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Abstract: The paper presents three methods of the 
numerical modeling of a 60 m long integral bridge 
structure resting on an elastic half-space. For the analysis, 
three bridge models were built using Abaqus FEA software. 
Models A and C represent complex three-dimensional 
numerical models consisting of  the bridge structure and 
the soil layer beneath it. The soil layer on which the bridge 
is resting was modeled as a homogeneous, isotropic, 
continuous, and elastic semi-infinite body elastic half-
space. Model B represents a simple three-dimensional 
numerical model consisting of just the bridge structure. 
The  stiffness of the soil layer beneath the structure in 
model B was modeled with spring constants derived for 
shallow footing foundation based on the theory for an 
elastic half-space. This model represents an engineering 
approach to the design of an integral bridge. In all models, 
the bridge deck is monolithically connected with abutment 
walls and intermediate piers. The bridge is made of cast-
in-situ reinforced concrete. All material constants used 
in the analysis are presented in the table. Self-weight, 
uniformly distributed load, and thermal longitudinal 
expansion of the bridge deck were applied to the bridge 
models. Due to the nonlinear boundary condition used in 
the supports of the bridge model A, such as contact and 
friction, the superposition principle cannot be used in the 
calculations of this model. For this reason, all the loads 
involved in all bridge models were combined into a single 
load case and the large displacement formulation was 
used in the static analysis. The self-weight of the soil layer 
beneath the  structure was omitted in  the  analysis. The 
author is focused on the method of modeling an integral 
bridge structure resting on elastic soil. For the purpose of 
this paper, only two piers from each model were selected, 
from which the internal forces and displacements were 

compared. Based on the analysis, it was concluded that 
it is possible to design an integral bridge by building its 
simplified numerical model, once the conditions given in 
the conclusions are met.

Keywords: design; integral bridge; intermediate support; 
foundation stiffness; pier.

1  Introduction
An integral bridge can be defined as a bridge whose 
spans are monolithically connected with the intermediate 
supports and the abutment walls and whose structure 
interacts with the surrounding soil due to thermal effects 
and permanent and variable vehicle and pedestrian traffic 
loads. Elements such as bridge bearings, mechanical 
expansion joints, and approach slabs are not required in 
this case [1]. Therefore, the construction and maintenance 
of integral bridge are less expensive than for a conventional 
bridge containing the above-mentioned elements. Due 
to this, such a bridge becomes more environmentally 
friendly. Over the last few decades, the great popularity of 
integral bridge construction around the world has resulted 
in a significant number of highly valuable publications, of 
which only a few are mentioned in  this paper [1] to  [17]. 
One of them is the work of Polish researchers, professors 
K. Furtak and B. Wrana, entitled “Integral Bridges” [2]. 
The work focuses on general topics, such as the shaping, 
modeling and design of integral bridge structures. In 
publications [3] to [6], various aspects of  the design 
and construction of integral bridges and  viaducts (both 
single-span and multispan ones), arch bridges, and box 
bridges are described. The structures presented were 
designed by the author of this paper. In a report written 
by Lock [1], collated information on the earth pressures 
and settlements that develop behind model and full-scale 
integral bridge abutments is presented. The author of this 
work recommends gradually increasing the span length 
of newly designed integral bridges above the  limit of 60 
m that is recommended by British Standard [7]. Detailed 
information on the integral bridge maximum length 
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limits, as governed by flexural strength of abutments or 
by low-cycle fatigue performance of the piles, is provided 
by  Pipinato et al. [8]. The authors of this handbook 
provide useful information about the  most recent 
innovative construction practices and research in bridge 
engineering. For  example, gravitational, thermal, and 
seismic effects in integral bridge structures are described. 
Furthermore,  Nicholson [9] provided guidance and 
recommendations for the design of integral bridges, with 
an emphasis on the design of abutments. The guidance 
includes worked examples of integral bridge design using 
precast, prestressed bridge beams. In  the article written 
by Biddle et al. [10], advice and guidance on the design 
of  integral bridges that use steel in the composite deck, 
in the substructure, and also in both are presented. 
In  the  companion to  this document, Way et al. [11] 
provide worked examples for a single-span fully integral 
bridge design. A  design guide for composite bridges 
[12], written by European researchers in  2010, provides 
the main principles, technical solutions, and examples 
of  technologies that are part of integral abutment 
systems. This document can be used by  designers, 
engineers, building owners, and authorities during the 
whole design process. In addition, the document presents 
design examples including the basic design steps to assist 
the designer to carry out their own structure design. To 
improve the results of shallow foundation continuum 
models, the authors of the paper [13] investigated the 
contact stress distributions at the interface between the 
foundation and the underlying real homogeneous, dry, 
compacted sand. The research presented in [14], [15], and 
[16] focuses on the distribution of lateral stresses behind 
the abutment wall of the integral bridge structure, which 
are caused by seasonal expansion and contraction of the 

bridge deck due to temperature fluctuations. The paper 
[17] presents a study of the seismic behavior and nominal 
capacity of a seven-span, 227 m long fully integral concrete 
railway bridge with an end-restraining abutment. The aim 
of this research was to determine the appropriate stiffness 
of the end-restraining abutment to withstand design 
earthquake loadings using a rigorous parametric study. 
A comprehensive literature review regarding the integral 
bridge structures and surrounding soil interaction is 
presented in [18]. The author of this work discusses 
various modeling methods for soil–structure interaction 
used in the design of the integral bridge structures that 
are primarily subjected to  live loading and longitudinal 
thermal movements, and  braking loads. Finally, in [19], 
Hambly provides simplified equations derived from elastic 
half-space theory to estimate the stiffnesses of the shallow 
footing foundations. The  roots of these equations come 
from works written in  the  first half of  the  20th  century 
by the Russian scientists Gorbunov-Posadov [20], [21] and 
Barkan [22]. 

The above-mentioned publication [2], [18] and [19] 
shows many very difficult, not fully resolved topics related 
to the design of integrated bridges. One of the challenges 
encountered when designing an integral bridge structure 
is to accurately reflect the actual conditions of the bridge 
foundation in  the  numerical model. For this reason, the 
paper presents three methods of the numerical modeling 
of a  60 m long integral bridge resting on elastic soil 
(Fig. 1) and their impact on  the  values and distribution 
of  displacements and internal forces in  the  bridge piers 
selected for analyses.

The abutment walls and the analyzed piers shown 
in Figure 1 are monolithically connected to the concrete 
bridge footing foundation and to the concrete bridge 

Figure 1: Analyzed integral bridge.
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deck. In the analyses conducted, it was assumed that 
the integral bridge structure is directly supported by a 
uniform soil layer made up of loose sand and gravel [27], 
with a total depth of 37.5 m below the bridge’s footing 
foundation (Fig. 2). 

The bridge consists of three spans with a total length 
of 60 m. The outer spans are 17 m long, and the middle 
span is 25 m long. The bridge structure is made of cast-in-
situ reinforced concrete of strength class C50/60. The three 
numerical models used in  the  analysis were built using 
Abaqus FEA software [24]. Models A and C, which are 
shown in Figure 3, represent complex three-dimensional 
(3D) numerical models. 

Model B, which is shown in Figure 4, is a simplified 
3D model without the soil layer beneath the bridge footing 
foundations.

The stiffness of the soil layer is replaced by the rocking 
vertical and horizontal springs applied to the bottom 
surface of the bridge footing foundations (Fig. 5). 

The following section describes three numerical 
models of the analyzed bridge and the assumptions made 
in the models.

2  Description of the models 
It is very often impractical to model an entire structure 
with complex 3D solid elements. A very complex 
numerical model can lead to more inaccurate results 
than those predicted by simpler models, such as grillage 
or space frame. The analysis was limited to  the  simple 
assumption that the  mechanical parameters of the soil 
strictly follow Hooke’s law. Furthermore, it was assumed 
that the pressure under the footing foundation is lower 
than  the soil’s bearing capacity. This is usually the case 
with a typical bridge foundation design. For the purpose 
of the analysis, one simple and two complex models were 
built. 

Complex model A consists of the bridge structure 
and the soil layer beneath it. In this model, the interlayer 
interaction between the bottom surface of the footing 
foundation and the top surface of the soil was modeled as 
a standard contact surface-to-surface type discretization 
method with a finite sliding formulation. Furthermore, 
normal behavior with “hard” contact pressure overclosure 
and allowable separation after contact was applied. The 

Figure 2: Soil layer used in numerical models A and C.
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hard contact implies that the surfaces transmit no contact 
pressure unless the nodes of the slave surface contact 
the master surface and no penetration is allowed at each 
constraint location. The adopted contact method permits 
some relative motion of the contact surfaces. Contact 
interaction properties are a tangential behavior, with 
the static coefficient of friction μ being equal to  0.84. 
This coefficient was calculated based on the assumption 
that the internal angle of friction between concrete and 
soil material is the same as the internal angle of friction 
of the soil layer beneath the footing foundation. The 
simple model B consists of only the bridge structure. 
The missing layer of  the soil in this model was replaced 
by spring constants derived for a rectangular foundation 

resting on elastic half-space. Five spring constants were 
applied to the center of the bottom surface of each footing 
foundation. Three of them were responsible for vertical 
and horizontal motion, and the remaining two were 
responsible for rocking motion around the X- and Y- axis. 
Model B represents an engineering approach to the design 
of an integral bridge  structure. The values of spring 
constants used in model B are shown in Table 1.

The third complex model C consists of the bridge 
structure and the soil layer beneath it. In this model, all 
sliding motion between the contact surfaces of the bridge 
foundation and  the  soil was prevented by applying an 
infinite coefficient of friction, which is named in Abaqus 
CAE software as “rough” friction surface interaction. 

Figure 3: Finite element mesh of complex models A and C.

Figure 4: Finite element mesh of simple model B.
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In  addition, the separation of  contact surfaces in  this 
model was blocked. Similar assumptions were made when 
deriving the equations for calculating the spring constants 
used in model B. The purpose of building the additional 
complex model C was to compare the computation results, 
such as the internal forces and displacements obtained 
from the complex model C, with the computation results 
obtained from model A, in which some relative motion 
of the contact surfaces between the  footing foundation 
and the soil layer was permitted. In models A and C, 

it  was  assumed that the soil layer beneath the  structure 
has a constant, uniform depth of 32.0 m below the footing 
foundation of  the piers and a depth of 37.5 m below the 
footing foundation of the abutment walls (Fig. 2). In all the 
numerical models, the bridge deck and the abutment walls 
are represented by 992 linear hexahedral shell elements 
of type S4. The S4 element is a four-node, double-curved 
general purpose shell element with preset element controls 
such as hourglass control parameter and finite membrane 
strains. Each pier consists of  six Euler–Bernoulli two-
node cubic beam elements of type  B33. Kinematic type 
couplings were used to connect the beam elements with 
the solid elements (representing the footing foundation) 
and  the shell elements (representing the  bridge  deck). 
In  this  connection, the bottom and top nodes of  the 
beam elements were the control points, whereas the top 
surface of  the footing foundation directly under the pier 
and the bottom surface of the deck directly over the pier 
were the constraint regions. These connections are shown 
in Figure 4. The footing foundation represents 992 general 
purpose eight-node linear hexahedral elements of type 
C3D8 with preset element controls such as hourglass 
control parameter. The  same element type was used 
to build the block of  the  soil layer beneath the  footing 
foundation. The total number of  elements representing 
the soil layer beneath the  footing foundation is equal to 
392,616 elements. Material constants, such as the internal 
angle of friction (f), Young’s modulus (E), and Poisson’s 
ratio (v) of  the  materials selected for the analysis are 
presented in Table 2. 

Figure 5: Location of the applied springs under the footing foundations in simple model B.

Table 1: Spring constants.

Element Pier footing Abutment footing

βx (L/B) L=8 m, B=4 m
βx  =0.944

L=10 m, B=3 m
βx =0.976

βy (L/B) L=4 m, B=8 m
βy =1.012

L=3 m, B=10 m
βy =1.096

βz (L/B) L=4 m, B=8 m
βz =2.175

L=3 m, B=10 m
βz =2.3

βφx (L/B) L=4 m, B=8 m
βφx=0.435

L=3 m, B=10 m
βφx=0.402

βφy (L/B) L=8 m, B=4 m
βφy=0.595

L=10 m, B=3 m
βφy=0.721

kx (kN/m) 427,021 427,819

ky (kN/m) 457,832 480,236

kz (kN/m) 560,860 574,345

kφx (kN/m/rad) 2,540,626 1,650,517

kφy (kN/m/rad) 6,944,437 9,854,189
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The soil’s internal angle of friction was used only to 
calculate the coefficient of friction between the soil and 
the concrete surface, which was then used to simulate 
the contact interaction in model A. The dimensions of 
the footing foundation and the soil layer beneath the 
footing are shown in Figures 1 and 2. Each vertical surface 
of the soil layer has only a horizontal restraint applied 
perpendicularly to each surface. The bottom surface of this 
layer has only a vertical restraint applied perpendicularly 
to this surface. In addition, it was assumed that the footing 
foundation is not backfilled. This situation may occur 
during temporary works in  the  vicinity of the footing 
foundation. The nominal loads applied to the bridge 
structure are shown in Figure 1 and Table 3. 

In model A, the superposition principle cannot be 
used in the calculations due to  the  nonlinear boundary 

condition used in the supports of the bridge model, such 
as contact and friction. For this reason, all the involved 
loads in all bridge models were incorporated into a single 
load case, and the large displacement formulation was 
used in the static analysis. The characteristic value of the 
maximum contraction ∆TN,con and the expansion range 
of  the  uniform concrete bridge deck temperature ∆TN,exp 

were calculated according to  Eurocode 1 [28]. In the 
analyses, it was assumed that the bridge would be built 
in  Wrocław (Poland), where the annual maximum and 
minimum shade air temperature are equal to Tmax=38°C 
and Tmin=-32°C, and that the initial bridge temperature 
T0 at which the structure will be  cured shall be  5°C. 
For concrete bridge deck, the values of Te.min=-24° and 
Te.max=41° were read from Figure 6.1 given in the Eurocode 1 
[28]. The characteristic value of the maximum contraction 
and maximum expansion value of the uniform concrete 
bridge deck temperature were calculated from equations 
(6.1) and (6.2) found in the standard [28].

∆TN,con=T0-Te.min=[5°-(-24°)]=-29°C (2.1)

∆TN,exp=Te.max-T0=[41°-5°]=36°C (2.2)

The characteristic value of the maximum expansion 
value of the uniform concrete bridge deck temperature 
∆TN,exp=36°C was selected for the analysis. The earth 
pressure behind the  walls of low-height abutments was 
omitted in the conducted comparative analysis. 

Section 3 describes the equations used to calculate the 
stiffness of springs used in model B. A detailed derivation 
of the described equations is given in [29].

3  Stiffness of shallow footing 
foundation
In model B, the stiffness of the soil layer beneath the 
bridge structure was replaced by  the  rocking, vertical, 
and horizontal springs applied to the bottom surface of 
the bridge shallow footing foundations. The stiffnesses 
of these springs were calculated from the equations given 
in [19], [22], and [26]. Equations (3.1) and (3.2), which are 
listed in Table 4, were derived by Russian scientist Barkan 
[22], whereas equation (3.3) was derived by  Gorbunov-
Possadov [20]. 

An extensive number of field tests, conducted by 
Barkan et al. [22], on the variety of soils and plate surfaces 
demonstrated the validity of the simplified method of 
modeling a foundation on elastic soil. The equations 

Table 2: Material properties used in the analysis .

Model A, B, C

Soil Loose sand and gravel [27]

Es (MN/m2) 80
(Middle range value)

n 0.35

f 40 (model A)

G (MN/m2) 30.8

L (m) 3 and 4

B (m) 10 and 8

Bridge structure Concrete C50/60

Ecm (MN/m2) 37,000

n 0.2

where:  E – modulus of elasticity,  n – Poisson’s ratio, f – the soil’s 
internal angle of friction, G – the soil’s shear modulus, L – length of 
the foundation (in the plane of rotation for the case of rocking), and 
B – width of the foundation (along the axis of rotation for the case 
of rocking).

Table 3: Load applied to the structure.

Load type Value

SW of the bridge structure SW 24 kN/m3

UDL 1 10 kN/m2

UDL 2 25 kN/m2

The characteristic value of the maximum expansion 
range of the uniform bridge temperature component

∆TN,exp=36℃

SW: self-weight, UDL: uniform distributed load
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provided by Posadov-Gorbunov [20], [21] and Barkan [22] 
were derived for a rectangular shallow footing foundation 
from  the  theory for an elastic half-space. According 
to this theory, the  ground is treated as  a  continuous, 
homogeneous, and elastic body extending infinitely 
far down and to the sides and is limited from above by a 
plane (Fig. 6). 

The equations in Table 4 have been used since the 
1960s in  the  design of  concrete foundations for  heavy 
industrial machinery that induces additional dynamic 
loads  [22], as well as in  the  design of  integral bridge 
structures [19]. The equations for calculating the spring 
stiffness were derived based on  the  following main 
assumptions [21] and [22]:
1. The footing foundation is embedded in a shallow 

excavation. Therefore, the effect of  the depth of 
excavation on which the footing foundation is resting 
is not taken into account.

2. The effects described in [30] and [31], such as the 
plasticization and  the  rheological behavior of the 

subsoil, and the need to include them in the design 
process were not taken into account.

3. The footing foundation is assumed to adhere tightly to 
the soil – even under negative pressure.

4. All forces and bending moments act in the center of 
the footing foundation. 

5. The values of the soil coefficients are determined 
according to the allowable pressure of the footing 
foundation on the soil and not according to the 
actual pressure. However, in reality, there is no such 
dependency.

6. It is assumed that the pressure on the soil is much 
lower than the load-bearing capacity of the soil.

7. The effect of ground inertia is not included in the 
calculations.

The self-weight of the soil beneath the structure 
(“effective mass”) was omitted in the analysis. Exclusion of 
the mass of the soil in the analyzed models was explained 
by Whitman and Richard in 1967 [25]. According to their 
work, the mass of an equivalent lumped system should at 
least include the mass of the machinery and mass of the 
foundation block. It seems that the mass of the soil under 
the foundation involved in the movement should also 
be included in the equivalent lumped system. However, 
there is no well-defined mass of soil that moves with the 
same amplitude and in phase with the foundation block. 

Table 4: Equations for spring constants for a rectangular footing [21], [22].

Spring constants Motion Reference

Vertical stiffness

 
( ) BLGk zz β

ν−
=

1
 

 

       (3.1) 

Barkan (1962)

Horizontal stiffness

 ( ) BLGk yy βν+= 12  

 

       (3.2)

Barkan (1962)

Rocking stiffness

 
( )

2

1
BLGk φφ β

ν−
=  

 

       (3.3)

Gorbunov-Posadov (1961)

where: L – length of foundation (in the plane of rotation for the case of rocking), B – width of foundation (along the axis of rotation for 
the case of rocking), n – the soil’s Poisson’s ratio, G – the soil’s shear modulus, (by, bz, bf ) – spring coefficients, and (ky, kz, kf ) – spring 
constants.

Figure 6: Actual soil deformation and according to the theory of 
elasticity.
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At a given moment, different parts of the soil are moving 
in different directions and with different magnitudes 
of acceleration. Taking this effective mass into account 
is only justified by the fact that the interaction curve of 
the equivalent system is consistent with the interaction 
curve of  the  real system. It is known that the effective 
mass is greater than the mass of the foundation block 
and the machine. If effective mass is used in calculations, 
it should be noted that it represents a completely fictitious 
number that cannot be related to the actual mass of the 
soil. The simplest assumption that can be made when 
selecting the mass of the equivalent system is to consider 
only the machine and the foundation and to ignore any 
effective mass of the soil. In addition, the use of the 
modulus of elasticity of soil in this method was explained 
by Gorbunov-Posadov [21]. When the soil is subjected to 
repeated loading, the inelastic deformations disappear 
over time and the modulus of the deformation of  soil 
changes into the  modulus of elasticity Es, the value of 
which is usually much higher.

The spring constant coefficients by,  bz, and bf 

used in equations 3.1, 3.2, and 3.3 depend on  the ratio 
of  the  L/B of the footing foundation’s dimensions. In 
addition, coefficient by depends on the value of Poisson’s 
ratio n. Gorbunov-Posadov [21] and Barkan et al. [22] 
do  not provide both the equations for determining the 
spring coefficients and the derivations of  the equations 
for determining the spring constants. Thus, based on 
the assumptions provided by Barkan and Gorbunov-
Possadov, the equations for the spring constants ky, kz, and 
kf and the spring coefficients by,  bz, and bf were derived 
and their final form is presented in this paper. 

 

𝛽𝛽𝛽𝛽𝑦𝑦𝑦𝑦 = −  
3𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

3
2

2(𝑣𝑣𝑣𝑣 + 1) �3𝜋𝜋𝜋𝜋2 (𝑣𝑣𝑣𝑣 − 1)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �√𝜋𝜋𝜋𝜋
2 +  1 + 1
𝜋𝜋𝜋𝜋 � − 3𝜋𝜋𝜋𝜋 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�√𝜋𝜋𝜋𝜋2 + 1 + 𝜋𝜋𝜋𝜋�

3𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
3
2

−𝑣𝑣𝑣𝑣�√𝜋𝜋𝜋𝜋2 + 1  ∙  (2𝜋𝜋𝜋𝜋2 − 1) − 2𝜋𝜋𝜋𝜋3 + 1� + (𝜋𝜋𝜋𝜋2 + 1)
3
2 − 𝜋𝜋𝜋𝜋3 − 1�

 
(3.4) 

(3.4)

𝛽𝛽𝛽𝛽𝑧𝑧𝑧𝑧 =
𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

3
2

1
2𝜋𝜋𝜋𝜋

2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �
�√𝜋𝜋𝜋𝜋2 + 1 + 1�

2

𝜋𝜋𝜋𝜋2 � + 𝜋𝜋𝜋𝜋 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�√𝜋𝜋𝜋𝜋2 + 1 + 𝜋𝜋𝜋𝜋� − 1
3 �(𝜋𝜋𝜋𝜋2 + 1)

3
2 − 𝜋𝜋𝜋𝜋3 − 1�

 

 

(3.5) 

(3.5)

𝛽𝛽𝛽𝛽𝜑𝜑𝜑𝜑 = 𝐴𝐴𝐴𝐴10𝛼𝛼𝛼𝛼10 + 𝐴𝐴𝐴𝐴9𝛼𝛼𝛼𝛼9 + 𝐴𝐴𝐴𝐴8𝛼𝛼𝛼𝛼8 + 𝐴𝐴𝐴𝐴7𝛼𝛼𝛼𝛼7 + 𝐴𝐴𝐴𝐴6𝛼𝛼𝛼𝛼6 + 𝐴𝐴𝐴𝐴5𝛼𝛼𝛼𝛼5 + 𝐴𝐴𝐴𝐴4𝛼𝛼𝛼𝛼4 + 𝐴𝐴𝐴𝐴3𝛼𝛼𝛼𝛼3 + 𝐴𝐴𝐴𝐴2𝛼𝛼𝛼𝛼2

+ 𝐴𝐴𝐴𝐴1𝛼𝛼𝛼𝛼 + 𝐴𝐴𝐴𝐴0 

(3.6) 

 

(3.6)

where:
A0=0.315, A1=0.411, A2=-0.5154,
A3=0.4464, A4=-0.2236, A5=6.88855E-02,
A6=-1.34905E-02, A7=1.6845E-03, A8=-1.29857E-04,
A9=5.63104E-06, A10=-1.05042E-07

The parameter α=L/B in equations (3.4)–(3.6) 
is the ratio of L the length of  the  foundation (in the 
plane of rotation for the case of rocking) to B the width 
of the foundation (along the axis of rotation for the case 
of rocking). For all spring coefficients, the value of the 
parameter α=L/B varies from 0.1 to 10. 

Equations (3.4) and (3.5) were derived based on the 
equations given by Barkan [22]. In addition,  equation 
(3.6) was derived in the form of a polynomial of the 10th 
degree because the values of the parameters K1 and K2 

given by Gorbunov-Posadov [20] for calculating the spring 
coefficient bf , should be read from the graphs. In Section 
4, a comparative analysis of the numerical models of the 
integral bridge is presented.

4  Comparative analysis
The subjects of the analysis were piers C1 and C2, 
presented in Figure 1. In  each of  these piers, the values 
and distribution of the internal forces and displacements 
obtained from bridge models A, B, and C were compared 
and analyzed. 

4.1  Bending moments

The graphs showing the values and distribution of bending 
moments Mx and My in piers C1 and C2 in all the analyzed 
bridge models are shown in Figure 7. 

The following conclusions can be drawn from the 
comparative analysis of the bending moments in piers C1 
and C2 in bridge models A, B, and C:
1. The values of bending moment Mx in pier C1 in simple 

model B are higher than in  complex models A and 
C. The values of bending moment Mx in pier C2 in 
models B and C are similar.

2. The values of bending moment My in simple model 
B differ from the values of  the  bending moments in 
complex models A and C by a maximum of 8.4%.

4.2  Shear forces

The graphs showing the values and distribution of shear 
and axial forces Tx, Ty, Nz in  piers C1 and C2 in all the 
analyzed bridge models are shown in Figure 8.
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Figure 7: Bending moments in piers C1 and C2 where A and C are complex bridge models and B is a simple bridge model.

Figure 8: Shear and axial forces in piers C1 and C2.
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The following conclusions can be drawn from the 
comparative analysis of the shear and axial forces in piers 
C1 and C2 in bridge models A, B, and C:
1. The axial force Nz in the piers in simple model B 

differs by approximately 1% from the  axial force in 
both piers in complex models A and C.

2. The shear force Tx in pier C1 in simple model B is 
higher by approximately 23% than in complex model 
A and is about 3.5% higher than in complex model C. 
The opposite is true in pier C2.

3. The shear force Ty in pier C1 in simple model B is 
lower by approximately 12% than in complex models 
A and C. In addition, the shear force Ty in pier C2 
in simple model B is higher than in complex models A 

and C. Finally, the shear forces Ty in pier C2 in simple 
model B differ by a maximum of 4 kN from the values 
of these forces in pier C2 in complex models A and C. 

4.3  Horizontal and vertical displacement 

The graphs showing the values and distribution of the 
displacements of piers C1 and C2 in all the analyzed bridge 
models are shown in Figure 9. 

The comparative analysis of displacements of piers C1 
and C2 in bridge models A, B, and C shows the following:
1. The displacements of piers C1 and C2 in all the bridge 

models are very similar.

Figure 9: Horizontal and vertical displacements in piers C1 and C2 where Ux and Uy are horizontal displacements along the X-axis and Y-axis 
direction and Uz is the vertical displacement along the Z-axis direction.
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2. The vertical displacement Uz in piers C1 and C2 in 
simple model B is higher by  a  maximum of 1.5 mm 
than the displacement in the piers of complex models 
A and C.

3. The horizontal displacement in the Y-axis direction 
of pier C1 in simple model B is  greater than the 
displacement of pier C1 in complex models A and C. 

5  Conclusions
The method used to calculate the displacement and 
internal forces in simple model B (in which the stiffness 
of the soil layer beneath the bridge structure was replaced 
by  the  rocking, vertical, and horizontal springs applied 
to  the bottom surface of the bridge footing foundations) 
could be used for preliminary bridge design. To use this 
method in the design of  the  integral bridge structure, it 
is necessary to rectify the spring coefficients by, bz, and 
bf used to  calculate the spring constants ky, kz, and kf 
given in equations 3.1, 3.2, and 3.3. In simple model B, it 
was assumed that the overall depth of the soil under the 
foundation has uniform stiffness, while in reality, such 
a situation occurs very rarely. In nature, a typical soil 
consists of layers of different thicknesses and stiffnesses. 
For this reason, it is necessary to build a complex bridge 
model (similar to model A) that takes into account the 
bridge structure, the  stiffness of the individual layers of 
the soil on which the bridge is resting, and the interaction 
of the footing foundation and soil layer under the footing. 
A complex bridge model can be used in preliminary bridge 
design to calibrate the spring constants ky, kz, kf  that can 
be applied in a simple bridge model. This can speed up the 
design process and reduce the amount of redundant data. 
It is worth noting that despite the significant difference 
in  building  the  simple model B consisting of 3444 
elements, and the complex models A and C consisting 
of  396,060 elements each and in which, the contact 
between the foundation surface and the soil layer beneath 
it was additionally modeled, the calculated values of 
bending moments, shear forces, and  displacements are 
similar in all analyzed models. This is especially noticeable 
when comparing the simplified model B and model C, in 
which all sliding motion between the contact surfaces of 
the bridge foundation and soil is prevented. Therefore, 
in some cases, the method used in simple model B could 
be used in the design of small and medium-sized integral 
bridge structures. An  additional argument in  favor of 
using a simplified model for bridge structure design, as 
in the example of bridge model B, is the fact that the time 

required to conduct the  calculations of simple model B 
was 1 minute, whereas the time required to conduct the 
calculations of complex model A was 210 min. In addition, 
the output database file from model A contains 4.38 GB 
of data, with model B containing only 7.1 MB of data. 
The  complex models A and C can be further optimized, 
potentially speeding up their calculation time. However, 
the paper presents a simple bridge model with one set of 
loads, whereas in practice, more complex bridge models 
can be found, and the proposed simplified modeling 
method used in bridge model B will be far more beneficial 
due to its simplicity and much shorter calculation time. 
It should be emphasized that before design calculations 
that take stiffness of soil layer beneath the structure into 
account, the  proper soil parameters for both soil and 
backfill must be  determined. On the basis of such data, 
a designer can build a numerical model of  a  structure 
resting on  soil with a specific stiffness. Therefore, close 
cooperation is required between a geotechnical engineer 
and structural engineer when designing integral bridges. 
Finally, it should be  noted that the implementation of 
integral bridges and viaducts on motorways in Ireland, in 
which the author was involved in the design as a senior 
structure design engineer, contributed to  a  significant 
reduction in the time and cost of their construction.
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