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ACTUARIAL MODELLING OF EXTREME LOSSES

In the modelling of extreme events, different approaches had been proposed for 
certain circumstances. In 1928, Extreme Value Theory (EVT) originated in work of 
Fisher and Tippett describing the behavior of maximum of independent and identi­
cally distributed random variables. Various applications have been implemented 
successfully in many fields such as: actuarial science, hydrology, climatology, en­
gineering, and economics and finance.

We describe parametric curve fitting methods for modelling extreme historical 
losses. These methods revolve around the generalized Pareto distribution (GPD) 
and are supported by extreme value theory.

1. Methods for modelling extreme losses

Extreme events are also called rare events. Extreme events share three charac­
teristics: relatively rareness, huge impact and statistical inexpertness.

We are specifically interested in modelling the tails of loss severity distributions 
Thus is of particular relevance in reinsurance if we ale required to choose or price a 
high-excess layer. In this situation it is essential to find a good statistical model for 
the largest observed historical losses.

Suppose insurance losses are denoted by the independent, identically distributed 
random variables X 2,..., who’s common distribution function is
Fx (x) =  P (X <  x) , where x > 0 .
• Extreme Value Theorem [2]

Suppose X t, X 2, ...are iid with distribution function (df ) Fx (x ) . If there exist 
constants c„> 0 and d„ g 7? such that
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M - d
(1)

where Mn = XI n = max (Xj, ..., X„), Y is non-degenerate with distribution function 
G. Then G is of one the following types:

1. Gumbel
A(jc) =  e x p j—e~xj  x  G R,

2. Frechet

®. W=
0, if jc <  0

e x p j—x-"}, if x > 0 ’

3. Weibull

expj —(— if j c  <  0 

0, if j c  >  0
The generalized Gumbel, Frechet and Weibull families can be combined into 

a single family of distributions in the form

G(x) =  exp 1 +  #
(x - f> -y<

, where 1 +  £ x - M > 0 . (2)

It is straightforward to check the result by letting
a

a  = c =
when £ > 0  

when £ <  0
(3)

As the GEV describes the limit distribution of normalized maxima, the General­
ized Pareto Distribution (GPD) is the limit distribution of scaled excess of high 
thresholds. The main connection is in the following theorem.
•  GPD Theorem

Suppose X t, X 2, ... are iid with distribution F. Than

G(x) = ex p
-y*

, where 1 +  £  —— —
l O )\ <*

> 0 ,

is the limit distribution of the maxima M„ = XI-n = max(Xi. •••> X„). Then for a large 
enough threshold u, the conditional distribution function of Y = (X -  u / X  > u) is 
approximately

P [ X - u < x / X > u ] ~  H(x)  = l a
f/«

(4)
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defined on {x: x > 0 and (l +  £x/<j) > O}, where a  =  a  +  £ (m — //) .
The family of distributions defined by equation (4) is called the General Pareto 

family (GPD). For a fixed high threshold u, the two parameters are the shape pa­
rameter and the scale parameter a . For simpler notation, we may just use a  for 
the scale parameter if there is no confusion. The GPD distribution has many good 
properties (see for example [1, p. 165],
• Definition

Let X is a random variable with distribution function F(\).

Fu(x) = P ( X - u < x / X > u )
F( x  + u) — F(u) (5)

for x > 0 is the excess distribution of X over the threshold u and
e(u) = E ( X - u / X > u )  (6)

is called the mean excess function of X.
•  Excess over Threshold Method

The modeling using the excess over threshold method follows the assumptions 
and conclusions in GPD Theorem. Suppose xl,x2,..., xn are raw observations inde­
pendently from a common distribution F(x). Given a high threshold u, assume 
jĉ ,  jĉ  x(lcj are an observation that exceeds u. Here we define the ascendances

as j c ,  =  j c ^  —  u for i =  1,2, ...,k . By GPD Theorem jc ,  may be regarded as realiza­

tion of independently random variable which follows a General Pareto family with 
unknown parameters £  and a . In c a s e ^ ^ O , the likelihood function can be ob­
tained directly from (4):

L ( ( £ ,£ 7 /x ) )  =  f l
1 = 1

The mean excess function of GPD

e(u)=  for 0 < < f < l

is linear in u. Therefore we can check the linearity in the plot described blow:
Given a sample of iid observations j c , , x 2 , . . . , j c „  and a threshold u. Let 

*(i) <  ^ 2) < ... <  x(n j be the observations that exceeds u, a graph
(  1 «„

U , --------->|JC,.* —Ml '• < U <  JC

n  ( , )  /
V r iu 1=1 )

rrun — — max
is called a mean residual life plot (mrl). The mean residual life plot provides an 
accessible approximation to the mean excess function.
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In practice, the interpretation of a mean residual life plot may not be simple. Of­
ten the linearity is vague for small choice of u and for large u, the sparseness of the 
data available for calculation causes the large variation of the plot toward the right 
end. For our purposes, the mlr plot is used as a graphical tool in distinguishing 
between light and heavy-tail models.

2. Illustrational Data Analysis

To illustrate the mention above methods, we use the Danish fire loss data from 
McNeil’s [3] study. The goal of this is to show techniques and plotting strategies 
which can be employed for similar data.

Fig. 1. Time series and log data plots for the Danish data 
Source: authors.

The Danish data comprise 2157 losses over one million Danish Krone (DKK) 
from the years 1980 to 1990 inclusive (fig. 1).
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In(data)
Fig. 2. The histogram on the log scale for the Danish data 

Source: authors.



The time series plot (fig. 1) allows us to identify the most extreme losses and 
their times of occurrence. The histogram (fig. 2) shows the wide range of the data.

Fig. 3. The sample means excess function 
Source: [3],

Useful graphical tool is the plot of the sample mean excess function (fig. 3) 
which is the plot j ( n ,en (w)), X Vn < u <  Xnn| , where X ln and X nn are the first and

nth order statistics and en (u) is the sample mean excess function defined by

S L ( * . - r

= 1 {■*;>«}
(8)

i.e. the sum of excesses over the threshold u divided by the number of data points 
which exceed the threshold u . The sample mean excess function en (u ) is an em­
pirical estimate of the mean excess function defined by (6).

If empirical plot seems to a reasonably straight line with positive gradient above 
a certain value of u, then this is an indication that the data follow a generalized 
Pareto distribution (GPD) with positive shape parameter in the tail area above u. 
This is precisely the kind of behavior in the Danish data (fig. 3). There is evidence 
of a straitening out the plot above a threshold of 10, and perhaps again above a 
threshold of 20. In fact the whole plot is sufficiently straight to suggest that DPD 
might provide a reasonable fit to the entire dataset.
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GPD Fit (u =10) GPD Fit (u =20)

Fig. 4. Fitting GPD to data on exceedances of high thresholds 
Source: [3].

We use three parameter forms of the GPD with the location parameter set to the 
threshold value and we obtain fits to these data which seem reasonable to the naked 
eye. In left plot (figure 4) GPD is fitted to 109 exceedances of the threshold 10. 
The parameter estimates are £  =  0,497 and <7 =  6,98. In right plot GPD is fitted 
to 36 exceedances of the threshold 20. The parameter estimates are £  =  0,684 and 
<7 =  9,63.
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MODELOWANIE AKTUARIALNE STRAT EKSTREMALNYCH

Streszczenie

W niniejszym artykule zaprezentowano wykorzystanie parametrycznych metod 
dopasowywania krzywych do modelowania ekstremalnych historycznych strat. 
Streszczono odpowiednie wyniki teoretyczne pochodzące z teorii wartości ekstre­
malnych (extreme value theory (EVT)) i metody przekroczeń (excess over thres­
hold method (EOT)) oraz przedstawiono przykład zastosowania tych wyników do 
danych A. McNeila (1996) dotyczących wysokich strat spowodowanych pożarami 
w Danii.
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