremeter), they
can be put equal to infinity in all convergent integrals and functions,
The integrals (4)-(9) have been derived by comparing suitable terms of
the series expansion in the residuum method., The applied values of Rie-
mann’s C-function are the following

g (3) = 1.202 057...,
g (5) = 1.036 928...,
c(?) = 1,008 349-50 . (14)
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XI. Appendices

40, Two-particle states
a) The concept of two-particle states

Quesiparticles which are the fermions possessing half-integral
spins couple in Cooper’s pairs if their momenta are opposite. All
Cooper’s pairs create a coherent two-particle stete. Such sta .s are
eigen-states of the operators 32 end 3 where 3 is the total sn-
gular momentum operator, composed of operators of angular momentum and
total spin of Cooper’s pairs, Since the total spin operator is compo-
sed of two operators of half-integrel spins (s1 =85 = 1/2), the sui-
table eigen-spin-states in the irreducible base have the following
forms:

1°  the antisymmetric spin-state S =0, 0 =0

foo>, (1)

(o}

2 three symmetric spin-states S =1, o= -1, 0, +1

[1=-1>, [1 0>, 11> . (2)

The orbital angular momentum of Cooper’s pair is defined by the quantum
numbers L end m. In general, L can be an arbitrary positive integer
or zero and [m] £ L, Hence, the orbitel angular momentum states are of
the form

|L a> (3)

and the states with even and odd velues of L are space-symmetric and
space-antisymmetric, respectively.
If we now form the sum of the operators

$=£+§, (4)

then it possesses all the properties of the engular-momentum operator
if the components L end § transform identically under rotation of
the coordinate system. The eigen-states of §2 and § generate the
one- and three-dimension spaces, respectively, and the eigen-states
of £2 and i5 generate the (2L + 1) - dimension spaces.

The tensor-product of the above spaces contains 1-(2Le + 1) and:
3-(2Lo + 1) independent states |[L m So >, respectively. The latter
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A

are the eigen-states of the operators ia, L., §2, § where in order
to satisfy the Pauli exclusion principle the numbers Le and L° are
even and odd, respectively. In the space under consideration we can
introduce the irreducible bases of states which are the eigen-states of
the operators 32, 35, i end S. We identify these eigen-states with

the two-particle states of Cooper’s pairs and denote them with
[T MLS> (5)

where J (the total angular-momentum number) and M (the total engular-
-momentum projection number) are good quantum numbers defining the two-
-particle states in systems with full rotational symmetry. Tn the sys-
tems where solely one direction is distinguished, M is still a good
quantum number., The quantum numbers L eand S are connected with the
type of peiring interaction. The relation between the states |L m S o>
and |T M L S > can be expressed by means of the Clebsh-Gordon coeffi-
cients [16, 32]. According to the Pauli exclusion principle we can
distinguish two types of the two-particle states, namely:

1o the orbital-angular momentum symmetric and spin-sntisymmetric

states which are of the form
T M L =21 S=0>, (8)

then J = 21, Ml <7 and

o

2 the orbital-angular momentum entisymmetric end spin-gymmetric

states which are of the form

[T M L=21+1 S=1 >, (7>
then

21 < T < 2(1+1) Ml <7
end 1 =0, 1, 2... Let us note thet in the latter cese the different-
-structure states which are of the forms:

{7=2(1+1) M L=2141 S=1> (8)
and
|J=2(l+1) M L=21+3 S=1 > (9\

have the same gquant numbers J and M.

Applying standard sclection rules we can determine the allowed and for-
bidden transitions ammong the two-particle states in relation to forc-
ing fields.

b) The representation and properties [42, 43, 130]

We are going now to give the representation of the two-psrticle
stetes in the momentum-spin space in the most significant cases.,
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1° the case L =0 ‘end S = 0. The eigen-fundtion is of the form

<p-glooo0o0>=1 o2, (10)

2° the case L =1 end S =1, The eigen-functions are the spheri-
cal tensors which have the form

<p-glTM 11> =13m=l3§1’\1,I ajpn:lo2 (11)
where
07 <2, IM«<T,
o _
By, = (1/ V)85,
Bjn =

jn _ 1 - o
Biy = §(5326n3 8.28,5 + 15j35n1 i8...6 5),

> J1°n
Blg = - (1/VE) (8, - 38;38,5),
B3 = - %(5,115:15 * 8y30nq + 18558,5 + 18558,5),
B3 = %(531%1 = Bypbpp + 185485 + 18558,,),
and
BIa= (-1)¥Bif. (12)

The tensors Bjn have the following properties:

T

BINET . = 87y Sy

BruBra = 814 8kn>

B35 = Bop:  Boo = V3.

Blg = - Bl Big = O,

Bly = B3, By = O. (13)

Moreover, the tensors of rank four defined by tue sums

B ik gtin _ 2 5

00 00 ~ 3 ik&jn’
ik p*jn _ 2 _
By Bz =3 (8356kn = 8in8jk)s
ik *jn _ 1 ol
Bop B = 5 (855 8yn * 85ndjk = 5~ 8ikbyn) (14)

are rotational invariants.
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41, The normal neutral Fermi liquid in the presence of a constant magne-
tic field. The linear response theory [51]

The inclusion of e constant magnetic field (which is assumed as
h <<eF) into the linear response theory generates conspicuous difficul-
ties. Let us demonstrate it for the normal Fermi liquid of neutral ferm-
ions with half-integrel spins (°He). Such considerations lead to the
generalization of the basic equations of the linear response which were
obtained by Luttinger and Nozierés [67], [106]) for the case of h=0, While
considering this problem we must realize thet now the Green functions are
matrices and that they do not commutate with vertex functions ‘5’1 which
are proportional to the appropriate Pauli matrices ao, dx, oy, aZ.
Nevertheless, assuming that h = hZ, the Green-function part proportio-
nal to 0% commutates with,é\‘o and 2 and anticommutates with ﬁ:x and 5’7.
Taking this into account we can transpose one Green function with respect
to the vertex function from right to left and calculate the conventional
function L defined as follows

Loy =585 2 246, s@WG) (1)

€n (21

in two independent cases mentioned ebove. The sign (i) is connected with
the manner of the Green function transposition and the sign (+) refers
to the full-commutation case. The second sum over |p| is taken only over
this vector length. Using the Elieshberg technique (Section 31) after
some calculations we obtain

L kv (w-kv-b70) (07 &)
Yo o B 4t |sen (- —===-1n =
=(#) & _L, ° < e ) (w-kv) (w-kv-2h)

kv (w=- kv + h + h) (GOiUZ')
- s h et
! sgn@ E > (- kv)(w - ky + 2h)

kv (~w+ kv = b T h)(a® - oF)
+ sgn(& + T-- - h =
(' (-w+ kv)(-w+ kv - 2h)
kv (-w+ kv + hih)(co+oz):| (
+ sgh(& + —é—-"‘-rh == 3 2)
< (-w+ kv)(-w+ kv + 2h)
and next, by separating the counts we finally obtain
kv
L e i 0'0 (3)
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and

2
kv(w- kv) + wl wwr o2 ()
w2

L

O Mo )2 - w2 - ) -
where wy = 2h 1is the Larmor frequency and its velue is determined by
the total spin inversion., As one can see, the function L(+) which is
connected with the spinless and spin-longitudinal responses of a system,
is independent of the magnetic field, just like in the non-magnetic case.
On the other hand, the function L(_) is connected with the spin-tran-
sverse response and has some quite understandable new properties, namely

(1) 1f Hp =0, then Li_y =1Ly,
(11) if k=0, then Ly = .y © ,
4
0, (-
and ¥ \( ) = 1t ,(-H.) where T! = °L
(') HE (') HE (') W - &)T_
(1ii) if @ =0, then L, = -1d°. (5)

The obtained results do not depend on temperature, which is in
agreement with Landau’s ideas, and the mathematical equivalence of thet
statement arises from the formulae (35.17) end (35.18). Now we can for-
mulate the system of the basic equations for the normal Fermi liquid in
the presence of the strong magnetic field. The vertex equations are of
the forms

0 (¢} (o}
70 =75 + <AL, 77D,
Tz=‘3’3 +<BL03‘Z>,
y(x)
px(y) =7(J‘<,(Y) + {BL, yx(¥)y 3 1 <BL, T >, (6)
and hence adequate correlation functions can be performed in the forms
00 _ (¢} 0
] _<'.erO TV >,
27 z z
5%2 =TI L, T, (7)
XX X X
S =<3’w1‘1 T*>,

Xy _ _ ioqX v
s*¥ - 1<TwL2!T>,
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and

s¥X . VY, S o (&%)

where

Ly = 5590 Iy = Lg00 + Ipo%,
and 0‘3 denotes suitable vertex in the w limit, The correlation func-
tions (7) describe only the linear response of the system to the additio-
nal perturbating external fieid, while the static longitudinal magnetiza-
tion effects, coming from the presence of constant magnetic field, have
to be included independently. The set of the basic equations (6)-(7) is
analogous to the known one obtained in the limit k = O which is useful
to apply to the nuclear resonance, but now we can also investigate the
collective excitations, i.e., the spin wave propagation in the presence
of the external magnetic field.

In order to explain the sense of the Larmor frequency we must con-
sider the problem of the static magnetization., For the field under dis~
cussion (h.<<tF) it is of the form (ef. [140])

M= ‘I% VOHT, (8)

then after regard of the Fermi liquid interaction we derive the ILarmor
frequency in the form

2;13

=T  a
1 + Fo

Although this equation is well known, it completes the developed problem.
While investigating the interacting fermion liquid we should however be

wy, H. (9)

aware that for very strong external magnetic fields the magnetization
changes its form and all the omitted effects cannot be neglected,

42, The dipole contribution parameter as an invariant
of the theory [44]

The Green function formalism contains an artificial parameter, called
a cut-off parameter E_, and related to it a pairing parameter, gy or a
dimensionless parameter f, (f1 = v(O)g1, cf. Section 6). If we include
the dipole-dipole interaction, there appears an additional parameter in
energy scale gy or a dimensionless parameter v(O)gﬁ.

Since the final results contain contributions proportional to the
dimensionless parameter
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(0)
Ep ho 281) 1)

v(0)g§ £

one can ask if the final results depend on Ep. We show that the parame-
ter, g, is independent of Ep. Deriving the basic equations of the
formalism, we apply renormalizing transformation given by the equation

R2]:
T=(1+Ta)T. (2)

We use the matrix notation, where i and i‘ are the renormalized and
unrenormalized interactions in the particle-particle channel, respec-
tively. & is the cut-off kernel and if A <<gp <<ep it has the form

A= 6G"Ge(|El - Ep). (3)

We assume that the renormallzatlon transi’ormatlon does not change the
1nteractlonAstructure, i.e., V and 1" have the same structure. The in-
teraction, ¥V, in the presence of the dipole forces has the form: (3ection

19)

V=-g(+a[i+4al], (4)
then f‘_ must have the form:
r=-nt+p) [+ v8]. (5)

The factors a (= g1/gD), B » and y are small quantities in comparison with
unity, and in all equations they can be kept in the first order only. If
we-insert Eqs. (4) and (5) into Eq. (2) and compare the suitable factors
standing near the operators i and ﬁ on both sides of the equation, we
obtain two independent equations

g (1 +a) =h(1 +8) [1 - g (1 +a) ], (6)

—g—ag1 =-—§-ag1§h +1(1 - g4 A)n. (7)

Now, we can compare the quantities of the sams order in the first equa-
tion, whence we obtain the two following equations:

& = (1 - &4 J)hs (8)
ag, =—ag1ﬁh +8(1 - g, A)n. (9)

Inserting equation (8) into Eqg. (9) and transforming it we obtain
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« B
ol o o

Both renormalized parametrs &4 and gp are the functions of the cut-
-off parameter Ep' However, according to Eq. (10), the choice of the
cut-off parameter § is quite arbitrary, thus, the parameter g does
not depend on Ep and is the'invariant of the theory, in spite of that
the parameters

31 = 81(€p)n &p = gD(ep)’ (11)

and

g - gD(eE)

g5(e,) v(0)

. (12)

Comparing Equations (7) and (9) we get

T =4 8. | (13)

Since the dipole contribution parameter g is independent of the artifi-
cial, cut-off parameter §_, it possesses a physical sense. However, we
do not have enough information to estimate the parameter g correctly.
That is why we will think of g as a phenomenological parameter. The
parameters discussed above fulfil the inequalities

v(0)gy <<f, <1 (14)
and in the problems under consideration they appear in dimensionless re-
lations

n
)
n D
a = |== (15)
(g1
and
&€p n
gn = 2 ) . (16)
g7 v (0)

According to (14) the quantity a is negligibly small if n > 2. Since,
however, « < g, it can happen that the quantities a and g2 are of the
same order, hence the parameter gn can be held in account up to n = 2.

43, Bifurcation points

According to the theory of non-linear integral equations, solutions
of the integral equations with the parameter can split at a certain fixed
point, so-called a bifurcation point. Let us consider the non-linear in-
tegral equation in the operational form
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u = 5(u,A) (1)

where A is a parameter of the.equation.
Let us assume that we know a solution u(A) for all values of A and
that we look for the other solutions such that

u = u(A) + v, (2)
the function v 1is determined by the equation

v = _'.L‘(V,R) (3)
where

2(v,A) = Sfu(r) + v;A] - u(r). (4)

Bquation (3) possesses zeroth (trivial) solution for all values of A.

The fixed value, AO’ is the bifurcation point of Eq. (3) if for
each €& > 0O there exists such a value of the parameter A taken from the
interval (16 - A+ €) for which Eq. (3) possesses the non-trivial
solution v(A) satisfying the condition |[v(A)ll <e.

The general theory of the bifurcations is more complicated and its
other problems can be found in the books [14, 71, 72]. However, the ideas
presented here allow us to understand the principal properties of the
non-linear integral egquations.
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EFEKTY JAKOSCIOWE WYWOLANE OBECNOSCIA ODDZIALYWANIA FERMICIECZOWEGO
W UKLADACH NADPRZEWODZACYCH I NADCIEKLYCH

Monografia poswigcona jest teoretycznym badaniom wiasno$ci ukXaddéw
nadprzewodzgcych i nadciek¥ych. Szczegdlny nacisk zostal poozony na
okreslenie efektdéw jakosciowych wywolanych oddziatywaniem fermicieczo-
wym. Rozwinigeto teorie funkcji Greena uwzgledniajgc obecnos$é silnego
pola magnetycznego. Monografia zawiera najistotniejsze rezultaty okresla-
jace wiasnosci nadprzewodnikdéw, nadciekXego BHe oraz mieszanin 3He—4He
w silnych polach magnetycznych dla T = 0 i T bliskich Tc‘ Ponadto prze-
badano uk*ady typu BCS i BW metodami reakcji liniowej. Rozwinieta teoria
pozwala uwzglednié dodatkowe harmoniki parujgce, oddziatywanie dipol-
dipol, wpiyw temperatury, wysokie czestosci oraz silng niejednorodnosé
uk¥adu. Zastosowane podejsScia pozwolily uzyskaé szereg jakosciowych
rezultatéw. W ostatniej czesci zostaty podane pewne metody matematyczne
opracowane przez autora.

KAYECTBEHHHE 5(0EKTH BH3BAHHHE BOBIE/CTBMEM EMIKOCTH QEPMHA
B CBEPXIPOBOIAIMX M CBEPXTEKVUMX CHMCTEMAX

Monorpafms mocesmeHa TEOPeTHYECKEM MCCAENOBAHAAM CBORCTB CBepXIpO-
BOIAIMX M CBepXTEKydnx CHCTeM. OCHOBHOR HAXMM HOJOXeH HA oUpelneNcHWe Ka-
YeCcTBeHHHX 8ffieKToB BHSBAHHHX Bo3neficTemeM Xuarocte Jdepmm. PasBepHyTO
reopup $yuKumm [pHES YIMTHBANOYD NPECYTCTBHE CHIBHOI'O MATHETHOI'O HOAA.
MoHOrpafHsi CONepXAT caMHe CymMeCTBEHHHE DE3YABTATH ONpelieJADmNEe CBOfCTBA
CBEPXIIPOBOJHEKOB, CBepXTekydero “He, a Takxe cMecelt e-4He B CHABHHX
MarHATHHX moaax maga T = O @ T Gumskax Tc‘ Kpome Toro mccrenoBaHO CHCTE-
MH THOA BCS ¥ BW C IIOMOMED METOAOB AEHefHO peaKIME. Pa3BepHyTa TeOpEA
IO3BOJIAET YYHTHBATH NOCABOUYHHE CIApeHHHe I'apMOHWKH, BosielcTBoBaHWE M-
OONb-IUIOONE, BIHAHWE TEMIEPATyDH, BHCOKHE YacTOTH M CHJIBHYD HEOXHOPOJI-
HOCTH CHCTEMH. [[pMMEHeHH HOXXONH HO3BOJHIM MOJYIUTH DAN KadecTBeHHHX
pesyasTaToB. B mocaemHelt 4acTM IAHH HEKOTOpHE MaTeMaTHYeCKne MeTOXH pas-
padoTaHHHE aBTOPOM.



CONTENTS

PrOfacCe cceecccccccecccrccccsscesssccsscscosssesoososssssscsscssscsccnes

List of universal Sy!DbOlS 0000000000000 0000000000000000000000000000

Introduction 0 0000000000000 00000000000000000000060000000006000000606000
Part One. Green function formalism .c.ccecccocvcsvcsccsccccccncoccce
Chapter I, Forms and properties of Green fuUNCtions e.ceececeeccscncss

1.
2,
3.
4.

5.
6.
7.

Remarks on applicability of the theory cececcccccccccccccscces
General principles of the magnetic field inclusion ccaceccecs
General properties of superconducting and superfluid systems
The normal and anomalous Green functions ceeccccccscccecccccee
a) The neutral BCS BYSteM cceessvccccssccssccascoccsasccacs
b) The superfluid SYStem eeececeessssccesccccscasssscsssccnse
c) The charged superconducting sysStem seececcccccccecccccccse
Fundamental quantities of the formalism scccecccceccccccccccce
The quasiparticle interactions sececccccccccccccccccccscosscss
The Fermi liquid interaction in the non-linear theory eccceee.

Chapter II. Basic equations and their principal properties in the

8.
9.
10,

theory with the magnetic field see weeccscccsccscocosoccccsce
Neutral BCS SYStTeM ceeecccsccstcccccscccsscccsccscsscsscsce
Superconducting systems - the generalized Gorkov approach ...
Superfluid systems with the P-wave-pairing (3He) % 51616 ole la. o7 wieis

Part Two. Yermi systems in strong magnetic fields eceeccccccccccass
Chapter III. SuperconduCtOrS ecececescccccsccsccssosscosscssossssces

1 e
12.
13,
14.
15,

16.

17.

Preliminary TOMATKS s essenoosseoessssesssessssaseoeessass
A general outline of paramagnetic @pproach eseececcececcceccsces
Equations. of the paramagnetic theory scececcccccccccccocccsce
A space -homogeneous case .................;.................
A space-inhomogeneous case = the local limit cececeeccccecs
a) The zero-temperature Llimit ecececescccoscccsccecccscccasccns
b) The Ginzburg-Landau 1imit ee.ecececccecvcccccocccccccccccns
The generalized GOTKOV apPrOaCh ccseccocecsssscsccvcscsccscccs
a) The zero-temperature 1imit ecceceecesecccacsscsscccsscncccse
b) The Ginzburg-Landau 1imi seecesecccecsccccoccsaccssacosss

ConcluSionNs8 .eceecccoceccocscrssocscsccccsosssccosscsscsscscsssos

Chapter IV, Superfluid 3He eserecectsacesessssesssasssssescsssnans

18,

19.

Stable states in the strong magnetic field c.ceceecccecccsccscs
a) Paramagnetic magnetization and gap equationNSeeceecececsceces
b) Stable BEALES .« swsiew e nen i s oiesam s sie ot o o5 5 as 6 006 0 50 9 si0 sis s o
The solution of the gap equation in the presence of dipole

forces ifH=O.:..l.ll..'..‘.'.l......l..I....".l.'....'l

©0ODeWwWw

10

11
12
13
16
18
19

21
22
26
28
35
35
35
37
39
20 -
44
44
49
52
53
55
60
61
61
62
70

78



172

Chapter V. 3He-4He MiXtUTES sessceccccscsccssosccsssossscssrcssss 82
20. Properties of ‘He-YHe miXtuTeS eeceeeseesecseesecscsescsces 82
21. A neutral BCS SYSteM ceececcerscscscccascorssccccscsscccss 83

a) The zero-temperature limit ...ccecececcecccccccsccccosees 83

b) The Ginzburg-Landau 1imit ececececocsccsccscossccescascs 86

Part Three. Linear responses of BCS and BW gystemsS.ccceocessccces 89
Chapter VI. Influence of the Fermi liquid interaction on possible

two-particle States e.ecececccccccsccssceccccsscccccccss 89

22, Statement of the Problem .eececceccccscsccccccsoccscscccscsscse 89

23. The system in BCS 8tate eeecccccesocsccccccccscsssccccscces 90

24. The system in BW 8tate sccceccccccccccscccsccecaccccccacece 94
Chapter VII. Spin oscillations of 3He—B in the presence of dipole

FOrCe8 eevseccsctsseccscscvsscccssosescscccsssssascase 103

25, The spin susceptibility tensor .ecccccceccccccscccccecccecee 103

26, Dynamic properties of the system in the homogeneous limit 112

Chapter VIII. Autocorrelation functions and spinless oscillations

Iin “He=B ecececocsscccscssscasecnascossssscscsscssssscsse 114
27, The density-density autocorrelation function ecececocccececs 114
125

28, Transverse collective excitations .ececececccecccccccccncccs
29, Gaps of spinless collective excitations seceececessscscoees 127
Chapter IX. Remarks on the Obtained TesSultsS eeseeccessecesssccses 129
30, The values of the Landau parameters in Fian = in » owin o nwim miow w9129
31, Quantitative and qualitative effects generated by the quasi-
particle interactions ...eeececceccccessesssscccsscscsssocsee 129
Part Four. Mathematical methods and appendicCesS .eeeeecsccsscscess 131
Chapter X . Newmathematical MEthodS scecoeecescseccccccseacocasoas 131
32, Integral techniques of the Green function formalism ....... 131
33, Averaging and recurrent fOrmulae eeeccecececccscsscssccsascss 132
34, The Maki and Ebisawa fUNCtioN eeeeeeccsssecsscsccsssesasses 136
35, Some other characteristic functions and equations ...ceeees 143
36. The averages containing the Maki and d£bisawa function ee.e... 146
37. The kernels L, My, Ny Oceccececceccaccccooccssocacasvassass 148
38, Blliptic integrals sececcesssscscessscocsesssssssssesssescs 150
39, Temperature eXpPanSiON seceesceccscesssscscssscssesscscscosss 152
Chapter XI. ApDENdiCes eeeceescescccccscsccascccsoccaccsccsosnsasce 155
40, Two=particle States cesssessscnssesacnsassssnnseasssansense 199
a) The concept of two-particle State€S......eeeeeeeececeees 155°
b) The representation and properties seecsseececcscsccscccsss 156
41, The normal neutral Fermi liquid in the presence of a con-
stant magnetic field. The linear response theory .cccecee.. 158
42, The dipole contribution parameter as an invariant of the
LHEOLY o1 w6 608 5o & 56 6 8 & 0 675 5 8 836 %1 0 50 & o6 %1 918 & S wbe 5 858 w68 0w s e wre e o 1O0)
4%, Bifurcation points ........................................H%%

RefeYENCES eeseovcccoscosnsssssssssssscssssnssesoessosscscssssscse



SPIS RZECZY

Przedmowa cseceecscccscecsssescccscscscscsoscsccscccocossccscsscscccscnsce
Skorowidz uniwersalnych 0zZnacZell eeececccsccosssccssssoscssccscsccos
WSTED cccceccccocscccoscocsscssssssssscssssocscscssssscsosssccsssossce
Czgsé pierwsza. Formalizm funkcjl Greena eceecceccccsccccoccccccssce
Rozdziaz I. Postacie i wZasnosScl funkc)i Greena ececececcccccesccecse
1. Uwagi o stosowalnoscl teoril scececccccccoccccscccsccsccoscce

2, Ogdélne zasady wlgczenia pola magnetycznego cseeccsccccscccsss

3. Ogélne wZasnosci ukzadéw nadprzewodzgcych 1 nadciekiych ¢eeee 10

4, Normalne i anomalne funkcje Greena ececeeccecccccsccccscscscscse 11

a) Feutralny ukdsd BUS csnssssswsssssnsvssnsonssesssssaansoss 11

b) UkZad nadcieky eeceecccesscsccsesssscssacccsssssssssscne 12

c) Naladowany ukiad nadprzewodz8CY ececcecsceccscsscescoscsscs 13

5. Podstawowe wielkosci formaliZmul ceeeececcccccccscossccscsccses 16

6. Ewaziczgsteczkowe oddziatywania ..csccecccococscccscsscccccces 18

Te Oddzialtywanie fermicieczowe w teorii nieliniowe] eecececccces 19
Rozdziax II. Podstawowe réwnania i ich zasadnicze wtasnosci w teorii
z silnym polem magnetyCznym ceccccsccccsccecscccscsssscccscscs 21

8, Neutralne ukzady BCS cececcccsccocscssccccsosssscsssessscsrsscsse 22

9, Uktady nadprzewodzgce - uogélnione podejscle GOrkova eeeecece 26
10, Nadciekle uklady z P-falowym sparowaniem (3He ) 66 5 sri wraie ame @ 28
Czg¢éé druga. Uktady Fermiego w silnych polach magnetycznych eceeee 35
Rozdziax III, Nadprzewodniki ceccecccceccccccsccoccosscssscccccccss 35
11, Uwagl WBtEDPN® ccecocccccccvcscccscscscossccscscccccccsscsccoss 3D
12, 0gdélny szkic podejécia paramagnetycznego eseecccceccccscscecee 37
13. Réwnanie paramagnetycznej teorii ceccecccccccsssscccsscccnsce 39
14, Przypadek przestrzennie jednorodny eccecceccscccccsceccccssces 40
15. Przypadek przestrmennie niejednorodny - granica lokalna ..ee 44
a) Granica zerowej temperatury tessecscesssassecscesscsssssses A4

0 00w~ ww

b) Granica Ginzburga=-Landaue eseeceesssccccsssscscscsscsasccsce 49
16, Uogélnione podejScie GOrKOVA eecececccecccsssscscsssocsssscsss D2
a) Granica zerowej temperatury escceceoceseccscsccecesccccscccss 53
b) Granice Ginzburga-Landaus eecceccsscesscccccccesssssssssscs DD
174 WDLOBKL wossieis ¢ e s wios s oo s aio7e o o0 siae aiwo i wisis @ siaie # ois wiare s siew s areww OO
Rozdziat IV, Nadciekly JHE seveoencasccscesssscssessnsccsscsssscase 61
18, Stany stabilne w silnym polu magnetycznym ecececcccscscscsces 61
a) Paramagnetyczna magnetyzacja i réwnania na szczeling ..... 62
b) Stany Stabilne ececcsscssssssscboscccsscsccccscsasscscssss T0

19, Rozwigzanie réwnania na szczeling w obecno$ci six dipolowych,

gdy H = 0 -vo-o.o.o.o--oi.-oooo..o~..o-oooc-oooo-00100'000000078



174

Rozdzial V. Mi.szanim 3H."4H' 00000000000000000000000000000000000 0 82

20, WXaenosci mieszanin 3ne-4He S P PP

21. Neutralny ukZad BCS esceeccsecsccccssosscccsssssssscsssccsse

a) Granica zZerowej temPOratury eececcecscccscccsccsccccsccce

b) Granica Ginzburge=Landaus sceecccccsccccscccscsccsscccsss

Czgéé trzecia. Liniowa reakcja ukZadéw BCS i BW cecceecccccccccoce
Rozdziaz VI, Wplyw oddziatywania fermicieczowego na mozliwe stany

AwuczgstkoWe ceecccessecssssccccsscsscssccscsccscsccsscscns

22, Sformuzowanie zagadnienia ececescececescccccsccccccccssscsee

23, UkZad w stanie BCS ecececcccccssccscsssccscscccssssssccncsnce

24, UkZzad w stanie BW ccececccccccccccccsccoscccssccsccssccsccoce
Rozdziaz VII, Spinowe oscylacje 3Ho-B w obecnosci siz dipolowych

25. Tensor podatnosSci SPinOWeJ ececcccsccccccscccsccsccscccscns

26, Dynamiczne w2asnodci ukiadu w granicy jednorodnej ccecscecece

82
83
83
86
89

89
89
90
94
103
103
112

Rozdziaz VIII., Funkcje autokorelacyjne i bezspinowe oscylacjo’3H0-3114

27. Funkcja autokorelacyjna gestoS$é=gestoSC ceeccsccccscscscnce
28, Poprzeczne wzbudzenia kolekiywne cceeccecccccccsccssceicoces
29, Szozeliny bezspinowych wzbudzerl kolektywnych ececeececcscccs
RozdziaZz IX, Uwagl o uzyskanych rezultatach ecececcceccosceccscccssccce
30, Wartosci parametréw Landaua w 3Hc @:010i6 & Wia/e s s el e arere Wiwie w wibie

114
125
127
129
129

31, Ilosciowe i JjakoSciowe efekty wywolane oddziatywaniemi kwazi-

0Z88T0K ccceccccccceccsscecscosscoscecccccsscccssscssccccccne
~ Czeéé czwarta. Matody matematyczne i uzupeinienia cccesececccccccce
Rozdziakz X. Nowe metody matematyczne ccececscecscccccccccccscscncs
32, Techniki catkowania w formalizmie fumkcji Greena eccccccceces
33, Formuy usSredniajgce 1 rekurencyjne eccecccceccccoccsscccsccse
34, Funkcja Makiego 1 EbiSaWY ececcccsccccccccccccscocssscccscoce
35, Pewne inne charakterystyczne funkcje i réwnania ecececcccses
36, Srednie zawierajgce funkcje Makiego 1 EbiSEWY eccccccccccoce
37. Jgdra catkowe Ly My Ny O cecsecesccccccsccccccccccccsnscccsne
38, Catki €1iptycZNe ecececsccceccccccscccccccocscsccscnccncncs
39. Rozwiniecle temperaturowe sccececcccccsccccccccccscccccccsne
Rozdzialz X, UzupeZnienia sccececccescccccscccsccccsscsscscccsccsccccne
40, Stany AwuczgBtkowe scecesssccccccscccscsccssssccsscccscccoce

a) Koncepcja standw dwuczastkowyCh ececccsccsccccsccccnccae

b) Reprezentacja 1 wZasnodci ecsecececccccccccccccscscsccscce

41, Normalna neutralna ciecz Fermiego w obecnosci statego pola
magnetycznego. Teoria liniowej reakcjleeecccccccccccccscess

42, Parametr wktadu dipolowego jako niezmiennik teorii ececceee
43, Punkty bifurkacjl eeceeeccccscsscccccscccccscccscccssccccccse

Bibliosrafia 0000000000000 0000000000000000000000000000000000000000

129
131
131
131
132
136
143
146
148
150
152
155
155
155
156

158
160
162
164



Nr

Nr

r 18

- 15,

16

17

- 19,

22,

PRACE NAUKOWE INSTYTUTU: FIZYKI
(wydane w latach 1980—1987)

Monografie nr 6, H. Pykacz, Investigation of pyroelectric properties
of triglicyne sulphate and sodium trihydrogen selenite crystals at an
electric bias field, Wroctaw 1980

Monografie nr 7, E. Jagoszewski, Przeksztatcenie Fouriera w opty-
ce, Wroclaw 1983

Monografie nr 8, E. Wnuczak, Kinematische Aberration in Hoch-
frequenz-Kinokameras, Wroclaw 1983

Konferencje nr 3, Polsko-czechostowacka konferencja optyczna,
Wroclaw 1984

Monografie nr 9, J. Wilasak, Magnetoabsorpcia w pétprzewodni-
kach typu InSb, Wroclaw 1987

Monografie nr 11, L. Jacak, Nonlinear topics in the theory of
Fermi liquids, Wroclaw 1987

Monografie nr 12, J. Nowak, Aberracje holograméw w ocenie ja-
kosci odwzorowania, Wrocltaw 1987

35—
87—

120,—
35,—
95—

200,—

100,—



Cena zl 200,—

Subscription should be sent (at any time of the year) to:
”Ars Polona”

Krakowskie PrzedmiesScie 7, 00-068 Warszawa
or OR PAN, 00-901 Warszawa, PKiN, POLAND

Bank account number: NBP, VIII OM Nr 1550-6-81574 Warszawa/Poland
Wydawnictwa Politechniki Wroclawskiej '
ma stale na skladzie Ksiegarnia Wr 49
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
oraz Wojewoddzka Ksiegarnia Techniczna
ul. Swidnicka 8, 50-067 Wroclaw

ISSN 0370-0828






Raport dostępności





		Nazwa pliku: 

		PN_PWr_I9_20_MO_10_1988.pdf









		Autor raportu: 

		



		Organizacja: 

		







[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]



Podsumowanie



Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.





		Wymaga sprawdzenia ręcznego: 2



		Zatwierdzono ręcznie: 0



		Odrzucono ręcznie: 0



		Pominięto: 1



		Zatwierdzono: 28



		Niepowodzenie: 1







Raport szczegółowy





		Dokument





		Nazwa reguły		Status		Opis



		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności



		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy



		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF



		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu



		Język główny		Zatwierdzono		Język tekstu jest określony



		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym



		Zakładki		Niepowodzenie		W dużych dokumentach znajdują się zakładki



		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów



		Zawartość strony





		Nazwa reguły		Status		Opis



		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana



		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane



		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury



		Kodowanie znaków		Zatwierdzono		Dostarczone jest niezawodne kodowanie znaku



		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane



		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Zatwierdzono		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Zatwierdzono		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

