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QUALITATIVE EFFECTS GENERATED BY FERMI LIQUID INTERACTION IN
SUPERCONDUCTING AND SUPERFLUID SYSTEMS

The monograph is devoted to theoretical investigations on properties of superconducting and superfluid systems. The qualitative effects generated by the Fermi liquid interaction are subject of particular interest. The Green function theory, including the presence of a strong magnetic field, has been elaborated. The monograph contains the most essential results defining properties of superconductors, superfluid 3q0 and mixtures in strongmagnetic fields at T = 0 and T close to Tc. Moreover, BCS and BW type systems in the linear response approach have been examined. The developed theory permits to take into account additional pairing harmonics, dipole-dipole interaction, influence of temperature, high frequencies and strong inhomogeneity of a sy stem.The applied approaches allowed us to obtain several qualitative results. In the last part some mathematical methods extended by the author are presented.
LIST OF UNIVERSAL SYMBOLSal» Al* h, 4. Ff F - Landau parameters,- Maki and Ebisawa function**.fl« «1 - pairing parameters,S - dimensionless dipole contribution parameter,

H - external magnetic field**,Hp - paramagnetic field,ftp - total magnetic field,
h - total magnetic field in energy scale**,Hc' H„_, Ol 02 - critical magnetic field,

J, M - quantum numbers of two-particle states**.k - wave vector,M, “p - paramagnetic magnetization**,Md , M - diamagnetic magnetization,N - total number of quasiparticles**,



X° =X° a

Nn - number of normal quasiparticles.Ns - number of superfluid quasiparticles,Pn - Fermi momentum.u V - Fermi velocity,V s - superfluid velocity,A - energy gap.eF - Fermi energy,5(s) - Riemann”s 5-function,e(x) - Heaviside step function,M - Ginzburg-Landau parameter,- Bohr's magneton,- Bohr's effective magneton,vU) - density of states with definite spin.v0 = 2v(0)s - cut-off parameter,*c - coherence distans,a0 - unit matrix (2x2),a A - Fauli matrices,- spin susceptibility tensor,v0 - paramagnetic susceptibility of a free electron gas,= - 1/471:- diamagnetic susceptibility of a Meissner superconductorW - frequencyU) .0 - Debye characteristic frequency,- averaging over spherical angles,.* • R - averaging over R - vector space.
INTRODUCTIONTheoretical investigations of the present problems concerning man? -body systems are dominated by two research methods, i.e., numerical and analytical ones which can be characterized as follows:Numerical method comprises standard physical theories, highly complicated numerical computations and numerical results, whereas the analytical one covers non-trivial and still improved physical theories, far advanced mathematical methods and analytical solutions which can be examined in the numerical way. The advantage of the latter method becomes particularly visible while researching small qualitalive effects, since such effects could be misleadingly interpreted on the ground of the numerical results only. Moreover, the analytical method makes it possible to in



spect microscopic processes and to eliminate the insignificant effects taking place in the system under consideration. Hence, the analytical research should precede the numerical elaborations, particularly in fundamental investigations. Besides, extensive application of modern theories to theoretical and experimental investigations of real physical systems requires a fresh approach to the course of problems.The present monograph is devoted the search for qualitative effects connected with the quasiparticle interactions in the superconducting and superfluid Fermi systems. Hence, the Fermi liquids are the principal objects of our interest. The formalism is developed within Landau's concept of quasiparticles [74-76, 87, 106, 122] which states that the macroscopic properties of the strongly interacting (normal) Fermi liquid may be mapped onto a gas of elementary excitetions, the Landau quasiparticles. The interactions of these quasiparticles are described in terms of the scattering amplitude for binary collisions. After permission of the pairing interaction, the quasiparticles are coupled in Cooper's pairs [22, 56, 78, 79] .All the presented considerations are performed in the Green function formalism which is developed in two main directions: the linear response of the system in the most comprehensive form, and the non- -linear inclusion of the strong magnetic field.In the former case we based our considerations on the formalism developed by Łarkin, Migdal [79] and Czerwonko [22]. Although their original works concerned the zero-temperature case, Leggett [81] has shown that the whole Larkin and Migdal formalism can be applied in non-zero temperatures if some characteristic functions appearing in the basic equations of the theory are replaced by the appropriate temperature-dependent functions. The possibility of application of the modified Czerwonko formalism to the non-zero temperature case was demonstrated in [39, 40, 43] .The equations formulated by Maki and Ebisawa [93] were also obtained by the microscopic approach and can be resolved into the form of Czerwonko's equations after some transformations connected with the used symbols. All microscopic approaches are then coherent. Since in the presented formalism we do not impose any restrictions on the frequency and the wave vector, the temperature dependence of the formalism is given by means of four characteristic functions, which in turn can be always expressed by the so-called Maki-Ebisawa function which was computed correctly for the first time in [43] .The main advantage of the Green function formalism is manifested in the fact that the particle-hole interaction, i.e., the Fermi liquid 



interaction and the total particle-particle interaction, which can be composed of the pairing and dipole-dipole interactions, can be included in the straight manner.The latter developed direction is connected with the reconstruction of the Green function theory in the presence of a constant strong magnetic field. The magnetic field is included by means of the nuclear paramagnetic term in case of the neutral systems and by the Pauli paramagnetic term and the vector potential in case of the charged BCS-systems. In the present approach the static case of the theory is discussed with particular care. Basing on standard properties of the normal and anomalous Green functions and on the fundamental equations of the IMG theory [22, 79] we define principal parameters of the system and find their interrelations. While considering the quasipartiole interactions we state that the inclusion of the dipole-dipole interactions is realized in composition with the pairing interaction by the gap equation, whereas taking account of the Term! liquid interaction requires a special treatment.The developed formalism is based on the IMG theory which is valid within the pale of the weak coupling model with the spherical Fermi surface, where all the considerations are performed in the collisionless regime. Thus, these assumptions shift automatically. On the other hand, we simultaneously determine the possibilities of regarding some ordinarily neglected effects such as the particle-hole asymmetry [101, -102], strong coupling corrections, feedback effects [85, 112, 136] and the effects connected with the dependence of the quasiparticle scattering amplitude on the length of the quasiparticle momentum i.a. in the mass operator or the pairing interaction [112-115, 124], which are ordinarily neglected as small effects limitrophe to accuracy of the theory. As we shall show these four kinds of effects can give new qualitative results probably of the same order, thus they should be considered jointly. The developed formalismis kept in the spirit of the Landau quasiparticles. It constitutes consistent reconstruction of the existing microscopic theories [22, 79, 87, 106] in the presence of strong and constant external magnetic field. Therefore we concentrate only on some essential problems which lead to new results and we omit the whole formal discussion of the applied theory which was precisely described in [J, 22, 35 , 79 , 82 , 86, 106] . In order to achieve the intended purpose we apply the self-consistent renormalizing procedure in which superfluid properties of the system are considered also in the presence of the strong magnetic field. The reconstructed quasiparticles conserve general properties of initial particles, though some characteristic parameters can 



be renormalized. The quesiparticles are still the fermions gifted an effective mass, which conserve the charge. The interaction of the magnetic moment of a charged quasiparticle with the magnetic field differs from the corresponding quantity of a free quasiparticle since the former interaction is realized through the magnetic moment and the motion of the electric charges. Hence in this case, Bohr's magneton must be replaced by its effective value [100]. The individual problem is connected with microscopic estimation of modified parameters. However, complexity of processes occurring in real many-body systems does not allow us to compute them precisely.The developed theory is employed twofold. We investigate dynamic properties of the superconducting BOS and superfluid BW systems applying the linear response approach when the external additional magnetic field is excluded. The theory after strong magnetic field is included becomes the non-linear theory and is applied to investigate statis systems only. With small modifications it is adapted to the superfluid ^He and almost isotropic superconductors. It can also succeed in ^He-^He mixtures with s-wave-peiring [112].The principal purpose of this monograph is to show the significance of the Fermi liquid interaction in the superconducting end superfluid systems which ere considered with in the frame of the theory based on Landau quasiparticle concept. We study the qualitative effects due to the Fermi liquid interaction with a special solicitude and prove that they are determined by certain values of the Landau parameters. It is indicated moreover, that fundamental properties of the system must be independent of the applied formalism end must be assigned univocally before being revealed in some suitable conditions. We do not introduce any additional parameters and confine ourselves to the ones existing in the initial theories. We consistently develop the Green function formalism making it coherent within all known limits. We also demonstrate that the reconstructed formalism creates great chances to reveal the effects which can occur in the superconducting or superfluid systems if some additional conditions are fulfilled. The suitable remarks are given in comments © . The applied Green function formalism required the development of special mathematical methods which are inserted in the last part of this monograph. We consider only volume properties of the systems and all the presented calculations refer to the unit volume.



Part Ore
GREEN FUNCTION FORMALISM

I. Forms and properties of Green functions
1. Remarks on applicability of the theoryThe developed formalism is founded on the concept of the Landau quasiparticles which express the low-lying excitations of the system with a small energy if compared with the Fermi energy. Therefore all the parameters appearing in the theory and expressed .in the energy scale must be small also with respect to e?. However, the inequalities T «£p and A «£y are always fulfilled in the superconducting and superfluid systems and we only have to demand the total magnetic field expressed in the energy scale to fulfil the relation h<ce^. As to the linear response of the system it can be considered correctly if the slow-varying field fulfils the conditions k«Py and w«eF where k is the wave vector expressing the inhomogeneity of the external perturbation and w is the frequency of this perturbation. Within the frame of the applied formalism no extra relations among the parameters A , T, h, kv and w are required. However, if h or w is of order of A then the Cooper pairs are destroyed [44, 45, 50-52], whereas in the Pippard limit the Cooper phenomenon is not observed [22, 39].

2. General principles of the magnetic field inclusion [51]
In order to make the reconstructed formalism reliable, we begin our consideration eb ovo, i.e., from the Hamiltonian. It will not be quoted here in an explicit form. We assume, however, that it is a typical Hamiltonian adequate to the appropriate system and write down only the term which in such a Hamiltonian appears in the presence of the external magnetic field. That additional term hes the form" **8 S ap,«aP.PP,«,0where pB denotes Bohr's magneton, H is the external magnetic field and o1 are the Pauli matrices [66, 85]. The form (1) of the Hamiltonian allows us to derive directly the Fourier-transform of the one-particle Green function and to obtain the free-particle Green function in the form



G^tp.Hg) ■ [C® " Ep)°° * ioSgnecr0!”1 (2)where p is four-vector energy e and momentum p, is the particle energy (e^ ■ (|£| - pQ)v), a° is the unit matrix (2 x 2). Using the Dyson equation we find the Green function (only its singular part) of the interaction system in the formG(p,h) = z[( e - 5)o° + ho + iO+sgne a0]-1 (3)where ar0 \ m on \P0 3 l£l / £ is the free quasi-particle energy measured from the Fermi level.
is the discontinuity of the particle density on the Fermi surface1 9£i\

3u“ —I- )39H^ ;is the total magnetic field obtained in the linear approximation (the normal state). All the derivatives are taken on the Fermi surface and for H = 0. The mess operator is of the formZ(p,H) = 2° (p,H2)a° +E1, (p2,g) a1.We also assume that in the superconducting or superfluid system the total magnetic field can be of the energy-gap order and that it fulfils then the relation 0< h < h_ where A h «ew. Moreover, we can suspect that the external and total magnetic fields are of the same order, according to which H is the strong magnetic field. The function G(p, h) oan be transformed into a more convenient form(e -5)a°-ho G(p,h) = Z —----- ---------(&-£+10 sgne) -h* (Mfrom which some retarded and advanced Green functions or the appropriate Matsubara Green functions can be easily obtained. Moreover, from now on the parameter Z defining the discontinuity of the particle density on the Fermi surface will be ignored in all expressions, since it oan always be eliminated from the final results in the systematic manner (of. [51, 53, 86]). Hence, we can put it equal to one in the above expressions.



3. General properties of superconducting and superfluid systems [51]Although general properties of the normal and anomalous one-particleGreen functions of superconducting and superfluid systems can be considered jointly if the vector potential is omitted, the inclusion of strong magnetic field requires a particularly careful treatment. To this end we distinguish the following types of the Green functions: G is a ■“Hnormal Green function, i.e., the Green function which is renormalized by the Fermi liquid effects in a normal state, G$ is a quasi-normal Green function, i.e., the like normal Green function which, however, is renormalized by the Fermi liquid effects appearing in the superconducting (superfluid) state, and G g is the superconducting (superfluid) normal Green function. (Such differentiation of the Green functions and G^ is not obligatory if a magnetic field. is excluded). Moreover F^ and Fg are the anomalous Green functions connected with creation andanihilation of the quasi-particle pairs, respectively, and Ag areA1the related matrices being the irreducible ^arts of the appropriate Dyson equations (of. [3, 22, 79, 86]). They have the following symmetry properties referred to time inversionF^-F* and - -A* . (1)Using the above symbols the superconducting (superfluid) Dyson equations can be written in the following two quite equivalent formsGg = G + GĄ^, Ga = F^G + G,Li = G^Gg, F^ = G^G , (2)* 2 = GĄ2Gs, Fg = GsAglwhere symbol over the normal (quasi-normal) Green function G denotes time inversion. All Green functions are complex matrices which in the case of the function G is due to the spin dependence. That is why the time inverse operation induces the synchronous conversion of signs of the following quantities:£ , £, h,a and the function G receives the form (e+5)o°+h<JG(p) - ------------------ ----------------- . (3)(e+5+i0+sgne )2-h2Appylying the typical procedure to Eqs. (2) we can express the function Gg in two equivalent forms



Gs - [(GG)"1 - G'1 ^2^1 U)and Gs = I"1 [(GG)-1 - A2 ZLĄ^J-1 , (5) which depend only on the well-known functions G and two complex matrices A^ and .Ag. Using the obtained results, the functions and Fg can be performed in the analogous way. In order to make our general considers, tions complete we introduce the gap equation in two quite equivalent forms- A2 “ ^2' or -1 =^1- ' <6)where V is the pairing interaction which can be supplemented by the dipole- -dipole interaction. We define some extra symbols, namelyAg = A then Ag A^ = -AA + , (7) and a Ap A^ A.F = F then Ł - "T1 F • (8)— d A A —Although the above formalism is common for superconducting and superfluid systems, the particular considerations can be continued only in the individual way. Nevertheless, the obtained results are coherent and relatively simple. Moreover, the tangible difference between the normal and quasi-normal Green functions becomes subsequently obvious.
4. The normal and anomalous Green functions [51]a) The neutral BOS systemHereafter in order to make our calculations simpler we fix the coordinate system so that h = hz, and if possible we return to the general vectorial notation. Such a procedure is fully justified because the final results cannot depend on the coordinate system choice.We consider the standard BCS system (pure S-pairing) in presence of strong external magnetic field (A^tigH ). The matrix A can be taken in the formA - Ai®7 (l)Using Eqs. (3.1) and the desired commutation rules for Pauli matrices we getAG = ~GA -£[( e + £ )o° + hoz]-1 • 2haZA . (2)



Inserting Eq. (2) into Eą. (3.4) and applying Eq. (3.3) after some evaluations we obtain
Gs(p) - (e§ - eJ)"1^2 - E2)"1

x{[(e+ę)(e2-E2-h2) + 2ęh2] 9° - [(e+C)2-h2 + A2]}hg, , (3)
whereE+ = |E+h|, E2 = 52 + A2, e0 =e+iO+sgne (4)
and according to the introduced convention we replaced hoz by hj. In similar way, using Eqs. (3.2), (3.8) and (3), we findF(p) - -A(e2 - E2)"1(e2 - E2)"1x [(e2 - B2 + h2)o° - 2ehg]. (5)b) The superfluid systemIn order to consider in the possibly most general way the superfluid system with the pure P-pairing in the presence of a strong magnetic fieldjwe must choose the equilibrium state as the non-unitary state [10, 11, 85, 98, 99]. Then the order parameter can be written in the formA = A dqia^ (6)where the complex vector d is a linear function of the unit vector p, i.e., d^ = d^apa, and the real vector1 = id x d* (7)expresses the non-unitarity of the equilibrium state.We begin our consideration with computing the superfluid Green functions. Using Eqs. (3.3), (3.4) and (6) and the commutation rules for Pauli matrices we can find thatA G = GA - G [( e + 5 )a° + haz]-1 2hdz A ia^.Proceeding in the similar way as before, i.e., inserting Eq. (8) into Eq. (3.4) and taking into account Eq. (3.3), after the arduous and rather complicated evaluations we get the normal Green function in the form



GS(P) = (e^-E^^tE^-E2)"1

x {[(E+5)(e2-E2-h2) + 2$h2 - A2hl]o°- [(e2 - E2 - h2) + 2€( e + £ )]ha+ A^e+SJIg +(hd*)(da) + (hd) (d^ )]} (9)
where

E+ = [e2 + h2 + yTA^n^ihp^T^i^^ , (-10)e =-/e2?!2^ • 
and eQ = e + io+sgnE .Again, using Eqs. (3.2) and (9) we derive the anomalous Green function in the form

E(p) = - A(e2 - eJ)-1(e2 - E2)"1

x {-2ehda° + (e2 - E2 - h2)da + 2(dh)(hg)+ i [(A2! - 2Ch) X d] ‘a} (da)-1 , (11)—'1 where the term (da) is connected with the chosen form of notation.c) The charged superconducting systemThe problem of the charged superconductor in a strong magnetic field should be considered in connection with space-inhomogeneity of the system. The problem formulated in this way proves to be very complicated and it finds solution only in some specific limit, i.e., in the local limit or in the Pippard limit [55, 124] . Now we consider slightly inhomogeneous systems only (the local limit), for which we formulate two related approaches.1° The generalized Gorkov approach [54]In order to derive the explicit forms of the normal and anomalous Green function we have to solve the proper Gorkov equations [35, 57, 124]. While passing to the centre-of-mass coordinate system we first replace the coordinate r^ and r2 byr = r- r2 and R = (r^ + r2) (12) 



and next we perform the Toarlet transformation by r. The new representation is diagonal in momentum with in the local approximation limit, i.e., if we assume that the gradients of the quantities A , yg and h disappear and the functional dependence on R can be made implicit. In general case we must, however, include the space inhomogeneity of the system. This can be done e.g. by means of the perturbation method. The state constructed in this way is inhomogeneous and the fermion pairs possess the non-vanishing total momentum (of. [37, 80, 89, 124, 138J).In order to derive the normal and anomalous Green function we repeat the formalism developed in Section 3. Restricting ourselves to the superconducting systems only (pure S-pairing state) the basic equations for the normal and anomalous Green functions reduce to the formsG - G - G A y , —8 — — — — (13) 
y = IA 2Swhere we assume that the order parameter is of the form_A *« -iA«? . (14)Such an assumption allows us to eliminate the additional differentation, connected with creation and annihilation of the Cooper pairs, by puttingA = A^ » - = - A and I s £1 • (15)let us note that Eqs. (13} are equivalent to Gorkov's equations [57] and that they can be rewritten in the formG-1G + ĄF » 1 , (16)* Ą£s - 0where the quasi-normal Green function should be taken in the following form G > [(en - 5 - pt )a° + bo]-1 (17)and e0 “«+ 10+sqnc , 2 , , mvg5 “ , r°t ys = - — Hwhere v is superfluid velocity and X is the phase of the order parame- — S ter. We emphasize that the superconducting velocity is the gauge invar- 



lent due to its physical meaning in opposition to X and A. Let us note that now the function G should be identified with the quasi-norm- al Green function G. since the parameters v , x , h are connected with —q — s —the superconducting state i.a. by the Fermi liquid interaction and the electron-phonon interaction which is consistently omitted (of. [37, 80, 89, 124, 138]). Moreover, we assume that now the symbol over the quasi-normal Green function denotes the time inversion of the microscopic variables only, then we have (of. [22, 79])
£ = [(- e0 pvs)a° + h] -1 (19)

The assumed form of the Green function G allows us to eliminate the phase dependence from all the other functions Gg, F and A in Eqs. (13) and (16) which become the real matrix functions. Hereafter we again assume that the external magnetic field is chosen along z axis,whereas the direction of the superfluid velocity is quite arbitrary. How applying the previous methods we can derive the normal and anomalous Green functions. Their forms can be obtained from Eqs. (3) and (5) by the following repieacemente----- _pys (20)
which also results from the forms of Eqs. (13) and (16). Putting v = 0 “S we will restrict ourselves to the paramagnetic effects.© The anomalous Green function obtained in the generalized Gorkov approach combined with the gap equation allow us to notice that the presence of the external magnetic field can lead to the appearance of the triplet state Cooper’s pairs if the pairing interaction contains also the first harmonic responsible for the creation of triplet state pair. However, in such a situation the equilibrium state should be a mixed state composed of the pure 3- and P-pairing states*

2° The paramagnetic approach
In competition to the Gorkov-type approaches [31, 37, 54, 57, 62, 80, 89, 132, 138] we formulate also the accessory independent approach based on the assumptions of the LHC theory [50, 55]. This approach is also in opposition to the consideration of the paramagnetic field in superconductors presented in [18, 19] (cf. [138]).



Let us specify main assumptions of the paramagnetic approach. It is assumed namely that the total influence of the magnetic field on the system can be expressed by means of paramagnetic terms only and the omitted interaction of the magnetic field (vector potential) with the quasiparticle charge can be compensated by the renormalisation of Bohr’s magneton. Hence, the conformable equations of the paramagnetic theory keep their forms and only Bohr’s magneton is replaced by the effective Bohr’s magneton.The constructed formalism is set in the centre-of-mass coordinate system. It also can be applied to quite homogeneous systems in extremely broad range [50]. Moreover, similary as before, if considerations are carried on in the local limit, the suitable quantities become the functions of the centre-of-mass co-ordinate R creating the inhomogeneous state (cf. [37]). Prom now on all the calculations will be carried on in the centre-of-mass coordinate system. Hence, some quantities must be replaced by their reduced forms.
5. Fundamental quantities of the formalism [51, 54]

Let us define now the fundamental quantities characterizing the superconducting or superfluid system in the strong magnetic field. Trying to stick to the Landau quasiparticle concept we should consider only the quasiparticles localized near the Fermi surface. Due to such an assumption the number of quasiparticles taken into account is of the order of v(0) A(0) which is in opposition to the approaches based on the Gorkov equations [ 5*J . However, according to Feynman's view [J6] the numbers of quasiparticles are solely the auxiliary quantities which cannot be treated too literally. Therefore we permit of another approach.a) The paramagnetic approachThe total number of quasiparticles and average paramagnetic field can be derived from the following equations
W « T n - 2 e tra° Ss(5)<£IPI>PO

__ __ 6 n

*2 2 * a ‘



_ ___ ___ 1C, uhp “ zvnrrirr lim 2 2 e (2)B 6-°+ % 2Hence, the paramagnetic magnetization is expressed as follows“p - X$Hp- (3)The gap equation, according to (3*6), can be written in the formA - - lim 26 “ 5(£^ V F (p) (4)6-*-0+ e pH *■where (A«?^ «e?) is a so-called cut-off parameter and it is identified with the Debye frequency for the superconducting systems.Equation (4) is common for both discussed approaches.b) The generalized Gorkov approachIn the Gorkov-type approach the number of quasiparticles is defined in the form ie 6N = T lim V V e a tr o° 'S (p) (5)6-^0 3
en £where the summation is extended over the deep region within the Fermi sphere, hence the density of states cannot be put constant. However, weneed not derive the value of the expression (5) since we assume

Atotal number of quasi-par tides N is constant and equal to jMoreover, the average current can be derived from the equationie 6j = T + 2 2 ^£+mTs^e a &^° En £
that v(0) theEF"

(6)
and the paramagnetic magnetization keeps its previous form. Let us complete the above equations with the expression allowing us to evaluate the thermodynamic potential difference of the superconducting (superfluid) state relative to the normal state. According to the formula given i.a. in [35] it is of the form AAQ = ( dA ( A)2 (-1-) (7)J 3A0where gi is the parameter of the pairing interaction and employing the 



gap equation; it can be expressed as a function of the energy gap A and a few fixed parameters: H, x , T, 5^.6. The quasipar tide interactionsIn the developed formalism we consider three types of the quasipar- ticle interactions, i.e., the Fermi liquid interaction, the pairing interaction and the dipole-dipole interaction. However, the latter one is a weak spin interaction, so it can modify only the triplet part of pairing interaction. Hence the full interaction in the particle-particle A channel V is formed from the pairing and dipole-dipole interactions and is of the form [43-*?] v - 1- - ~wy Sp £ (1)whereP1;j(p,p') = &i;i - 3(p± - P^XP-j - Pj )/|p " P'l2 •Other properties of the dipole-dipole interaction are discussed in detail in Section 32. The dimensionless pairing interaction has the form [22] $ s#1(i/)(id'J) + $ _ (o7ia)(0'ia7) (2)where the spin antisymmetric (singlet) and spin symmetric (triplet) pairing interactions are of the forms [22, 49] 
co= 2 (21+1)4 P1(^P# ) . (3)1=0and

CO= 2{2i+i)fi pi(pp') 1=0wheref?(” • <5)
and all r®(®^= 0 for odd (even) 1, respectively, then the suitable f_^a(s)^o according to the Pauli exclusion principle. Therefore, below we omit the superscripts. Moreover, the dimensionless parameters f^ are often represented in the form= v(0)S1. (6)



The interaction in the particle-hole channel expresses the Fermi liquid interaction and can be performed in the form [22]A 0 ,0 >0 = Ą a a + 0 (7)where its spin direct and spin exchange parts are of the forms
oo

A = 2 <21+1) al P1<PP')» (8)1=0
OOB = 2 (21+1) bx Px(pr )» (9)1=0and aL and b^ are the Landau parameters denoted also by F® and F® or by A^ and then we haveF® = Ax = (21+1) ax and F® = B^ = (21+1) b^ (i0)Such specified quasiparticle interactions can be easily Introduced to the linear response theory and the pairing and dipole-dipole interactions to the gap equation. However, the problem of the Fermi liquid interaction inclusion to the static non-llneer theory requires an individual approach. We consider it below.7. The Fermi liquid interaction in the non-linear theory [51]In order to consider general properties of the Fermi liquid interaction inclusion to the theory containing the strong and constant magnetic field we construct the self-consistent approach.Using the Dyson equation we can write= ^-ISn'G;1 = G’1 - IGg (2)and eliminating G^ we obtain

G"-1 = G"1 - I(G„ - G ) (J)where we assume that within the frame of the applied formalism the mass operator £ can be performed in the form [35],= IG( > (4)and I is the irreducible part of the effective two-particle interaction. According to the Bethe-Salpeter equation we have



r“ = i +r“ (g2)“i , (5)then multiplying both sides of Eq. (3) byi ♦ r (s2)w . (6)after some transformations we obtaing"1 = a"1 - r“ (G - G ) + rw 6 (G”1 - G"1) (7)—q —n — — s —q — p —n — q ’ '' 1where we also include that (B) and (G2)“ - (G2)k = &p (9)and that 6 is equivalent to the four-dimension Dirac delta. The symbols w and k denote the appropriate limits. The dimensionless amplitude of the Fermi liquid interactions is of the formo = 2v(o)r . (io)The above consideration is carried on in relation to the full forms of the Green functions when the matrix notation is applied.From now on we can restrict ourselves to the singular parts ofGreen functions and assume the functions Gn and G^ in the forms:G^1 = [(e- 5 )o° + ho], (11)G’1 = [( g - & )a° +Xa].Let us note that (usual notation)T2 ’ Są1) = . (12)en £hence Eq. (7) reduces to the form(f - 5)0° +ia= ( e)o°+ hS +
£ tr[c°(G -G )]>-------^-<B£ ^fe-G )] <Bhg> -<BX£>v(0) * * v(0) 42 (where we separate the integration over spherical angles and after exploiting relations

5VW <B E2 tr(£Gq)>=<BX> (14)



and h = UgH - < BK> , (-15)for a normal system, we obtain:
«= c - 4“ > ,v0 3x = ^^E " gBvo ' <BSs>where4HT <A Z tr[o°(G - G )] > =<ASn > , & —S “'I s4M <BE2 tr(0Gs)> = -J-<Bms> , 

(16)
(17)

and N = <n> is a number of quasi-particles; M = <m>- a paramagnetic magnetization. It is easy to note that the obtained Eqs. (16) and (17) are also valid for the normal systems where6n = 4TIT £2 tr[?G(Gn - GjO))] (18)and M = h^h . (19)Moreover, Eq. (17) represents the development of the molecular field approximation and reduces to it if we put B = F®, whereas Eq. (16) after being rewritten in the form6g = 6e-----<A6n> (20)0can be used to obtain the following Word's identity3N _ Vo 
where we assume thatv06g = 6n and <A6n>= F®6N.
II. Basic equations and their principal properties in the theory withthe magnetic fieldThe developed formalism, especially the obtained forms of the Green functions, are the starting point to a coherent generalization of the LMC theory [22] in case when the external strong magnetic field is regarded. It is obvious that all the vertex equations keep their forms,



however, detailed calculations induce some complications connected with mutual transpositions of the Green and vertex functions which are the matrices. Consequently, each of the generalized L,M,N,0 kernels will have a few matrix forms, adequantely to the performed transpositions. Therefore, detailed considerations are usually carried under additional assumptions and for the select systems, e.g., for k = 0 (the NMR conditions) [83, 85, 93]• Moreover, renormalizing impact of the Fermi liquid interaction, especially on the strong total magnetic field, makes an important problem in the generalized IMG theory (being connected, e.g., with the Larmor frequency and the Knight shift, cf. [22, 63, 93, 104J) which cannot be appropriately constructed by means of the linear approximation. In Section 41 we give a precise generalization of the theory for the normal Fermi liquid. It illustrates the essence of the problem. At present a static case of the theory is developed for the neutral and charged Fermi systems with the pure S-pairingC^He-^He mixtures and superconductors) and for the neutral Fermi systems with the pure P-pairing for an arbitrary non-unitary state (superfluid ^He). We also assume that the systems under consideration can be slightly inhomo- geneo'us. The problem specified in this way constitutes non-linear development of the theory towards the strong magnetic field. The obtained results allow us to examine principal properties of the system under discussion. We also show that some assumptions taken in the spirit of the Landau quasiparticle concept lead to very interesting results. The formulated approach gives the possibility to include the particle-hole asymmetry. However, this effect is neglected until it delievers qualitatively new results. So we assume the full symmetry of a description and we restrict ourselves to the quasiparticles above the Fermi sphere.
8. Neutral BOS system [51]

We employ results of Sections 4 and 5. According to the accepted assumptions the pairing interaction is of the formV = - g*0 CDBefore we pass to the principal considerations, let us notice that since the partial derivatives of the expression have the following properties
ya— = sgn(E + h) ----- ,E



3E+ = sgn(E + h) , (3)3E+—= +sgn(E + h), (4)an arbitrary differentiable function f(x) must fulfil the following equations1 9f(E+) 1 8f(E+)“ ' BA = ~ ' aę " ’3f(E+) E af(E+)at“ = i ~ ' “al ” * {6)Now substituting the anomalous Green function into Eq. (5.4) and performing the appropriate integrations, the gap equation reduces to the formE+ 3E+ E_ 3E_ST * -aF + th 2? "ef’oIt is easy to notice that Eq. (7) can be rewritten in the more compact form €01 a r / E E_ \A =_^Tg0V(0)—j d€ In (ch^ ch^j . (8)-50

A = 4^0v (0) j dC (7)

Using Eq. (5) we obtain one more equivalent form
A = -5- g0V(0) A J (to + th . (9)

‘50The obtained equations allow us to find the relationship between the magnetic field, temperature and energy gap. As it may be noted the energy gap is an even function of the magnetic field. According to Eqs. (35.44) and (9) the magnetic field does not deform the energy gap at T = 0 as long as h<A . This is due to the fact that there are no free quasi-partides and the magnetic field does not interact with the Cooper pairs until it starts destroying them. That is why at T = 0 the weak and medium magnetic fields cannot cause ony effects in ECS system. Let us consider now the paramagnetic magnetization for the discussed system. We act in the similar way as before, but now we insert



the normąl Green function into Eq. (5.2) and after some integrations and transformations and using Eq. (4) we get
and can transform it again to the compact formE_ ch
where the last expression should be understood in the formal way, i.e.,

too + 3

On the other hand, using Eq. (16), we can rewrite (10) in the form

The obtained equations express the dependence of the paramagnetic magnetization on h in the strong-magnetic-field approach. Let us consider now the obtained results in some specified limit.1° The limit T = 0After applying Eqs. (35.14)-(35.16) the paramagnetic magnetization reduces to the formM = ~ e(h-A).
D U v

(14)According to the obtained result the paramagnetic magnetization appears only if h > A . Thus, in the case being discussed it must be investigated together with the gap equation (9) [50, 55].2° The medium h limitWe consider the magnetization at non-zero temperatures assuming that A > h. Applying some trigonometric rules we transform Eq. (13) to the form



which after the series expansion takes the form
M = UgV0T sh $ 2

J=0
ch"^+1^ -/ x^ + (A/t)2 . (16)

However, by applying (15), which turns out to be more convenient for our calculations, and computing the suitable derivatives we derive the paramagnetic magnetization up to the third order in h in the form
“ = Vo Vo <2Y0 - 3T«2) • (17)Taking into acoount the Fermi liquid interaction (Section 7) in linearapproximation we obtain the well-known expressions [82, 85]
v V n = --------

1+Vo
and X fa (18)

which combined with (17) give p 4
M = _Wo H ♦ fa . VJLi h3 = i+Vo 12 T* (19)

and can be employed in experimental investigations. We emphasize that the vector of the paramagnetic field is always parallel to the external magnetic field direction and no other additional direction is distinguished in the system. Thus the spin susceptibility tensor (xij=8Mi/aHj) is proportional to the Kronecker delta.In order to complete our considerations we enclose the following equation expressing the number of quasi-particles N (Eq. (51))
N = V

0 J
0

d5 1 - T iz 1X1 E+ E_oil 2? cil 2T (20)
from which we derive/ A+h A-h\ _N = vQTln \ch ST- ch SF" ) + voT21n (21as a function of A , T and h. Equation (20) together with Eq. (11) can be employed to define the quasiparticle distribution function and weobtained it in the form [50] (Fig. 1)

■ ip’ / E+h E-h\- (th + th 1 g E+hth 2T~ -th (22)



In most cases we consider it only for £ > 0.The results obtained above can be applied immediately to the charged systems in the paramagnetic approaoh.
9. Superconducting system - the generalized Gorkov approach [54]We employ the results contained in Sections 4 the anomalous Green function into (5.4) and making and 5. Substituing some transformationsthe gap equation reduces to the formd5E -1E + h - xp„v + th ----------------- 2-S th

E+h+xp v th -------5 + th E-h+xpQvg2T
E - h - xp.v ^0 s---------- 2T--------- (1)where the other integral expresses the averaging over spherical anglesand can be easily computed Then we obtainWD) E 0

chIn —ch
E+h+povg2T ~ UTK^p-v; 
—zr—

E-h+p v (2)ch 2TIt is easy to observe changing the sign of that the obtained h or v . Let us s espression is invariant whileconsider now the total numberof quasiparticles, the average current and the paramagnetic field. After substituting the normal Green function of the superconducting state andmaking appropriate transformations
1 +00

we obtain
-1j = e Nv

HP"

dx
eN v n—s1 dS g (5. x)

(*)
(5)

N = 4-

1
-h

-1where g+(^.x) (1 / E+h+xp v E-h+xp v+ th - 9-? + th1= $



and
E + h - xp v E - h - xp v---------- + tn -------------------------------Q—-2T - 2T (6)

0 s J-1 e+(5.x) (7)
I

1
can be identified with, the number of the normal (uncoupled) quasiparticles.In order to calculate the paramagnetic field and the number of the normal quasi-particles we have to notice that owing to the symmetry the parts of the integrals (5) and (7) contaning the term 5/evanish Hence we have

HP E+h+xp v th -----‘ th E-h+xp^2T-1
th ■2T

Xp_V_ 0 s E - h - xp v th-------ż~ -Q s (8)
^n dx th E + h + xp^

2T + th 2T-1E + th ----- 2T
xp v E - h - xp v- th -------żT 0- (9)

116 P* 1
E + h -

1
h -

E - h + xpnvs

where Hp is directed according to the external magnetic field. It is easy to verify that the obtained functions have the following symmetry propertiesH (h,v ) = - H (- h,v ) = H(h,-v) p' ' s' p * s' p's' (10)N_(h,v ) = N (-h,v ) =N (h,-v ) u s xi s aa aHence the paramagnetic fieldthe directions of tegral in Eq. (8) —s it and h, reduces
and the normal current cannot depend on respectively. After computing the first into the form

H = ------ ----- jP 2povs ch E + h + p^
ch

E - h - p v_ch ------- Q 5£ - h + p vch--------  0 30 E + h - p v 0 s■5T



Unfortunately, such procedure cannot be repeated directly for Eq. (9)and integration by ever, using Eq. (8) parts leads to divergent integral expressions. How -we can rewrite Eq. (9) in_ h+p v OS the form
dz z (th - th • (12)*n . ^p h*0 3 o 3 0 h“P0Vs

10. Superfluid systems with the P-wave-pairing (3He) [51]We employ Eqs. (4.9)-(4.11) and Section 5. The full interaction in the particle-particle channel iś taken in the form (cf. Sections 6, 40, 42) Vij ‘ ' ^C^+f^i/kn ’ ^a^in^jk + 6ik6jn)JMk- (l>Let us begin our investigation with the consideration of the possible partial derivatives of the expressions (4.10). They have the forms(25h - A2l)h-/(A2l-2&h)2 + 4A2|dh|2'
(25h. - A2! )?+ A2(dh*d. + Md*) ______ «_______ - —J-----------1—V(A21 - 25h)2+4A2|dh)21A2(1 x d) - 2i^(h x d) + 2Mh , —________ W-----  — .....J............ ......J

r~........................     iv (A21 - 2^y 2+4A2| dh|2and A 9E+ 8E+9A " d;> 8d* J

(2)
(3)
(4)
(5)

where the square root in the denominator can be performed in the formE2 - E2 = 2 y/(A2! - SSh2) + 4A2 I hd | 2 ' . (6)We also haveE+ - E2 - h2 = + | (E2 - E2) . (7)



Substituting the anomalous Green function into Eq. (5*4) and using aboveequations we derive the gap equation in the form
(8)

which can be also transformed into a more compact form
A2d{ / E+d€ In (ch ch

-ęo

sr))’ (9)
which is analogous to (8.8). Although the further considerations can be continued if the dipole forces are regarded, they are neglected to make our considerations more convenient end explicit. In such a case Eq. (9) reduces to the formo A 3 f° ( E* E- \ \A dia d ę In (ch^ ch^J), (10)1hence, using Eqs. (5) and (7), we obtain Ł 

ft / E E \ \A = 2 V0 S1T aT" \ J d £ In (°b 2T 2Tj / ' I11)
sand A2<1> = - iv^T^d” x -gj-J dę In (oh ch . (12)

’ -ęoEquation (11) is almost the same as Eq. (8.8) and can be used to derive the external-magnetic-field and temperature dependence of the energy gap, whereas Eq. (12) allows us to prove that the vector 1 is an odd function of the magnetic field h and it vanishes if h tends to zero. That conclusion is obtained automatically if we notice that the quasiparticle energy E is invariant during simultaneous alteration of the signs of magnetic field h and the non-unitary state vector 1.Let us pass now to another point of our considerations, i.e., to the derivation of the superfluid-system average magnetization. Inserting the derived form of the normal Green function into Eq. (5.2) and applying Eqs. (3), (6) and (7), after some algebra we obtain



+ ODJ d€v (5) In E+ 2? oh (13)
where the assumed form of the state density allows us to take into account all the effects which arise due to the particle-hole asymmetry. According to Eq. (12) the right-hand-side part of Eq. (13) depends on two macroscopic diredtions h and <1> and one microscopic direction d. Then, the total magnetization is determined by those directions and need not be parallel to the vector h. In spite of the full analogy in forms obtained for superconducting and superfluid systems the inner structure of Eq. (1J) is far more complicated than that of Eq. (8.11), and the former equation is investigated only for small values of h. We also precede them with the introduction of the following indicationE+f+(h) “ In oh . (14)then we have E+af+fh) th 3E±

aKp- ” 21“ * aK^ 'and (15)E+ E+a2f (h) th— a^. ch-2 — aE aE
X - = __ 2T . • X + 2T . X . Xahi ah^ ” 2T a^a^ 4T2and putting h « 0 we have1® = -/«2 + A2( Id|2 + |1|) ',

8E°1 ■ — = + 1. ,ahi E^a2E° 2-------- i = _ 5 Lt ahi 3hj 1 3 ,+EO[ ij- AŹ|1| (16)
where 1^/Iil) Is the unit vector along the 1 direction. Using Eqs. (15) and (16) the magnetization (13) in the linear approximation reduces to the form



where in order not to exceed the accuracy of the theory, we .also restrict ourselves to the first term of the expansion in |1|. The first term of magnetization depends linearly only on the vector 2, and according to the previous remarks it also depends lineary on h, hence the magnetization must vanish if the external magnetic field is excluded. Moreover, this term appears only if the particle-hole asymmetry is admitted. While deriving the other term we consequently neglect the particle-hole asymmetry. The presented results are obtained within the frame of the self-consistent formalism, where the magnetic field affects the equilibrium state by dipole-dipole interaction effects. From Eq. (18), applying (7.17), we can find the static spin susceptibility for an arbitrary state. For the states being discussed by Leggett [84] as the best ground-state oondidates when the dipole-dipole interaction is included, the following results are obtained (cf. [1, 39, 85, 127, 155, 149]).1° The isotropic-BW state [15]
d = -5- (- Px + tA? Py )2 + % + ^z^*Isl2 • 1. 1-0. hj - hi - I’W) •

‘ i V •hence
X^ = U2 v------ 2-------<0 , .2 Q------- ---------------- °ij •|d+b0)('l+b2Y0)+^(l+ltoY )(l+b )
2° The axial-ABM state [11, 12]



1 - °* rzj - \j •Bij * (Sij " 6iy&jy) + 6iy&JyTo,2 ' henceX, s U?v (6, - 6 6 ) + __ P >2 6 6.PB 0 |_T^' ij iy jy' + 1 +^0’2 iy jy3° The planar-21) state [7]A ■ ■/? ® x p* i—i2 “ “ p2)» 1 = °» rzj = % •
Bij ” ł(6ij + \z6jz) + i(6ij ■ $iz$jz^0,2 ’hence
\lj
4° The polar-1D state

(6 - 6 6 ) + ___ 1_— 6 6' ij iz jzJ 1 iz jz
a - VF^y. IJj2 “ 3$2, 1 - °. rzj = 6zj »

Bij “ ^ij “ $iy$jy) + $iy6jyYo»i > hencev = n^y 1 zfi _ 6 6 > + 6 6* ij HBO [_ 1+bQ ' ij iy jy' iy jyj (19)
It must be noticed that in the cases 2°-4° we have restricted ourselves to the molecular field approximation. However, taking into accountthe fact that the external magnetic field is chosen along the z-axis weshould concentrate on the x-component of the spin susceptibility ten- zzsors, which is derived exactly and. possesses the identical followingform

ZiZi

1 • bo
(20)

0

The presented results (19)-(20) differ from those obtained when the dipole -dipole interaction is neglected, because now the axes of the coordinate



system are rotated in a special way. It causes that the standard valueof the static spin susceptibility for the ID-state is given by ponent. Xy7-com-
The magnetization investigations can, of course, be executed up to an arbitrarily chosen order of h. The problem becomes simpler if we restrict ourselves to the unitary states (1 = 0). Then, the quasi-par tide energy reduces to the form [52]
B± - |V2 + A2|dz|2'± h>2+ A2<ldl2 - iazi2>P/2 (21 )and E+(h) = E_(-h).It allows us to state that the integrands in Eqs. (9), (11) and (13) become the even functions of the magnetic field. The obtained form of the magnetization makes possible the investigations of the nonlinear magnetization of thetsuperfluid Fermi liquids for arbitrary equlibrium- -state systems. The number of quasi-par tides N, which is the last point of our considerations, can be expressed in the form analogous to Eq. (8.20) if we replace the quasi-par tide energy according to (4.10) and keep the average over spherical angles. Then after some calculations we get N = vQT /in (ch ch n+ Vq T21n2 (22)whereA+ = ^A2|d ]2 + h2 + A|/a212 + *|hd|2J

The obtained result (22), identically as for (8.21) under assumption that the number of quasi-particles participating in superconductivity or superfluidity is constant and independent of temperature in the absence of magnetic field, allows us to formulate the following relationAq <|d|> = 2T ch / + T21n 2 (23)where = A(t = 0) and |d | =1 for BOS state. Hence, for isotropicA 0states energy gap aś a function of temperature is derived in the form
A = 2T In ' A - T21n2 / A - T21n2 'exp ----------------- + y exp --------1which in the limit cases reduces to the forms



‘ i/1 - t; lr To • T<<To <«!

•°a . Ao△ = A- - 2Te "T” if T«T (26)u cwhere we also employed the relationA_ = T 2 In 2, (27)u cwhich can be obtained from Eq. (24) by patting T = Tc> and A = 0. Let us remark that the above relation is in good conformity with the experimental data obtained, e.g., for gallium. Obviously, our assumption is very elementary, the obtained results show however the proper trends of the system being discussed. Moreover, taking into account that E^ =(2n + 1)IIT we note that the Fermi liquid interaction can renormalize the temperature and the new effective temperature is of the form= kTex (28)where Tex denotes the real temperature of the system. The coefficient k is connected with the Fermi liquid interaction and expresses the individual properties of the system. Substituting (28) into (27) we find it in the form
ł - —7 > yTex 2 In 2 c which allows us to define its value by means of the experimental data. Comparing the obtained results with the BCS-theory results we state a good agreement between the two forms of the energy gap in phase transition vicinity (Eq. 25) if the temperature is replaced by effective temperature. The coefficient k derived from Eq. (28) is equal to 1.27.



Part Two
FERMI SYSTEMS IN STRONG MAGNETIC FIELDS

III. Superconductors
11. Preliminary remarksThe subject of our primary interests is connected with the type-II superconductors. We can determine the basic properties of the superconducting systems by using some characteristic quantities, i.e., the Ginzburg-Landau parameter x and the penetration depth X or the coherence distance 5$. Moreover, we identify the value of the critical magnetic field for which the energy gap (superconductivity) vanishes with Hq2 and we apply some results of the Ginzburg-Landau theory. Then we have [35, 38, 92, 124, 129 1300H 2 = Ho /2 * , (1)cX = ( -----2-------) 1/2 , 50 - » (2)\4nNge2 /and sinceT(T, H) ~ A(T, H) ~ Ns , (?)we can write

r , i2 „[iw] ‘where the factor i) should be of the order unity. Moreover, we haveHC(T) = Hc(0) [l - (-^-)2 ] (5)
and H (0) = V4wv (0)' A(0). (6)cSince for type-II superconductors the relationH 2 > Hc implies x>l/i/2’ , (7) 



then the latest relation can he exploited to settle the type of superconductivity in case the value of the Ginzburg-Landau parameter x is known. The quantities x and H can be always derived within the frame sof the formulated approaches. Then, by applying (2) the penetration depth X and the coherence distance 5C can also be found. let us note that Eq. (4) can be used to test the correctness of every formalism.In the'developed approaches not all intermediate phenomena, such as the electron-phonon interactions and electromagnetic interactions connected with the motion of the charged fermions, which lead to the Cooper's pair creation are taken into account. We assume only that the considered quasiparticles are coupled in the singlet spin state. However the superconductivity is the collective phenomenon where the moving electrons are locked into a phase-coherent state. Some 6f the left out interactions can also cause the renormalization of the fundamental magnitudes expressing the properties of Cooper's pairs. Therefore considering the paramagnetic model we assume that the ignored effects renormalize the value of Bohr’s magneton in case of quasiparticles coupled in Cooper’s pairs. This assumption is quite justified on the grounds of the Ginzburg-Landau theory, thus - based on the evaluation of the free energy - we find the following relation
^B^B 1

7 (8)
where X^ (= - 1/4%) is the diamagnetic susceptibility of an ideal superconductor in the Meissner state and is the paramagnetic susceptibility of the normal Fermi liquid (cf. [50]).Let us note that the introduced assumption is consistent with theory of the normal Fermi liquid and that the approach to the superconducting state from the normal phase is well-defined in the phase transition point (of. [35, 62, 92, 124]).



12. A general outline of the paramagnetic approach [55]The present formalism allows us to consider the phenomenon of superconductivity in the interior of the system volume without defining the system surface. The total magnetic field is introduced to the calculations by means of the paramagnetic terms. The interaction of the magnetic field with electric-charged quasiparticles is compensated by the renormalization of Bohr's magneton. Let us now specify the principal ideas of the paramagnetic theory. The paramagnetic theory refers to the type-II superconductors in the mixed state. The quasiparticles under consideration are situated nearby the Fermi surface. We assume that there exists a full particle-hole symmetry in the system. It allows us to restrict our considerations to the quasiparticles above the Fermi surface. In order to discuss the achievements of the paramagnetic theory we restrict ourselves to the homogeneous and zero-temperature case. The principal result which permits us to construct the paramagnetic theory is the equation of the internal paramagnetic field (of. Eq. (8.14))
’("t'A) (1)

This field is generated by discoupled and polarized quasiparticles which appear in the vicinity of the Fermi surface in the strong magnetic field (H > H). Such an assumption allows us to explain the process of pair destruction as follows. Cooper's pair stops to exist when the strong magnetic field flips the spin of one quasiparticle and both quesiperti- cles have the same spins directed according- to the magnetic field. Hence the paramagnetic field appears. Let us note that the number of discoupled (normal) quasi-par tides is proportional to the paramagnetic field, thus we have= 2v(0)n* Hp = 2 v(O).mp (2)where m is the paramagnetic field expressed in the energy scale. The distribution function of quasiparticles in the superconducting state has the form (Fig. 1)
£
E 151 > mPif IS I < mp



Fig, 1. The distribution function of quasiparticles with spin "up" n^^ and "down” n_^, in the presence of the strong magnetic field for the type-II superconductors at T = 0. a) H < Hc1» the Meissner state, all quasiparticles are coupled in Cooper's pairs; b) and c), H <H <H„„, the mixed state, there exist only the quasiparticles with spin "up" near the Fermi surface; they cannot create Cooper's pairs; all other quasiparticles are still coupled; d) H > Hog, th® normal statewhere a = + 1 defines the position of the spin, i.e., "up" or "down", respectively, and E =1/£2 + A2 . Applying (3) we can state that the number of superfluid quasiperticles is given by the expression
Ns = vlO)^ - v<0) n* (Ht - Hp) (4)and the total number of quasiperticlesN = N_ + N S n (5)



is equivalent to the relationA(0) = + Hp) (6)which is in agreement with electrostatics laws [36] and is identical with the gap equation (14.2). Such properties of the developed formalism allow us to consider space-homogeneous as well as space-inhomogeneous in the local limit superconducting states, although the condition of inhomogeneity is the most important assumption of other approaches [2, 3, 17, 29, 30, 35, 88, 89, 124, 138]. The equations of the paramagnetic approach keep their forms in both limits, however, in the local limit, the suitable quantities A, H^, Hp and become slow-varying functions of the position R (or the vector of inhomogeneity q, cf. [37, 124]) and their average values have physical meaning, only. It will cause slight modification of results in comparison with some obtained in the homogeneous limit, i.e., there should appear an additional factor of the order of the unity connected with the averaging over configuration space. As it is shown below the space-homogeneous system constitutes an ideal type-II superconductor. Therefore to consider the real systems we must include the effects of inhomogeneity.
13. Equations of the paramagnetic theory [55]We apply Eqs. (7.15), (8.9) and (8.13). We emphasize once more that in the local limit the quantities Hg,, Hp and A are slow-varying functions of position R, whereas the quantities H, A(T), Up and the Fermi liquid interaction are always space-homogeneous. Therefore the above equations become the microscopic equations. It causes that now we cannot divide the both sides of the gap equation by A to eliminate it. The macroscopic quantities are obtained after averaging over configuration space hence the macroscopic gap equation is of the form<a2> =|v(0) g (a2 f (th + th ) (Dit J \ / 7 K0In order to be able to consider the magnetic properties of superconducting systems we have to give the definition of the diamagnetic magnetization. We assume that the total magnetic field is composed of the paramagnetic and diamagnetic fields. Hence, the microscopic diamagnetic field is of the formHE = HT - Hp (2)



and the average diamagnetic magnetization can be expressed in the form
<M <Hm >g (3)Let us remark that the diamagnetic magnetization is proportional to the number of superfluid quasiparticles defined by Eq. (12.4).

14. A space-homogeneous case [50]
The space—homogeneous case, when T = 0, makes it possible to solve the problem in the largest range. Employing the relation [3, 22, 35, 96, 124] 2wn1 = v(0)g0 In (1)we reduce Eq. (6) to the formp*(Hp + HT) = A(0). (2)Equations (13.5), (13.8) and (2) form the complete set of non-linear equations for which two qualitatively different types of solutions are possible (cf. Section 43). As the first one, we consider the Fieissner state, i.e., the case when the energy gap is constant and vanishes for the fixed value of the magnetic field H such that H < H ... The dependen- paramagnetic field on the external magnetic the following equationsH < H < H ., c C1 (3)H >H0,

H < Hc, (4)H >HC.
The diamagnetic magnetization is of the form

ce of the energy gap andfield can be describedA(0) by

and
A = 0

0___H_1+Fo

if
if
if

M = xj if H < Hc,
if H >H .cThe value of the external magnetic field Hc for which the energy gapvanishes can be derived from the Gibbs free energy evaluation and we get



Hc (6)Let us consider now the other case, when A tends to zero In the continuous way and it vanishes when H = ^C2’ since for H<Hc1 Keissner state is realized, we discuss below only the mixed state when Hc1 < H< H After some calculations we obtain the following functions 
Cl - H‘P ~ Fa — 10A2 = A2(0) *0 * 1

Fo " 1
1

where the critical magnetic fields have the forms
H - A(O)(1 + Fa)and H - = ---------------- — 02

(7)
(8)
(9)

Since the type-II superconductivity is realized when Hc1 < Ho2, we obtain the following conditionFa > 1 .0Let us assume now that for an ideal superconductor we can write
and Hc = -/4w v(0)' A(0).Then from Eqs. (9) we get
and 1X2 -/2n v(0)‘Note that according to the obtained relations we have Hc2 = 2A(0) x2.

(10)
(11)
(12)
(13)
(14)

Applying Eqs. (2), (7), (8) and (13.2) w& obtain (cf. [17])



r A 12 2(H 2 - H)hm - ItwJ Hd = -ya".;and hence inserting (13) we have (Fig.2) (16)
Hc2 “ H (17)

In order to calculate the Gibbs free energy difference we employ JSqs. (5.7) and (1), (2) where Hy + Hp as a function of A and H can be derived from the following relationH*(Ht + Hp) = 2p + qA^
where Hb hP = -----

*0 + ■

M’ g (Hq, + Hp)
fq ~ 1Fq + 1 ’

(18)
q

After some calculations we obtain-p)2and hence 1 ^c2 ~ ! (Hc2-H)2△ G - — - — p •4 it *o 1 8 11 2x - 1
(19)
(20)

Now we state that AG is always negative if F$>1( x > 1/ V21) and H<Hcp and AG = 0 if H = Hc2. For H = Hc1 the Gibbs free energy difference reduces to the formAG - -------— (2x2 - 1 ) 8 X (21)and it tends to zero if x —— 1 /V21. Moreover, we have= - K. (22)The same result (20) can be also obtained in the typical way. ThenH2 f H
' 8T - ) K dH “ - 8T <Hc ' Hc?- f M (2^° Hc1where we replace



i- v(0)A2(0) H2 by “5V •Note that if
AG(HC1)

we put
1

= ~ &n

H = Hc1 we get the relation
02 w2‘ 01 (24)which can be employed to derive H . when AG is obtained by means of the C I Qformula (5.7). Now, of course, = Hcp/2k . The same problem can be considered also in dependence on the magnetic induction B. Then, after applying the following relationH - B = Hj - Hpin analogy to the previous results, we obtain (of. [17])

A2 = A2(0) (l
% =

AF =
and if BAF ,

2(Hcg - B> „ Ho2 - B ,F® + 1 -20_ 1 £%2_£_^ = _ 1 2£2_l22!_4 it F® + 1 8 it 2h2tends to zero Eq. (29) reduces to the form
8 it

(25)
(26)
(27)
(28)
(29)
(30)

Moreover, the following relations are fulfilled 3AF ~aE
M dB

and AG = AF + BitM2.

(31)
(32)
(33)It is worth reminding that the obtained results concern the mixed state 



only when Hq1 < H < Hog« Therefore, now AG as well as AF vanish when H or B achieve their critical values = B„„. Moreover, we state the full consistence of the obtained results. However, the Helmholtz free energy difference does not imposes any restrictions on the Ginzburg-Landau parameter, therefore it possesses small practical meaning. In this way the problem of when the particular states are realized is solved univocally. The state with the energy gap existing for the magnetic fields H > H is more stable than the one with the vanishing energy gap, because its Gibbs free energy is lower. Such a state can only be realized when the inequality (10) is fulfilled, since in the opposite case this more preferable mixed state is forbidden.
15. A space-inhomogeneous case - the local limit [55]a) The zero-temperature limitIn order to consider a real superconductor we must take into account the inhomogeneity of a system. We again assume that the energy gap is a continuous and decreasing function of the magnetic field which vanish in the whole volume coincidently when H = H__. Thus, all other quantities become the space-homogeneous, hence the local limit approximation is well-defined at least in the vicinity of the point H o. Thereto- re we can treat the effects of inhomogeneity as a small perturbation of the homogeneous state and apply the perturbation method. Then we can write + Hp) = p(l + rVi - e') (1)wherer = ,1 - hand

A is given by Eq. (14.8) and the energy gap A$ has the same properties as the wave function of Cooper’s pair. Note that since h fulfils the condition 0 < h <1, hence 0 < s <1.Employing Eqs. (8.9), (8.13), (13.2), (14.18 - 19) we can writeAR(uB) (Hr + Hp) (2)R ’



AG v (0) q AB
2_ ggdip + hp)_ R (3)and, moreover, <B>R, ^^T^R' r can be found from the relations<B> R = H -<Hm>r , (4)

B “ < + Hp + > R (5)
<HP> R = -^- <HT + Hp-HM>R (6)In order to derive the above quantities we have to solve the gap equate the form

0. (7)
order of the perturbation method we

(8)
(9)

•r p h . „ . ^0)1 r - 2x^ 02 2*where Y and Z are polynomials and have the formsY = i + -J- hOj + 8h2a3 + h2a2 - h2a4,
Z = 1 + ha5 + 4 h2a3 + -2- h2o2 - h2cr4‘

tion 1) which now can ba reducedIn - , ^10)-------  \ hB (1^ + Hp) / RAfter some obtain

△G

calculations in the third
R

18 K
Hc2 - H y P2(2x2 - 1)<Ho2 - H>2 ,---------3------ ---- Z. 32(2x2 - 1)H H _ - H 02 y

After applying Section 33, we state that on > 0 and >1 and the



equalities- are attained for the homogeneous system only. It is easy to verify that the following condition is satisfiedSAG  = -<M >B (n) 9H--------------- £and hence the polynomials Y and Z must fulfil the relation
1 9ZY = Z + S- h ------- . (-12)* ShWe cannot derive the factors in the frame of the presented approach. However, employing the results of Abrikosov’s theory [2] with respect to the strongly localized Cooper's pairs we obtainn-1

where pg derived for the triangular or square lattice is equal to, respectively, (of. [17J)5a- 1.1596, 1.1805. (14)Employing the above results and Eq. (14.24) we can derive H as afunction X. In Figure 4 there is presented the function ę where
5(x) - 2x2 ff21 • (15)o2Analysing this function we state that ^(l/ -1/2’) = 1 and that for h^0.8 it can be approximated by the linear function of the following form
ę (x) = Ax + B wherea. 2p., .

so = 0.1975m + 1.0319, r « 0.2709m + 1.0138.

(16)

(17)
r _ 1 -1966 ’ P2

The obtained interpolations give correct results only for the medium values of x when (18)



Fig. 2. The diamagnetic fields and Gibbs free energy differences of the ideal type-II superconductorsIn order to illustrate the obtained results we give some examples of the diamagnetic fields and Gibbs free energies defined for a few fixed values of x. In Figure 2 the diamagnetic fields and Gibbs free energy differences of ideal type-II superconductors are presented for xx = 1, x — 1.25 and x = 2. The case x = 1/ yT constitutes the limit case of type-II superconductors. Note that the graphs of the diamagnetic fields and Gibbs free energy differences constructed for the Meissner and mixed states intersect at the same points H„. = H„/ -/21 x. It causes that the diamagnetic field is a continuous function of the external



Fig. 3. The diamagnetic fields and Gibbs free energy differences of the

magnetic field. It is also a linear function in the mixed state. In Figure 3 the diamagnetic fields and Gibbs free energy differences of real (i.e., inhomogeneous in the mixed state) type-II superconductors are presented for x = 1, x = 1.25, x = 2. The limit cases x = 1/V21 co- inioide. The diamagnetic field in the mixed state is no longer a linear function of the external magnetic field. However, the flexion up of the 



curve is almost invisible in scale of the figure since such curve lies close to the straight line obtained in the homogeneous case in the whole range. Analysing the graphs of the Gibbs free energy differences in the Meissner and mixed states we notice that the curves intersect at the point H>Ho/ V2'x which can be identified with H^ . (Note that the mixed state cannot appear for H<H whereas the Meissner stateccan be realized exclusively). It causes that the phase transition from the Meissner state to the mixed state should be of the first order as it is shown in the graphs. The influence of temperature will cause the softening of the diamagnetic field leap, which is observed experimentally.In Figure 4 we present the function £(x) for the triangular lattice. In the homogeneous case (x) = 1. Now gfl/V?) = 1 and for about h 5:0.8 it can be approximated with the linear function according to Eq. (17).b) The Ginzburg-Landau limitIn the presented paramagnetic theory we still consider the quasiparticles concentrated near the Fermi surface. Their total number is almost constant within the whole interval of temperatures discussed. At temperature increasing from zero to Tq there appear some uncoupled quasiparticles in the superconducting system. Thereby the external magnetic field can infiltrate the system. The paramagnetic magnetization appears at the weak magnetic fields [51]• However, this phenomenon does not destroy Cooper’s pairs until H<Hc or H . The number of the coupled quasi- partides is fixed by the square of the wave function of Cooper’s so it pis proportional to the energy gap in the square, i.e., Ng ~ A . The energy gep is a slow-decreasing function of temperature at a large range of temperatures and it tends rapidly to zero in the vicinity of TQ thereby the number of the superfluid quasiparticles substantially decreases. In this region (if the superconductivity is expected to exist) the quantities A and Ug Up become small in comparison with To« We however assume that the critical total magnetic field (expressed in energy scale) divided by T becomes a small quantity of second order, i.e., (cf. c[35] and Section 21)
UB ^02^^ Fa(T) A(T)T (19)Therefore, we have to treat the total magnetic field as a perturbing term in the temperature-dependent gap equation and hence the effects of inhomogeneity should be of the same order. Let us consider now the paramagnetic field and gap equation. After expanding the integrands in a power series the above equations reduce to the forms (cf. Section 39)



HP 7ę(3)1-------5—?4n2 T2 A2 (20)TAin —m—C 7g(3) 8n293ę(5)128 % T + 8A2( m £)2H§ ] 635 c(7)1024 it6 T6 A6 (21 )
A

where we restrict ourselves to the sixth order terms of a/T (UgHp ~(A/T)2) in the gap equation (cf. [95, 102]). We also give Eq. (7.15)which nów reduces to the formH K0 Hc2 A2Ht = —-----  + a° % ----- 2---------2 (221 F® + 1 (F® + 1 )2 n2 4 T2 
where we put the critical values of the magnetic field in order to keep the assumed accuracy of calculations. According to Eq. (19) we cannot assume that A vanishes for (of. [92]). However, we can assume that Eq. (21) becomes an identity if we put H = H^lT).Comparing the terms of the same order in Eq. (21) we obtain
and

7 C (3)8it2 T2 o A2 (T) (23)
7 CO) , ..2 „2 93 CO)^2 ^Tc2 = 128 k4 t4c c A4(T) (24)

where we omit other insignificant relations. Taking into consideration Eqs. (22) and (23) from Eq. (24) we get(cf. [95, 120, 138])Ho2(T) = a2-/THo(0) (1 - -r-p (25)
where number factor is= n/iś6^r = 1>015 7ę(3) V 7ę(3) (26)and could be identified with the unity, keeping the accuracy of the developed theory. We can also take into account that in the temperature regime under consideration we have [35]



H0(T) = Ho(0) 2 (l - -4) = Ho(°) 1 “ (4;)
henceH _(T) = ajTxH (T)

Gand, moreover,
\ d T / T = - 17.92 xVv(O)' ,

(27)
(28)
(29)

The presented method allows us to avoid the introduction of the additional parameters (relaxation ratios) and can be applied also for pure systems (of. [88, 138]). Employing the above results we can consider the dependence of the system on the magnetic field when H is close to Hog. Note that according to (22) appearing effects are of the fourth order. Applying Eq. (20) we find the following formula of the diamagnetic field 7 C (3) Ho2 A24x2 T2 F® + 1 (30)
Substituting Equation (22) into Eq. (21) and taking into account Eqs. (23) and (24) and remarks’given above we get the following equationHc2 ” H = 0 2 <^>8y® _ „ 9^21 (f® + d + , ■ K5LW_____ (y® +0 98 c2(3) 0 2604C(3)C(5) 0 (3D
and hence we obtain the diamagnetic magnetization in the form1 H _ - H<M> =-------- ------------ ------------------- . (52)- 4 it P2(2.06 x* - 1)In order to refine the obtained results we can introduce Maki's [88]notation, thenx^ = 1.013h, Kg = 1.016k. (33)Moreover, employing Eqs. (22) and (14.25) we find the average magnetic induction, paramagnetic field and total magnetic field in the forms<b>h = h - <Vh



<B>
H F0

* ^77 ‘Vn • <3610 0The obtained results reveal analogical properties in both discussed limits, though they differ in some details. However, if the diamagnetic magnetization is to be negative, additional conditions for the parameter h are obtained.© The presented formalism of superconductivity allows us to explain all processes taking place in the mixed state. The presented approach refers to the systems which can be described in the Fermi liquid terms. Thus one should restrict itself to the almost isotropic systems. However, in the static limit only F® parameter of the Fermi liquid interaction modifies the results. This parameter defines the mean value of spin exchange quasiparticle interaction and can be identified with the intraetomio exchange integral in Hubbard model [i40]. So, it can be correctly defined for the other systems with "non-spherical" Fermi surface. Moreover, the presented formalism can be easily developed by permitting the particle-hole asymmetry [101, 102] and by including a pure pairing interaction into isotropic systems in a more general form dependent on the momentum vector (not only its direction) (cf. [114] ). It can be elaborated according to the prescription given in [124].
16. The generalized Gorkov approach [54]The presented formalism constitutes the generalization of some other approaches when the Fermi liquid interaction is included. Moreover, we assume now that the paramagnetic and orbital terms can be considered as quantities of the same order (cf. [37, 5*, 80, 95]).The results of Section 9 have been employed here. We complete the above equations with the Feimi liquid interactions effects. Applying the formalism developed in Section 7 assuming the quasi-normal Green function in the form (4.17) we find the suitable relations in the form 

Ht =where the
3-fiH - Fo Kpquantitiesliquid interaction in

N,

and H^,, being now renormalized by Fermiopposition to Vg and H, appear effectively in all
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the expressions considered below. It is worth noticing that because of the inclusion of the Fermi liquid interaction in a quite general form all harmonics of the interaction give the renormalizing contribution to the form of the quasi-normal Green functions which results from the angular dependence of the zeroth Green function. Therefore, all higher Landau parameters should in fact be neglected in the presented considerations. Moreover in order to consider the obtained results in detail we restrict ourselves to two standard limits.a) The zero-temperature limitIn the zero-temperature limit, after applying the relations (35.14, 15), all integrals defined in Section 9 can be computed explicitly and from (9.2), (9.11) we obtainA = A(0) if P v + h < A , U s
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and Nn‘° lf P0V8 + h < △
2Nn N 6(U*)2H

----- 2 2P0 Ts ; h \2 / a y. + P0 Vs/ ” \0 Vs / 3/2
lf |P0T8-h|<4<P0V8+h’2Nn ecu’)2^ n—r~ + „22 “po vs 13

+ sgn (poTs " (1
h \2VT/h f' P0 Vs/

3/2

if A < IP0^s " h|* (5)In order to derive Ho2 we put A = 0, then we obtain1 I_____ — \ 1 fi + hI P0Ts " h | P° 8 ^poTs + P°s^=|eA(O),
Hp = BT , N = N nand assuming that

(6)(7)(8)
Vs = UB H x <9)after applying Eqs. (1) and (2) we obtain the following relations UpH Hpavs “ ----- 1—a 801(1 HT “ ----------a • <10)0 8 1 + | F® T 1 + F®Substituting them into (6) we find the critical magnetic field in the form i J<c - 1> - | (c + 1)hc2 - (1 + Fj) 1 - | (1 + |) (IDO (J I C I c

where
c = 1 + F? 0



In order to derive the Ginzburg-Landau parameter we assume that the generalized effective Bohr’s magneton can be written in the form (14.14). Then we obtain
?(c - 1) -4(c + 1)

x2 , _e_(l + . 1| (1 + 1) (12)where we introduced Maki's notation [38].Let us consider now the obtained expression in relation to the magnetic properties of the normal system. Assuming that the total magnetization is the sum of the Pauli paramagnetism and the landau diamagnetism we can specify the following cases.If the normal system reveals the strong diamagnetism, thenF® » 1 + j F® and Eq. (12) reduces to the form (Fig. 5a)= 4~-/ed + ^F®)’. (13)If the magnetic properties of the normal system are comparable with the free electron gas, then j F® ~ F® and Eq. (12) reduces to the form 
and if the normal system shows the strong paramagnetism, or if there exist heavy fermions in the system, then y F® » 1 + F® and Eq. (12) reduces to the form

xi =(d)The latest result is identical with the results achieved in Sections 14 and 15, thus the approaches are entirely consistent for heavy fermions system (cf. [89, 123, 138]).b) The Ginzburg-Landau limit
In order to investigate the discussed system in the region nearby Tc we consider Eqs. (9.1), (9.8) and (9.9). Assuming that the following quantities A, h and p„v„ are small in comparison with T, which is close to the phase transition temperature Tc, we can expand all the integrands in a power series neglecting the higher order terms. Then from Eqs. (9.1), (9.8) and (9.9) we obtain, respectively, (cf, [95])



r. 7C(3)In----- = ——»T O . 2h2 . f p*
. Siila (,♦ . 8 . 8 42 p?128k T* ' 5 0 3

2N = N 1 n - 4n2T„ owhere the applied relations are defined in Section 39.Transforming Equation (18) we obtain the relation 

(-16)
(17)
(18)

(19)thus n ■ 1.51.Equation (16) defines the temperature dependence of the energy gap in the presence of the perturbing magnetic field, comparing the terms of the same order we obtainIn — = A2 (20)T 8n T“ o and
’ T-4 *’ '21>łn^T* ' 5 0 3/ -|28n T„• c cwhere other insignificant relations are omitted. On the other hand,each term of the series expansion is obtained under assumption that the other terms disappear, then the quantities h and vg can be identified with their critical values which express themselves by means of the critical magnetic field H _. (The total magnetic field h and the superfluid ve- locity should be considered jointly). Taking into cosideratión Eqs. (9), (10) and (20) from Eq. (21) we get (cf. Eqs. (15.26, 27))



Ho2(t) = aVa Ho(0)(l (1 + 3^)(1 + f®) (22)
Hence, we find the Ginzburg-Landau parameter in the form (a -= l)

(1 + |f®)(1 + F°)
Estimating the obtained expression (23), in the limits as before have (Fig.5b)x^ = (1 + ^F®)' if F® » 1 + If®, (24)

x1 = 4- 1/2 if jF® » F®, (25)
*1 = 4" + lf 3*1 >>1 + Fo- (26)

According to Eqs. (24)-(26) and (13)—(15) the Ginzburg-Landau parameter x is a function of the Landau parameters F® and F®. Its value can e increases from zero to T , and we have c0.80 if F® £ F® (27)
if If® » 1 + F® (28)

(23)
, we

decrease when temperax(Tc) * (0)and x(T )----- — = 1x (0)which are in good agreement with the results obtained in other approaches (cf. [35]). So, we can state that temperature can slightly modify the type of superconductivity only in the first and second discussed cases, and that it does not influence the type of superconductivity in case of the heavy fermion systems.In conclusion, let us remark that the first and second cases coincide, thus only the heavy fermion case (m*= m(l + ^F®)) is particularly distinguished. Moreover, in case when the Fermi liquid interaction is excluded (F1 = F® = 0) the type-I superconductivity can be realized in sothe system only. This result confirms the advantage of the considered formalism in opposition to the other Green function approaches neglecting the paramagnetic effects (cf. [30, 31, 37, 57» 89, 92, 120, 124,



132, 138]). However, in order to take stock of this approach let us compare the results obtained in zero-temperature limit with the Gibbs free energy difference. Applying the formula (5.7) and Eqs. (i), (2), (4), (5), and (14.1) in the small A limit (A —0) from Eq. (4) we obtain (cf. Fig. 6)

Fig. 5. The curve = 1/ V21 in the plane of the Landau parameters F® and F?. The type-II superconductivity is realized in the region above s the curve, a) The case T = 0. The minimum is achieved at the point F = 0.31, Fq = 0.33. For F® = 0, F® = 0.35. b) The case T £ Tc



Fig. 6. The plot of the function £ = 0. The type-II superconductivity is realized in the lined regions (AG < 0). The curve from the right possesses the vertex at the point F® = 4.84, F® = 1.13 and the minimum at the point F® = 7.74, F® = 0.92. For F® = 5.13, F® = 1. The leap visible on the curve from the left happens in the region contained between the points F® = -1.85, F® = -0.53 and F® = -1.57, F® = -0.50. For F® =-1.28, F® = 0. The asymptote is of the form F® = 0.325 F®
AG = - v(0) zb (29)£

where
= J i + l - ---- Ł— [L - | In2 a (1 - c2) (1 - c)1 - c2 I 1 + y 1

L = (1 - c2) |e - 6c In a + o2ln2a ^3 + 
and c + 1 a = --- .|o - 1|In the two limits specified previously Eq. (29) reduces to the forms



O > R -| + Zysag = -£v(o) --------------2-1 if F8»1+1fs (30)* A* (0) 1 + ^F3 u 1and <A > R Fa _ nAG = - i v(0) —,------ ----- - if F3 » i + F3 (’.-i)2 A^O) 1 + F® 1 0
Hence AG is negative if F3>- 0.4J or Fq>1, respectively, since the type-II superconductivity should be realized if AG is negative, we state that in the generalized case the obtained results (12) and (29) are not coherent. This situation can be explained if we include Maki’s classification [88]. Then Equation (12) defines h , whereas from Eq. (29) Mg can be derived. Note that tends to only in the heavy fermion limit.

17. ConclusionsDue to the inclusion of the Fermi liquid interaction the critical magnetic field and. hence the Ginzburg-Landau parameter become the functions of the Landau parameters which can be estimated correctly in the normal state.The obtained results and the present classification make is possible to predict the superconductor properties of some metals (elements or alloys) on the grounds of their normal static spin susceptibilities or electronic paramagnetic resonance (EPR) (cf. [113]), i.e., one can exactly foresee the type of the possible superconductivity, but one cannot determine whether the superconductivity will appear at all. Let us remark that although the present formalism concerns the superconductors with the almost spherical Fermi surface, nevertheless, some of their aspects should be revealed in a large scale. For example, pressure, defects or impurities can modify the Fermi liquid interaction, hence they should change some superconducting properties of the system, such as the type of superconductivity or values of the critical field. On the other hand, the same factors (pressure, defects and impurities) can also modify the value of the energy gap A(0) and hence the critical magnetic fields (cf. [111, 129-131] ).For these reasons the type of superconductivity is the property of the system determined already in the normal state and it can be predicted as well as framed by means of the research on paramagnetic properties of the normal system. As to the alkali metals it is known that F3 is always 



positive, whereas F® is negative (Na and K) [116], thus only the type- -I superconductivity can be realized. So far, however, the phase transition (the first order) to the superconducting state has been observed only in Cs (and probably in Rb) [131] . Let us note that both the approaches are fully coherent merely for the heavy fermion system, i.e., if F »1. Moreover, we can state that the elimination of any type of magnetic effects is achieved when the suitable Landau parameter tends to infinity.We remind that the parameter F® modifies also the density of states by means of the effective mass.Comparing the presented formalism with the other Green function approaches we can state that the inclusion of the Fermi liquid interaction is equiponderant to some other formal actions (connected, e.g., with impurities) which modify Gorkov’s equations and lead to renormalization of the system parameters [37, 62, 80, 89, 124, 132, 138].Although such parameters can be often eliminated from final equations they always exist in some intermediate relations in an implicit manner (cf. [2, 3, 17, 35, 96, 124, 129, 130]). Thus, our assumptions about renormalization of Bohr’s magneton are entirely justified. Moreover, the presented actions exploit only the existing parameters of the Fermi liquid theory, therefore such an approach should find broad application, e.g., in EPR and NMR investigations when the Larmor frequency and Knight shift are to be derived.
IV. Superfluid ^He

18. Stable states in the strong magnetic field [52]
Stability of individual phases of the superfluid ^He is directly connected with their magnetic properties. However, because of the complex form of the order parameter for the system with the P-pairing all the investigations of He are carried out in the weak magnetic field for the initially postulated stable or metastable phases [22, 39, 85, 121, 135, 151] . Since general forms of equations for arbitrary non-unitary states and non-zero temperatures in the presence of the strong magnetic field are too complicated to be solved in an analytic way, we restrict our study to the unitary states and zero-temperature limit. The imposed restrictions are minor since they leave large possibilities to choose the ground state from among the unitary states which are the main candidates to become stable [34, 58, 66, 73, 85]. We again consider the equations 



of magnetisation and order parameter (energy gap). The considered equations are variational derivatives of Gibbs free energy and form the system of nonlinear integral equations which can be precisely solved. The obtained solutions allow us to derive the magnetization' and order parameter as the function of the external magnetic field and the Fermi liquid interaction parameters. Since the considered integral equations are nonlinear there appear some bifurcation points at which the solutions split (Section 43). However, stable phases are determined by the supreme values of energy gap, which is always confirmed by the evaluation of the Gibbs free-energy difference.In the presented consideration we fix the direction of the external magnetic field and denote it by " || ” (parallel). The perpendicular directions are denoted by "J_".In order to derive explicit forms of magnetization and gap equations 
we have to compute a few characteristic integrals.Since the computational methods are analogous in both cases we discuss them in detail, deriving the magnetization only. The applied forms of elliptic integrals are to be found in Sec. 38. All other appearing integrals can be computed in an elementary way, thus they are given without comments.a) Paramagnetic magnetization and gap equationsThe parameter of an arbitrary unitary state can be introduced in the form i « i d oy (1)where d is the complex vector being the linear function of the unit vector p, i.e., d^ = d^ pa , and satisfies the conditionI c d x d* = 0, (2)2 is the energy gap which is a function of the external magnetic field only. The assumed restrictions allow us to write the following relationaa+ - A^idi^ (3)where the obtained expression is proportional to the unit matrix. Moreover, we have introduced the following symbols2T “ 1» ■ sl^l » A|| “ A | d^ | (4)where d^ and d|i are 'th® components of the vector d, perpendicular and parallel to the direction of external magnetic field, respectively, and



(5)By virtue of the above assumptions and results inserted in Section 10, the paramagnetic magnetization can be expressed in the form
(6)

Substitutingx = y € + A|| , the expression (6) reduces to the form
where we have also replaced x by -x in the other integral

(7)
(8) 

in orderto compute only one type of the integral in the appropriate limits. Integrating (8) by parts, we get

The value of the first sum, which can be easily calculated if we replacex by 1/y and use the de 1’Hospital’s rule, is equal to zero. The nonvanishing part of Eq. (9) can be presented in the formdx- A2) [(x + h)2 + A2]'
dx(A^ + h2 + 2hx)[(x + h)2 + A^] -/(x2 - A2) [(x + h)2 (10)

which permits us to remark that general form of the magnetization can be



expressed solely by means of elliptic integrals. In order to solve the specified problem and to simplify the subsequent calculations we introduce the following denotationsN - (A2 + h2)2 - 4h2 A2 ,P - A2 + h2 ,2 2 z-nq - a; + h^ 4--^ ,2 2 ✓“»R - - a£ + h* + ,S - A2 - h2 . (11)Let us note that the defined expressions are always positive for arbitrary Structures of the order parameter. Now we substitute
- Q

x “ 2h(t;TJ (12)then the following relations are valid, (13)
(14)
(15)

Substituting equations (12)-(15) into Eq. (10) we obtain

(16)
Since the functions under integrals are even functions of the variable t, we can reduce the limits of integration. Hence, we obtain



Eq. (17) reduces to the form

(17)
(18)

dz(1 -k2z2) -/(1-z2)(l-k2z2)
(19)

where
and While examining the first integral of Eq. (19) we show that it canbe expressed in a simpler way

z 2/• dz o / dzz... -------------- -k^ ......' V(l-z2)(1-k2z2) / l/(l-z2)(l-k2z2)0 0 (20)
hence Eq. (19) reduces to the form dz■/(1-z2)(l-k2z2?



2 dzz
Z0 t/(1 - z2) (1 - k2z2) (21)

Introducing the next variable <P defined by the equationsin <p z (22)we obtain finally
M = uBvQ <N1/4 R _2hN^ n/2 d <p

^0 sin2<p
<2

2 2k sin ćp (23)*P 0where <Pq ■ arc sin .Both integrals are the so-called elliptic integrals. Applying the symbols introduced by Legendre we can rewrite Eq. (23) in the form (cf. Section 38)M = ^0<^1/4{^T74 - <1 - - ?%»k)]
+ [E(k) - E(<p0,k)]J^ . (24)

Keeping all general conditions specified above, the gap equations reduce to the form 1A2+ A2'Ad^+hA|| 6iN
+ a’2' + h)2 + A2’

+ Ajf _ h)2 + A2 (25)
Since the parameter ęp fulfils the condition equal to infinity in all convergent integrals. » A it can be putIn our calculations thisprinciple is automatically applied. Multiplying equation (25) by Ad* and averaging over spherical angles we obtain



( 26)
Dividing equation (25) by A (that is permitted when A 0) we obtain the equation which refers to the structure of the order parameter only.Because of the rich structure of the energy gap form the value of energy gap and its structure can be considered independently. Let us remark that the integrals over ę do not disturb the structure of Eq. (25). The order parameter equation can be always reconstructed from the simpler Eq. (26). Such a possibility allows us to restrict ourselves to the integration of Eq. (26).All the transformations carried out in this section are the same as the former ones. Thus, we restrict ourselves to the presentation of some intermediate stages. At first we transform Eq. (26) to the form

which again contains one type of the integrands. Applying the following relation in [1/x2 - A2' + -|/(x + h)2 + A^ ]x+h h /(x+h)2+A2'
=  . - — ■= + 2 6 1 — "1/ ' 0 9 •

L ► * -4>J

Equation (27) reduces to the form
(28)

a2=^{ : \p
2

at - A2' + V(x + h)2 + A2) (-DPlp(-1 )P All



+ A^h -(-1 )%
dx[(x+h)2+ A2](Ap+h2+2hx) l/(x2- ń2)[(x+h)2+ A2](-1 )Pxn

J(-1 >% dx -5—5------Aj+h +2hx - hfh (-1 )Pa,
(-1)P (29)

whence after putting h = 0 2and dividing by we can obtain theequation1 = g1v(O)< |d0|2(ln2^ - lnA0T)> (50)where the symbol "0" denotes the quantities appearing in the absence of a magnetic field. We would be in agreement with the existing estimations if we assumed that the Balian-Werthamer state appeared in the absence of a magnetic field and zero-temperature limit. We extend, however, the problem under consideration assuming that the order parameter fulfils one of the following relations: (31)or (52)Then, tuate other states the structure of which is constant ana does not fluc- with the magnetic field can exist. The conditions (31)-(32) and Eq(30) allow us to rewrite Eq. (29) in the form A^(ln -----In N)
hi

B=o

(-1 )PA.

~(-l)P

4 fL(-i)Pa
dx5-------Aj+h +2hx

dx Qx+h)2(A2+h2+2hx)
dx)Bń||l/(x2-A2) [(x+h)2+ a; =0, (33)

1 X p

whence, using Eqs. (9)—(13), we obtain^Ay(ln A Qrp — —In N)



where we have used again the fact that integrands have turned out to be an even function of t. Now, applying (18) and (22) we obtain, respectively:
△2(lnA0T- | In N)+ A2hz0N-1/4 lira\ y-^0 11

"zo z _0 . dz =7 >0 (35)-/(1-z2)(1-k2z2)/
and A^(ln Aqt-----In N)

^2A2hN"1/4 dtp
’0jt/2+ A2hN-1 4 ---- — ) - o 2-------2 /k sin 9 / (36)’0where 2

I2 = Vn1Equation (36) analogously to Eq. (24) can be written in the form (cf.Section 38)<A2(ln Aot - -J- in N) - A2hN-l/4[G(l,k) - G^.l.k)]
+ A2hN"l/4[F(k) - F(<p0,k)]> = 0. (37)



The obtained results allow us to reconstruct the form of the structural gap equation. Hence, we get< pa {d/ln Aot - -j- In N) - d^N"1/4 [G(l,k) - 6(^,1,k)]
+ (d± - dl|6i||)hN-l/4[F(k) - F(<p0,k)]} > = 0. (38)This is the way the magnetization and gap equations are derived.b) Stable statesThe parameter h expresses the value of the total magnetic field and can be defined by means of the relation (cf. Section 7)

ooh = UBH - v 2 Fi<Pi(PP')®(p')> (59)B 0 1=0where m(p) is defined by the equationM = <m(p)^> . (40)Each of the following equations (24), (37)-(39) is a function of the2 quantities A, d^a and H and a few additional parameters A^, |d | and F®. While examining the specified equations and the condition (2) we find that they constitute a closed system of nonlinear integral equations which should be solved simultaneously. A precise solution of this system would allow us to derive the order parameter, i.e.,A and d^, as the functions of the strong external magnetic field. The results would de- termine the phases of the superfluid He in the magnetic fields. However, such solutions can be obtained solely by a numerical computation. That is why we consider some limiting cases below.1° The weak magnetic field limit, i.e., h « AjThe introduced parameters reduce to the forms*2 x2A1 - “II 2_ o H » A C‘

R «= 2 
" —a n a?



zo = 1
.2

Ah2

(41)
where we apply the formulaeq>o = arc sin zQ = -j- - | arc sin 2zQ-/l-z2 a | - z0-/l-z2'. (42)Inserting equations (41) into Eqs. (24), (37) and (38) we obtain/A2 \H = uBv0 W V ’ (43)

T— In Aqi)> = 0, (44)and 2
^OT”^n^T^ + 74 ^ll^i ” ATdll 6ilP] > = °*aT

Equation (43) is the well-known result which in connection with Eq. (30) allows us to derive static spin susceptibilities for the fixed states. Equation (44) proves that the energy gap is constant and independent of a magnetic field, provided that it is sufficiently weak.Assuming that Eq. (44) allows us to neglect the first term in Eq. (45), we obtain2<^74 (4di -ńTdll 6ill » = °« TSince the above equation cannot be fulfilled by BW state and is always fulfilled if one of the order parameter components dy or d_L vanishes, it can be suspected that in the discussed region the magnetic field induces the phase transition of the first type. Moreover, let us notice and emphasize the fact that for arbitrary states (a^ = at(p)) the condition h «A,p can be fulfilled completely if and only if h = 0 (see below).2° The limit of the very strong magnetic field (h » AT)The introduced parameters reduce to the forms:
— 222VF = hz + A^ - An ,



k2 = 1, .2±2 _ All
Atz « sin q> = 1-------£ . (47)0 0 2hInserting the obtained relations into Eqs. (24) and (37) and computingdirectly all integrals (they are of elementary type) we obtain

Then the sole state which can be in fact realized in the very strong magnetic field limit is the one-dimension state for which dp vanishes. However, such a state can be considered precisely in an independent way.The states with dN = 0 are in general two-dimensional states and can be reduced,e.g., to the ABM or planar states, whereas the states with dp = 0 are one-dimensional and can be reduced, e .g., to the polar state.3° In the two-dimensional limit (An = 0) we obtain



henceM = nBvQ <h> , (52)<Ajln(A0 / h±)> = 0. (53)From equations (39) and (52) we derive the magnetization in the form
The obtained expression is identical with the one for the normal state (cf. Eq. (10.19)). In order to discuss the gap equation (53) we assume that (cf. Eq. (3))A1 = ^IdJ2 (55)where (cf. Section 33)

OX 9
I—J. I = “2“ " x ) 8111(1 x = 008Substituting (55) into the gap equation (53), it reduces to the formmni =4" <l^il2 lnl^il2> (56)where
_ A0

' Vand after integration we obtainIn T)x = 4~ In 6----- . (57)Hence 1hx - ^6 exp(-----= 1 .06. (58)Since the free-energy difference derived by means of the formula (5.7)in case when H = 0 is of the forma2AF> = - -4- v(0) —4 = -0.44v(0)A2, (59)
nl °we state that AF. > AF^j (cf. Fl3» 15J). -L XJn4° In the one-dimensional limit (Aj_ = 0) the following cases must be considered independently:4° a) h < A||. This condition need not be fulfilled in the whole momentum space since d|| is a function of p. Therefore we restrict our consideration to quasi-particles, creating Cooper’s pairs from the subspace $ in which the condition h < A|| is fulfilled. Then, we obtain



/~2 ~?V- h2 sin m = --------------- = —t— .0 All 1 (60)Hence, the average magnetization arising from quasi-particles from $- -subspace equals=0, (61)and the gap equation in 4-subspace is of the form (h = u^H)^^“(△ot/Ah) \ = 0, (62) thus it is independent of the external magnetic field for all values of H < Hc = Aq/U g •4° b) h > A||. Let us note that this condition is fulfilled in the whole momentum space for sufficiently strong magnetic field. If the magnetic field is too weak we have to consider the appropriate subspace. Now, we have
<—>2 2 2VN = h - A u, k = 1, .2I2 = --—f R = 2h2, h2 - Vh2 - A2'sin <P0 = -------- E---- » (63)assuming that the inequality is fulfilled in the whole space, we obtain

(64)and (h^ln[A0T/(h +Vh2 - A2)] ) =0. (65)Investigating the obtained expressions in the limit V\A2^> «Aq we can compute again all the averages and derive the magnetization, the energy gap and the Gibbs free-energy difference as functions of the external magnetic field in che following formsM = 2 ujv(0)
r . (1 + ya1 <Ta - 11



and 3ii(^ - 1)V (67)
AG„ = - 4" v(0) A4(H)

= - 4“ v(O)A§
1 + Fa ___0 P„(^ - 1) (68)

- 1 ). . x.a

where (1 + Fq)Aq2*b (69)is the critical magnetic field, p|( being the average pH - < |dH|4> fulfils the conditions pn > 1. Let us note that AGH <0 if Fa > 1 andH < H . Moreover, the obtained results describe CHthe second order and they are physical solely if the phase transition of the following conditionis fulfilledFa > 1 . 0 (70)For that reason we have to consider the opposite case:4° c) h > A n and*0 < 1• (71)Now, non-zero energy gap cannot exist and has to vanish rapidly for the chosen direction of the unit vector p at the point H = A||(p)/gB» Hence, we haveA = 0 (72)and 2 H
M = Vo 7771 • (73)1 + F0The solution discussed in the case 4°c is correct also for the case 4°b, when two physical solutions are possible, because the point h = An is a standard point of bifurcation. We neglect the other solution as metastable and impossible, since the system prefers solutions with smaller Gibbs free energy (larger energy gap).Such a behaviour of the system determines the phase transition of the first order. For both the cases discussed above we have also assumed that



^1 (||)lnA0T^ = (ll)> inA0whereAq = •Then according to the imposed conditions (31) and (32) we have, respectively,H = 1 for BW state, (75)T) > 1 for the other "constant" states,i.e., t)j_ = 1 .065 and r>|| = 1.241.,Although the precise derivation of stable states can be carried out only by means of the numerical calculations, we try to make some estimations according to the obtained results. First, let us note that the state which for the fixed magnetic field possesses the highest value of the energy gap possesses also the lowest Gibbs free energy and is preferred by the system. Thus Cooper’s pairs in the state described in 4°b are always preferred by the system over the 4°c-state pairs if the condition (70) is fulfilled. It should also be explained that / must besmall in comparison with Aq, since only AQ and H are constant and independent of A and H.According to the remarks given above A|, is a function of the unit vector p and the inequality h < A|| can be realized only in some parts of the momentum space. Such a situation complicates our problem. However, in order to solve it we can consider the appropriate averages over the proper parts of the momentum space (spherical angles). Taking into account Eqs. (60), (64), (66) and (73) we can note that the magnetization of the one-dimensional state achieves the non-zero values already in the weak magnetic field, and, if for instance the condition (71) is fulfilled, then the Cooper’s pairs exist in the subspace $ only. Hence,the magnetization is of the form

where

2„ gB v0 f ,3M = a dp,1 + F® J0 A|,(p)<h,which, e.g., for the so-called "polar" state ( An to the formM = u|v0° m'o + Hcl

(76)
= -/31 A Icos-ai ) reduces

(77)



Hcl = (1 +CX n g (J (78)is the critical magnetic field in the case when the system passes to the normal state in its whole volume. While discussing the problem of the energy gap we note that though the energy gap is constant in the subspace $, this subspace is a decreasing function of the magnetic field and this fact must be expressed in the free energy terms. Hence, e.g.,for the same "polar" state in the limit H— we obtainA(H) = uBHcl
VTd + 4)3/2 (79)

The analogous considerations can be carried out for the case when the condition (70) is fulfilled. They, however, are more complicated because Cooper’s pairs exist also outside the subspace $ and if it vanishes we obtain the case discussed in the point 4°b. In conclusion of this section we can state that the transition of superfluid He to the normal phase in the strong magnetic field can be only of the second order. Moreover, the order parameter distinguishes three qualitatively different structures, i.e., three-, two-, one-dimensional structures, according to the conditions:

at all) are of the first order (the qualitative change of the order parameter). However, the 3-dimensional state (BW) can exist in weak magne

3-B d± + 0 and Al * 0,2-D dx 0 and Al = 0, (80)1-D dt = 0 and Al / o,and the •transitions between those three kj.nds of phases (if they exist
tic fields exclusively, whereas in strong magnetic fields only 1-dimensional state is permitted.Applying the developed formalism to the superfluid take into account the real value of the Landau narameterto the data presented in [125] the value of F^

^He we have to Fq. Accordingis negative within thewhole range of the permitted pressures being -0.76 < F only the condition (71) is fulfilled, and the suitable q <-0.67. Then behaviour of thesystem is determined.© Although the above considerations are carried out in molecular field approximation they can be directly developed for the case when the higher Fermi liquid interaction harmonics are included. Then obtained results will be modified by the other Landau parameters and additional relations will appear.



19. The solution of the gap equation in the presence of dipole forces if H = 0 [43]
Now let us consider extra the system with pure P-pairing without a magnetic field when the dipole-dipole interaction is included (cf. [85, 88, 104, 126, 127]). The problem specified in this way allows us to determine equilibrium states which can be employed in linear response investigations. The inclusion of dipole forces causes the change of rotational symmetry of the problem. The system is no longer invariant under the separate rotations of spin and momentum variables. Thus, we have to express total interaction in the particle-particle channel in spherical tensor representation. Employing results of Sections 6, 33 and 41 we get
’u - - [<’ - 2“> C B»“

* (1 . «> »W • <’ - 0)where a ■ v(O)gQ/f^ and a«1. As we can note this interaction is split according to J and is independent of M which reflects the symmetry of the problem. Let us rewrite Eq. (1) in the form more convenient for the discussion of the gap equation:
Vij = ” ^fl “ 2a^&ik6jn + + ®^6ij6kn “ 6ik6jn^

+ -Jp-O - 4~ a $i j $kn + ^in^jk " (2)The gap equation has the formdikPk = " <VijH(P)djnPn> (5)whereA(p) = ACT^d^p^a2,
H(p) = f d€ , E = [t2 + IWI2]172. (4)0In order to solve Eq. (3) within the frames of the applied approach, the form of the tensor.d,v must be known. It, however, can be constructed IK < k from the spherical tensor Bj^ according to the following ideas. The spherical tensors describe the possible two-particle states in the system with the full rotational symmetry. If the symmetry of the system is broken by distinction of one direction, the equilibrium state becomes a 



linear combination of spherical tensors with the fixed M which is still a good quantum number (M = 0, +1, +2). In this way the thermodynamic phases can be classified according to the quantum number M [41, 73]. © After distinguishing more than one direction in the system, e .g., inhomogeneity and the external strong magnetic field, no quantum number is a good quantum number and the equilibrium state should be constructed from all nine spherical tensors.Below we consider the equilibrium statje when M = 0, which is identified with B phase [15]. The tensor d.. has the form IKdik = aóik + b(6ik - 3^ kk) + (5)where k is a unit vector of the distinguished direction. If a, b and c are real numbers or they have the same phase, the state described above is unitary. Let us choose a, b, and c as real numbers; then the following conditions are fulfilled:a2 + 2b2 + c2 = 1, (6)
dikdin = dikdin = A*kn + BMn <?)whereA = (a + b)2 + c2, B = 3b2 - 6ab - c2, (8) A + -y- B = 1, 0 < A < .Now, if we estimate the free energy of the system in the state (5), pAF ~ A - 2A, then for A = 1(B = 0) it is minimal, i.e., in the isotropic state. Solving equations 8, we obtain-1 *1 •“a=y(2cos0+1), b = y (cos 0 - 1), c = + sin 0 , (9a)
a = y (2cos0 -1), b = y (cos0+ 1), c = + sin 0 . (9b)The first solution can be interpreted as a rotation in momentum space about the k axis by an angle ^0 , respectively, end the second solution as the analogous improper rotation.According to Leggett's considerations, the free energy of the equilibrium states (9) is minimized by dipole forces if the angle 0 = = cos-1 (-1/4) in the first case (9a), end the angle 0 = cos-'’ (1/4) in the second one (9b).



For the case of the isotropic gap |( A(p)| 2= const), H(p)=oonst=hQ (cf. Section 35) and from Eq. (3) we get the following equalities:
a = ad - 2a)hQf1,b = b(l - a)^, (-10)

o = c(i + a)]!^.These equalities cannot be fulfilled simultaneously if a / 0, except the case when 0=0 for (9a) or 6 = it for (9b). In order to solve this problem let us assume that the gap is slightly anisotropic (A = 1 - e; B=3e) and has the form of |a(p)|2 = A2 Qi - e + 3(kp)2eJ. Since e is small, we can apply in our calculations the following expansion of the function H(p) 2E He(p);He(p) = Ho + H1 [3(kp)2 - l] e 
where

•0Now, from Eq. (4) we obtaina = f1 (1 - 2a) + (a - 2bJh^] , (12a)
b = f^d - a) [3h2b - (a - 2b)h3] , (i2b)
0 = ^(1 + a^hgC (l2o)where hg and h^ agree with the notation given in Section 33. From Equation (12c) we find that the following equality has to be fulfilled:1 = 3h2f1(l + a). (13)In order to examine the solution of Eqs. (12) we introduce the following notations:
a = aQ + ad, b = b^ + , c = cQ + c^

Where a$, b^, c$, are taken in the form defined by (9) and a^, b^, c^ do not exceed the order of a.Equations (12) at the limit a = 0 can be fulfilled only if c = 0, a - 2b = 0, or hj = 0. If there appear the dipole forces, a - 2b does not exceed a. Keeping the accuracy of our calculations we find that



Eqs. (12) are fulfilled if ap = bp = 0 (c = + ^), i.e., in the ordinary 2D state. The condition h= 0 can be fulfilled if B = 0(A =1), i.e., in the isotropic state. Using Equation (13), after some calculations, from Eqs. (12a) and (12b) we obtain2
+ -5- e = 3 ®^oaO’ (14a)

+ e = -f- a Hobo. (W

The plus and minus signs are connected with the two possibilities of the choice of Sq and bp. Equations (14) give us the relation ap= -(2/5)bp, which can be fulfilled if end only if cos 0 = + 1/4, respectively. We recall that these are Leggett's conditions of the free energy minimization. If we now insert aQ x + 5 or bp <= + */l5 into Eqs. (14) we obtaine = -|-aH0/H1. (15)
Returning to Eq. (11), we can rewrite it in the following form:

H(p) ■ H0[l-----1-® * ~^®(bp)2J. (16)
Substituting H(p) given by (16) into the formula (13), we obtainH^d + «/2) = 1. (17)The factors a, b, and c can be calculated from Eqs. (8). Taking into account that Bp = + 1/6, bp = + 5/12, and c^ = (+) -/TFA, after some transformation we obtaina = + |(1 + 10c + 156).b = + (5/12)(1 - |e - 36), (18)

c = (+)( ViFAXl + 6)where 6 is an arbitrary number of the order of e. The free energy of the state described by Eq. (18) depends on e linearly. Hence, it has to increase or decrease for nonzero e. Following Leggett’s estimations [85] , we see that the free energy will be modified only by its dipole part ~(6a2 + 3b2 - c2) —(0.1 - e) and it will decrease if eis negative. This occurs, according to Eq. (15), if H^ < 0, since a and Hp are positive. It seems to be of interest to find the relation Hp/H^ and its dependence on temperature and ę , though this relation is probably always negative. The free energy is independent of 6. Hence,



the equilibrium state of the system is degenerated, or rather, it is not defined in a unique way. Such a consideration of the problem is most general although it can be also interpreted in terms of simultaneous rotation and dilatation [104, 126].Let us return now to the interaction in the particle-particle channel. This interaction can be rewritten in a new form, equivalent to the previous one,Vij = " 3f1(1 + L^ij^kn - Y^kn + ^n +where y = 5d/5(l + a) and y «1. This expression can be treated as a kernel of the integral operatorV = - ^(1 + a)(i - yU), (20)If we remember that y«l, the inverse operator can be found immediately in the formV"1 = -HO(1 - a/2)(l + yU) (21)where we also used Eq. (17). In Equation (21) we neglected quantities of the order of “^f^ to? n >2. These kinds of dimensionless quantities will appear in further considerations. They satisfy the following relations:
HQ»«Hox>e ~CdH0 ~ 6 . (22)In order to be consistent with our previous calculations, the quantities of the order of e should be treated as being negligibly small. Hence, the gap, if multiplied by a factor of the order of aHg, should be replaced bydik = ± ł 6ik 7 <5/l2)(6ik - Jk^) - [^-^A)] ei]mkn (25)in order not to surpass the accuracy of the equations.Comparing the results of this end previous sections we state that the two-dimension state 2D is the best candidate to replace the BW state if the magnetic field is included (of. [7]). a 4 V. ^He- He mixtures X 420. Properties of He- He mixturesAccording to the theoretical investigations [112] in -ile-’Ee mixtures S-pairing is preferred for the concentrations x < 5%, with a grow



ing tendency to P-pairing for higher concentrations. The estimated values of the phase transition temperature TQ< 5«1O”6K at concentrations x = 1,3% and x = 5%. Moreover, the Landau parameter Fq becomes positive (it is negative for ^He), although it is small F? s 0.09. Never-
M X Atheless it should be a function of pressure. Such tendencies of -'He- He mixtures allow us to consider them as neutral superfluids with the singlet- or triplet-state Coopers's pairs for low or high concentrations, respectively. Below we consider only neutral BCS systems which constitute the qualitatively new problem.

21* A neutral BOS system
We consider the problem applying the results contained in Sec. 8 in the case of the particle-hole symmetry. Since all vectorial quantities are parallel we neglect their vectorial structure and consider their positive values only. In case of the homogeneous BCS-system none of the used quantities depends on the direction of the momentum vector, hence the total magnetic field can be written in the formHt=H-F®Hp. (1)We emphasize that F® is the sole parameter of the Fermi liquid interaction which modifies the total magnetic field.a) The zero-temperature limit [50]In order to solve the specified problem in the analytic way we put T = 0. The reduced forms of the paramagnetic field and gap equation are analytic functions of HT (Eqs. (12.1), (14.2)). Analogously as in Section 14 we state that the investigated problem possesses two qualitatively different solutions which have to be considered as two independent cases, i.e., (cf. Section 43):I) when A is constant (A = Aq) and it rapidly vanishes for H = H0< H1 = ^O^B' ®ndII) when A is constant (A = Aq) for H < and it changes its value iń a continuous way for H > H^.In the former case we haveif H < H_ < H., 0 1 (2)

I oand if H>H0



0 if H < Hq,
—£—- if H > H,1 +F®

Since the parameter Hq defines the value of the magnetic field when the system approaches the normal state so it can be found by Gibbs free-energy comparison from the relation
4~ *(°) aq = v(0)p2 H2 ^*0 ‘Hence we obtain
Ho =and because of we getF® < 1. (6)In this way we state that if the system possesses the type-I properties, the inequality (6) has to be fulfilled. In the latter case the gap equation reduces to the form= Hp + H,. (7)and substituting this into Eq. (l) we can derive the paramagnetic magnetization for H > H. in the form1

whence, we find- h nHA = “-1 [(1 + F®)^ - 2H] . (9)F0“ 1The demand of positive paramagnetic magnetization implies the following inequalityF® r0 (lO)which ensures also that the energy gap becomes the decreasing function of the external magnetic field. On the other hand, Eq. (?) allows us to 



derive the value of the critical magnetic field Hg for which the energy gap A vanishes. We find it in the formH2 = 4-(l + F®)^ (11)where the condition (10) ensures that < Hg.In the limit case, when Fq « 1, the critical magnetic fields H^ and Hg become equal and the system shows the properties attributed to the first discussed case. Then the critical magnetic field is equal oto HÎn order to sum up the obtained results we emphasize that the energy gap can tend to zero in the continuous way only if the Landau parameter Fq > 1; then, the energy gap and the paramagnetic magnetization are expressed in the following forms
1 if 1'(1 + F^)^ - 2H I1/2A = Aq

<K0 - 1)Hl
if (12)

0 ifand
0 if 1’H -Fa - ir0 1M = X°P P if (13)

H Fa0 if
Let us estimate nowfields H whenwe obtain in turnH1 the Gibbs free energy difference for the magnetic< H < Hg. Employing equation (5.7) and Eqs. (13.18)

AG = v(0) 2q (14)(t/p2 . ' - P 2
where
and 1 + Eq Fa - 1q = _2--F° + 1P



AG - - 2v(0) p2 (Hg - H)2(1 + f®)(fJ - 1) ’
hence we state that AG is always negative if F® > 1 and H < Hg, and AG a 0 if H = Hg. For H = the Gibbs free-energy difference reduces to the form

AG « - -1- v(0)A2(0) F0 - 1Fq + 1 (16)
The latest relation demonstrates that the Gibbs free-energy difference is equal to zero if H = Hc and F® = 1, i.e., for type-I systems. In this way we have proved that the neutral BCS-systems reveal the paramagnetic duality which is determined by the values of the Landau parameter F®; if Fq 1 the energy gap vanishes and the appearing paramagnetic magnetization attains the same value as for the normal system for the fixed value Hq(Hq < H^); if F® >1, then while the external magnetic field changes from to Hg the energy gap decreases from the value Aq to zero and the paramagnetic magnetization increases from zero to a value of the normal state. Since the other discussed state is more stable in comparison with the first one it is always realized if Fq > 1. Moreover we can assume that x = ^(1 + Fq) then Hg = Hcx and the following conditionx > 1 (17)is equivalent to Eq. (10).b) The Ginzburg-Landau limit1° In order to consider the system in this limit we can employ the results of Section 16b after putting v = 0 or F® equal to in- 3 lfinity or results of Section 15b. In the formalism developed there end based on thermodynamic potential estimations it is assumed that in the Ginzburg-Landau limit the following relations have to be fulfilledpnHg(T) A(T)■ » < - « “T— «1. (18c c cThese relations allow us to treat the magnetic field as a small magnitude in comparison with the energy gap and to apply a perturbation method to solve the gap equation (15.21) or (16.16). Then we get



HgtT) = aH^O) ^1 - (1 + F®) (19)
where 

a = 1>01< 7C(3) V 7 C (3)On the other hand, comparing the thermodynamic potential we obtain (cf. Eq. (4) and [35])h0(t) = yH^o) (1 (20)
where
Now, just as in the zero-temperature case, we can assume that the ty- pe-II superfluidity is realized in a system when the critical magnetic field Hg(T) fulfils the relationHq(T)<H2(T). (21)This relation, after applying Eqs. (19) and (20), implies the following conditionF® > Ł - 1 (22)where

e = UP = 9§JL2.L31 = 3.47.\ a / 93 C(5)In the limit case, when F® = e - 1 = 0.47, we have Hq(T) = HglT) and introducing HC(T) in the formHc(T) = aeHc(0) (l - -P) (23) 
(ae = 1.48) we can write1 + F° K2(T) = IIc(T) ---- . (24)
Hence, the x-parameter can be defined as follows



x(To9 1 *

€According to the obtained results (10) and (22) we state that the magne- tic properties of >He- He mixtures can be altered (type-I systems become the ones of type-II) when temperature tends to Tc and F® is contained within the interval (e - 1, 1). Moreover, after regard Eq. (25) we can apply the other results of Section 15b.2° Let us emphasize that the same problem is usually treated in very formal way, while one assumes that the energy gap has to vanish (A = 0) when H = H2 [92, 95, 120]. Then employing the gap equation (15.24) and Eqs. (1), (15.20), (15.23) we obtain the following results
and

h2(t) aH^O) TTc (1 + F®) (26)
^(T) A(r) 1 + Fp^BHowever, now the critical exponentconsistent with that obtained from

1 1

2 (27)is equal to 0.5. This value being in- termodynamic potential estimation.Therefore we cannot compare Eqs. (20) end (26) and separate the x-para- meter.In this way we prove that the results obtained in the former approach are consistent and coherent, whereas the results of the latter approach seem to be incorrect. Therefore the presented method becomes competitive to typical approaches [92, 95, 120] and we prefer it in our considerations, though in the case of superconducting systems we apply Eq. (15.27) instead of Eq. (23).



Part Three
linear responses of bos and bw systems

The generalization of the Green function microscopic theory formulated by Larkin, Migdal [79] and Czerwonko [22] for non-zero temperature systems [59, 40], the correct derivation of the Maki and Ebisawa function [43, 47], the inclusion of the dipole-dipole interaction [43- 45, 53] and the development of some special mathematical methods (Part Four) allow us to state new significant properties of the superfluid and superconducting systems, which appear in the linear response theory and which are due to the Fermi liquid interaction.In Chapter VI we investigate the homogeneous BCS and BN systems with the full pairing interaction and we define the relations between the parameters of the pairing and Fermi liquid interactions.In Chapters VII and VIII the phase B [4, 5, 8, 12, 15, 67, 85, 97, 107, 108, 137, 139] of superfluid $He is considered in the presence of the dipole-dipole interaction. Since we do not impose any restrictions on the frequency, wave vector, and temperature, we have to assume that all Landau parameters disappear, except a few first ones [40, 43]. The suitable equilibrium state is derived in Section 19.
VI. Influence of the Fermi liquid interaction on possible two-particle States [49]

22. Statement of the problemThe general rotational symmetry of superconducting and superfluid systems allows us to describe the Fermi liquid interaction by the expansion of Legendre polynomials where, as far as the appropriate factors, i.e., the Landau parameters are concerned, we assume only that they have to fulfil the Pomeranchuk [117] inequalities and become small for sufficiently high terms of the expansion. So far these restrictions are satisfied by the experimental data and the Landau parameters become negligibly small already for quite low expansion terms [139] . On the other hand, there exists one more quasiparticle interaction in the superfluid and superconducting systems: the pairing interaction. According to the same symmetry conditions the pairing interaction can be represented in the analogous way, i.e., by means of the Legendre polynomial series, where some parameters of the expansion have to be equal to zero according to Pauli exclusion principle.



In most of the cases discussed so far the authors restrict themselves to the one pairing harmonic responsible for the creation of the quasiparticle pairs in the ground state. Now, we consider superconducting and superfluid systems with fixed ground states of the BCS or BW type, respectively, in which the Fermi liquid and pairing interactions are included in quite general forms. Such a procedure is fully justified if we assume that the pairing energies of all other two-par- tide states are lower than energies for the BCS or BW state, respectively. Hence, there appear some restrictions imposed on the pairing interaction parameters relative to the ground state harmonic.The energy spectrum of all possible two-particle states has to be placed between the ground state energy levels of the superfluid and normal liquids. Since the above two levels differ by A per quasi-par- ticle, the excitations of the ground state pairs to other available two-particle states by the energy charges smaller than 2 A become possible .We investigate the possibilities of such excitations in the linear response approach.It allows us to discuss the linear response of the system to the external mechanic perturbations of quasi-per tide density. Our main purpose is to find the dependences between the Landau and pairing interaction parameters. We also give an interpretation of the obtained results with regard to experiments.Our original considerations were carried out in the zero temperature limit since all Cooper’s pairs are locked then into the ground {BCS or BW) state, respectively. In case of non-zero temperatures Cooper's pairs should occupy other higher localized permissible two -particle states. Therefore, the order parameter connected with the thermodynamic equilibrium state should be modified adequately. If, however, we neglect this effect [144] the results of [49] ere valid for non-zero temperatures provided that the temperature form of the Maki and Ebisawa function is taken into account {Section ?4). Suitable changes ere performed below.23. The system in BCS stateWe consider the superconducting system in the BCS state at the homogeneous limit (k = 0) in the case when the full Fermi liquid and pairing interactions are included. Some rather superfical investigations of this system were performed by Larkin [78]. Now, together with the far more complicated superfluid BW system, we consider it in detail and discuss the results obtained.



The basic equations, necessary to deal with the problem under consideration, can be easily obtained from the equation given by Czerwonko [22] and have the form
T = 1 +< 1(-FT + tFT)> ,

T «=<*1 [(t2F + Tq1)! - WTJ> (1)where t =w/(2A) is the reduced frequency.Such a simple form of of equations can be achieved after using the symmetry properties of the initial equation. Some symbols used have more precisely determined meanings, as defined below. The normal vertex function is of the form
r - 2 <21 • if,. 

3=0 and T. = 0 for all add j . J The anomalous vertex function is of the form
T = 2 (2j3=0and T1 = 0 for all odd j Jonly its symmetric partpairing interaction (cf.

. From the spin direct Fermi liquid interaction 1 is taken and is the spin antisymmetric Section 6).We leave out an account of the autocorrelation function equation,since we are not going to use it immediately, but we still keep in mindthat the poles of the autocorrelation end vertex functions are equivalent .Using the symbols introduced we obtain from Eq. (l) after some calculations
’1 -6O1 - 'I'b - ‘Vi'

T, • t,(tT - •> I,'?*.-
J J J J J w J (2)The obtained equations are separated with respect to the quantum number j. This, of course, takes place only in the homogeneous limit. Still, in the quasi-homogeneous limit we can separate with a good accuracy the collective excitation spectra and obtain the collective excitation gaps from Eqs. (2). Since the excitations are connected with the poles of the appropriate vertex function it is sufficient to derive the main determinant of the above system of equations. Then we have

+ DVpJ J

(1 + a.F) + aY2®12 = 0 J J



where r^ can be interpreted as the value of the pairing energy per quasiparticle in the state with the fixed quantum number j. Moreover, rj < A for 1 / 0 and rQ = A .We assume that the collective excitation spectrum in the quasi -homogeneous limit has the formt2 = t2 + Ku2 (4)where u = kv/(2A) is the reduced wave vector which makes the system tobe inhomogeneous andof tQ u«tQ but K can be of the ordershould be found as a solution of the equation pt . The value
t^ft) - [1 + a.FCt) Ln] A- = 0. 3 3Let us notice that if a^ = 0 and r^ —— A, then t—^0 which agreement with the assumed conditions. Let us note furthermore 

(5)is in that; ifthe gaps of the real physical excitation are smaller than 2A, then the value of tQ has to fulfil the following inequalities0 < tQ < 1. (6)We exclude 'the equality on the righ-hand-side the ground state degeneracy.The Landau parameter a^ has to satisfy [117] conditions:
of Eq. (6) as leading to

the following Pomeranchuk ,
a (7)for all jFrom

8j

= 0, 1,2,... .Equation (5) we derivet2 1In A/r. F(t)
Jand assuming thataj = Aj(9) we can investigate Eq. (8) in relation to the inequalites (6) and (7). Then we obtain F2(t) + G(t) In A-dA.lt)

—I— = ----------------------- ----------- . (10)) F2(t) in A-
Sinoe the functions F(t) and G(t) are always positive if 0 < t < -|



(of. Sections 54, 55), (t) is a monotonically increasingwithin the whole interval considered. Hence the following function inequalitiesare justified -1
h<°’--ra «‘d11’« (11)and they lead to the relation

in which the Landau and pairing interaction parameters are combined. It is easily noted that the above restrictions are equivalent to the ones in Eq. (7) provided that r^ tends to A, and T = 0.The existence of additional states, which has to be manifested in collective excitations with the gap, can have an essential meaning, e.g., for determining the heat capacity.The value of the gap determines the energy levels of the two-particle excitations. According to the obtained results these levels are modified by Fermi liquid interaction and for a positive large enough Landau parameter the two-particle states cannot be created, whereas for all negative values of the Landau parameter such excitations become possible and their gap tends to the value tg 0 defined by the equationA.(t ) = -1 (13)
J 3and t > 0 if T > 0, even for the Landau parameters taken on the border sof stability, i.e., if they tend to minus one (of. Section 55). Such a situation seems to be quite understandable, since the positive values of Landau parameters are connected with the repulsive part of the Fermi liquid interaction, whereas the negative values describe its attractive part. Due to the superposition of these two interactions the attractive effects connected with the pairing interaction can be totally neutralized by repulsive Fermi liquid interaction effects. Such a situation takes place if the gap assumes the value 2A, which in our symbols is equivalent to t = 1. All these above remarks allow us to formulate the following conclusions.The collective excitations with the gap, which are connected with the transitions to other states, are possible only if there exists an appropriate harmonic in the pairing interaction and if the appropriateLandau parameter is either sufficiently smell or negative. In the opposite case, i.e., for a strong repulsive Fermi liquid interaction if> (InA /r^)-1 the possible two-particle states become unstable andsimply cannot appear.



As to experiment the above conclusion permits us to either excludeor include some pairing interaction harmonic. Namely if the value a isnegative and, according to experimental evidence, there are no appropriate collective excitations with the gap, such a harmonic should beexcluded from the pairing interaction by putting however, there exists the appropriate collective fj equal to zero; if, excitation with the gapand a^ is positive r, and obtain then using Eq. (12) we can estimate the parameter
r> A exp (- -1- ) (14)In such a situation the pairing interaction creates the additional two-particle states if the energy parameter r satisfies the inequalities

(15)
24. The system in BW stateAccording to the formalism developed by Czerwonko [22] in the homogeneous limit the system of initial equations has the form1 + <S(-FT + tFtnPn)> ,* =<*_! {ft2 - Df + f^^- f^p^ - tFpnr}> (1)

where, as before, 1" is the normal vertex function, is the anomalous vertex function which can be expressed in the formT = Tpn +e kn. (2)Then r. g (2) . ^p,.3 = 0
T - 2 <2; •

j=o

•- 2 |2i * 1»>ri3=0where 5^ = T^ = 0 for all odd j and 0^ = 0 for all even j. f is the symmetric part of the spin-direct Fermi liquid interaction, is the



spin symmetric part of the pairing intaraotion and r^ = A (cf. Section 6). After substituting Eq. (2), and some algebra Eqs. (1) reduce to the forms T = 1 + <A[-FT + tF(T + 0w' )]> , (3)Tw +0 =<4^ [(t2F + f^JCTw' + 0) + F0(w'2 + 1) - tFTw'])>, (4)
T + 0w =<(pp') ^[(^F + f"1)!

+ F0w'- tFT]> + w^^ {[(t2 - 1) F + f"1]e}> (5)where w = kp and Eqs. (4) and (5) are obtained from one initial equation due to its vector structure. Applying the recurrence formula (33.5) and using the linear independence of Legendre polynomials we obtain(2l+1)(l+alF)Tl+(2l+1)altFTl-laltF0L_1-(l+i) axTF0l+1 = 61Q, (6)
lf^FT^ + ll+1 )fltFTl+1 + l [1-f Jt^f"1 )]+ (1+1) [l-f1(t2F+f;1)] Tl+1 + (21+1) [l-f x( t^-F+f)
" fl (21-1) (21*3)' F] ei-fl F ®L-2 ’ fl ™1+2 = °,(7)[1^+(i+i )f1+1] tFT1+{(2i+i)- [if^+t i+i )f 1+1](t^+f;1)} Tx
+1 b - -^r^i-i^^^h+iJ^i-i ip2-i)f+<]} 8^

+ U+D {1 - + [(t2-1)F+f;',]}0l+1 = 0. (8)
To make the above system of equations more symmetric, the number 1 in Eq. (7) is replaced by 1 + 1, then(1 + + (1 + 2)f1+1tFT1+2+ (1+1) [l-fl+1(t2F+f;1)]Tl + (1+2) [l-f1+1(t2F+f^)] T1+2

+ (21+3) [l-f1+1(t2F - F + f;1) - f1+1 T2^Ty^ ] »1+1

- T. - 1 (1+1) rg _ p (1+2)(1+3) (Q»1+1 "’alii F i-i fi+i 2175 Fei +3 " °' (9) 



The system of equations obtained is far more complicated than the one given in the previous section. Before we begin to solve it we have tomakeThis some modifications in order to eliminate the cut-off parameter £ will be done by eliminating the normal vertex function, insertingT. derived from Eq. (6) into Eq. (9) and dividing the result by f. .
J- 1+1Then after some calculations we obtain

IU1 ’ -Ć7 -1(1+1) / t2a.F\ [ Tao- “5177’ 1 " 770->1-1 +‘ <21+5) > rT~ ’ *
\ 1 / I u 1+1(1+1 )2 / ^a.FX (1+2)2 / t2a. -F\ ]21+1 1 " 1+a^FJ F 21+5 " 1+a1+2FJ F J ®1+1(1+2)(1+3) / t2a. ?F \ tF .5175 ę ” 1 +a1+2Fy F 6 1+3 = - 1+aQF 10• (10)

As this procedure cannot be repeated for Eq. (8) we can only reduce it to the form
fl-1 I1 r^ " 77^^ T1 + -51+1’

Ki+1)■ ”5177"
(21+1 )ln —1- rl-1 t2akF

1+a^F F-(21+1) (t2-l )F ®1-1
' t2a1F\

f«i+i
' K t2F \ T1

X

1(1+1) / t2a.F \ 1+1 r . / t2ai?\“ -2177- “ 17^JTO1-1+ 2177 ^21+1) -d+D^l- tt^f
- (21 + 1)(t2 - 1)F tF &1+a F’ 10 * (11 )

We need not be interested in the details of the rigth-hand-sides of Eqs. (10) and (11), since the main problem of our calculations is to derive the poles of vertex functions. While analyzing Eqs. (10) and (11) it can be noted that their structure allows us to rewrite them in the following way



Rl+2 + si = xi (12)and + fl+1Sl “ flXlwhere the symbols R^, Sj and X^ oan be easily identified by means of Eq. (11). The expression X^ is independent of the functions T^ and 9 and it vanishes if 1 > 0. After inserting derived from Eq. (12) into Eq. (13), the latter is reduced to the formfl-1Rl " fl+1Rl+2 = °*

* °. f3 °............fn-1 °' fn+l = °' fn+5 ' 0................hence

Since f S 0, we have R_ ■ 0, whence -1 2Rj = 0 and = 0 (l5)for all 1. Let us rewrite Eqs. (15) in an explicit form. Then we have

in which for the general case the number 1 can take all values from zero to infinity. In such a way we obtain an open system of equations which can be solved only simultaneously and this task being rather complicated. Despite this fact a special case of a small gap was investigated in the so-called acoustic limit [119] .In the following we limit ourselves to some particular cases which seem to be of interest from physical point of view, i.e., to the case where for a fixed even number n all parameters f^^ disappear or to the case where only two parameters f^ and fn_^ differ from zero. In the first case we have
Tn = 0 Tn+2 = 0,.



and 6 . « O, 8 , = O,... . n+1 ’ n+3 ’ (18)Although the above assumptions make the system of Eqs. (16)-(17) closed, the solution of the problem is still very complicated. However, if we put 1 = n from Eq. (16) we obtainn2n+1 t2a F\ n i
irn U /

F+(i-t2)F e = 0, (19)and hence the following gap equation1*  ̂n-1 n
cin+T 1

t2anF(t) - T+^mj F(t)+(l-t2)F(t) = 0. (20)Proceeding in a similar way as in the previous section we derive
-------------------- -------------------------2--------------(2n(2n+1) In —— + (n+1 Hi-t^Ftt)n-1and assumingan - Ajt) (22)we finddA_(t) f 2—2----- n(n+1)F2(t)E. (t)d(t2) 1

+ (2n+1) In —r— [nF2(t)+2(n+1)(l-t2)F(t)G(t)n-1 L+ (2n+1 )ln G2( t)j | j(2n+1) In ~~ + (n+1) (1-t2 )F( t) ] 2p“2(t).(2?)The function E (t) is defined and discussed in Sec. 35. Since the func- stion E (t) is positive and all other quantities are also positive to if S Qt <1, the derivative dAn(t)/d(t ) is also positive for every n. Investigating the limits of the function An(t) we obtaini 11 / a \ -1“A = AjO^A^tXA^d) = -^
Thus, the kind of excitations caused by the last pairing harmonic leads to the following.inequalities



n , A\ ra-1 (25)
The inequalities obtained are analogous to the ones given by Eqs. (23.12) and the remarks contained in the previous section are also valid.
one Let us pass on now to the second case mentioned, i.e., of only additional pairing harmonic which does not vanish. Then we havef, = 0,...,f„ , = 0 3 n-J fn-1 * °- fn+i = ° (26)and the according system of to Eqs. (16) Tk =8 k+1 equations obtained can = 0 for all k >n. Since for n > 6 be separated, the above problem

f^ / 0
should be considered for two Independent cases. Firstly we considerthe case for n > 6 and from Eqs. (16) and (17) we obtain"4 'V’l' ■0 (27)

t2F" 2 4+a2y T2
n-1 n

Sn+T

la, rn-l
la rn-1

t2a2F l+a^ I- 5d-t2) FO^ |
t2a F n " 1+a> F+d-t2)F 0

t^ \ n-21+a Jr / Tn-2 “ 2n-J n-2 /n-12n-3

1- t2a_F \T+a^F )
n-1 = 0

\ ^a-g1+a„ J< n-2> F®a-3

F+-d-t2)F e n-1 = 0

(28)(29)

(30)

2" 5 2 1 F 0 = 0
5

A 1

i? '^7Putting 1 = 2 in Eq. (17) and 1 = n-2 obtained identities are correct if in Eq. (16) we ascertain that the
T2 ”*3 ®n-3 (3DHence, Equations (28) and (JO) reduce to the expressions

2 1 t2a2F ■ F-5d-t2)F (t2 + ed) = o (32)
and T o

and A rn-1 n-1 f. *2an-2* F+(l-t2)F (T'n-2 + «n-i’ = °* (53)



Equation(32) does depend on the pairing parameters. Equation (29) is equivalent to Eq. (20), which is in agreement with our expectation.From equation (33) we obtain one more gap equationin Arn-1 . ^an-2',F(t)l pyjyy F ( t )+( 1 -1^ )F ( t ) = 0 (34)Although Equation (34) is analogous to Eq. (20) it nevertheless cannot be obtained by an appropriate change of the number n. The same proceeding as before yields
n-ć a p(2n-3)ln + (n-2)(1-t2)F(t)rn-1hence

(35)
(36)

From the results given by Eqs. (29) and (33) we can conclude that there is a dispersion in the excitation spectrum. Owing to the rich spin structure and the properties of the angular momentum, the number of two -particle states created for a given type of the pairing interaction may be greater than one. Such new states are usually not degenerated, though it can occur that some of them are degenerated. The existence of additional two-particle states, which can be realized due to some excitations in the system with pure P-pairing, was investigated in [43- -45]. With the reference to above papers we can notice that due to the lack of degeneracy and the dispersion of the energy levels connected with it there appears an energy gap in the collective excitation spectrum. So the additional states are situated at higher energy levels and the difference in energy is exploited to rebuild the spin-angular momentum structure of the ground state pairs. Since some excitations to the higher states are realized by means of special external fields, in the case studied some transitions can be forbidden. All these forbidden states are not good candidates for taking part in the equilibrium state, unless some extra external conditions are taken into account. The influence of the Landau parameters is the same as before, i.e., that the gap equations (20) and (34) are modified in such a way that the distances connected with the pairing energy and the dispersion of the state fluctuate simultaneously. It can also occur that the states disappear or become degenerated. Moreover, it is worth emphasizing that the transitions within the same split level result only in the rebuilt energy.



Let us now consider the last case, i.e., for n = 4. We havef^ / 0, f5 / 0, f5 =0, f7 = 0...............then = 0jt+1 = 0 for all k >4 and Eqs. (16) and (17) reduce to the forms
(38)

6" 5 t2a?F\^;Fe5 = °* (39)
t2a2F \ 1+a2F)/ . t F \ ,5 (1U 77 l+a-S1) T2 ” 5\ 3 2 / (40)

t 84F \ , 2 1>FJ % 0. (41 )4 A 4 
^7 ‘While analysing the structure of the derived equations we notice that the main determinant vanishes only when one of the following equations is fulfilled

= °» t2a4F(t)1+a^F(t) F(t)+(l-t2)F(t) = 0,
(42)
(43)4

9t2a2F(t)l t2F(t)
1 ■ TTsprnJ i+a2F(t) +

t2a2F(t)‘1 ~ 1+e2F(t) - jll-t2)
t2F(t) 1+e2F(t) 0. (44)

Since Equation (42) is gapless and Eq. (43) is equivalent to Eq. (20) we consider only Eq. (44) which after some algebra reduces to the form
TTe2W

{in [t2(i+|a2F(t))-|(i + a2F(t))] +t2(l-t2)F(t)j = 0,(45)



hence 5t2 5(t2- I)
a- - -----— + ---—5—. (46)3 In — 3(1-* )F(t)

*3Assuming
®2 “ 42(t) (*7)and differentiating the righ-hand-side of Eq. (46) we get that the derivativedAg(t) 5 2E5/5(t)d(t2) “ 3 * Jd-^^tt) (*8)

r3is a positive function of t if 0 < t <1. Since
A2(°) - - and A2(1) « +00 (49)■e do not obtain any extra connections this time. This result seems tp be quite understandable, since the possible two-particle state is now a superposition of two other states which in the previous case were described independently by Eqs. (32) and (33), and the state connected with the P-pairing exists for the all values of the Landau parameter a^. Thus in this case there exist only two additional two-particle states, which can be achieved by two-particle pairs daring the perturbation with the weak and inhomogeneous definite symmetry external fields.In conclusion, we ought to emphasize that the large number of two -particle states which arises from their rich interior-angular momentum structure becomes the reason for their mutual mixing end creation of the composite two-particle states which depend on many pairing interaction parameters. Such a situation is already dptermined by the forms of Eqs. (16) and (17).The extra problem is connected with the high terms of the expansion. Since for the large value of 1 the parameters a^ and f^ must become small and thus r^ must become small,too, it may happen that one of the inequalities (25) is fulfilled and then there appear the shallow two-particle states (cf. Eq. (23.12)).It may be noticed that although the two-particle states are created owing to spin-symmetric pairing interaction,their forms ere determined by the interior spin-angular momentum structure end their existence decided by the Fermi liquid interaction. In the case of the spin-anti- symmetric pairing interaction (which is found in all superconductors) 



the two-particle states have a poor spin-angular momentum structure and for the fixed pairing harmonic they can be realized only in one way. Moreover, all the possible two-particle states are independent: they do not mix and do not split. Precisely: One pairing harmonic can give only one single two-particle state, the bound energy of which is mofi- fied by an appropriate Landau parameter. The predicted properties of 3 4He- He mixtures in dependence on concentrations [112] allow us to expect broad application of the developed formalism.VII. Spin oscillations of ^He-B in the presence of dipole forces
25. The spin susceptibility tensorIn order to calculate the spin susceptibility the LMC theory [22, 79]. Since we do not impose any restrictions on the frequency, wave vector, and temperature, the kernels L,M,N,0 are non -analytic functions of the variables kv and ti)(cf. Sec. 37). For this reason the final results will contain an infinite number of Landau parameters if any restrictions are imposed on them. On the other hand, in the limiting cases where w = 0 or k = 0, or T = 0, these kernels become analytic functions of kv or w, or kv and u, respectively. This alone allows us to obtain the final results in a closed form without any restrictions on the Landau parameters, although the cases w = 0 and T = 0 demand some extra restrictions imposed on kv. If kv«w and T / 0, the kernels L,M,N,0, become analytic functions alone of kv, and though in this limiting case any restrictions need not be imposed on the Landau parameters, the obtained results are valid for some frequencies only. Thus, in order to solve the problem we should assume that all the Landau parameters b^ are equal to zero for 1 > 1 . From the experiments we know (Section JO) that the main part of the information about the $He system is contained in the zeroth Landau parameter. The contributions of the remaining Landau parameters are smaller and cause only small quantitative alterations. That is why we confine ourselves to the case 1„ = 0. For the sake of symmetry we also assume 0 4that the wave vector is parallel to the unit vector k introduced in Section 19. The basic equations necessary to solve such a problem have the following forms:

[45]tensor v .. we apply

=5^ + bo<(L-0)rji+2O^dkmpmdi^n

2M e k. \ ikmTj ~npn/ (1)



Tj " ^Vik {& + 0 - H(p)]

- 20T*d pd p - 2M ckmnT^d p)> , (2)
j mnn kii kmn j nrrj ' '

Xij = BV0 " °) + 20kdkmpmdinpn

“ 211 8. . _ T^dmnPn > 
1km j mnn' (3)where 3* d and are the normal and anomalous vertex functions J *Let us introduce the following notation:

a .a ą A p imA*i = dimpm* w = kp« Tj=Tj An (4)and, according to Eq. (19.25), we havedimkm = ± ki’ dikdim = &km' ” = ± k$- (5)A AThe average over p can be easily replaced by an average over q in Eqs. (1) and (3). This procedure allows us to estimate the tensor d.. from these equations. Multiplying Equation (2) by V , and taking account of the remarks given in Section 19, we can also eliminate d^^ frdm the right-hand side of the obtained equation. Now, the kernel of the A operator U has the formUij = ^ij&kn + dkidnj + dnidkj * (6)The expression Tj and T^^k^ can be calculated from the transformed equation (1) via the application of the averaging formulas (Section 33). Next, substituting these expressions into the transformed equations (2) and (3) and performing all the averaging procedures, we obtain very complicated formulas. To simplify them, let us introduce several symbols. First, we introduce the 7-vector T of the third-rank tensors where
= d/^e^k^,

*2 = d/VS^/k.,

t3 = d/Ve1)^ - Jk^)^,

T4 = 5(*ijkkkkn + 'kjn^i^'

*5 + ^dijkn + 5n?i - 2WP«^6 “ł<&ijkn - W?'
K = i(CijkVn - ekjnW-

(7)



AIt is worth emphasizing that the tensor T_ can be expressed via ten- in ®sors BJjj (Section 40).Hence, the tensors T are connected with the excitation to the astates (cf. [90, 103, 104, 127, 134])T : J = 1, M = 0,T2: J = 0, M = 0,T,: J = 2, M = 0,3T : J = 1, M = +1, (8)T^: J = 2, M = +1,T-: 1 = 1, M = +1,T?: J = 2, M = +1.Below it will be shown that the excitations with M = 0 are independent of those with M = + 1. This fact can be easily interpreted if we take into account the symmetry of the system. All the excitations can be classified in terms of the two-particle states with the following quantum numbers: 0 < J < 2, |M| < J, L = 1, S = 1. Since in the system the A direction k is distinguished, the total angular momentum J is no longer a good quantum number (M is still a good quantum number). For this reason the states with the same number M mutually mix. All longitudinal effects are related to the excitations with M = 0, whereae the transverse or circular ones are related to those with M = + 1.Let us introduce the 7-vector S suoh that <9)and the operator Q^(l = 0,..., 11) such thatVa = T<1) and T^ = Tp . (10)The matrices (®,P = 1,...,7) have the following forms:
Waf}. “.0 = 1.2,3; {^p , «.P = 4,5,6,7whsre ap = ^3Z4) + ł 6a2 %2 + ^Z12^ 3 6p 3

+ ł(6a4P4 +6 a6^P6^ + 4(6a5 6p5 + &a7
± &a4&P5 +^a5dP4 ~ ®a6Pp7 "6a76p6)’



J^lJap ’ 6ap ,
= 6ap 2^ 6a1 6pi + 6a46p4 + 8a68p6^' {$3} ap “ ^aZ6??{$4} ap = {Q°}ap = {$6 Jap = ^7 J ap = ^llJap
= J 6a26p2 + f 6a3^3 ~i ^Wps + 6a3 6p2> ' ^4Jap = 6ap +6a 4^7 +& a5SP6 + 6a6 8P5+ &a7 6P4>' ^J ap = t^Jpa = jH^Jap " 6a46p7

+ 6a56p6- &a6&05 +6a 76p4)'^6Jap = “ J$4Jap + 28ap ’{Q8J af J^J Pa =6a2 6P2 a26p3*J$1oJ ap = “ 2 6a16pi'^lJap=°«The action of the operator Q. on T^n should be understood in X Jfollowling way
(12)the

^ITj11 = Q^ofa = sa{^lJapTp • ^3)The 7-veotor 0 is defined by (of. Section 33)2l 2m„+m, m,
0 = - 3—v-t-.o.o. i1 £ r,°»°. rrr U“bo'i 1-V2where I2 = Ip - oQ + 2o2, = I2 + 2oj» and tiie 3-vector ofsecond rank tensors is defined by

(14)
the

i« - [Vj, ±'uA]- (15)The plus sign should be used if we take the gap in the form defined by (19.9e) and 8 = +cos-1(-l/4) or if we take the gap in the form (19.9b) and ®= -cos-1 (l/4). The minus sign should be taken in the opposite case. Let the operator E. be defined by the formulas b



and 3^) = {E^p (16)where a • 1,... ,7, p = 1,2,3; t = 1,2,3; and^E1^aP = ”2^a1^p2 + ^a4bp2 "{$2) «p = " ®a4$P2 + 6a5$P3 + 6a^P3 " &a7 &p2 » ^7){E3^aP = -^ai^piand let two 3-vector Y and Z be defined by2Y = - L“2» “3. 2b0m2o3(l-bOI1) J ' (18)
Z - - (19)We also introduce the factors D.fl = O,...,11), which in the transform- X Aed equation (2) appeared near the tensors T .They will not be defined ctnow because they are necessary only for the calculation of the Pap(see below). We only emphasize that and depend on g. Using all the symbols introduced above, from Eqs. (1)~(3) we obtainSaDit^ilapTp “ CpTp ’ (20)*1] - tzp - vAW ^p- (21)

ASince the Ta, ere mutually orthogonal, we can rewrite Eq. (20) in the form SaPap = °p (22)wherep = dJqJ.The matrix P has an analogous block structure to that of the matrices {Qj}.Let us introduce the inverse matrix R = P” whereB o = IIM H/HP U (23)ap pa and Hap = HMpall/llepll , e = 0 or 1 (24)where || ... II denotes a determinant.It is evident that the matrix R has the same block structure as the matrices P and {q^J•



From equation (22) we determine S; inserting it to Eq. (21), we find the following spin susceptibility tensor:Xij * (25)The poles of this expression are determined by the condition
HZ 11= 0 (26)which is equivalent toII eP II = 0 where e = 0 or i. (27)If equations (27) are fulfilled, the extra conditions are obtained0 (28)for all a and y. These conditions can be very useful to calculate ||l^p|| in the vicinity of poles.The second part of expression (25) can be written as follows: (29)where
W1 ~84 p

W2 = d-b0I2)5 + m5)2E44
= (l-b^?Now, let us write down the matrices form:

+ (Sni^ + ] •
+ (2m2 + m^m^R^ + B^^) + m^R^^J .

eP = in their explicit
’P11 ° P15'0 P22 P23_ P15 P23 P33 _ (30)

where
pn = + 8lb lm2+ mfxi - yg)-1 - - Ol - 4o8,
P13 = ± (9 1/5720)g,P22 = 3T3 + 10o6 + (5°/3)°7 " n2 " °2 ” Jn3 “ 3°3’



P25 = - { + 1*o7 - n3 - o3).

P33 = (9/2O)g + + 4o6 + (28/3)o7 - n2 - o2 - - |n,.
X3 = 4^[m2 - 2b0^o3(l - b^Y-1] (1 - bQI2)-\ and P44 P45 0 pr47P45 P55 P56 01P = 0 p47 P44 "p45 (31)P56 0 -P45 P55whereP44 = - n2 - o2 - - £o3 + 2bo(2m2 + m^d - b^)”1

+ Bb^d - b0I2)“\
845 = ± (5 Vl?/20)g,p47 = |g - + “jX1 " bQ^2^~^'
P55 = -^g-n2-^-^3 - i°3 + 4o6 + 8o7 + 2bOm3(l ’P56 = - " |n3 ’ i°3 + 2bQm3(2m2 +- " W’1’Here the rule according to which the sign is to be chosen is the same as for (15). Matrices M® $ can be easily obtained from eP. The solution of the equation II eP II = 0 is a good problem for numerical computation. That is why only some limiting cases ofXij = ^Bv[Za - (52)will be considered (cf. Section 37). First, let us consider the acoustic limit at T = 0 assuming g « 1. In this caseZ1 = Z2 = 5(1 + fb0)-1'= Zl(»2[w2 - 27A2 g (1 + |b0) - ^k2v 2(1 + jb0)]
W2 = Z^fw2 - jk2v2(1 + |bQ)]= 0.5 (33)



In the homogeneous limit (k = 0) we obtainZ1 " Z2 “ "F F{1 * 4“ V5'1’ (?*)

- TO s2 + -f" V)} 1 ’ (*6>
W5 = 0. (37)In the static limit (w = 0)\ - - M1 - W'1’ z2c - - W (58’where 1^ = - 1 + —y Fg, Ig = - 1 + —y Fo g— Fgand Wa = 0. (39)Let us analyse the formula (32) in two cases:(i) For g = 0, i.e., when the dipole-dipole interaction is disregarded: in this case= 8^(1 - b0I1)'1 [(n2+ o2+ 4Og)(l - b^ ) - 8b0(m^+ m2)] ,
Wg= -2(1 - b0Ig)"2 [(2mg+ m3)2P55- (2102+ m3)m3(P47+ P56)

+ (^44^45” p47p5e) * (*°)0, as in Eq. (19).(ii) 1 For bp ® 0, i.e., when the Fermi-liquid interaction is disregarded. In this case we obtain P^? = P^6 and hence



W, = 0.3 (41 )In detail. order our problem be analysed completely, let us discuss W, in 3The expressions for || M ap || can be found from (31). Using Equations (24) and (29), we obtain W$ in the form- + Vi5g(P47 - p56)i4[5(i - V2)2]'1 (42)whereI4 = (2mg + m^) - (2mg + m^m^fP^,-, + pjg) + »HenceW3 = “ (4 7lF/5) g boln2m5I4(l - b0I2)“5 II '’pH-1 . (43)As we see, this effect is strongly action. If we take now m^ in the coupled with the Fermi-liquid interform given in Section 37, we obtainW3 = bQ(^2 (^)2 FhF(l)I4d - b0I2)'5 irp||-\ (44)
Comparing (15), (32) and (42)-(44) we state that the response of the system is independent of the choice of the equilibrium state (cf. Section 19). Assuming that all the terms gn can be neglected for n >2, we see that the inclusion of the dipole-dipole interaction modifies only the spectrum of the longitudinal spin waves in which there appears a gap, whereas the spectrum of the transverse spin waves does not change.With the above assumption we obtain that in the homogeneous limit Z2=W2 due to which the transverse part of the spin susceptibility vanishes (cf. Section 26). The static limit is completely independent of the dipole-dipole interaction.The circular component which appears in the spin susceptibility tensor is analogous to the components of the dielectric tensors responsible for the circular dichroism of optically active substances. The role of this component can be characterized in the following way. If a monochromatic and polarized electromagnetic wave is transmitted through a sample of superfluid ^He-B, the polarization plane will be rotated. This is a result of the composition of two orthogonal vectors, which characterize the magnetic oscillations. This rotation is proportional to the value of g and its direction (right or left) depends on the sign of bq. A similar situation will take place for the transverse collective excitations. In such a case the magnetic vector" of the propagating mode will rotate tracing a helicoid, and for b^ < 0 a suitable mode has positive helicity.



26. Dynamic properties of the system in the homogeneous limit [4 5]Let us complete the above considerations with the results obtained in the homogeneous limit (k = 0), connected with the dynamic properties of the spin susceptibility and the properties of the spin collective excitation gaps. The new dynamic properties, i.e., non-zero response of the system in homogeneous fields, are due to the broken spin-orbit symmetry, which takes place if the weak dipole-dipole interaction is not neglected.The inclusion of the dipole-dipole interaction leads to the quantitative and qualitative changes of the spin susceptibility tensor. Although now no additional restrictions imposed on the Fermi liquid interaction parameters are claimed, the final results hold only two Landau parameters b^ and b^. Let us discuss now the spin susceptibility tensor in two specific limits. In the static limit, when k = 0 and w-^o, we have (cf. Section 34)i*1 2v0 (1-X)6i1X------------- I. -A 9-------AJ------------  . (1)1 + 5bo ’ 3box + 5b2 ■ 3b2xIt is the function of temperature and its value changes from the static spin susceptibility value at T = 0 to zero, when the temperature increases to T . cIn the limit w —»-2A , when the function F(w) tends to infinity, we get p F 2gb (6. -kA )= - 9gg BVn ------- ------------ + ---------- --- . (2113 ° [2-9g(b0+b2) 2+3gb2(1-6gbQ-3gb2)_The expression (2) is constant for all temperatures, but, as we remember, w(= 2A) essentially depends on temperature. This feature can be helpful in determining the temperature dependence of A . The longitudinal part of the spin susceptibility reveals the diamagnetic properties of the system, whereas the transverse response depends on the sign of the Landau parame ter b_.If we neglect the parameter g (cf. Section 42), the dynamic spin susceptibility is of the formp pA A-18U bvo®aXXj - -------------------------2-0------- , (3)u2-27gA2 Ql +|V (w )+yb2F 1 “)]/F{



OSince the disregard of the elements proportional to g causes the transverse part of the spin susceptibility to vanish. The magnetic resonance is connected with poles of the spin susceptibility (?) and is achieved if the following equation is fulfilledw2 = 27g^[l4V1-X)+3b2(l"Z:0 d-*)"1 (*)where we restrict ourselves to the first iterative step. Since the ex- pression A (1 - X) tends to zero alike A if temperature tends to T , the resonance frequency tends to zero if temperature tends to TQ. The expression (3) has no antiresonances (cf. [26, 27, 61, 68]) which are• 2not detectable if g is too small. In the static limit, the longitudinal part of the spin susceptibility is the seme as previously in Eq. (1) whereas its transverse part is always equal to zero. In the limit w—2A< we obtain again the longitudinal part alike in Eq. (2).An investigation of the spin collective excitation gaps creates a separate problem which can be evaluated by means of extrapolation of the spin collective excitation spectrum. If we regard that the parameter g is smell, then the geps of the longitudinal and transverse spin collective excitation can be obtained from the following equationsw 2[l + fb2F(w)] = | A2[1 + b2F(w)] [1 + 27g/8F(w)] , (5)
“2B + ^gFtw)] = f A2[1 + b2F(u)] [1 - 9g/4F(«)] . (6)Let us denote the solutions of these equations by u>|| and w^, Wq is the solution of Eqs. (5) and (6) in the limit g = 0. The accuracy of the applied formalism allows us to assume that Wy and if compared with o>q are modified by the quantities X. and n of the order of g, and can be taken in the formsw —Wq (1 + X ) and =wQ (1 +n ). (7)Inserting Equations (7) into Eqs. (5) and (6) we find X and g (cf. Section 35)X = 27g/l6E2/5£w 0), n= - 9g/8E2/5(u&) (8)wherew 0= 4-(2 + 3^). (9)Using (7) we get- w,—U—-1 = 45g/l6E2/5( (10)



then the following inequalities are valid
u < < w ._L 0 ’’ll*The r.h.s. of Eq. (10) achieves its bg = 0 (cf. Section 35). Since b2 split of the spectrum is not the ef: An inclusion of the dipole-dip.

(11)maximum if = 2V2/5A , i.e., if is probably small (cf. [6, 60]), 'act to be neglected (cf. [128,150] ). ile interaction leads to changes inthe spin-wave spectrum. Although the transverse spin wave remains the gapless mode, in the longitudinal spin wave spectrum there appears a gap which can be expressed by Eq. (4). This gap vanishes if the temperature tends to Tq. Moreover, the non-commutativity of two kinds of the static limit, i.e., u>= 0, k—>-0, and k = 0, w—«-0 is a worth emphasizing effect. Both static susceptibilities split over T = 0 and the first one tends to the normal spin susceptibility value whereas the second one decreases to zero together with T—Hence, the static response of the system becomes completely univocal at T = 0, only.VIII. Autocorrelation Functions and Spinless Oscillations in ^He-B
27. The density-density autocorrelation function [53]We developed the microscopic Green function formalism for a case when the two first harmonics of the spin symmetric Fermi liquid interaction, i.e., A^and A^ and dipole-dipole interaction are included. The scantiness of the number of Landau parameters is caused by the fact that no additional restrictions were imposed on the wave vector and temperature. In such a situation the specified problem can be solved only when the number of Landau parameters is finite. However, the influence of the higher Landau parameters is set off by the temperature and inhomogeneity effects and it can be neglected if the mentioned parameters or effects are small. The presented calculations are carried out without any additional restrictions imposed on the frequency and wave vector. It causes the obtained results to be more precise in comparison with those given in [27, 65, 90, 91, 105, 145-147, 150] and they allow us e.g. to penetrate the deep (in the frequency end wave vector) region of spin-less collective excitations. Simultaneously we can eliminate some collective excitations which are not determined by poles of the autocorrelation functions.Since the present methods differ in many details from the ones applied in the previous chapter we have developed them independently. In the specified case the proper vertex equations reduce to the forms



S sT- 1 + Aq <(L - 0)T + a(L 4 0)T - 2MTk4k>, (1)a rsT = A^ <^[(1 - 0)T + (L + 0) T- 2MTkqk]> , (2)•^“^kiO - ° - H)^1 + 20Tnqnqx + 2M(T+ $)qj>, (3)and the density-density autocorrelation function is of the form S°° = v <{L - 0)T+ (L + 0)T- BMn^q^ (4)s awhere T and T are the symmetric and antisymmetric parts of the normal If vertex function, respectively, t is the anomalous vertex functions, A Aand qk = dknpn. V is full interaction in the particle-particle channel (Section 19) and the kernels L.M.N.O. are given in Section 37.Introducing the additional symbols s aT0=<T>, T1 = 3<T(kp)> , t** = 3 (5)and taking into account (Section 19)pp' = 44* Ku = dnpkp and kp = kq (6)we can transform Eqs. (4), (2) and (4) to the forms
V 1 * Ao^o - °0) To+ ^o^i^i - <7>

^ki = A1l1Tok1 + A1(l2 + o2 + 1? +-BA^It33^ +1^^ + t3^) + mę^^k^J, (8)
S°°= *0^0 + °0^0+ Vl - 2m2 “ - ^Mj]’ (9)

Ahence multiplying Eq. (8) by kx we obtain
yl = ^I^O + Ai + °2 + X3 + ^1- 2A1[m4Tii + (2m4 + m^i^k^] . (10)A „'IBy multiplying both sides of Eq. (3) by V and after some algebra, we obte’n



* (^-o^o^^k^t  ̂ )

* 2°^ ^VmkV2 )+2X1m45lj+2T1 (2^+^)  ̂ (11 )where the parameter g is an invariant of the theory (Section 42). In order to solve so prepared problem we proceed in the following way:From equations(7) and (10) we express the normal vertex functions T^and by means of the anomalous vertex function combined with the Kronecker delta and the unit vector k. Substituting the derived expressions into Eq. (11) we obtain the tensor equation which is analogous to Eq. (11) where the sole unknown quantity is the anomalous vertex function. In order to make our notation consistent we present this equation in the following operator form= CpT^ (12)where Q^tl = 0,...,10) are the operators transforming the structure of the anomalous vertex function according to the relations occurring inEq. (11). denote the appropriate coefficients which are the respective functions of the frequency, wave vector, Landau parameters A^ and A^ and the dipole interaction parameter g. The terms tI"1 ( 0 = 0,1,2) de- p note the possible linearly independent tensors of' the second rank thatpossess the rotational symmetry in relation to the distinguished direo- Ation k. These tensors generate the three-dimension space; we choose them in the forms- 1 6 t^3 = E k T^ = —__ (8 -’k k 1 (-P1T0 - ij' 1 ^3 a' 2 ^6 13 " 1 3 ' 5 which ensure their orthonormality. In such a case they fulfil the relationT1^^ = 6 „ . (14a 0 a0 Moreover, such a choice of the tensors allows us to classify theadequate collective excitations in terms of the two-particle states, and we have (of. [42, 43, 90, 134])Tq3: J = 0, M = 0,T^: J = 1, M = 0,T^: J = 2 M = 0. (15)



However, in the inhomogeneous systems distinguishing one external direction k, J ceases to be a good quantum number which causes the collective excitations to mix mutually, hence they can be separated solely the quasi-homogeneous limit [42]. in
The coefficients 0 p are of the formsCo = {(3*2 + - A^lg + o2 + 15 + o3)]

+ A^tSm^ + m5)}
°1 = 0,c2 = “ {“jC1 " A1 ^2 + °2 + b +

+ A1l1(2m4 + m5)} W-1 (16)whereW= [l-A^^+o^l^)] - A^l2.According to equations (13) the anomalous vertex function can be expressed in the formab = DpT^, (17)then Eq. (12) reduces to the formVl&U TV =a°PTP3 (18)where the matrices {q.} constituting the representation of the operators A 1' i 1in the three-dimension space generated by the tensor T J are of the forms {%}ap = * ^1 + 36p55 VF 3 Vs15~ ^al^p3 + 6a/pi} - ~~ (6a2^3 +
{Qi}ap = 6ap *F^2^ap = 6aP" 26a26P2'(Map = ^Aa1$pi*Mp = Mp= Mp = (Map = (M}ap

= ? A 5r, - —6 , + 6 5 ).J a1 pi aj Pj j ‘ ai pj aj pi



(%)ap * (blpa “$ai6pi " ’’^'^al^pj* <19^In order to simplify Eq. (9), we introduce the following symbols: B A JIand n, where the operators óf contraction Rn(n s 1,2) are such that- <&n?ij + (20)ThenV « ’ W« <21 )where
{»■,). - ■ -r‘., - vT‘.5-and the matrix n is defined by the relation (cf. [44] )
n - B1{^1) • <22)the elements of whloh are of the forms

“ -<*2 - °2> - 5<b - b5 ‘ 10°6 - "F °7 - f °8

+ |{A0<5“2 + “ A1<b * °2 + b + b’l

♦ b<5«4 + -A0(l0-o0)]

+ ZA^l^Jmg + mj)(5m4 + s^)} W-1,

r -i
°13 “ bl = "T L<b ' b} + 20o7 + 2osJ

4 t/21,3 + “3^ E1 A1<X2 + °2 + b ++ A1(2m4 + m^)(5m4 + m^) [l - Ajl0 - oQ) ]+ A0A1l1[m3(5m4+m5) + (Jo^ + m5)(2m4 + m5)]| W1,
=22 <b - °2)>

9 VF 
n23 “ °32 “ ± “ST g’°33 “ sV 6 " (n2 ‘ " 3(n3 " b5 ’ *°6 " "V °7 " 5 °8



* f {V? " A1(b + °2 + b +
* * “j)2^ - AJ1O- Oo)]
+ 2Aoi1l1m3(2m4 + m^)} W-1.Now, inserting the expressions Tq and T derived from Eqs. (7) and (i0) into Eq. (9) and applying the above symbols, we obtain00 ,A iS = V0(E - Ifl {RjaDa) (23)whereE = {(10 ’ °0) t1 ’ A1 ^2 + °2 + b + and b = ’ b^b + °2 + + °3)] + bbb} w'1»I2 = 2{m3[l - A^b + o2 + 15 + o3)J + A1l1(2m4 + m5)} W-1.Exploiting equation (18) we find the terms D# in the form %-vel- <2”—■1 where II is the inverse matrix fulfilling the relationn „ n"1 = 6 , (25)

ap Py ayand by substituting the obtained expressions into Eq. (23), the autocorrelation function S®®reduces to the formS00 = Vo (E - K), (26)wherek = V3(b + jb^ob'l + o2n^)■ ni3 + — *1 and the suitable elements of the inverse matrix II can be expressed in the following waynii = (n 22 n33 -nt3)/llnll .
— n— — ii3 ^22^" *n ;3 =n n22/nn n , (27)



where II njl denotes the determinant of the matrix 0 and 2 2II n il “ 33 -n ^3 n22 - n 25* (28)Using the above relations the autocorrelation function can be transformed to the form
s°° ”0 {' - [°o «» - »»> ,2’>

- «<P» "a • 4 "o “aaV “•} • which becomes more readable after applying Section 33. Finally we obtain
S°0 _ (T _ _X_)4 (30)

where

▼ -a0 - o©)^ - ai(1p + VJ + Mi *W ■ 1 - ±3 (Ip + °p) -
* - (Wo)2 [“22^ “33) - n23Wl

- 2(wu0)(TCg)(w nl5) n22 + (TCg)2(wn11)n22,

z - (w 1^3) n22(wn33) - (wn13)2n22 - w(w u^n 23.

2 VJ , „ 1
w0 - —5- {“oE1 - AMP + °p)] + MiM *

WOg = -J/J {(»0- mp)[l - ^(Ip + Op)] + A^jl^ - 3®r)) • and - - ^(no + o0)W + I Aom2[l - A^lp + op)]
* 3A1E1 P “ Ao(1o - °o)] + f A0A11lmcP-| '

W ni3 = K2(np ■ no) “ 5o0 + 8op " 30 Jw

- 8Aomo{mp ■ M ’ Mrp + °p)l

- 8A1m1(3mr - m^ [l - Apdp - oo)]

- + 3Vr “ ^oM ’

E 22 = £ s 2^0 “ °o) + S’^p ” °p)'



9 V51 °23 = i ~50“ g*
Wn33 = [%; & - |(no+ Oq) - np + | op - | oj W

* f {Ao(mP - mo)2 E1 " A1(lp + °P^
+ A1(3mr - )2 [l “ A0(l0 - oQ)]* - mo)(5mr ' faThe assumed structure of the autocorrelation function ensures all the introduced expressions V, W, X, Z to be of the polynomial-type and they have no poles. Hence, the collective excitations which are always determined by the poles of the correlation functions can be derived from the following equationsW = 0 and Z = 0. (31)The first equation defines the collective excitations of the normal component whereas the other one refers to the collective excitations appearing in the superfluid BW systems only. The obtained form of the autocorrelation function is very extensive and its involved structureis due to the presence of the dipole-dipole interaction. We can reduce the number of the introduced symbols replacing the factors lj,‘, m^, n*, oi by the frequency, wave vector and the appropriate averages of the function F (Sections 33, 34, 36, 37).Let us consider now the possible spinless collective excitations determined by the poles of the derived density-density autocorrelation function (30) when the dipole-dipole interaction is omitted.Putting’ g = 0 we have stated that the autocorrelation function S 0° keeps its structure (30) and the terms V, W, X, Z reduce to the formsV = - (r0 - 1)(1 + - jA^) - AlS%r2, (32)

W = (1 + Ao - Aoro) (1 + - ^F2) - A^s2 1 + A^0)P2, (33)px = D1 + Ao - W 2 - A0Ais2
. fir, . f2 - j (fs) rt]<rot. ^W2♦ % - 7 fe/h



* j(Fos + $ a1f2t2) [(f0 - F2)E + (f2 - $F4)r2]
> [I (ar)2 ’a - 5 (H)2 * 2,2 ' FJ

-'’V*. 
- 2

z = {(^) Fo(l ’ Aor2)(1 + 3 Ai ’ 3 AiV

■ 3 (F) V1 + Ao - Vo^1 + 3 V

- ais^F2 R^a)2 fo - 3 (Fa)2 11 - Vo)]}

x {(A)23a< 3aif2) RW^Wo) ’ Ao(Fo “ V2]

- (F)2 <1+Ao-Ao ro) [(3f2+ If4)<1+ 3a< 3aif2) + ai(3f2 ’ iV2]
- 5(F2 - Jf4)(i + a0 - a0 r0)(i + - ^F2)
■ A1S r2 R^z) % + F2 + 3A0F0F2 " A0F2)

- 43 (Fa)2 ('F2 + 9F4 - 5AoV2 + 27A0F0F4 + 10A0F2 - ISA^)
- 3(F2 - p4)(l + AqFq)]}
- {&)2 + 3 A1 - 3 V2)

- (H) <3F2 -iF4)<1+A0-A0r0){1 + 3Al)

+ |(F0 - 2F2 + f4)(i + Ao - Aoro)(i + - ;Aif2)2 2
- V2r2 [(ft) ’V's’ * (S) lIF2 - 5 F»>

- + (M)2 - 2F0> * £(1 * Vo)l’o ‘ 2"2 * r’’B 2 (’5>

where



F2 = F0 + r0 " 1 ’and S « 1 + j A1 - £ A^g - A^2 r2. (36)The functions Fg^ and Pq are defined and discussed in Section 36. It is easy to prove that the obtained form of the autocorrelation function S®® reduces to the well-known forms in some specific limits [22, 27, 441. In order to derive the spectra of the longitudinal spinless excitations x appearing in the B-phase of superfluid He we have to solve the latter equation (31). That equation can be rewritten in the formZ^g “ z3 = ° (37)where Z,(i = 1,2,3) are the factors defined in Eq. (35). Let us note J. pthat the factor Z^ is proportional to (kv) , thus it must be omitted in the acoustic and quasi-homogeneous limits. Hence we can state that the collective excitations of the types J = 0, M = 0 (zero sound) and J b 2, M = 0 connected with the factors Z^ and Zg, respectively, separate themselves within the mentioned limits. Applying the formulae or Section 36 we can refine the developed problem extremely. However, at least at non-zero temperatures, the problem cannot be solved to the end in an analytic manner. Therefore, it is necessary to investigate Eq. (37) in some specific limits.1° The acoustic limit (w, kv «A )After neglecting all terms of the higher order in w and kv than the square ones we have stated that Eq. (37) is satisfied if Z^ = 0. Hence, the zero sound dispersion can be derived from the following equations2 [l - 1*0 + 2 * 2< *0 ’ 1 ’ V 52( t0 - 1 3x [i + V2p ę2d -ę2)( Io - 1) + A^ę2]
- ^-n-ic^d+VA^Vti + I V- aiS2{s2Ei - PIO + PS2( t0- D]- - A0 + AoP*o- A0?52(*0 - ^3} p52( *0 - 1) (38)Awhere 5= E/€, the integral operator P and the function are given in Section 36. Although in the general case the velocity of the zero



sound v 0 = sv (v is the Fermi velocity) can be derived in numerical way only, this disadvantage can be omitted'by assuming that s > 1 (out of the Landau damping).As far as the superfluid -'He-B is concerned the assumption is certainly proper for sufficiently low temperatures (cf. [22, 27, 91, 145, 146] and Section 30). It allows us to expand the function in uniformly convergent series (Section 36).Hence, neglecting all terms proportional to s in the negative powers, after some calculation, we get
s2 = j<1 + Aq)(1 + $ A0AtY2 +1 A1Y2____ 1 Y2~Y4■ * i-y2 ' 1-Y2 • (39)

We remind that according to the assumed conditions the above result remains valid for sufficiently low temperatures when the functions Y^i = = 2, 4) are small. In the limit T = 0, Eq. (39) reduces to the well -known’formula obtained in [22, 90, 91, 94, 105, 145-147, 150].2° The qua si-homogeneous limit, i.e., kv«m ~AA similar problem was considered in detail in [27, 90, 91, 147, 150]. Henca,we present only the most essential results. Since the term Z2 2 -zis still small and it must be omitted and Z^ ~ <*> , then Eq. (38) is fulfilled if Zg = 0. Hence the dispersion law of the collective excitation with a gap is given by the relationu2=_12 a2 .^^2 (l + 1 (40)where we put w = Vl 2/5 A in all expressions on the PHS of Eq. (40) in order not to exceed the assumed accuracy. The obtained result describes the spectrum of the collective excitations to the state J = 2, M = 0, therefore it is independent of the zero Landau perameter. Moreover, the last factor in Eq. (40) is positive for ell permitted values of the Landau parameter A^.Let us consider now the dispersion law of the collective excitations if all the quantities w, kv and A are of the same order. Such a problem seems to be of a particular interest since the frequency of the collective excitations should increase if the wave vector tends to infinity. Then we can expect that the curve of dispersion will have a local minimum for sufficiently large value of the wave vector k^ when2 the term Z,5 cannot be neglected any more. In order to specify the adequate problem in the analytic manner we differentiate Eq. (37) with re-



125 spect to kv (w is a function of kv) and put d«/dkv = 0. Then we obtain the relation
— (Z Z2) = 2Z akv 1 (41)A simultaneous realization of Eqs. (37) and (41) will allow us to derive the position of the local minimum, lie., the positions of Uq and kQ on the curve of dispersion. Due to the existence of the minimum in the collective excitation spectrum the suitable collective excitations are preferred. As an analogy to the effects interpreted in superfluid Zł He we can identify the distinguished excitation as rotons where is the gap of the roton excitations. The both characteristic quantities kp and wq depend on the Landau parameters and it is probable that the appearance of the local minimum is possible only for the particularly chosen values of the Landau parameters. Such additional restrictions imposed on the Landau parameters will create the criterion of the rotton stability. However, the very complicated forms of Eqs. (37) and (hi) cause that a more precise analysis can be performed by means of the numerical computations only.

28. Transverse collective excitations [53]The formalism developed in the previous section can be easily repeated in order to compute the autocorrelation function of the transverse current. Because of the existence of only one type of the collective excitations (J = 2, M = + 1) the whole problem is considerably simplified and the suitable basic equations become independent of the Landau parameter Aq [22, 26] . Since the question, of the modification of the energy gap by the dipole-dipole interaction is considered independently, we put g = 0. Then the transverse current-transverse current autocorrelation function is of the formv0 I m / / X, \li _ ' v _ _±s Hi TM (1)where\ = 4- r2(i - s2) - (f2 - 1), (2)
wi = 1 " Aivi • (3)

2 2

X1 = ^)2[v 5f2-(A) (Mf2) + i (fi)’(F2+ i



\ “ {[(A) <ro ♦ ' i (M) <rs * j F»>

- <’o - 'a ’ ? T»>]»x - “t®2 <?a - i p»>2}

r 2 2x L&) (Fo+ ■ KH) {f2 + - % +
K

& \2 Ly 2 , I 2(!,0 - F2> - h <3F2 - W - (F0 - M Wx . (5)
Although, the accurate form of the collective excitation spectrum can be, of course, derived by numerical computations only, nevertheless, some estimations can be performed in the quasi-homogeneous limit. According to Eqs. (1) and (5) the denominator of the function Sxx can be written down iń the form\ “ Z4Z5 - Z6W±where the factor Zg is proportional to (kv)2. While examining Eq. (4) we state that the numerator is proportional to Z^. Hence the collective excitations defined by equation Z4 = 0 are the only type of excitations available in the quasi-homogeneous limit. Their dispersion law expresses itself in the form„2 12.22 t2 2• = —A + k v h + 1 ----------51 + I ^(1 - Fh)J (7)

Let us consider also the poles of the autocorrelation function sxx connected with the normal component. Putting T = T ( A = 0) the system capproaches the normal state and the function S1-1 reduces to the form,, /P0\2 VxS = V0^t) (8)
where now

+ S2),

W± = 1 - A^V± and t) = s.Hence, after solving the equation W^ = 0, we may find the dispersion law of the transverse sound in the normal Fermi liquid. However, for all temperatures below the phase transition the function S"*"1 attains



the finite value if the denominator tends to zero. This limit value is a function of the Landau parameter A^ and can be expressed in the form
= o = vo (§)2 - zl - (9)

whereZ7 = (F0 + J F2> - J (&2 (F2 + i F4>
- (F0 - f2 + 3 p4)and

In this way we have proved that no extra collective excitations connected with a normal component of superfluid ^He can appear in the phase B.Therefore the transverse sound appears only in the normal phase and it is suppressed rapidly after the phase transition.
29. Gaps of spinless collective excitations [44]Since the parameter Ag Is strongly connected with the gaps in spectra of the density and transverse current collective excitations, this problem will be discussed additionally taking account of the dipole -dipole interaction. The values of the gaps can be derived from the following equations:

w2[l + ^2F(w)] = “T A2D + 5 E1 + 9g/4F(u) ] , (i)
w2[l + A2F(w)] = + 1 a2F(w)] [l - 3g/2F(W)] . (2)Let the solutions of these equations be denoted by ww0 if g = 0. II and and by
The accuracy of our calculations allows us to assume that the values of cou and if compared with that of Wq are modified respectively by quantities X and p (of order of g) and can be written in the form:w„ = wQ(1 +X ) and =o0 (1 +n ). (,Substituting the first formula of (J) into (l) and the latter into (2), confining ourselves to the terms up to the order of g and eliminating A2 from the first order terms we obtain



x — 9g/aEj/5( Wq), p = -3g/4E^(w0), (4)hence,
—a-~ = 15g/8E5/5(Wo), (5)and
“o = -3- <2«R + 3«J* (6>Since the function E_(w) (Section 35) is positive then from Eqs. (3) s-(6) we obtain the follówing inequalities:“1 < “G < “u • (7)The function E(tt) attains its minimum value for » = 2 -/s’ △ » i.e., S 0for A2 —- 0.According to equation (5), the difference Wy - wx is proportional to the function Wq)which has a sharp maximum in the vicinity of Wq “ 2 7/3/5' For this reason the dipole interaction is the most important if Ag is close to zero.The developed formalism allows us to state that the density autocorrelation function vanishes in the homogeneous limit (k = 0) even without the extra assumption about gn. We also state that the inclusion of the dipole interaction does not change the zero sound spectrum.© The strong coupling effects which are connected with the mutual interaction of the two-particle states lead to the effects analogous to that of the dipole-dipole interaction in the collective excitation spectra with the gap [136]. On the other hand, we can generalize the total interaction in the particle-particle channel (19.2) assuming it in the formVij = ' ?flB(1 + »1^iAjn + * a2^\j^kn ‘ Wjk^

+ |(1 + «3)<6ij6kn + 6in6jk ‘ f Wjn’] Vnwhere |Bi|«1 which can be positive as well as negative. Their values should be fitted independently, e.g, from experiments. Let us note that this interaction is the rotational invariant in the total spin-momentum space (of. Section 40)•



IX. Remarks on the Obtained Results30. The values of the Landau parameter in *HeIn order to illustrate the research of the obtained results we insert some information on the Landau parameters. All Landau parameters have to satisfy the Pomeranchuk inequalities [117]w® F®- 1 < gy - < °° and - 1 < < °° (1)and the Leggett condition [83]F® < F®. (2)Moreover, they have to tend to zero if 1 tends to infinity. The Landau parameters depend on the pressure but do not depend on temperature,even after the phase transition. According to the experimental data [8, 9, 21, 59, 109, 110, 125, 139] their values for 1 =0 and 1 = 1 range within the following intervals10.07 < F® < 94.13,6 .04 < F® < 14.35,- 0.67 > ?o >-0.76,- 0.21 > F® >-1.2 (3)which are specified according to'the growing pressure. The respective values of F® estimated for high pressure in [118] and [60] areF® = 0.3 ♦ 0.5,F® = -0.32 + 0.25. (4)Thus the absolute value of F® is rather small although its sign is s suncertain. As to F| we can only state that it is unlikely that F2 exceeds 5 [20].31. Quntative and qualitative effects generatedby the quasiparticle interactions
That is well-known that the Fermi liquid interaction modifies quantitatively the characteristic quantities which describe the Fermi liquid systems [22, 24, 26-28, 39, 40, 42, 64]. On the other hand, the Landau parameters must satisfy solely the Pomeranchuk inequalities [117] and the Leggett condition [83] and no additional restrictions 



arising from the stability conditions also for superconducting and superfluid systems have been found [25, 27, 28, 45, 46, 48, 141-143], The only exceptions are the ferromagnetic Fermi liquids [23, 69, 70], but there the form of their Fermi-liquid interaction is defined in another way. In the presented considerations we have shown that besides the obvious quantitative results there exist some qualitative effects in superconducting and superfluid systems, which are due to the Fermi liquid interaction. These effects can be classified ammong three groups: 1° The types of superconductivity and the behaviour of superfluid x x 4■'He and mixtures He- He in a strong magnetic field are determined by the Landau parameters. Hence the Landau parameters determine the order of a phase transition from the superconducting (superfluid) to the normal state (cf. [18, 19]). If the Fermi liquid interaction is omitted, the first order phase transition is realized only in charged and neutral BCS systems.2° The Landau parameters determine the existence of additional branches of the collective excitations when the pairing channel contains additional harmonics. Then for sufficiently large Landau parameters no extra collective excitations can appear, o 53 Considering He-B we state that the circular dichroism, collective excitations of the helical type, and the transverse response of the system on the threshold of the quasiparticle destruction are not available if the Fermi liquid interaction is excluded. Hence, the Landau parameters (F®, F®) decide on these effects and their orientations. The fact that the spectrum of the spinless collective excitations possesses the roton minimum dependent on the Landau parameters F^ is plausible.Let us note that the rest of the quasiparticle interactions, i.e., the dipole-dipole and the pure-pairing interactions are the cause of qualitative effects such as the splitting of the collective excitation gaps, the appearance of the gap in the longitudinal spin wave spectrum, the non-zero response of a system at homogeneous magnetic fields, and the suppression of the transverse sound in the superfluid phase.High precision df the performed calculations allows us to eliminate a few types of collective excitations which are generally discussed.



Part Four
MATHEMATICAL METHODS AND APPENDICES

X. New mathematical methods
Theoretical investigations of the superconducting and superfluid systems required the development of new computing techniques which would permit us to derive some composed integral expressions. The principal advantage of the developed methods was connected with the qualification and utilization of symmetry properties of expressions being considered. Due to the high degree of complexity of the theory there appear some non-standard integrals connected with temperature series expansion and some new functions the properties of which should be defined independently. All these and other purely mathematical elements of the theory are collected and elaborated in this chapter.

32. Integral techniques of the Green function formalism [51]In the presented considerations we use the temperature Green function formalism. In such a case the summation over possible quantum-mechanics states ( en, £) concerns the Matsubara Green functions. In order to derive suitable sums we always apply one of the two following methods which can be reported as follows:1° The Elieshberg method [33]
T2 2 ^(^+) T 2 J e n £ En

(l)
Using a residue theorem we can replace the summation over i^a by integration over £ and transform expression (1) to the form

(2)
where the expressions g-^ and X^ have the forms:



g1 = £h(p+^r<p_)» «2 = £r(p+)£1(p-)»
~ e ~ 5gj = £A(P+^(P-L K 1 = th —2T— •

e+ 5 e" 5 6 + 2X2 = th —55------ th —55— » X^ = - th —— . (J)2° The residuum method [35]
lim T 26—— 0+ pn —

— u. 4- ifg (n.Ct) 2*il6°6's<’’ s—o* tn

Res 35 (p) 1 + th4r (4)where all the residua are taken for the poles of the Matsubara Green function 35 only, and
P± = (P i i k» icn i ł iwm«Ł)'

P+ = (£ + 5 k, e + w ,h),€n = (2n + 1 )«T, w = 2mitT. mAll the Green functions are the matrices and Gn and G,—ti —Aand advanced Green functions, respectively. Moreover, are the retarded we assume thateach of the Green functions G„, —n* for the functions or . -Q Gg, F (Section 3) can be substituted
55« Averaging and recurrent formulae [40,42,43,53]In order to simplify the notation the average over spherical anglesare denoted by 2tc= ~r- ( d<p4% J +0

it d0 sine (1'0



and in the case when only one direction is distinguished in the system, the integral over spherical angles can be reduced to the form

where cos 0 is substituted by x.The integration of all the appearing expressions constitutes an essential difficulty of calculations. However, applying the symmetry properties of the integrated expressions we obtain the following very helpful formulae: (2n-1) ! !^n^ (2n+ 1)!! 2 6aki &ak2n_1 ak2J3)
where the product of deltas contains n factors and summation is extended over all possible sequences of deltas ([40, 4J] ).1° The Legendre polynomials are of the formpi(x) = 4— L{x2 *1 21 11 dx1 Jand fulfil the relations(1 + 1)p1+1(") = (21 + IJwP^w) - IP^fw), (5)and <P.(p^ P. (pk)> = (6>If the function C =C(pp/) can be presented in the form ooC = £ <21 * >C1 P1(PP)» (7)1=0then we have [42]<O = C0, 

/ A1 \<c Pi> = Cn px »<C P^> = 4- (c0 - c2) 6i;j + c2 p^.
<0 4Vk> = "T (C1 ‘ C?(pi6jk + p?ik + 

A A A+ c3 piVk'



<° MA*ń> = <4? c0 ‘ “fi °2 + 4? O4)(6ij6kn + Wjn
+ 6in6jk) + 4"(°2 - °4)<M?kn + Mk6jn
+ Mn*jk + pA6in + pA6ik + Mn6!?
+ c4 P^P^. (8,>

2° The function expressing the dipole-dipole interaction is of the form [43]Dij (p.p') = 6^ - 3(Pi - P^lPj-Pj) /|P - P'|2 (9)and it fulfils the relations(p.p') “ (p.p') and Du (p.p') - 0. (10)By series expansion we get
Dij = 2&2* + 2 «cij (p.p') p; ...i; >pi ...pi >

n 1 n. 1 n

X p' ... p' Pl ... p. (11)1 n 1 nand employing the relations^ij (P.P )> = 4“ Sij 4~ pipj' ^12^
^ij (P.P') P^>--------«±jPk + 4" (&jkpi +6ikpp

- 4- MAwe find two first fators of the series expansion (n) in the forms «D±j (p,p')» = 0, (14)
«Dxj (p.p') Pk>Pn> = - 4o6i?kn + (6jk6in + &ik&jn^ (15)

The other tensor terms of the series expansion can be found in a similar manner after applying symmetry rules.It is worth noticing that the contraction i = j of each series 



expansion tensor must be always equal to zero, since (p,p*) = 0. This statement implies, e.g., Eq. (14).3° If A= A(kp) is an arbitrary function of the scalar product kp, the suitable averages have the forms [53]
<A>=X0,<AP±> = X^f,<APiPj> = X^ + Xjk^,<APiPjPk> = X4(6i?k + 6ikkj + 6^) + X^k.k.,^i’ii’ji’k^’n^ = ^S^ij^kn + ^ik^jn + ^in^jk^+ X7(6ijMn + 6ikVn + 6 A 4 + 6 jkMn

+ 6jn¥k + V1V + AVA- (16)The terms are not independent linearly, however, by introducing the following denotationsXp = 3<A(kp)2>,Xq = 5<A Up)4> .Xr=<A(kp)3> (17) they can be expressed in the forms

(18)

X6=-ł~X0 Xp + Xq>
X7 = ł“ X0 + T- Xp Xq*
X g = ^~X0 ■ XP + Xq where



X1 ='<A (KP)> (-19)and then the functional factors , X^, x q, X r are linearly independent.
4° If Q is an arbitrary scalar or vector function of vectorial variable q then we can write o

<( IQI^ - <IQ]2 > 3) > > 0 (2°)q q.where <...> q denotes averaging over q vector space. Equation (20) implies the relationsP n-j « Pn Pn-2j <21)where
and

n

Employing (21) we state that
a k+1P n-kPn » T— (22)P n-k-1where0 k n - 1thus for k = n - 2 we get

Pn > p{2^Note that the equalities are attained only if the function |Q(q)| is constant.
34. The Maki and Ebisawa function [43, 47]The function F, so-called the Maki and Ebisawa function, is defined as follows:

f = 2 2J en l£l



where ¥ (p+) is the anomalous Matsubara-Green function taken in the limit H = 0. In order to calculate the function F we apply the method formulated by Eliashberg [33]. Then after some algebra we obtain+ oo E
2 f tgh ST w 2 - 2ękvF = A I d£  a----- • —a----------- a------- a------- T---------- =-------5' E- [w2 - (kv)2] (4E2 -w2) + 4A2(kv)2

— oo+ ao E+
2 r tgh w2 + 25 kvJ 5 ®+~ [w2 - (kv)2](4E2 -w2) + 4A2(kv)2

— oowhere
• (3)The obtained integrals (2) exist, in general, (i.e., for arbitrary values of w and kv) in the sense of principal values only, therefore the change of variable is forbidden. Let us consider now some other representations of the function F which turn out to be convenient for analytical evaluations and numerical calculations. After expanding the expressionsE+ E_tgh tgh—7- and —E7 (4)in the Taylor series we can rewrite Eq. (2) in the form

F = 2 TSHJ!n= 0 _____________ a €_____________[wZ-(kv)2J (4E2-«2)+4g2(kv)2
x w2 tgh —E + (kv)2 2n+1 (5)

Puttingw = kv in Eq. (5) we can easily obtain the following property of the function FF = 1 if to = kv.This property is very important because of the term (F-1 )/((j-kv) appearing in the linear response theory. Employing Equation (6) we can transform Eq. (33) to the form



[.2- ud2] 2 n=0 1 (2n)! w ^E2-^)-^)2^2-^)
x (* ę2-w2)

d2n tghE 5 , p p-------(4E<(/)2n+1 d2n+l d^2^ (7)
F — 1

E 0

The obtained Eqs. (5)-(7) allow us to determine the forms of the function F in some specific limits. In the homogeneous limit (k = o)Eq. 5 reduces to the form
4E - wbecomes a function of variables w and T, is an the argument w. Its value increases from (9)

co _ Pi

7 ^-fr 4 a2Fh = d 5 -----Z----- ’ “5------- 5 • <8)
J E0The function F. , which increasing function ofFh(0) = 1 - X, where

X = Yg ®nd ^gi = I 2T cd \2t) * E- ) ’ (lO)0up to infinity if u tends to 2a.The function F^(w) decreases to zero for the fixed o> if temperature tends to To» Consequently, if temperature fluctuates from zero to T , the functions Y_, increase from zero to unity and fulfil the rela- C kiltion Y2i < if i > J and 0<T<T (11 )In the static limit (u = 0) the function F reduces to the form
F = 1 - Y - a2 Y l^l2- ( th^3 ° (2n + 1 )! ' £ 1 \ E (12)

where Y$ is the Yosida function.The function Fg is a decreasing function of kv and its value tends to zero if ky tends to infinity (the Pippard limit). It is also a decreasing function of temperature, so it never exceeds the unity.



The function F in Eqs. (5) and (7) is given in form of a series. This series is rapidly convergent and in some problems we can limit ourselves to a few of its terms. The most often applied reduction is the so-called acoustic limit (i.e., small w and small kv limit). In that case all terms but one are neglected and the function F reduces to the form [81]
-2 «2 (kv)2E‘ (kv)252/E2 (13)

0Putting u or kv equal to zero Eq (13) reduces to the form given by limits. The small kv and-greatEqs. (9) or (12), taken, in the samew case is an often used specific limit. In this case the function F2becomes an analytic function of (kv) and we can expend it according (kv) , and limit ourselves to a few terms of theto powers of 
Then we

series
where Is

and

obtain
I \2

+ IrJgiven by
F(1) = 16A4

Eq
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kv\4
2A(8)

a °F
T~7in

F(2) kv \62A F(3) (14)
16E2(2ę2 - A2) +w2(4ę2 + «2)

«2(4E5
(15)

kv»O
(16)

F = 1 €2

F ’ F(o)

aę0 E
E

F = 12^]^

In the quasi-homogeneous limit (kv <<*,) the reduced function be written down in the form F can
F = Fh (kv)2 w 2 (17)1 - • hwhere
h = 2 w“ An 

4A2 Fh
(181

The function F is a non-analytio function of the variables <4 and kv for finite temperatures. Its limits do not commutate if w and kv tend to zero in various ways. This fact introduces large complications to the existing formalism. However, in the limit T = 0 the function F becomes an analytic function and has the form



where
arcsin p
Pt/1 ~ P2

(19)
(20)First it was calculated by Vaks et al. [133] . The form of the function F given by Eq. (19) allows us to expand it according to the powers of (w/2a) and (kv/2A) , and to cut off the expression if the terms become small. All the presented forms of the non-zero temperature function F correspond to some analogous ones obtained from Eq. (19), which was not achieved by Maki and Ebisawa in [93]•The forms of F-function given by Eqs. (5) and (7) allow us to prove the existence of many interesting properties of the investigated function, they, however, ere inconvenient in the numerical calculations, since the function F is defined by means of the series. Therefore, we propose to use in numerical computations the following forms of the function F:

F
dx(t2 - U2)(1 + x2 - t2) + u2

tgha X+ tghaX_
+ —77"' 

tgh a \ '

and

tgha X+

x < (x2 - t2)
+ -5- (1 + x2

tghaX+ tghaX , ... WW—...  4- - -

(21 )
t2(l +?

(22)
(23)



in the homogeneous limit where the quantities

form the set of dimensionless variables.By introducing the above notations the whole temperature dependence in the function F can be reduced to one parameter a. Such a renormalization allows us to use the function F even when we do not know how A depends on temperature. Assuming that a is a number chosen from the interval [0,°°) we can find the value of function F for given t and u.To give the full image of the function F we performed numerical investigations using Eqs. (21)-(24). The research was carried out for t /2A and u = kv/2A taken only from the unitary intervals, and for three chosen values of the parameter a, i.e., for a equal 500, i or 0.1. The first case ( u= 500) corresponds to very low temperatures and with great accuracy can be identified with the case T = 0. The second case ( a= 1) is connected with middle-range temperatures, and the last one (a = 0.1) defines temperatures very near to the phase transition. The dependehce of function F on t and u for fixed a can be illustrated by some particular surfaces shown in the Figures 7-9. These figures allow us to give some extra properties of F-function, namely, with the increasing temperature function F decreases in the large part of the considered square, and it increases only in those parts of space where t is near to u, hence,there appears a hummock on the appropriate surface. The more temperature increases, the steeper, narrower and higher the hummock becomes. The maximum of hummock is constant for fixed a end always lies in that part of space where t is smaller than u, although it comes near to the line t = u if the temperature tends to T . cMoreover,from Figs. 7-9we can also see that in the discussed region of quantities t and u there exist some local minima of the function F. We do not consider them because they have probably no physical meaning.Let us define now some other characteristic functions being the generalization of the Yosida function. They have the forms
; 7^ _2 Vs2 +- x2)'Y0,2 - J dx j ch » (25)



YO,1 = J dx J £ oh K 0 0and v ( d5 .-(2+1) 7$2 + A2Y,1 = 1 ST °b 2T0 whereY „ = »0 0
i i F

7> kv1/ 2A
w / /

-L- , (26)
(27)

Fig. 7. F-function dependence on t =«/2Aand u = kv/2A taken from the unitary square. Here a = 500 (range of very low temperatures). The hummock is not perceptible yetIa/----------- K

\ łF

/ I Is
/ ________ 2z

Fig. 8. F-function dependence on t and u. Here, a = 1 (range of middle t emper a t ure s). The hummo ck is low and wide



Fig. 9. F-function dependence on t and u. Here, a = 0.1 (range of temperatures near to phase transition). The hummock becomes narrow and high
35. Some other characteristic functions and equations [44, 45, 49, 51]1° Besides the function Fb(w) (Bq. 34.8) the two following functions are strongly connected with the superfluidity studied in the homogeneous limit, namely E2 dF(w) T th“2T d(w2) J 45 (4E2 - W2)20 (1)

which is always positive and increases from
(2)

(the latter term disappears at T » 0 and T = T ) to infinity if w tends from zero to 2 A and T < T , andVEs(w)=Fb(w)+ (1 - s)-1Mt>) js - ] pl - ] (3)where0 s < 1.



integral representations of and G(w) thebe rewritten in the form
0

After applying the function Es(w) can
E_(»») = 16A2 9

While analysing the function Eg(u) we find that its minimum value is reached at
«m-2VFA. (5)Since Ek(w) is an increasing function, the function G(«) is always positive, hence the values of Es(w)-funotion are greater than those of F^ta)-function if u < and smaller if The function Eg(w) isalso always positive and for « = its value is equal to b^wm)*At the zero-temperature limit the above functions reduce to the forms

1 - pl - 2 (’5t)21 Fh(u) G(») - -------kJ. h . , (6)

D -
»«»-4- (7>

and

1------- T- 3E (0) = ---------2----- . (9)8 1 - s2° Let us consider now the following integral equation
• 2[1 + sAFh(w)] = 4sA2 [1 + AFh(w)] . (-10 )Since the parameter s in Eq. (10) is a fixed number, its solutionsare examined in dependence on the value of the parameter X, . The frequency «0 equation is a solution of this equation provided that the is fulfilled following

A > A (w) (11)where



&)_ {[&) - }Differentiating the function A(w), we obtaind A(m) d(w2) (1 - s)Eg(w)s (12)

Since the derivative of A( w)-function is always positive, A(w) is the monotonously increasing function of w. Its value increases from (X - _1- 1) < - 1 for w = 0 to infinity when w tends to 2A • If the parameter X is required to satisfy the conditionX > - 1 (-13)(the typical stability condition of the Fermi systems) then the values of solutions of Eq. (11) begin from certain frequency wp(0 < wp < wm), if T > 0, or w = 0+, if T = 0 on the border of stability of a system, and tend to infinity if X tends to infinity, too. If A = 0 or T —^T„, c the solution is given by Eq. (5).3° Let us specify now: the main relations employed in the zero -temperature limitlim th = sgn x, (14)T=0lim 2T Ln ch —^ = |x|, (15)T=01 / |x| + IyI lx| - |y| \2 lim (th ■" + th IT=0 ' '= 0 [± ( |x| - |y| )] (16)and the ihtegrels
+oo dę I th —-----th —aT- ) = 4x« (17)

— co

+ coJ dę [sgn (ę+ x) - sgn( ę- x)] = 4x. (18)- CD



36. The averages containing the Maki and Ebisawa function [43, 53]
All appearing averages can be expressed by the following termsF2i = (2i + 1) <F(kp)2i> , (1)and rn ------ Ż 2, a a g <1 - *)) (2)0 - k^lkpp 1which can be computed by the methods developed in the following notations

0 = n2 <[n2 ~ Up)2]”^
[40] . We introduce

(3)

*21

t; in
(nl

= n21

n +'1n -11 arctg 1-1
0 j=0

i- iitT)*( 1- T)2) if

I211-”2j + 1
if

T)2 > 0
T)2

(4)
(5)

0

where 2 n 2 s 4E2 - & x 5 ,
- Wd

(6)and E2 €2The imaginary part of the function is responsible Landau damping where its threshold is modified according to then it never exceeds its normal-phase value (s = 1).
forEq the(6)If |T)| >1, then function Tg^ can be presented as

T21 = 2jj = 0 (7)
Applying equations (3)-(5) forms the expressions Eg^ and F reduce0 to the

F2i = 4(2i + 1)A2 kvn=0 (2n) (_iL_/ 4E2 - W2 0

2
+ L, s = w

1



—2 3x { *2(n+i)~s T2(n+i+l) ~^2n
(8)

E
i a2**1 fl th E \ a2*

2n+i aT^ Vs ' 4E2- «2 ' aę2n \ E / (10)In the acoustic limit, i.e., when w, kv«A, the expression  ̂8) and (10) reduce to the forms which are obtained by putting w= 0 at the 2 2denominator (4E - w ) and in the term T) and with taking only one n=0 term of the series. Then we getF2i = 1 - (2i + Dlhy-S-2? *2(i+l)). (11)
ro =where P denotes the integral operator defined as follows

and
P® (5)

0

(12)
w E e



According, to equation (5) the by means of the functions Tq geneous limit the expressions
function T2i for i > and Y2i (Eq. J4. 10). ?2X and rQ reduce to

0 can be expressed In the quasi-homo- the forms
*21 ’ *h 21+1 ----------- s h21+3

r0 - (i - Fh) + 4“ (1 - *h + *h ’ h)s‘2-

(13)
(14)

37. The kernels L, M, N, 0 [43]1° The kernels Ł, M, N, 0 in the matrix rotation are defined as follows:L= 28(p+)23(p_) - (£2(p))“.M = 2S(P+)£(P-).N= 2s(p+)^(p_) - gs(p)g’(p), o = f(p+)f(p_) (1)where the functions G, Gg and F are taken in the limit H = 0. In order to compute these kernels we can utilize the Eliashberg method (section 31). Then we obtain [22, 40, 43, 81]kv d w+ kvL = —Z----- -------- i- .  ZZ- u - kv---------- w - kv

0 = 4“ (2)2° The type (33.3°) averages of the above kernels can be expressed by the terms F^ and combined with the frequency u and the wave vector k. Some examples of such procedure used in some characteristic limits are given below. In the general case we obtain
1o ~ °o “ “ + ro’mg > -W (FQ-----y- F2)/8A ,
mj a u % - F2 )/8 a ,



Hg + Og = [w2^ ~ + k2v2)Fg + A2 ,n5 + o? = - [w2F0 - (w2 + jk2v2 )F2 + |k2v2F4]/8 A2, 
°O = 4" FO«
°2 = 4“ F0 ’ 4? F2‘
°3 " " 4“ FO + 4" F2'

°6 = "TO FO " 4* F2 + 4$ F4'
°7 = ■ 4^ FO + 4~ F2 ■ 4^ F4’°8 = 4s Fo - 41- F2 + 4s F4*
°1 = °4 = °5 = 0. (3)In the acoustic limit (w, kv«2A) and at T = 0 these expressions reduce to the form (F = 1 and F£i = 1, r = 0)

m3 = °5=07=°8=0« (4)In the homogeneous limit (k = 0) the expressions (3) have the formsXO “ °0 “ " Fh'm 1 w v“2 = ‘ Fh*
n2 + °2 = T- (“ST) Fh'°o = 4~ Fh* °2 = I Fh’
°6 = Fh»

In the static limit ( u= 0) the expressions (3) have the forms



10 - °0 = ’
o

*2* °2 ’ - TT (§)

*3 + °3 = 4" (§) (K2 _ ? F4>'

mg = m^ = 0, as in Eqs. (3). (6)In the quasi-homogeneous limit (u »kv) the expressions (3) reduce to the forms

All other terms can be obtained in the analogous manner.
38. Elliptic integrals [52]The elliptic integrals introduced by Legendre are following:The elliptic integral of the first type is of the form



’O 
|Oand

dtp■/i - k2sin2ę
F ,k]=F(k). (1)The elliptic ’OE(<p0,k) =J O

integral of the second type is of the formd<p 3/1 - k2 sin2(p ,
and E k) = E(k). (2)The elliptic integral of the third type is of the form

n(<p0,n,k) = ---------------------------(l + n sin2<p ) Vi - k2 sin2<p (3)

The function II(<p0»n,k) is divergent if n is negative and fulfils the conditionn < - l/sin® . 0In order to omit the appearing disadvantages we have introduced an additional type of integral
To

G(<p0,l,k) = J
0

dtp
r 2 21 - k sin tp + 1 sin <pand G (4-,l,k) =G(l,k) (5)which is convergent and can be expressed by means of elliptic integrals in the following wayG(<p,l,k) = - 1 [k2F(<p,k) - l2n(<p,n,k)J



wheren = - (k2 + I2).
39. Temperature expansion [54, 55]

Standard integrals which appear in the theory of the superconductivity and superfluidity when the temperature expansion nearby Tc is applied have the forms (cf. [66, 73] )« /2Tf dx _ 1 n th “D -I n 4eC ln 2wP Tc - .
J x th x “ 1X1 ST th ST ln x " 1 a(0) + t *
0 »d/2T Wp/2T( , d /th x \ ... “D f dxJ dx x “31 (-X—) = th ST " J — th x

0 9

2Wp m= 1 - In -Ji- + In (2)A(0) TcwhereA (0) = T x e-C (3)and 0 = 0.577 215 is Euler's constant. Moreover
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sign or zero formulae

j dx______  J (1 + x2)^1 0 ___ «_" 2 (2n - 1)11 2n n!Moreover we state that

Since the terms w^/2T»1 or 5^ if T C Tc (where w

(7)
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C(s) is
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(11)
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Debye characteristic frequency end ęp is the cut-off parameter), they can be put equal to infinity in all convergent integrals and functions. The integrals (4)-(9) have been derived by compering suitable terms of the series expansion in the residuum method. The applied values of Bie- mann’s C-function ere the following
c (3) = 1.202 057..ę (5) = 1.0J6 928..C (7) = 1.008 349.. (14)



XI. Appendices
40. Two-particle statesa) The concept of two-particle statesQuasiparticles which are the fermions possessing half-integralspins couple in Cooper’s pairs if their momenta are opposite. AllCooper’s pairs create a coherent two-particle state. Such sta ^s Ape Aeigen-states of the operators J and where J is the total gular momentum operator, composed of operators of angular momentum 

are an- andtotal spin of Cooper’s pairs. Since the total spin operator is composed of two operators of half-integral spins (s,] = s2 = l/2), the suitable eigen-spin-states in the irreducible base have the following forms:1° the antisymmetric spin-state S = 0, a = 010 0 > , (-1)2° three symmetric spin-states S = 1, a = -1, 0, +i|1 0 > ,|1 - 1 > , |1 1 > . (2)The orbital angular momentum of Cooper’s pair is defined by the quantum numbers L and m. In general, L can be an arbitrary positive integer or zero and |m| L. Hence, the orbital angular momentum states are ofthe formI L m > (3)and the states with even and odd values of L are space-symmetric and space-antisymmetric, respectively.If we now form the sum of the operatorsJ = L + Ś, U)then it possesses all the properties of the angular-momentum operatorif the components L and S transform identically under "" AD athe coordinate system. The eigen-states of S and rotation ofgenerate theone- and three-dimension spaces, respectively, and the eigen-states A p Aof L and generate the (2L + 1) - dimension spaces.The tensor-product of the above spaces contains 1«(2Le + 1) and'5«(2Lq + 1) independent states IL m respectively. The latter



are the eigen-states of the operators L , L^, S , where in orderto satisfy the Pauli exclusion principle the numbers L_ and L © oeven and odd, respectively. In the space under consideration we arecanintroduce the irreducible bases of states which are the eigen-states of Ao A A Athe operators J , 1^, L and S. We identify these eigen-states withthe two-particle states of Cooper's pairs and denote them withI J M L S > (5)where J" (the total angular-momentum number) and M (the total angular- -momentum projection number) are good quantum numbers defining the two- -particle states in systems with full rotational symmetry. Tn the systems where solely one direction is distinguished, M is still a good quantum number. The quantum numbers L and S are connected with the type of pairing interaction. The relation between the states |L m S o> end |J M L S > can be expressed by means of the Clebsh-Gordon coefficients [16, 32]. According to the Pauli exclusion principle we can distinguish two types of the two-particle states, namely:1° the orbital-angular momentum symmetric and spin-antisymmetric states which are of the form|J M L = 21 S = 0 > , (6)then J = 21, iMl < I and2° the orbital-angular momentum antisymmetric and spin-symmetric states which are of the formIT M L=21+1 S=1 > , (7'then 21 < J < 2(1+1) |M| < Jand 1=0, 1, 2... Let us note that in the latter case the different- -structure states which are of the forms:I J=2(1+1) M L=21+1 S=1 > (8)and |J=2(1+1) M L=21+3 S=1 > (9)have the same quant numbers J and M. Applying standard selection rules we can determine the allowed and forbidden transitions ammong the two-particle states in relation to forcing fields.b) The representation and properties [42, 43, 130]We are going now to give the representation of the two-particle states in the momentum-spin space in the most significant cases.



1° the case Ł = 0 and S = 0. The eigen-function is of the form<£-ą|0 0 0 0 > = i O2. (-10)2° the case L = 1 and S = 1. The eigen-functions are the spherical tensors which have the form<£ - a |J M 1 1 > = Bjm = B^ a^Pnio2 (11)where0 < J < 2, IMIBS = ^^jn'B10 = (1/ " 6j1$n2hB11 = ^6j26n3 “ ^j3®n2 + i6j36nl “ l6j16n3^’MS = “ <^)(Sjn - 36j36n3),Ml = “ 5(6j16n3 + 6j36n1 + i6j26n3 + i6j3Sn2)'B22 = “ Aj2^n2 + l6j16n2 + i6j26nl^*and
The tensors B^ have the following properties: J IxiR 3 ^R* — X XM' ”BJMBJ-Mn = &ij6kn’

00 00* 00 T>*
MS = - B«' B“ = °’
MS = B^P B^ = °’Moreover, the tensors of rank four defined by tiie sumsik B*jn = 1 600 00 3^ ik jn’
B1K biM = 2 ($ij ^kn ~ $in$jk)'B2ŚK B^n = 4- (6ij 6kn + Wjk - 4- 6ikW (14) are rotational invariants.



41. The normal neutral Fermi liquid in the presence of a constant magnetic field. The linear response theory [51]
The inclusion of a constant magnetic field (which is assumed as h «Ey) into the linear response theory generates conspicuous difficulties. Let us demonstrate it for the normal Fermi liquid of neutral fermions with half-integral spins (^He). Such considerations lead to the generalization of the basic equations of the linear response which were obtained by Luttinger and Nozieres [67], [106] for the case of h=0. While considering this problem we must realize that now the Green functions are matrices and that they do not commutate with vertex functions O' 1 which are proportional to the appropriate Pauli matrices o°, a*, a3, az.Nevertheless, assuming that h = hz, the Green-function part proportional to oz commutates with T® and Tz and anticommutates with and T7.Taking this into account we can transpose one Green function with respect to the vertex function from right to left and calculate the conventional function L defined as follows
L(+) “ fun S 2 

e_ IP I
(D

in two independent oases mentioned above. The sign (+) is connected with the manner of the Green function transposition and the sign (+) refers to the full-commutation case. The second sum over |£| is taken only over this vector length. Using the Eliashberg technique (Section 31) after some calculations we obtain 

/ kv+ sgn I ę +
/ kv+ sgn 15 + -g-

/ kv+ sgn I ę----

and next, by separating the counts we finally obtain
0 --------



and 2 kv(w- kv) + w£
(w

5 5kv)2 - w£ 0 x “WL za + ------------ *------- =• a(w - kv)2 - w2
— — J_j

(4)
where the total connected

= 2h spin with
is the Larmor frequency and its value is determined by inversion. As one can see, the function L(+x which is the spinless and spin-longitudinal responses of a system,is independent of the magnetic fieldOn the other hand, the function L just like in the non-magnetic case, is connected with the spin-transverse response and has some quite understandable new properties, namely(1) if he = 0, then

(ii) if then )' ° 

°. Lr

(iii) if
= L^.f-Hg) where Lł, “L

w = 0, then L(_) = -1 (5)

L

k = 0 L L*

“ " WL

0 a .The obtained results do not depend on temperature, which is in agreement with Landau's ideas, and the mathematical equivalence of that statement arises from the formulae (35.17) end (35.18). Now we can formulate the system of the basic equations for the normal Fermi liquid inthe the presence forms of the strong magnetic field. The vertex equations are of
T° = T°J - J w

Z _ yZ 
W 0yx(y) = + CBL^ ^ > + i <BL2 tand (6)hence adequate correlation functions can be performed in the forms

soo =<^>0 r° >

szzSxx tz>

= <^ xX>

(7)
sx? = - L^/,



and
sxx - s*y, = (s^rwhere
T T T T * T-(+) = L0a ’ -(-) “ L1a + L2a ’and 7* denotes suitable vertex in the w limit. The correlation functions (7) describe only the linear response of the system to the additional perturbating external field, while the static longitudinal magnetization effects, coming from the presence of constant magnetic field, have to be included independently. The set of the basic equations (6)-(7) is analogous to the known one obtained in the limit k = 0 which is useful to apply to the nuclear resonance, but now we can also investigate the collective excitations, i.e., the spin wave propagation in the presence of the external magnetic field.In order to explain the sense of the Larmor frequency we must consider the problem of the static magnetization. For the field under discussion (h «ep) it is of the form (cf. [140])M = voHt, (8)then after regard of the Fermi liquid interaction we derive the Larmor frequency in the form

Although this equation is well known, it completes the developed problem. While investigating the interacting fermion liquid we should however be aware that for very strong external magnetic fields the magnetization changes its form and all the omitted effects cannot be neglected.
42. The dipole contribution parameter as an invariant of the theory [44]The Green function formalism contains an artificial parameter, called a cut-off parameter and related to it a pairing parameter, g^ or a dimensionless parameter f1 (f1 = v(0)g1f cf. Section 6). If we include the dipole-dipole interaction, there appears an additional parameter in energy scale g^ or a dimensionless parameter v(O)g$.Since the final results contain contributions proportional to the dimensionless parameter



v(O)gi ff (1)
one can aak if the final results depend on 5p. We show that the parameter, g, is independent of 5p. Deriving the basic equations of the formalism, we apply renormalizing transformation given by the equation [22]: v = (£ + y 4) r. (2)We use the matrix notation, where V and r are the renormalized and unrenormalized interactions in the particle-particle channel, respectively. Xis the cut-off kernel and if A <<: ey it Aas tlie formX = G"GB( HI - Cp). (3)We assume that the renormalization transformation does not change the interaction structure, i.e., y and r have the same structure. The interaction, V, in the presence of the dipole forces has the form: (Section 19) V = - gl (1 + a) [ 1 + au] , (4)then £ must have the form:£ = - h(l + p) [1 + yU] . (5)The factors a (= g^/gp), 0 , and y are small quantities in comparison with unity, and in all equations they can be kept in the first order only. If we insert Eqs. (4) and (5) into Eq. (2) and compare the suitable factors standing near the operators £ and U on both sides of the equation, we obtain two independent equationsg1 (1 + a) = h(1 + p) [l - g1 (1 + a) X], (6)-3- a g1 - -------ag1 Uh + y(l - g1 M)h. (7)Now, we can compare the quantities of the same order in the first equation, whence we obtain the two following equations:g1 = (1 - g1 $4)h.ag1 = -a g1 Xh + p (1 - g1 X)h. (8)(9)Inserting equation (8) into Eq. (9) and transforming it we obtain



<x P (10)Both renormalized parametre g^ and gp are the functions of the cut- -off parameter 5$. However, according to Eq. (10), the choice of the cut-off parameter 5p la quite arbitrary, thus, the parameter g does not the depend on 4p and is the'invariant of the theory, in spite of that parameters= g/ep), gB = gD(ep), and g = ------------ -------- •gl(Ep) v(0)
(11)
(12)

Comparing Equations (7) and (9) we get
7 - P . (13)Since the dipole contribution parameter g is independent of the artificial, cut-off parameter <p, it possesses a physical sense, do not have enough information to estimate the parameter g However, we correctly.That is why we will think of g as a phenomenological parameter. Theparameters discussed above fulfil the inequalitiesv (0)gD < 1 (14)and in the problems under consideration they appear in dimensionless relations

and
\g2 V (0)/

(15)
(16)

According to (14) the quantity ,an is negligibly small if n >2. Since, 2however, a < g, it can happen that the quantities a and g are of the same order, hence the parameter gn can be held in account up to n = 2.
43. Bifurcation pointsAccording to the theory of non-linear integral equations, solutions of the integral equations with the parameter can split at a certain fixed point, so-called a bifurcation point. Let us consider the non-linear integral equation in the operational form



u = 3(u,X) (1)where X is a parameter of the, equation.Let us assume that we know a solution u(X) for all values of X and that we look for the other solutions such thatu = u(X) + v, (2)the function v is determined by the equationv = T(v,X) (3)whereT(v,X) = S[u(X) + v; X] - u(X). (4)Equation (3) possesses zeroth (trivial) solution for all values of X.The fixed value, X^, is the bifurcation point of Eq. (3) if for each e > 0 there exists such a value of the parameter X taken from the interval (Xq - e, Xq + e) for which Eq. (3) possesses the non-trivial solution v(X) satisfying the condition l|v(X)|| < e.The general theory of the bifurcations is more complicated and its other problems can be found in the books [14, 71, 72]. However, the ideas presented here allow us to understand the principal properties of the non-linear integral equations.
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EFEKTY JAKOŚCIOWE WYWOŁANE OBECNOŚCIĄ ODDZIAŁYWANIA FERMICIECZOWEGO W UKŁADACH NADPRZEWODZĄCYCH I NADCIEKŁYCH
Monografia poświęcona jest teoretycznym badaniom własności układów nadprzewodzących i nadciekłych. Szczególny nacisk został położony na określenie efektów jakościowych wywołanych oddziaływaniem fermicieczo- wym. Rozwinięto teorię funkcji Greena uwzględniając obecność silnego pola magnetycznego. Monografia zawiera najistotniejsze rezultaty określające własności nadprzewodników, nadciekłego 3He oraz mieszanin ^He-^He w silnych polach magnetycznych dla T = 0 i T bliskich Tc. Ponadto przebadano układy typu BCS i BW metodami reakcji liniowej. Rozwinięta teoria pozwala uwzględnić dodatkowe harmoniki parujące, oddziaływanie dipol- dipol, wpływ temperatury, wysokie częstości oraz silną niejednorodność układu. Zastosowane podejścia pozwoliły uzyskać szereg jakościowych rezultatów. W ostatniej części zostały podane pewne metody matematyczne opracowane przez autora.

KJWECTBEHHŁIE 3MEKTH BH3BAHHHE B03JIEHCTBKEM KKHKOCTM $EPMH 
B CBEPXHP0B0JWX M CBEPXTEKYW CMCTEMAX

MoHorpa^HH nocBameaa TeopeTnecKHM accjienoBaaaaM cboSctb csepxnpo- 
BOAHnmx a csepxreKyHax cacieM. OchobhoS HaxnM nojioxeH aa onpegeneHBe za- 
qeCTBCHHHX 3$$eKT0B BH3B8HHHX BOSJieflCTBBeM XMAKOCTB fepMH. PaSBepayTO 
TeopHD ^yaanan rpaaa yHHTHBamyn npacyrcTBae cbjibbofo MaraaTaoro hojlh. 
MoHorpa$KH conepzaT caMue cymecTBeaaae pesyzBiaTa onpenejunnae cbo0ctb8 
CBepxnpoBofiHHKOB, CBeprreayaero ^He, a Tasze CMeceft ne-^He b chjibhhx 
MarHMTHLix hojihx iuih T = 0 u T Cjmsaax T„. KpoMe Toro accjienoBaao cacTe- w mh Tuna bcs u bw c noMomBn metouob AHaefiaofl peaaunB. Passepeyra Teopaa 
no3BOj«eT yaHTHBaTB noóaBOHHHe cnapeHHHe rapMOHHKn, BoaueftcTBOBamie w- 
nojiB-nHnojiii, ajmanne TewnepaTypa, BHCosne nacTOTH n cmiBHyn neonHopou- hoctb CBCTeMH. IIpnMeHeHH nouxoaH no3BOJiHjni nojiynnTB pan KanecTBeHHHX 
peayjiBTaTOB. B nocjresneK nacTH naan aeKOTopae MaTeMaTawecaae MeTojm pas- 
paóoTaHHae asropoM.
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