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Abstract: The paper presents the derivation of equations 
for the calculation of the spring constants ky, kz, and kϕ and 
the spring coefficients by, bz, and bϕ used in the modeling 
of a foundation with a rectangular base on elastic soil. All 
the equations were derived based on information provided 
in literature, for example, Barkan, Gorbunov-Possadov, 
and Whitman et al. To demonstrate the application of these 
equations in practice, two numerical models of a reinforced 
concrete frame structure that was built on soil were created 
using Abaqus FEA software. Model A represents a complex 
three-dimensional numerical model that consists of a 
reinforced concrete frame structure, which has a soil layer 
beneath it. Model B represents a simple three-dimensional 
numerical model consisting of a reinforced concrete frame 
structure, where the stiffness of the soil layer beneath 
the structure was modeled with vertical, horizontal, and 
rocking spring constants applied to the bottom of each 
foundation. Due to the nonlinear boundary condition used 
in the supports of the concrete frame model, such as contact 
and friction, all the involved loads were incorporated into a 
single load case, and a large displacement formulation was 
used in the analysis. The authors focused on the method of 
a simplified modeling of frame structures founded on soil. 
To conduct comparative analyses, two columns and two 
beams from each model were selected, from which the 
internal forces and displacements were compared. The 
findings of the comparative analysis are presented in tables 
and then discussed.

Keywords: design, frame structure, reinforced concrete, 
foundation stiffness, elastic subsoil

1  Introduction
A common practice when designing a building structure 
is to use simple types of supports, such as sliding, non-
sliding, pinned or fixed supports, which do not reflect the 
actual interaction between the ground and the structure.

When designing a structure, the soil elasticity 
coefficient model is sometimes used, for example, 
the Winkler model [1]. This model assumes that the 
displacement w at a given point in the soil is directly 
proportional to the applied pressure p at that point, that is, 
p=Kw, where K is the modulus of the subgrade’s reaction. 
In the Winkler model, the settlement of a given point 
only depends on the pressure applied at that point and 
does not depend on the pressures acting in the vicinity 
of that point. Adopting a simplified support model when 
designing a structure may lead to discrepancies between 
the work of the structure’s numerical model and the 
real structure. Nevertheless, the Winkler model is still 
often used to analyze typical engineering structures, for 
example, foundation slabs and footings, piles, and railway 
tracks, as well as much more responsible and complex 
engineering structures. For example, in the paper [2], the 
Winkler model was used to calculate a hybrid retaining 
structure, and in the paper [3], it was used to analyze a 
caisson foundation subjected to static and dynamic loads.  

In the following years, modifications of the Winkler 
model were developed. One of the example is a Pasternak’s 
two-parameter model [4], which introduces an additional 
element on the surface of the Winkler model in the form 
of a shear working layer, ensuring the cooperation of 
the independent Winkler elastic bonds. In 1965, Kerr [5] 
proposed another two-parameter model consisting of two 
layers of elastic bonds connected by a shear transfer layer. 
Taylor and Chung in the paper [6] analyzed the contact 
stress distributions at the shallow foundation contact 
interface with an underlying real homogeneous, dry, 
compacted sand.

A more advanced approach, in comparison to the 
Winkler concept, to estimate the stiffnesses of a shallow 
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foundation model is based on the theory of elastic half-
space. The publications of researchers, such as Whitman 
and Richart [7], Lambe and Whitman [8], Richart, 
Woods and Hall [9], Braja M. Das et al. [10], and Fattah 
et al. [14], provide simple equations for determining the 
vertical, horizontal, and rocking spring constants that 
represent a linear relation between the applied loads and 
displacements of the foundation. This, in turn, implies a 
linear stress–strain relation for the soil (Fig. 1 and Tab. 1).

Based on the given equations for the spring 
constancies, the vertical (w), horizontal (u), and rocking 
(ϕ) displacements of a given foundation block with applied 
load can be calculated from the following equations:  
w=V/Kz, u=H/Kx, ϕ=M/Kϕ. 

Equations 2 and 3 in Table 1 were derived for a rigid 
foundation with a rectangular base. For the case of horizontal 
movement, the spring constant was derived by assuming a 
uniform distribution of shear stresses on the contact surface 
and by calculating the average horizontal displacement 
of this surface [11]. In works [7] to [10], it is stated that the 
spring constants Kx and Kz, which represent horizontal and 
vertical motion, respectively, were derived based on the 
assumptions given in the work by Barkan [11]. In turn, the 
spring constant Kϕ, representing rocking motion, is based on 
the assumptions given in the works of Gorbunov-Possadov 
[12], [13]. The final form of the equations for determining the 
spring constants Kx, Kz and Kϕ as well as the nomograms 
(Fig. 2) for determining the spring coefficients βz, βϕ and βx, 
are provided in works [7] to [10]. 

The above-mentioned works do not provide both 
the equations for determining the spring coefficients 
and the derivations of the equations for determining the 
spring constants. Therefore, based on the assumptions 
given by Barkan and Gorbunov-Possadov, the equations 

Figure 1: Scheme of a rectangular foundation.

Table 1: Spring constants for a foundation with a rectangular base resting on elastic half-space [7], [8], [9].

Motion Spring constant Reference

Vertical
𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧 =

𝐺𝐺𝐺𝐺
1 − 𝜈𝜈𝜈𝜈

 𝛽𝛽𝛽𝛽𝑧𝑧𝑧𝑧√𝐴𝐴𝐴𝐴 

 

(1) Barkan (1962)

Horizontal 𝐾𝐾𝐾𝐾𝑥𝑥𝑥𝑥 = 2𝐺𝐺𝐺𝐺(1 + 𝜈𝜈𝜈𝜈)√𝐴𝐴𝐴𝐴 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥 

 

(2) Barkan (1962)

Rocking
𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙 =

𝐺𝐺𝐺𝐺
1 − 𝜈𝜈𝜈𝜈

 𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙 8𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 

 

(3) Gorbunov-Possadov (1961)

where G – shear modulus of soil, v – Poisson’s ratio of soil, A– foundation area (A=2a2b), 2a– length of the foundation (along the axis of 
rotation for the case of rocking),  2b – width of the foundation (in the plane of rotation for the case of rocking), V, H, M – vertical, horizontal, 
and rocking forces, βz, βx, βϕ – nondimensional coefficients of spring constants for a rectangular foundation, and
Kz, Kx, Kϕ – vertical, horizontal, and rocking spring constants.

 

Figure 2: Coefficients βx, βz, and βϕ for a rectangular foundation 
base with regards to α=a/b.
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for the spring constants Kz, Kϕ, and Kx and the spring 
coefficients βz, βϕ, and βx were derived in this paper. The 
values of elastic constants calculated on the basis of the 
derived equations were used in the numerical model of 
the concrete 3D frame (Fig. 6).

2  Determination of spring 
constants for a rigid foundation 
with a rectangular base resting on 
elastic half-space

2.1  Formula for spring constant Kz (vertical 
motion)

Barkan et al. [11] presented the results of many field tests 
that aimed to determine the compression-bearing capacity 
for different types of soil. The field tests consisted of load 
tests in which a concentrated load was transferred to the 
soil by a rigid bearing plate. Based on these findings, 
Barkan [11] stated that within a certain range, there is a 
proportional relationship between the elastic settlements 
of the foundation and the external uniform pressure 
acting on the soil, that is,

𝑝𝑝𝑝𝑝𝑧𝑧𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 (1) 
  
  
  

(4)

where cu is the coefficient of proportionality (called the 
coefficient of the elastic uniform compression of soil) and 
Se is the elastic settlement of the bearing plate due to the 
external pressure pz.

When assuming that the foundation consists of an 
absolutely flexible plate uniformly loaded by a vertical 
pressure, the stresses in the soil under the foundation 
are distributed uniformly, but settlement under the 
foundation varies. For an absolutely flexible foundation, 
the coefficient of elastic uniform compression is the ratio 
of uniform pressure to the average settlement value. 
Therefore, after transformation, equation (4) can be 
written in the following form:

𝑝𝑝𝑝𝑝𝑧𝑧𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑢𝑢𝑢𝑢𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (2) 
  
  
  

(5)

Furthermore, Barkan [11] assumed that

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑆𝑆av (3) 
 

(6)

and by using the work given by Schleicher [15], he gave 
the solution for an absolutely flexible foundation with a 
rectangular base. According to his solution, the average 
settlement value can be determined using the following 
equation:

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸 √𝐴𝐴𝐴𝐴
1

𝜋𝜋𝜋𝜋√𝛼𝛼𝛼𝛼
�ln

√1 + 𝛼𝛼𝛼𝛼2 + 𝛼𝛼𝛼𝛼
√1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼

+ 𝛼𝛼𝛼𝛼 ln
√1 + 𝛼𝛼𝛼𝛼2 + 1
√1 + 𝛼𝛼𝛼𝛼2 − 1

−
2
3

(1 + 𝛼𝛼𝛼𝛼2) 
3
2 − (1 + 𝛼𝛼𝛼𝛼3)
𝛼𝛼𝛼𝛼

�𝑝𝑝𝑝𝑝𝑧𝑧𝑧𝑧 (4) 

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸 √𝐴𝐴𝐴𝐴
1

𝜋𝜋𝜋𝜋√𝛼𝛼𝛼𝛼
�ln

√1 + 𝛼𝛼𝛼𝛼2 + 𝛼𝛼𝛼𝛼
√1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼

+ 𝛼𝛼𝛼𝛼 ln
√1 + 𝛼𝛼𝛼𝛼2 + 1
√1 + 𝛼𝛼𝛼𝛼2 − 1

−
2
3

(1 + 𝛼𝛼𝛼𝛼2) 
3
2 − (1 + 𝛼𝛼𝛼𝛼3)
𝛼𝛼𝛼𝛼

�𝑝𝑝𝑝𝑝𝑧𝑧𝑧𝑧 (4) 

(7)

where: α=a/b,  E – Young’s modulus of soil,  ν – Poisson’s 
ratio, A – foundation area A=2a2b, and pz – uniform 
pressure (pz=V/A). 

By dividing both sides of equation (7) by pz and by 
performing its transformation, equation (7) can be written 
in the following form:

𝑝𝑝𝑝𝑝𝑧𝑧𝑧𝑧
𝑆𝑆𝑆𝑆av

=
𝐸𝐸𝐸𝐸

1− 𝜈𝜈𝜈𝜈2
 

1
√𝐴𝐴𝐴𝐴

 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (5) 

  

(8)

where

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 =
𝜋𝜋𝜋𝜋√𝛼𝛼𝛼𝛼

ln√1 + 𝛼𝛼𝛼𝛼2 + 𝛼𝛼𝛼𝛼
√1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼

+ 𝛼𝛼𝛼𝛼 ln√1 + 𝛼𝛼𝛼𝛼2 + 1
√1 + 𝛼𝛼𝛼𝛼2 − 1

− 2
3

(1 + 𝛼𝛼𝛼𝛼2) 
3
2 − (1 + 𝛼𝛼𝛼𝛼3)
𝛼𝛼𝛼𝛼

 (6) 
 

(9)

Substituting pz=V/A and E=2G(1+ν) into equation (8) and 
making minor transformations of it, the following can be 
obtained:

𝐾𝐾𝐾𝐾𝑧𝑧𝑧𝑧 =
𝑉𝑉𝑉𝑉
𝑆𝑆𝑆𝑆av

=
𝐺𝐺𝐺𝐺

1− 𝜈𝜈𝜈𝜈√
𝐴𝐴𝐴𝐴 𝛽𝛽𝛽𝛽𝑧𝑧𝑧𝑧 (7) 

 

(10)

where spring coefficient βz can be written as

𝛽𝛽𝛽𝛽𝑧𝑧𝑧𝑧 = 2 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 (8) 
  
  

(11)

2.2  Equation for spring constant Kϕ (rocking 
motion)

The formulas given by Gorbunov-Possadov in papers 
[12] and [13] were used to derive the equation for spring 
constant Kϕ. The adopted denotation of the foundation 
geometry and its axis layout for the rocking motion are 
shown in the Figure 3.
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Gorbunova-Possadov, in his studies [12] and [13], gave 
formulas for determining the angles of rotation of a rigid 
rectangular foundation founded on soil and loaded by 
moments Mx and My:

tg𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸
𝐾𝐾𝐾𝐾1
𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥

𝑎𝑎𝑎𝑎3
 (9) 

 

(12)

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸
𝐾𝐾𝐾𝐾2

𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

𝑏𝑏𝑏𝑏3
 

 
(10) 

  

(13)

The coefficients K1 and K2 in these formulas are determined 
by using nondimensional reaction soil pressure equations, 
which are expressed by using power polynomials of 
the fifth and seventh degree or by using graphs (Figure 
4a, b). The graphs show more accurate values of these 
coefficients than those calculated by the polynomials. 
Both the values of the coefficients calculated from the 
polynomials and those read from the graphs depend on 
the ratio of the dimensions of the foundation sides, that is, 
α=a/b. Derived equations (14) and (15) describe the values 
variation of the coefficient K1 and K2 presented in Figure 
4a and 4b.

𝐾𝐾𝐾𝐾1 = 2.6�1− 𝑒𝑒𝑒𝑒�0.222𝛼𝛼𝛼𝛼0.81�� (11) 
  

 

(14)

𝐾𝐾𝐾𝐾2 = 0.85�1− 𝑒𝑒𝑒𝑒�0.9𝛼𝛼𝛼𝛼−1�� (12) 
 

(15)

The polynomial coefficients are determined by assuming 
that the foundation base adheres closely to the ground, 
that is, there is a compliance of vertical displacements of 
soil and the foundation base at each point. In addition, 
the friction between the soil and the base is omitted. 
Moment Mx acts in a vertical plane parallel to the longer 
side of the rectangular base. Moment My acts in a vertical 
plane parallel to the shorter side of the rectangular base 
[13]. 

2.2.1  Formula for spring constant Kϕ
x, that is, Kϕ from the 

action of moment Mx

By dividing equation (12) by moment Mx and by making a 
simple transformation of this equation, the following can 
be obtained:

𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥

tg𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥
=

𝐸𝐸𝐸𝐸
1 − 𝜈𝜈𝜈𝜈2

𝑎𝑎𝑎𝑎3

𝐾𝐾𝐾𝐾1
 

 
(13) (16)

By substituting E=2G(1+ν), one can get

Figure 3: Scheme of a foundation with a rectangular base according 
to Gorbunova-Possadov [12], [13].

 	

a)	

b)

Figure 4: Graphs for determining the coefficients K1 (a) and K2 (b) 
used in equations (12) and (13). The graphs were prepared by the 
authors based on works [12] and [13].
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𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥

tg𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥
=

2𝐺𝐺𝐺𝐺
1− 𝜈𝜈𝜈𝜈

𝑎𝑎𝑎𝑎3

𝐾𝐾𝐾𝐾1
 

 
(14) (17)

Knowing that A=2a2b, and α=a/b, and thereby a=1/2𝑎𝑎𝑎𝑎 = 1/2√𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 ,  
equation (17) can be written as

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥 =
𝑀𝑀𝑀𝑀𝑥𝑥𝑥𝑥

tg𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥
=

𝐺𝐺𝐺𝐺
1 − 𝜈𝜈𝜈𝜈

1
𝐾𝐾𝐾𝐾1

1
4
𝛼𝛼𝛼𝛼 8𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎2 (15) 

  

(18)

and finally as

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥 =
𝐺𝐺𝐺𝐺

1 − 𝜈𝜈𝜈𝜈
 𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥  8𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎2  (16) 

  
(19)

where

𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙𝑥𝑥𝑥𝑥 =
1
4

1
𝐾𝐾𝐾𝐾1
𝛼𝛼𝛼𝛼 (17) 

  

(20)

βϕ
x is the spring coefficient and Kϕ

x is the spring constant 
for a rectangular base in the direction of its greater rigidity. 

2.2.2  Formula for spring constant Kϕ
y, that is, Kϕ from 

the action of moment My

By dividing equation (13) by moment My and by making a 
simple transformation of this equation, the following can 
be obtained:

𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦
=

𝐸𝐸𝐸𝐸
1 − 𝜈𝜈𝜈𝜈2

𝑏𝑏𝑏𝑏3

𝐾𝐾𝐾𝐾2
 (18) 

  

(21)

By substituting E=2G(1+ν), one can get

𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦
=

2𝐺𝐺𝐺𝐺
1 − 𝜈𝜈𝜈𝜈

𝑏𝑏𝑏𝑏3

𝐾𝐾𝐾𝐾2
  

(19) 
 
 

(22)

Given that A=2a2b, and α=a/b, and thereby b=1/2𝑏𝑏𝑏𝑏 = 1/2�𝛼𝛼𝛼𝛼/𝛼𝛼𝛼𝛼 , 
equation (22) can be written as

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙
𝑦𝑦𝑦𝑦 =

𝑀𝑀𝑀𝑀𝑦𝑦𝑦𝑦

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦
=

𝐺𝐺𝐺𝐺
1 − 𝜈𝜈𝜈𝜈

1
𝐾𝐾𝐾𝐾2

1
4𝛼𝛼𝛼𝛼

 8𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏2 (20) 

  

(23)

and finally as

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙
𝑦𝑦𝑦𝑦 =

𝐺𝐺𝐺𝐺
1− 𝜈𝜈𝜈𝜈

 𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙
𝑦𝑦𝑦𝑦 8𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏2 (21) 

  

(24)

where

𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙
𝑦𝑦𝑦𝑦 =

1
4

1
𝐾𝐾𝐾𝐾2

1
𝛼𝛼𝛼𝛼

 (22) 

  

(25)

βϕ
y is the spring coefficient and Kϕ

y is the spring constant 
for a rectangular base in the direction of its lower rigidity. 

For the purposes of this paper, and to standardize 
and conform to the description given in Figure  5, in the 
derivations of the equations for the spring constants Kx 
and Kz, the symbols in formulas (12) and (13) have been 
changed in the further part of this chapter. It was assumed 
that the rocking motion takes place along the X axis, and 
therefore, in accordance with works [7] to [9], 2b is the 
width of the foundation base (along the axis of rotation 
for rocking motion) and 2a is the length of the foundation 
base (in the plane of rotation for rocking motion). 

Based on the adopted assumptions, the spring 
constant Kϕ and the spring coefficient βϕ were derived for 
the oscillating motion. Their values are shown in Figure 2.

2.2.3  Spring constant Kϕ for a rectangular base in the 
direction of lower stiffness, that is, α=a/b=(1÷0.1)

Based on equation (26) and by making an additional 
transformation that is similar to those made in equations 
(21) to (25), the equation for the spring constant for a 
foundation in the direction of its lower stiffness can be 
obtained: 

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸
𝐾𝐾𝐾𝐾�2

𝑀𝑀𝑀𝑀
𝑎𝑎𝑎𝑎3

 (23) 

 

(26)

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙 = 𝐺𝐺𝐺𝐺
1−𝜈𝜈𝜈𝜈

 𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙 8𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎2   (24) 
 

(27)

where

𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙 =
1
4

1
𝐾𝐾𝐾𝐾�2

𝛼𝛼𝛼𝛼 (25) 

 

(28)

𝐾𝐾𝐾𝐾�2  is the coefficient for determining the angles of rotation 
of a rigid foundation with a rectangular base under the 
action of rocking moment M (read from the graph in Figure 
4b). To calculate this coefficient, the range of values 
of α=a/b=(1÷10) should be replaced by α=a/b=(1÷0.1).  
The  replacement of coefficient α (read from the graph 
in Figure 4b) is due to the fact that Gorbunov-Possadov 
considered that the foundation bends in two directions, 
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relative to the X and Y axes, with a ratio of the coefficient 
α=a/b=(1÷10). However, in the derivation of the spring 
constant equation Kϕ, the authors assumed that the 
foundation only bends in one direction, relative to the X 
axis of rotation and with a ratio of a/b varying from 0.1 to 
10, that is, for lower stiffness, it is α=a/b=(1÷0.1) and for 
higher stiffness, it is α=a/b=(1÷10).

2.2.4  Spring constant Kϕ for a rectangular base in the 
direction of higher stiffness, that is, α=a/b=(1÷10)

Based on equation (29), and by making an additional 
transformation similar to those made in equations (16) to 
(20), the equation for the spring constant for a foundation 
in the direction of its higher stiffness can be obtained: 

tg𝜙𝜙𝜙𝜙𝑦𝑦𝑦𝑦 =
1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸
𝐾𝐾𝐾𝐾1

𝑀𝑀𝑀𝑀
𝑎𝑎𝑎𝑎3

 (26) 

 

(29)

𝐾𝐾𝐾𝐾𝜙𝜙𝜙𝜙 =
𝐺𝐺𝐺𝐺

1− 𝜈𝜈𝜈𝜈
 𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙 8𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎2 (27) 

 

(30)

where 

𝛽𝛽𝛽𝛽𝜙𝜙𝜙𝜙 =
1
4

1
𝐾𝐾𝐾𝐾1
𝛼𝛼𝛼𝛼 

(28) 
 
 

  

(31)

K1 is the coefficient for determining the angles of rotation of 
a rigid foundation with a rectangular base under the action 
of rocking moment M (read from the graph in Figure 4a).

2.3  Equation for spring constant Kx 
(horizontal motion)

Based on the assumptions given by Barkan [11], the 
equations for spring constant Kx and coefficient βx were 
derived, with a theoretical basis being used to derive these 
equations.

If the foundation is subjected to a horizontal force 
applied at the level of the contact surface of the foundation 
base and the soil, the foundation will move in the direction 
of this force (Table 1).

From the experimental data given by Barkan [11], 
under conditions similar to steady-state conditions for 
soil under compression, it can be concluded that there 
is a linear relationship between the base sliding motion 
and the average shearing stress developed along the base 
contact surface with the soil, that is,

𝜏𝜏𝜏𝜏av = 𝑐𝑐𝑐𝑐𝜏𝜏𝜏𝜏𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒′  (29) 
  
 

(32)

where τav is the average shearing stress in the soil at the 
plane of contact with the foundation and 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒′   is the elastic 
part of the total horizontal sliding of the foundation base 
under the action of τav. Barkan [11] assumed that the elastic 
part of the total horizontal sliding is equal to the average 
value of the horizontal sliding 𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒′ = 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎′   along the surface 
area A=2a2b, and he gave the following equation:

Figure 5: Notations for the equation for the spring constant in the case of rocking motion: (a) for α=a/b=(1÷0.1); (b) for α=a/b=(1÷10).
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𝑆𝑆𝑆𝑆av′ =
4𝑎𝑎𝑎𝑎
𝜋𝜋𝜋𝜋

1 − 𝜈𝜈𝜈𝜈2

𝐸𝐸𝐸𝐸
�

1
𝛼𝛼𝛼𝛼

sinh−1𝛼𝛼𝛼𝛼 + sinh−1
1
𝛼𝛼𝛼𝛼
−

1
3
�

1
𝛼𝛼𝛼𝛼2

��1 + 𝛼𝛼𝛼𝛼2 − 1� + �1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼𝛼

+
𝜈𝜈𝜈𝜈

1 + 𝜈𝜈𝜈𝜈
�
1
𝛼𝛼𝛼𝛼

sinh−1𝛼𝛼𝛼𝛼 +
1
3
��1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼 −

2
𝛼𝛼𝛼𝛼2

��1 + 𝛼𝛼𝛼𝛼2 − 1���� 𝜏𝜏𝜏𝜏av 
(30) (33)

where α=a/b, E is the Young’s modulus of soil, and ν is the 
Poisson’s ratio.

Knowing that A=2a2b, and by substituting τav=H/A 
and 𝑎𝑎𝑎𝑎 = 1/2√𝛼𝛼𝛼𝛼 𝛼𝛼𝛼𝛼  into equation (33), and by making 
simple transformations, the following can obtained:

 

𝐻𝐻𝐻𝐻
𝑆𝑆𝑆𝑆av′

=
𝐸𝐸𝐸𝐸

1− 𝜈𝜈𝜈𝜈2 √
𝐴𝐴𝐴𝐴 𝑘𝑘𝑘𝑘𝜏𝜏𝜏𝜏 (31) (34)

where

𝑘𝑘𝑘𝑘𝜏𝜏𝜏𝜏 =
𝜋𝜋𝜋𝜋

2√𝛼𝛼𝛼𝛼 �
1
𝛼𝛼𝛼𝛼 sinh−1𝛼𝛼𝛼𝛼 + sinh−1 1

𝛼𝛼𝛼𝛼 −
1
3 �

1
𝛼𝛼𝛼𝛼2 �√1 + 𝛼𝛼𝛼𝛼2 − 1� + √1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼𝛼 +

𝜈𝜈𝜈𝜈
1 + 𝜈𝜈𝜈𝜈 �

1
𝛼𝛼𝛼𝛼 sinh−1𝛼𝛼𝛼𝛼 + 1

3 �√1 + 𝛼𝛼𝛼𝛼2 − 𝛼𝛼𝛼𝛼 𝛼 2
𝛼𝛼𝛼𝛼2 �√1 + 𝛼𝛼𝛼𝛼2 − 1���

�

 

(32) (35)

By substituting E=2G(1+ν) into equation (32), Kx can be 
derived:

 

𝐾𝐾𝐾𝐾𝑥𝑥𝑥𝑥 =
𝐻𝐻𝐻𝐻
𝑆𝑆𝑆𝑆av′

= 2𝐺𝐺𝐺𝐺(1 + 𝜈𝜈𝜈𝜈)√𝐴𝐴𝐴𝐴 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥 (33) (36)

where
 

𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥 =
 𝑘𝑘𝑘𝑘𝜏𝜏𝜏𝜏

1 − 𝜈𝜈𝜈𝜈2
 (34) (37)

It should be noted that in papers [7] to [9], the values of 
the spring coefficient βx were determined by assuming 
that the Poisson’s ratio of the soil has a constant value  
ν = 0.3. From equation (35) derived by the authors, spring 
coefficient βx can be additionally calculated for various 
values of the Poisson’s ratio.

3  Description of the model
It is often impractical to model an entire structure with 
complex three-dimensional solid elements. A very 
complex numerical model can lead to more inaccurate 
results than those predicted by  simpler models, such as 
grillage or 3D frame. Due to the complex nonlinear nature 
of soil behavior under loads, the analysis was limited to 
the simple assumption that the  mechanical parameters 
of soil strictly follow Hooke’s law. Furthermore, it was 
assumed that the pressure in the soil under the footing 

foundation is lower than the soil’s bearing capacity. This is 
usually the case with a typical foundation design. For the 
purpose of the analysis, complex and simple models of 
the concrete 3D frame structure (Fig. 6) were built using 
Abaqus FEA software [16]. 

Complex model A (Fig. 7) consists of the concrete 3D 
frame structure and the soil layer beneath it. 

In  this model, the interlayer interaction between 
the bottom surface of the footing foundation (the base) 
and  the  top surface of  the  soil layer was modeled as a 
standard contact surface-to-surface type discretization 
method with a finite sliding formulation. Furthermore, 
normal behavior with “hard” contact pressure overclosure 
and allowable separation after contact was applied. 
The adopted contact method permits some relative motion 
of the contact surfaces. Contact interaction properties are 
a tangential behavior with a static coefficient of friction μ 
equal to 0.58. This coefficient was calculated based on the 
assumption that the internal angle of friction between the 
concrete and the soil material is the same as the internal 
angle of friction of the soil layer beneath the footing 
foundation. In turn, simple model B (Fig. 8) only consists 
of the concrete 3D frame structure. 

The missing soil layer in this model was replaced by 
spring constants derived for a rigid rectangular foundation 
resting on an elastic half-space. Five spring constants 
were applied to the center of the bottom surface of each 
footing foundation. Three of them were responsible for 
vertical and horizontal motion, and the remaining two 
were responsible for rocking motion around the X and Y 
axes. Model B represents an engineering approach to the 
design of a 3D frame structure resting on soil. In model A, 
it was assumed that the soil layer beneath the  structure 
has a constant and uniform depth of 20.0  m below the 
footing foundations (Figure 7). In  all  the numerical 
models, the frame structure is represented by 264 Euler–
Bernoulli two-node cubic beam elements of type B33. Each 
column consists of  16 beam elements: beam B1 consists 
of  48 beam elements and beam B2 consists of  24 beam 
elements. All the beams are connected together, so that 
there is no relative motion between them. Kinematic type 
couplings were used to connect the beam elements with 
the solid elements that represent the footing foundation. 
In this connection, the bottom node of the beam element 
is the control point and the upper surface of  the footing 
foundation directly under the column is the  constraint 
region. These  connections are shown in  Figure 8. 
The  footing foundations are represented by 10,200 
general purpose eight-node linear hexahedral elements 
of type C3D8 that have hourglass element controls. Each 
corner footing foundation consists of 1350 elements, while 
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each inner footing foundation consists of 2400 elements. 
The same element type was used to build the block of the 
soil layer beneath the footing foundation (Figure 9). 

The total number of  elements representing the  soil 
layer beneath the footing foundation is equal to 476,160. 
Material constants, such as the internal angle of friction 
(f), Young’s modulus (E), and the Poisson’s ratio (v) of 
the materials selected for the analysis, are presented 
in  Table  2. The soil angle of friction was used to assess 
the coefficient of friction between soil and the concrete 
surface, which was used to model the contact interaction 
in model A. 

In Table 2, the following designations were used: E – 
modulus of elasticity, v – Poisson’s ratio, f – soil internal 
angle of friction, G – soil shear modulus, L – length of 
the foundation (in the plane of rotation for the case of 
rocking), B – width of  the  foundation (along the axis of 
rotation for the case of rocking).

The dimensions of the footing foundation and the soil 
layer beneath the footing are shown in Figures 6 and 7. 
Each vertical surface of the soil layer only has a horizontal 
restraint applied perpendicularly to  each surface. The 
bottom surface of this layer only has a  vertical restraint 
applied perpendicularly to this surface. In addition, it 

Figure 6: The analyzed 3D frame.

Figure 7: Axonometric view of complex model A.
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was assumed that the  foundations are not backfilled. 
This situation may occur during temporary works in  the 
vicinity of the foundation. 

In Table 3, the following designations were used:  (βy, 
βz, βf) – spring coefficients, (Ky, Kz, Kf) – spring constants.

The nominal loads applied to the structure are shown 
in Figure 8 and Table 4. 

In model A, the superposition principle cannot 
be used in the calculations of this structure due to the 
nonlinear boundary condition used in the frame model 
supports, such as contact and friction. For this reason, in 
both models, all the loads involved were incorporated into 
a single load case, and the large displacement formulation 
was used in the static analysis. The self-weight of the soil 
layer in model A was omitted in the analysis.

Figure 8: Axonometric view of simple model B.

Figure 9: Finite element mesh of complex model A.

Table 2: Material properties used in the analysis.

Model A, B

Soil Loose sand [17]

Es [MN/m2] 40
(Middle range value)

n 0.3

f 30 (Model A)

G [MN/m2] 15.385

L × B [m] 1.5 × 1.5

L × B [m] 2.0 × 2.0

Frame structure Concrete C50/60

Ecm [MN/m2] 37,000

v 0.2
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4  Comparative analysis
The subjects of the analysis were the two columns C1 and 
C2 and the two beams B1 and B2 shown in Figure 6. In each 
of  these structural elements, the values and distribution 
of  the internal forces and displacements obtained 
from spatial frame models A and B were compared and 
analyzed. The values of the linear displacements, internal 
forces, and bending moments were consistent with the 
global axes coordinate system shown in Figure 6. The 
calculation results for the columns and beams are shown 
in Tables 5–7.

4.1  Columns C1 and C2

Tables 5 and 6 show the values of the displacements, 
internal forces, and bending moments at the top and 
bottom of the C1 and C2 columns of the analyzed models 
of concrete 3D frames A and B.

The relative error presented in the tables is calculated 
according to the following equation: 

 

Error =
value model B− value model A

value model A
 [%] 

In Tables 5 and 6, the following designations were used: 
Ux, Uy, Uz are linear displacements, N is the axial force, 
Ty and Tx are shear forces, and Mx and My are bending 
moments.

From the calculation results for columns C1 and C2 in 
frames A and B, the following can be concluded:
1.	 The values of displacements Ux, Uy, and Uz in column 

C1 in both frames A and B, as well as in column C2 in 
both frames A and B in all analyzed nodes, are very 
similar. However, the columns in the simple frame 
model B have slightly larger displacements than the 
columns in complex model A by about 0.2 mm in the 
horizontal direction and about 0.9 mm in the vertical 
direction in all the analyzed nodes.

2.	 The values of the axial forces, shear forces, and 
bending moments in column C1 in both frames A and 
B, as well as in column C2 in both frames A and B in all 
the analyzed nodes, are very similar. The difference 
in values in all the analyzed nodes does not exceed  
0.6 kN in the case of all the forces, and it does not 
exceed 2.7 kNm in the case of all the bending moments.

4.2  Beams B1 and B2

Tables 7 and 8 show the values of the displacements, 
internal forces, and bending moments in beams B1 and B2 
in the analyzed models of concrete 3D frames A and B.

From the calculation results for beams B1 and B2 in 
frames A and B, the following can be concluded:
1.	 The values of displacements Ux, Uy, and Uz in beam B1 

in both frames A and B, as well as in beam B2 in both 
frames A and B in all the analyzed nodes, are very 
similar. However, the beams in simple frame model B 
have slightly larger displacements than the beams in 
complex model A by about 0.2 mm in the horizontal 
direction and by about 0.9 mm in the vertical direction 
in all the analyzed nodes.

2.	 The values of the axial forces, shear forces, and 
bending moments in beam B1 in both frames A and 
B, as well as in beam B2 in both frames A and B in all 
the analyzed nodes, are very similar. The difference in 
the values in all the analyzed nodes does not exceed 
0.6 kN in the case of all the forces and does not exceed  
1.8 kNm in the case of all the bending moments.

5  Conclusions
Based on the results obtained from the analyzed example 
of a 3D frame, it can be concluded that the derived 
equations for spring constants, which describe the impact 
of a foundation placed on the ground, can be used in the 
design of frame structures. This information is particularly 

Table 3: Calculated spring constants used in model B.

In the corner footing In the inner footing Units

βx =βy = 0.956

βz = 2.113

βϕX = βϕY = 0.49

kx = ky = 57,374 kx = ky = 76,498 [kN/m]

kz = 69,668 kz = 92,891

kϕX = kϕY = 36,381 kϕX = kϕY = 86,235 [kN/m/rad]

Table 4: Load applied to the structure.

Load type Value

Self-weight of the concrete frame structure (SW) 24 kN/m3

Uniform distributed load (UDL) 20 kN/m

Concentrated force Px and Py 10 kN
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important when designing a structure founded on the 
ground. The use of simple types of supports in the 
numerical model, such as sliding, nonsliding, pinned, or 
fixed supports, which do not reflect the actual interaction 
of the structure with the ground on which it will be 
founded, leads to the incorrect design of the structure. 
As a result, the calculated values of displacements 
and internal forces in the designed structure will not 
correspond to the values of displacements in the actual 
structure. Consequently, some elements of the designed 
structure will be incorrectly over-reinforced and others 
will be incorrectly under-reinforced. Cracks may appear on 
the surfaces of the under-reinforced structural elements 
and, in some cases, the structural elements may break 
and cause the entire structure to collapse. The following 
additional conclusions can be drawn from the presented 
comparative analysis of the two 3D concrete frame models, 
which differ significantly in terms of the complexity of the 
construction of their numerical models:
1.	 The equations derived for the calculation of the spring 

coefficients and constants can be used to simplify the 
numerical model of a structure founded on soil.

2.	 The results of the comparative analysis of four 
structural elements of two 3D frames show that there 
is a good consistency between the results obtained 
from complex model A and simple model B. Of the 
four elements selected for the comparative analysis, 
including two columns and two beams from each 
3D frame, the calculated displacements, internal 
forces, and moments are very similar in both frame 
models. The largest difference in the displacements 
and internal forces in all directions of the structural 
elements of both frames is equal to 0.9 mm and 0.6 kN,  
respectively. The largest difference in bending 

Table 5: Results for columns C1.

  Column C1

  Node 1 Node 2

  Model 
A

Model 
B

Error Model 
A

Model 
B

Error

Ux [mm] 2.2 2.3 4.5% -0.4 -0.5 25.0%

Uy [mm] 3.5 3.7 5.7% -0.6 -0.6 0.0%

Uz [mm] -5.0 -5.7 14.0% -4.7 -5.4 14.9%

N [kN] -299.2 -298.9 -0.1% -344.2 -343.9 -0.1%

Ty [kN] -21.1 -20.6 -2.4% -21.1 -20.6 -2.4%

Tx [kN] -16.6 -16.1 -3.0% -16.6 -16.1 -3.0%

Mx [kN m] 161.0 159.1 -1.2% -7.9 -5.3 -32.9%

My [kN m] -124.3 -123.0 -1.0% 8.4 5.6 -33.3%

Table 6: Results for columns C2.

  Column C2

  Node 3 Node 4

  Model 
A

Model 
B

Error Model 
A

Model 
B

Error

Ux [mm] 2.1 2.2 4.8% 0.2 0.2 0.0%

Uy [mm] 3.2 3.3 3.1% -0.4 -0.5 25.0%

Uz [mm] -6.5 -7.3 12.3% -6.0 -6.9 15.0%

N [kN] -532.2 -532.2 0.0% -577.2 -577.2 0.0%

Ty [kN] -23.6 -23.1 -2.1% -23.6 -23.1 -2.1%

Tx [kN] 4.5 4.6 2.2% 4.5 4.6 2.2%

Mx [kNm] 167.0 165.3 -1.0% -21.5 -19.2 -10.7%

My [kNm] 21.5 22.2 3.3% -14.7 -14.5 -1.4%

Table 7: Results for beam B1.

  Node 1   Node 5   Node 3  

  Model A Model B Error Model A Model B Error Model A Model B Error

Ux [mm] 2.2 2.3 4.5% 2.10 2.20 4.8% 2.1 2.2 4.8%

Uy [mm] 3.5 3.7 5.7% 3.40 3.50 2.9% 3.2 3.3 3.1%

Uz [mm] -5.0 -5.7 14.0% -13.00 -13.90 6.9% -6.5 -7.3 12.3%

N [kN] -26.3 -25.7 -2.3% -26.30 -25.70 -2.3% -26.3 -25.7 -2.3%

Ty [kN] 131.7 131.6 -0.1% 2.50 2.40 -4.0% -181.1 -181.2 0.1%

Tx [kN] -0.4 -0.4 0.0% -0.40 -0.40 0.0% -0.4 -0.4 0.0%

Mx [kNm] 123.8 122.4 -1.1% -228.60 -229.40 0.3% 409.7 409.3 -0.1%

My [kNm] -1.8 -2.0 11.1% -0.10 -0.10 0.0% 2.4 2.6 8.3%
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moments MY and MZ does not exceed 2.7 kNm in the 
columns, and 1.8 kNm in the beams.

3.	 Simplification of the numerical model of the design 
structure significantly reduces the time needed to 
build the model and perform its calculations. It also 
reduces the size of the output database files. The 
calculation time of the complex model A and the 
simple model B was 2560 and 18 sec, respectively. In 
addition, the output database file of complex model 
A contains 749.3 MB of data, while model B contains 
only 6.01 MB of data. It should be added that model 
A can be more optimized, which can speed up its 
calculation. The article presents a simple model of 
a structure with a simple load, while in practice, we 
encounter more complex models of structures. The 
simplified modeling method proposed by the authors 
will be much more beneficial due to its simplicity and 
much shorter calculation time.

4.	 The derived equations for the spring constants can 
be used in engineering structure analysis software 
that is less numerically advanced than Abaqus FEA 
software.

5.	 To correctly model a structure built on soil, it is 
imperative to correctly determine the elastic properties 
of the soil. On the basis of such data, a designer can 
develop a model of the structure founded on a specific 
soil. Therefore, close cooperation is required between 
a geotechnical engineer and a structural engineer 
when designing 3D frame structures built on soil.
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