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Abstract: The paper presents the derivation of equations
for the calculation of the spring constants k . k,and k 5 and
the spring coefficients 8 s B and 8 3 used in the modeling
of a foundation with a rectangular base on elastic soil. All
the equations were derived based on information provided
in literature, for example, Barkan, Gorbunov-Possadov,
and Whitman et al. To demonstrate the application of these
equations in practice, two numerical models of a reinforced
concrete frame structure that was built on soil were created
using Abaqus FEA software. Model A represents a complex
three-dimensional numerical model that consists of a
reinforced concrete frame structure, which has a soil layer
beneath it. Model B represents a simple three-dimensional
numerical model consisting of a reinforced concrete frame
structure, where the stiffness of the soil layer beneath
the structure was modeled with vertical, horizontal, and
rocking spring constants applied to the bottom of each
foundation. Due to the nonlinear boundary condition used
in the supports of the concrete frame model, such as contact
and friction, all the involved loads were incorporated into a
single load case, and a large displacement formulation was
used in the analysis. The authors focused on the method of
a simplified modeling of frame structures founded on soil.
To conduct comparative analyses, two columns and two
beams from each model were selected, from which the
internal forces and displacements were compared. The
findings of the comparative analysis are presented in tables
and then discussed.
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1 Introduction

A common practice when designing a building structure
is to use simple types of supports, such as sliding, non-
sliding, pinned or fixed supports, which do not reflect the
actual interaction between the ground and the structure.

When designing a structure, the soil elasticity
coefficient model is sometimes used, for example,
the Winkler model [1]. This model assumes that the
displacement w at a given point in the soil is directly
proportional to the applied pressure p at that point, that is,
p=Kw, where K is the modulus of the subgrade’s reaction.
In the Winkler model, the settlement of a given point
only depends on the pressure applied at that point and
does not depend on the pressures acting in the vicinity
of that point. Adopting a simplified support model when
designing a structure may lead to discrepancies between
the work of the structure’s numerical model and the
real structure. Nevertheless, the Winkler model is still
often used to analyze typical engineering structures, for
example, foundation slabs and footings, piles, and railway
tracks, as well as much more responsible and complex
engineering structures. For example, in the paper [2], the
Winkler model was used to calculate a hybrid retaining
structure, and in the paper [3], it was used to analyze a
caisson foundation subjected to static and dynamic loads.

In the following years, modifications of the Winkler
model were developed. One of the example is a Pasternak’s
two-parameter model [4], which introduces an additional
element on the surface of the Winkler model in the form
of a shear working layer, ensuring the cooperation of
the independent Winkler elastic bonds. In 1965, Kerr [5]
proposed another two-parameter model consisting of two
layers of elastic bonds connected by a shear transfer layer.
Taylor and Chung in the paper [6] analyzed the contact
stress distributions at the shallow foundation contact
interface with an underlying real homogeneous, dry,
compacted sand.

A more advanced approach, in comparison to the
Winkler concept, to estimate the stiffnesses of a shallow
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Table 1: Spring constants for a foundation with a rectangular base resting on elastic half-space [7], [8], [9].

Motion Spring constant Reference
Vertical G Vi (1) Barkan (1962)
K, =—— A
zZ 1 —y ﬁZ
Horizontal Ky =2G(1 +v)VA B, ()] Barkan (1962)
g
Rocking 3) Gorbunov-Possadov (1961)
Ky = 8ab?
* 1y Bo

where G - shear modulus of soil, v — Poisson’s ratio of soil, A- foundation area (A=2a2b), 2a- length of the foundation (along the axis of
rotation for the case of rocking), 2b — width of the foundation (in the plane of rotation for the case of rocking), V, H, M - vertical, horizontal,
and rocking forces, B, B, ,B¢ - nondimensional coefficients of spring constants for a rectangular foundation, and

K,K, K¢ - vertical, horizontal, and rocking spring constants.

foundation model is based on the theory of elastic half-
space. The publications of researchers, such as Whitman
and Richart [7], Lambe and Whitman [8], Richart,
Woods and Hall [9], Braja M. Das et al. [10], and Fattah
et al. [14], provide simple equations for determining the
vertical, horizontal, and rocking spring constants that
represent a linear relation between the applied loads and
displacements of the foundation. This, in turn, implies a
linear stress—strain relation for the soil (Fig. 1 and Tab. 1).

Based on the given equations for the spring
constancies, the vertical (w), horizontal (u), and rocking
(¢) displacements of a given foundation block with applied
load can be calculated from the following equations:
w=V/K, u=H/K , p=MJK,.

Equations 2 and 3 in Table 1 were derived for a rigid
foundation with a rectangular base. For the case of horizontal
movement, the spring constant was derived by assuming a
uniform distribution of shear stresses on the contact surface
and by calculating the average horizontal displacement
of this surface [11]. In works [7] to [10], it is stated that the
spring constants K _and K, which represent horizontal and
vertical motion, respectively, were derived based on the
assumptions given in the work by Barkan [11]. In turn, the
spring constant K » representing rocking motion, is based on
the assumptions given in the works of Gorbunov-Possadov
[12], [13]. The final form of the equations for determining the
spring constants K, K, and K 5 s well as the nomograms
(Fig. 2) for determining the spring coefficients 8, S A and 8,
are provided in works [7] to [10].
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Figure 1: Scheme of a rectangular foundation.
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Figure 2: Coefficients g, B,, and B¢ for a rectangular foundation
base with regards to a=a/b.

The above-mentioned works do not provide both
the equations for determining the spring coefficients
and the derivations of the equations for determining the
spring constants. Therefore, based on the assumptions
given by Barkan and Gorbunov-Possadov, the equations
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for the spring constants K, K » and K _and the spring
coefficients 8, B " and B_were derived in this paper. The
values of elastic constants calculated on the basis of the
derived equations were used in the numerical model of
the concrete 3D frame (Fig. 6).

2 Determination of spring
constants for a rigid foundation
with a rectangular base resting on
elastic half-space

2.1 Formula for spring constant K (vertical
motion)

Barkan et al. [11] presented the results of many field tests
that aimed to determine the compression-bearing capacity
for different types of soil. The field tests consisted of load
tests in which a concentrated load was transferred to the
soil by a rigid bearing plate. Based on these findings,
Barkan [11] stated that within a certain range, there is a
proportional relationship between the elastic settlements
of the foundation and the external uniform pressure
acting on the soil, that is,

Pz = CuSe (@)

where c_ is the coefficient of proportionality (called the
coefficient of the elastic uniform compression of soil) and
S, is the elastic settlement of the bearing plate due to the
external pressure p_.

When assuming that the foundation consists of an
absolutely flexible plate uniformly loaded by a vertical
pressure, the stresses in the soil under the foundation
are distributed uniformly, but settlement under the
foundation varies. For an absolutely flexible foundation,
the coefficient of elastic uniform compression is the ratio
of uniform pressure to the average settlement value.
Therefore, after transformation, equation (4) can be
written in the following form:

Pz = CuSav (5)
Furthermore, Barkan [11] assumed that

Se = Say 6)
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and by using the work given by Schleicher [15], he gave
the solution for an absolutely flexible foundation with a
rectangular base. According to his solution, the average
settlement value can be determined using the following
equation:

1—v2 1 Vit+al+a
Sav = VA In
E a 1+a?—a
3 @)
l\/1+az+1 21+a®)z—(1+ad
a in —_ =
Vitaz-1 3 a Pz

where: a=a/b, E - Young’s modulus of soil, v — Poisson’s
ratio, A - foundation area A=2a2b, and p, - uniform
pressure (p =V/A).

By dividing both sides of equation (7) by p, and by
performing its transformation, equation (7) can be written
in the following form:

p E 1
T = G (®)
Sav 1-v \/Z
where
na
Cs = 3 )
ln\/1+a2+a+aln\/1+a2+1_Z(1+a2)2—(1+a3)
T+aZ—a Vitaz-1 3 a

Substituting p =V/A and E=2G(1+v) into equation (8) and
making minor transformations of it, the following can be
obtained:

|74 G
K,=—=—"_Va (10)
z Sav 1—v \/_ ,Bz
where spring coefficient §, can be written as
Bz =2c¢ (11)

2.2 Equation for spring constant K, (rocking
motion)

The formulas given by Gorbunov-Possadov in papers
[12] and [13] were used to derive the equation for spring
constant K. The adopted denotation of the foundation
geometry and its axis layout for the rocking motion are
shown in the Figure 3.
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Figure 3: Scheme of a foundation with a rectangular base according
to Gorbunova-Possadov [12], [13].

Gorbunova-Possadov, in his studies [12] and [13], gave
formulas for determining the angles of rotation of a rigid
rectangular foundation founded on soil and loaded by
moments M _and M

1-vZ M

tgdy = E K a_;c (12)
1-v? M

tgdy = ——K; b—gy (13)

The coefficients K, and K, in these formulas are determined
by using nondimensional reaction soil pressure equations,
which are expressed by using power polynomials of
the fifth and seventh degree or by using graphs (Figure
4a, b). The graphs show more accurate values of these
coefficients than those calculated by the polynomials.
Both the values of the coefficients calculated from the
polynomials and those read from the graphs depend on
the ratio of the dimensions of the foundation sides, that is,
a=a/b. Derived equations (14) and (15) describe the values
variation of the coefficient K, and K, presented in Figure
4a and 4b.

Ky = 2.6(1 — e(0222a°%1)) (14)

K, = 0.85(1 — e(09¢71) (15)

The polynomial coefficients are determined by assuming
that the foundation base adheres closely to the ground,
that is, there is a compliance of vertical displacements of
soil and the foundation base at each point. In addition,
the friction between the soil and the base is omitted.
Moment M_acts in a vertical plane parallel to the longer
side of the rectangular base. Moment M actsina vertical
plane parallel to the shorter side of the rectangular base
[13].
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Figure 4: Graphs for determining the coefficients K| (a) and K, (b)
used in equations (12) and (13). The graphs were prepared by the
authors based on works [12] and [13].

2.2.1 Formula for spring constant K¢X, that s, K¢ from the
action of moment M_

By dividing equation (12) by moment M_and by making a
simple transformation of this equation, the following can
be obtained:

M, E a
tgpy 1-v2K

(16)

By substituting E=2G(1+v), one can get
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M, 26 d?
tg¢x_1_VK1

17)

Knowing that A=2a2b, and a=a/b, and thereby a=1/2VaA,
equation (17) can be written as

KX—M"— G 11 8ha?
¢ T tep, 1-vK a""% (18)
and finally as
X G X 2
where
B = 11
¢ 1K~ (20)

B N is the spring coefficient and K . is the spring constant
for a rectangular base in the direction of its greater rigidity.

2.2.2 Formula for spring constant K¢V, that is, K¢ from
the action of moment m,

By dividing equation (13) by moment M, and by making a
simple transformation of this equation, the following can
be obtained:

M, E b3
— =T (21)
tgp, 1-v*K,
By substituting E=2G(1+v), one can get
M, 2G b3
= P (22)
tgdy 1-VvK;

Given that A=2a2b, and a=a/b, and thereby b=1/2,/A/«a,
equation (22) can be written as

K — M, G 11 2
¢ tgpy, 1-vK,4da @ 23)
and finally as
v _ y 2
Ky =1— B 8ab (24)
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where

(25)

B 4 is the spring coefficient and K ; Is the spring constant
for a rectangular base in the direction of its lower rigidity.

For the purposes of this paper, and to standardize
and conform to the description given in Figure 5, in the
derivations of the equations for the spring constants K
and K, the symbols in formulas (12) and (13) have been
changed in the further part of this chapter. It was assumed
that the rocking motion takes place along the X axis, and
therefore, in accordance with works [7] to [9], 2b is the
width of the foundation base (along the axis of rotation
for rocking motion) and 2a is the length of the foundation
base (in the plane of rotation for rocking motion).

Based on the adopted assumptions, the spring
constant K, and the spring coefficient , were derived for
the oscillating motion. Their values are shown in Figure 2.

2.2.3 Spring constant K¢ for a rectangular base in the
direction of lower stiffness, that is, a=a/b=(1+0.1)

Based on equation (26) and by making an additional
transformation that is similar to those made in equations
(21) to (25), the equation for the spring constant for a
foundation in the direction of its lower stiffness can be
obtained:

1—-v2_ M
tgg, = K,— (26)

g¢y E 2a3
Ky = % B 8ba? Q7)

where
B L )
=—=a 28
¢ T 1%, (

K , is the coefficient for determining the angles of rotation
of a rigid foundation with a rectangular base under the
action of rocking moment M (read from the graph in Figure
4b). To calculate this coefficient, the range of values
of a=a/b=(1+10) should be replaced by a=a/b=(1+0.1).
The replacement of coefficient a (read from the graph
in Figure 4b) is due to the fact that Gorbunov-Possadov
considered that the foundation bends in two directions,
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Figure 5: Notations for the equation for the spring constant in the case of rocking motion: (a) for a=a/b=(1+0.1); (b) for a=a/b=(1+10).

relative to the X and Y axes, with a ratio of the coefficient
a=a/b=(1:10). However, in the derivation of the spring
constant equation K,, the authors assumed that the
foundation only bends in one direction, relative to the X
axis of rotation and with a ratio of a/b varying from 0.1 to
10, that is, for lower stiffness, it is a=a/b=(1+-0.1) and for
higher stiffness, it is a=a/b=(1+10).

2.2.4 Spring constant K, for a rectangular base in the
direction of higher stiffness, that is, a=a/b=(1+10)

Based on equation (29), and by making an additional
transformation similar to those made in equations (16) to
(20), the equation for the spring constant for a foundation
in the direction of its higher stiffness can be obtained:

tgpy = 1_—1/21(1 M3 29)
E a
Ky = 15_1/ By 8ba® (30)
where
11
By = o (€1))

K is the coefficient for determining the angles of rotation of
arigid foundation with a rectangular base under the action
of rocking moment M (read from the graph in Figure 4a).

2.3 Equation for spring constant K
(horizontal motion)

Based on the assumptions given by Barkan [11], the
equations for spring constant K and coefficient _were
derived, with a theoretical basis being used to derive these
equations.

If the foundation is subjected to a horizontal force
applied at the level of the contact surface of the foundation
base and the soil, the foundation will move in the direction
of this force (Table 1).

From the experimental data given by Barkan [11],
under conditions similar to steady-state conditions for
soil under compression, it can be concluded that there
is a linear relationship between the base sliding motion
and the average shearing stress developed along the base
contact surface with the soil, that is,

Tav = CcSe (32)

where T_ is the average shearing stress in the soil at the
plane of contact with the foundation and S} is the elastic
part of the total horizontal sliding of the foundation base
under the action of 7. Barkan [11] assumed that the elastic
part of the total horizontal sliding is equal to the average
value of the horizontal sliding S, = Sg,, along the surface
area A=2a2b, and he gave the following equation:
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2
fal-v (lsinh’1a+sinh’ll—l[iz(\/l+a2—1)+\/1+a2—a]
T E \a 1 lll 3la )
v . —
+1+—V{Esmh 1a+§[\/1+a2—a—?(\/1+a2—1)]})rav

[
Say =

(33)

where a=a/b, E is the Young’s modulus of soil, and v is the
Poisson’s ratio.

Knowing that A=2a2b, and by substituting 7, =H/A
and a =1/ 2VA a into equation (33), and by making
simple transformations, the following can obtained:

H E
—=—— Ak
Sly 1—1/2\/_ ’ G4)
where
T
ke = R .1 111 7 T+aZ
Zsinh~'a + sinh E—g[p(m_l)*' lta —a]+ (35)
2
Ty Bsinnta + J VT - a - B (TF@ - 1))}

By substituting E=2G(1+v) into equation (32), K can be
derived:

H
Ky =5~ = 2G(1 +v)VA B, (36)
where
ke
By = 7 37)

It should be noted that in papers [7] to [9], the values of
the spring coefficient 8 were determined by assuming
that the Poisson’s ratio of the soil has a constant value
v = 0.3. From equation (35) derived by the authors, spring
coefficient §_can be additionally calculated for various
values of the Poisson’s ratio.

3 Description of the model

It is often impractical to model an entire structure with
complex three-dimensional solid elements. A very
complex numerical model can lead to more inaccurate
results than those predicted by simpler models, such as
grillage or 3D frame. Due to the complex nonlinear nature
of soil behavior under loads, the analysis was limited to
the simple assumption that the mechanical parameters
of soil strictly follow Hooke’s law. Furthermore, it was
assumed that the pressure in the soil under the footing
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foundation is lower than the soil’s bearing capacity. This is
usually the case with a typical foundation design. For the
purpose of the analysis, complex and simple models of
the concrete 3D frame structure (Fig. 6) were built using
Abaqus FEA software [16].

Complex model A (Fig. 7) consists of the concrete 3D
frame structure and the soil layer beneath it.

In this model, the interlayer interaction between
the bottom surface of the footing foundation (the base)
and the top surface of the soil layer was modeled as a
standard contact surface-to-surface type discretization
method with a finite sliding formulation. Furthermore,
normal behavior with “hard” contact pressure overclosure
and allowable separation after contact was applied.
The adopted contact method permits some relative motion
of the contact surfaces. Contact interaction properties are
a tangential behavior with a static coefficient of friction u
equal to 0.58. This coefficient was calculated based on the
assumption that the internal angle of friction between the
concrete and the soil material is the same as the internal
angle of friction of the soil layer beneath the footing
foundation. In turn, simple model B (Fig. 8) only consists
of the concrete 3D frame structure.

The missing soil layer in this model was replaced by
spring constants derived for a rigid rectangular foundation
resting on an elastic half-space. Five spring constants
were applied to the center of the bottom surface of each
footing foundation. Three of them were responsible for
vertical and horizontal motion, and the remaining two
were responsible for rocking motion around the X and Y
axes. Model B represents an engineering approach to the
design of a 3D frame structure resting on soil. In model A,
it was assumed that the soil layer beneath the structure
has a constant and uniform depth of 20.0 m below the
footing foundations (Figure 7). In all the numerical
models, the frame structure is represented by 264 Euler—
Bernoulli two-node cubic beam elements of type B33. Each
column consists of 16 beam elements: beam B1 consists
of 48 beam elements and beam B2 consists of 24 beam
elements. All the beams are connected together, so that
there is no relative motion between them. Kinematic type
couplings were used to connect the beam elements with
the solid elements that represent the footing foundation.
In this connection, the bottom node of the beam element
is the control point and the upper surface of the footing
foundation directly under the column is the constraint
region. These connections are shown in Figure 8.
The footing foundations are represented by 10,200
general purpose eight-node linear hexahedral elements
of type C3D8 that have hourglass element controls. Each
corner footing foundation consists of 1350 elements, while
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Figure 6: The analyzed 3D frame.

Figure 7: Axonometric view of complex model A.

each inner footing foundation consists of 2400 elements.
The same element type was used to build the block of the
soil layer beneath the footing foundation (Figure 9).

The total number of elements representing the soil
layer beneath the footing foundation is equal to 476,160.
Material constants, such as the internal angle of friction
(¢), Young’s modulus (E), and the Poisson’s ratio (v) of
the materials selected for the analysis, are presented
in Table 2. The soil angle of friction was used to assess
the coefficient of friction between soil and the concrete
surface, which was used to model the contact interaction
in model A.

In Table 2, the following designations were used: E —
modulus of elasticity, v — Poisson’s ratio, ¢ — soil internal
angle of friction, G — soil shear modulus, L — length of
the foundation (in the plane of rotation for the case of
rocking), B — width of the foundation (along the axis of
rotation for the case of rocking).

The dimensions of the footing foundation and the soil
layer beneath the footing are shown in Figures 6 and 7.
Each vertical surface of the soil layer only has a horizontal
restraint applied perpendicularly to each surface. The
bottom surface of this layer only has a vertical restraint
applied perpendicularly to this surface. In addition, it
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Figure 9: Finite element mesh of complex model A.

Table 2: Material properties used in the analysis.

Model A, B
Soil Loose sand [17]
E, [MN/m?] 40
(Middle range value)
\Y 0.3
¢ 30 (Model A)
G [MN/m?] 15.385
L x B[m] 1.5x1.5
L x B[m] 2.0x2.0
Frame structure Concrete C50/60
E, [MN/m?] 37,000
v 0.2

§ sciendo

was assumed that the foundations are not backfilled.
This situation may occur during temporary works in the
vicinity of the foundation.

In Table 3, the following designations were used: (8 ¥
BB Q) — spring coefficients, (K K, K Q) — spring constants.

The nominal loads applied to the structure are shown
in Figure 8 and Table 4.

In model A, the superposition principle cannot
be used in the calculations of this structure due to the
nonlinear boundary condition used in the frame model
supports, such as contact and friction. For this reason, in
both models, all the loads involved were incorporated into
asingle load case, and the large displacement formulation
was used in the static analysis. The self-weight of the soil
layer in model A was omitted in the analysis.
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Table 3: Calculated spring constants used in model B.

In the corner footing In the inner footing Units
B.=B,=0.956
B,=2.113
Byx=B,,=0.49

k=k =57,374 k.=k =76,498 [kN/m]
k,= 69,668 k =92,891

k¢x=k¢y=36,381 k¢x=k¢y=86,235 [kN/m/rad]
Table 4: Load applied to the structure.

Load type Value
Self-weight of the concrete frame structure (SW) 24 kN/m3
Uniform distributed load (UDL) 20 kN/m
Concentrated force Px and Py 10 kN

4 Comparative analysis

The subjects of the analysis were the two columns C1 and
C2 and the two beams B1 and B2 shown in Figure 6. In each
of these structural elements, the values and distribution
of the internal forces and displacements obtained
from spatial frame models A and B were compared and
analyzed. The values of the linear displacements, internal
forces, and bending moments were consistent with the
global axes coordinate system shown in Figure 6. The
calculation results for the columns and beams are shown
in Tables 5-7.

4.1 Columns Cl1and C2

Tables 5 and 6 show the values of the displacements,
internal forces, and bending moments at the top and
bottom of the C1 and C2 columns of the analyzed models
of concrete 3D frames A and B.

The relative error presented in the tables is calculated
according to the following equation:

value model B — value model A

Error = [%]

value model A

In Tables 5 and 6, the following designations were used:
u,U B U, are linear displacements, N is the axial force,
Ty and T are shear forces, and M_and My are bending
moments.
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From the calculation results for columns C1 and C2 in
frames A and B, the following can be concluded:

1. The values of displacements U, U 9 and U, in column
C1in both frames A and B, as well as in column C2 in
both frames A and B in all analyzed nodes, are very
similar. However, the columns in the simple frame
model B have slightly larger displacements than the
columns in complex model A by about 0.2 mm in the
horizontal direction and about 0.9 mm in the vertical
direction in all the analyzed nodes.

2. The values of the axial forces, shear forces, and
bending moments in column C1 in both frames A and
B, as well as in column C2 in both frames A and Bin all
the analyzed nodes, are very similar. The difference
in values in all the analyzed nodes does not exceed
0.6 kN in the case of all the forces, and it does not
exceed 2.7 kNm in the case of all the bending moments.

4.2 Beams B1and B2

Tables 7 and 8 show the values of the displacements,
internal forces, and bending moments in beams B1 and B2
in the analyzed models of concrete 3D frames A and B.

From the calculation results for beams B1 and B2 in
frames A and B, the following can be concluded:

1. The values of displacements U, U P and U, in beam B1
in both frames A and B, as well as in beam B2 in both
frames A and B in all the analyzed nodes, are very
similar. However, the beams in simple frame model B
have slightly larger displacements than the beams in
complex model A by about 0.2 mm in the horizontal
direction and by about 0.9 mm in the vertical direction
in all the analyzed nodes.

2. The values of the axial forces, shear forces, and
bending moments in beam B1 in both frames A and
B, as well as in beam B2 in both frames A and B in all
the analyzed nodes, are very similar. The difference in
the values in all the analyzed nodes does not exceed
0.6 kN in the case of all the forces and does not exceed
1.8 kNm in the case of all the bending moments.

5 Conclusions

Based on the results obtained from the analyzed example
of a 3D frame, it can be concluded that the derived
equations for spring constants, which describe the impact
of a foundation placed on the ground, can be used in the
design of frame structures. This information is particularly
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Table 5: Results for columns C1.
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important when designing a structure founded on the
ground. The use of simple types of supports in the

Column C1 ) . o .
numerical model, such as sliding, nonsliding, pinned, or

Node 1 Node 2 . . . .
fixed supports, which do not reflect the actual interaction

rOdel ABAOdel Error :\\Mdel ':Odel Error of the structure with the ground on which it will be
founded, leads to the incorrect design of the structure.

Ux[mm] 2.2 2.3 4.5% -0.4  -0.5  25.0% As a result, the calculated values of displacements
Uylmm] 3.5 3.7 57% -0.6 0.6 0.0% and internal forces in the designed structure will not
Uz[mm]  -5.0  -5.7  14.0% 47 5.4  14.9% correspond to the values of displacements in the actual

structure. Consequently, some elements of the designed

N [kN] -299.2 -298.9 -0.1% -344.2 -343.9 -0.1% . . .

structure will be incorrectly over-reinforced and others

Ty [kN] -21.1  -20.6 -2.4% -21.1 -20.6 -2.4% will be incorrectly under-reinforced. Cracks may appear on
Tx [kN] _16.6 -16.1 -3.0% -16.6 -16.1 -3.0% the surfaces of the under-reinforced structural elements
MXINmM] 1610 1591 -1.2% -7.9 53  -32.9% and, in some CaS(.?S, the structural elements may bre.ak

and cause the entire structure to collapse. The following
MykNm] -124.3 -123.0 -1.0% 8.4 5.6 —33.3%  additional conclusions can be drawn from the presented
comparative analysis of the two 3D concrete frame models,
Table 6: Results for columns C2. which differ significantly in terms of the complexity of the
construction of their numerical models:
Column C2 1. The equations derived for the calculation of the spring
Node 3 Node 4 coefficients and constants can be used to simplify the
Model Model Error  Model Model Error numerical model of a structure founded on soil.
A B A B 2. The results of the comparative analysis of four
U [mm] 21 2.2 48% 0.2 0.2 0.0% structural elements of two 3D frames show that there
i nsisten ween the resul in

U [mm] 32 33 31% 04  -0.5  25.0% s a good consistency bet eer the results obtained

Y from complex model A and simple model B. Of the
U, mm] —65 7.3 12.3% -6.0 6.9 15.0% four elements selected for the comparative analysis,
N [kN] -532.2 -532.2 0.0% -577.2 -577.2 0.0% including two columns and two beams from each
T [kN] 223.6 -23.1 -21% -23.6 -23.1 -2.1% 3D frame, the calculated displacements, internal
- 6 " . . forces, and moments are very similar in both frame

4.5 4, 2.29 4.5 4. 2.2% . . .

IkNI ° models. The largest difference in the displacements
M, [kNm] ~ 167.0 1653 -1.0% -21.5 -19.2 -10.7% and internal forces in all directions of the structural
M,[kNm] 215 222  3.3% -147 -145 -1.4% elements of both frames is equal to 0.9 mm and 0.6 kN,

respectively. The largest difference in bending
Table 7: Results for beam B1.
Node 1 Node 5 Node 3
Model A Model B Error Model A Model B Error Model A Model B Error

U, [mm] 2.2 2.3 4.5% 2.10 2.20 4.8% 2.1 2.2 4.8%

Uy[mm] 3.5 3.7 5.7% 3.40 3.50 2.9% 3.2 3.3 3.1%

U, [mm] -5.0 -5.7 14.0% -13.00 -13.90 6.9% -6.5 -7.3 12.3%

N [kN] -26.3 -25.7 -2.3% -26.30 -25.70 -2.3% -26.3 -25.7 -2.3%
T, [kN] 131.7 131.6 -0.1% 2.50 2.40 —4.0% -181.1 -181.2 0.1%
T [kN] -0.4 -0.4 0.0% -0.40 -0.40 0.0% -0.4 -0.4 0.0%
M, [kNm] 123.8 122.4 -1.1% -228.60 ~229.40 0.3% 409.7 409.3 -0.1%
My [kNm] -1.8 -2.0 11.1% -0.10 -0.10 0.0% 2.4 2.6 8.3%
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Table 8: Results for beam B2.

Node 1 Node 6 Node 7

Model A Model B Error Model A Model B Error Model A Model B Error
U, [mm] 2.2 2.3 4.5% 2.2 2.3 4.5% 2.2 2.3 4.5%
Uy [mm] 3.5 3.7 5.7% 3.5 3.7 5.7% 3.5 3.6 2.9%
U, [mm] -5.0 -5.7 14.0% -17.0 -17.8 4.7% -5.1 -5.8 13.7%
N [kN] -30.8 -30.2 -1.9% -30.8 -30.2 -1.9% -30.8 -30.2 -1.9%
T, [kN] 152.4 152.3 -0.1% -4.0 —4.1 2.5% -160.4 -160.5 0.1%
T [kN] 0.3 0.3 0.0% 0.3 0.3 0.0% 0.3 0.3 0.0%
M_[kNm] -161.5 -159.7 -1.1% 304.0 305.1 0.4% -209.7 -209.2 -0.2%
M, [KNm] 1.6 2.0 25.0% 0.0 0.0 0.0% -1.7 -2.0 17.6%

moments M, and M, does not exceed 2.7 kNm in the
columns, and 1.8 KNm in the beams.

3. Simplification of the numerical model of the design
structure significantly reduces the time needed to
build the model and perform its calculations. It also
reduces the size of the output database files. The
calculation time of the complex model A and the
simple model B was 2560 and 18 sec, respectively. In
addition, the output database file of complex model
A contains 749.3 MB of data, while model B contains
only 6.01 MB of data. It should be added that model
A can be more optimized, which can speed up its
calculation. The article presents a simple model of
a structure with a simple load, while in practice, we
encounter more complex models of structures. The
simplified modeling method proposed by the authors
will be much more beneficial due to its simplicity and
much shorter calculation time.

4. The derived equations for the spring constants can
be used in engineering structure analysis software
that is less numerically advanced than Abaqus FEA
software.

5. To correctly model a structure built on soil, it is
imperative to correctly determine the elastic properties
of the soil. On the basis of such data, a designer can
develop a model of the structure founded on a specific
soil. Therefore, close cooperation is required between
a geotechnical engineer and a structural engineer
when designing 3D frame structures built on soil.

Acknowledgements

The calculations were carried out using resources provided
by Wroclaw Center for Networking and Supercomputing
(https://wcss.pl), grant No. 554.

References

(1

(2]

E]

(4]

(5]

6]

(7]

(8]
[9]
[10]
(11]

[12]

[13]

[14]

Winkler, E. (1867). Die Lehre von der Elastizitat und Festigkeit.
Dominicus, Prague.

Brzgkata W., Herbut A. (2018). Application of the Winkler model
to the calculation of a hybrid retaining construction. Acta Sci.
Pol. Architectura, 17 (2), 37-51 (in Polish).

Nikos Gerolymos, George Gazetas. (2006). Development of
Winkler model for static and dynamic response of caisson
foundations with soil and interface nonlinearities. Soil
Dynamics and Earthquake Engineering, (26), 363-376.
Pasternak, P. (1954). On a new method for analysis of
foundations on an elastic base using two base parameters.
Gosudarstvennoe lzdatelstro Liberaturi po Stroitelstvui
Arkhitekture. Moscow (in Russian).

Kerr, A. (1965). A study of a new foundation model. Acta
Mechanica, 135-147 (1965).

Taylor, A.G.; Chung, J.H. (2022). Explanation and Application

of the Evolving Contact Traction Fields in Shallow Foundation
Systems. Geotechnics, (2), 91-113. https://doi.org/10.3390/
geotechnics2010004

Whitman, R. V., and Richart, F. E., Jr. (1967). Design Procedures
for Dynamically Loaded Foundations. Journal of the Soil
Mechanics and Foundations Division, 93(6), 169-193.

Lambe, T. W., Whitman, R. V. (1969). Soil Mechanics, Wiley, New
York.

Richart, F. E., Woods, R. D., Hall, J. R., (1970). Vibrations of Soils
and Foundations, Prentice-Hall.

Braja M. Das, Ramana, G. V. (2011). Principles of Soil Dynamics,
Second Edition, Nelson Education.

Barkan, D. D. (1962). Dynamics of bases and foundations. New
York: McGraw-Hill, (Translated from Russian).
Gorbunov-Possadov, M. I., Serebrajanyi, R. V. (1961). Design

of Structures upon Elastic Foundations, Proc. 5th International
Conference on Soil Mechanics and Foundation Engineering, (1),
643-648.

Gorbunov-Posadov, M. I. (1956). Obliczanie konstrukcji na
podtozu sprezystym. Budownictwo i Architektura, Warszawa,
(Translated from Russian).

Fattah, M. Y., Al-Azal Al-Mufty, A. A., Al- Badri, H. T. (2007).
Design charts for machine foundations. Journal of Engineering,
4(13), 1940-1961. doi:10.31026/j.eng.2007.04.07.


https://doi.org/10.3390/geotechnics2010004
https://doi.org/10.3390/geotechnics2010004

314 — Wojciech Pakos, Andrzej Helowicz

[15] Schleicher, F. (1926). Zur Theorie der Baugrundes. Der
Bauingenieur, (48), 931-935.

[16] Abaqus FEA software, Dassault Systemes, https://
academy.3ds.com

[17] Bowles, ). E. (1997). Foundation analysis and design. Fifth
Edition. The McGraw-Hill Companies, Inc.

§ sciendo


https://academy.3ds.com
https://academy.3ds.com




Raport dostępności





		Nazwa pliku: 

		Theoretical-and-numerical-modeling-of-a-shallow-foundation-stiffness-based-on-the-theory-of-elastic-halfspace.pdf









		Autor raportu: 

		



		Organizacja: 

		







[Wprowadź informacje osobiste oraz dotyczące organizacji w oknie dialogowym Preferencje > Tożsamość.]



Podsumowanie



Sprawdzanie napotkało na problemy, które mogą uniemożliwić pełne wyświetlanie dokumentu.





		Wymaga sprawdzenia ręcznego: 2



		Zatwierdzono ręcznie: 0



		Odrzucono ręcznie: 0



		Pominięto: 1



		Zatwierdzono: 26



		Niepowodzenie: 3







Raport szczegółowy





		Dokument





		Nazwa reguły		Status		Opis



		Flaga przyzwolenia dostępności		Zatwierdzono		Należy ustawić flagę przyzwolenia dostępności



		PDF zawierający wyłącznie obrazy		Zatwierdzono		Dokument nie jest plikiem PDF zawierającym wyłącznie obrazy



		Oznakowany PDF		Zatwierdzono		Dokument jest oznakowanym plikiem PDF



		Logiczna kolejność odczytu		Wymaga sprawdzenia ręcznego		Struktura dokumentu zapewnia logiczną kolejność odczytu



		Język główny		Zatwierdzono		Język tekstu jest określony



		Tytuł		Zatwierdzono		Tytuł dokumentu jest wyświetlany na pasku tytułowym



		Zakładki		Zatwierdzono		W dużych dokumentach znajdują się zakładki



		Kontrast kolorów		Wymaga sprawdzenia ręcznego		Dokument ma odpowiedni kontrast kolorów



		Zawartość strony





		Nazwa reguły		Status		Opis



		Oznakowana zawartość		Zatwierdzono		Cała zawartość stron jest oznakowana



		Oznakowane adnotacje		Zatwierdzono		Wszystkie adnotacje są oznakowane



		Kolejność tabulatorów		Zatwierdzono		Kolejność tabulatorów jest zgodna z kolejnością struktury



		Kodowanie znaków		Niepowodzenie		Dostarczone jest niezawodne kodowanie znaku



		Oznakowane multimedia		Zatwierdzono		Wszystkie obiekty multimedialne są oznakowane



		Miganie ekranu		Zatwierdzono		Strona nie spowoduje migania ekranu



		Skrypty		Zatwierdzono		Brak niedostępnych skryptów



		Odpowiedzi czasowe		Zatwierdzono		Strona nie wymaga odpowiedzi czasowych



		Łącza nawigacyjne		Zatwierdzono		Łącza nawigacji nie powtarzają się



		Formularze





		Nazwa reguły		Status		Opis



		Oznakowane pola formularza		Zatwierdzono		Wszystkie pola formularza są oznakowane



		Opisy pól		Zatwierdzono		Wszystkie pola formularza mają opis



		Tekst zastępczy





		Nazwa reguły		Status		Opis



		Tekst zastępczy ilustracji		Niepowodzenie		Ilustracje wymagają tekstu zastępczego



		Zagnieżdżony tekst zastępczy		Zatwierdzono		Tekst zastępczy, który nigdy nie będzie odczytany



		Powiązane z zawartością		Zatwierdzono		Tekst zastępczy musi być powiązany z zawartością



		Ukrywa adnotacje		Zatwierdzono		Tekst zastępczy nie powinien ukrywać adnotacji



		Tekst zastępczy pozostałych elementów		Zatwierdzono		Pozostałe elementy, dla których wymagany jest tekst zastępczy



		Tabele





		Nazwa reguły		Status		Opis



		Wiersze		Zatwierdzono		TR musi być elementem potomnym Table, THead, TBody lub TFoot



		TH i TD		Zatwierdzono		TH i TD muszą być elementami potomnymi TR



		Nagłówki		Niepowodzenie		Tabele powinny mieć nagłówki



		Regularność		Zatwierdzono		Tabele muszą zawierać taką samą liczbę kolumn w każdym wierszu oraz wierszy w każdej kolumnie



		Podsumowanie		Pominięto		Tabele muszą mieć podsumowanie



		Listy





		Nazwa reguły		Status		Opis



		Elementy listy		Zatwierdzono		LI musi być elementem potomnym L



		Lbl i LBody		Zatwierdzono		Lbl i LBody muszą być elementami potomnymi LI



		Nagłówki





		Nazwa reguły		Status		Opis



		Właściwe zagnieżdżenie		Zatwierdzono		Właściwe zagnieżdżenie










Powrót w górę

