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Abstract: In modern civil engineering, precisely predicting
the mechanical properties of waste-modified geopolymer
concrete is a vital challenge. Machine learning (ML) offers
a powerful tool for such predictive analysis. This article
presents an experimental and python-based intelligent
ML modeling study on a type of geopolymer (GP) pervious
concretes developed using agro-industrial waste products.
The slag-based composite mixes were developed with the
varying dosages of agro-waste, i.e., sugarcane bagasse
ash (0 to 20% by weight of slag) and construction and
demolition waste in the form of recycled coarse aggregates
(0 to 100% by weight of natural aggregates). The aqueous
solution of liquid Na,SiO, and NaOH pellets were used
as an alkali activator solution. A total of 13 different
mix proportion designs were developed, and for every
individual sample mix, the results were obtained from
laboratory tests. The ML analysis was carried out to
compute the compressive strength by applying following
models: Multiple Linear Regression, tuned Gradient
Boost, AdaBoost, and XGBoost Regressions. Further, an
ensemble technique that combines the predictions from
multiple ML algorithms together to make more accurate
predictions than any individual model was also developed
for a more accurate and robust prediction through the
“Voting Regressor” technique. From the analysis of the
obtained results, the ML models associated with Ada
Boost tuned performed better. As the ensemble voting
regressor models were given higher weightage, these

*Corresponding author: Shriram Marathe, Department of

Materials Engineering and Construction Processes, Faculty of Civil
Engineering, Wroctaw University of Science and Technology, 50-370,
Wroctaw, Poland, E-mail: shriram.marathe@pwr.edu.pl

Anisha P Rodrigues, Department of Computer Science and Engineering,
Nitte (Deemed to be University),NMAM Institute of Technology
(NMAMIT), Karkala Taluk, Udupi District, Karnataka, INDIA-574110

regressors gave the best performance metrics, with lower
error rate compared to the independent models.
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1 Introduction

1.1 General

The construction industry stands at a cross-road, facing
the dual challenges of meeting global infrastructure
demands and mitigating its environmental footprint.
Central to this challenge is the industry’s reliance
on ordinary Portland cement (OPC), the production
of which is notably carbon-intensive. Studies have
quantified the environmental burden of OPC production,
revealing that approximately 0.73-0.85 tonnes of CO,
are emitted for every ton of OPC produced, spotlighting
the urgent need for sustainable alternatives in concrete
manufacturing[1]. Furthermore, the burgeoning issue
of construction waste, alongside the overproduction of
industrial by-products like fly ash and slag, necessitates
a shift toward sustainable construction methodologies.
The world generates billions of tons of construction
waste annually, a significant portion of which remains
underutilized, contributing to environmental degradation
[2]. Geopolymer (GP) and Alkali-Activated Cements (AACSs)
emerge as a formidable nominee in this framework,
offering a viable pathway to curtail the carbon emissions
associated with traditional cement[3]. Hence, the GPs
emerge as a beacon of sustainability in this landscape,
offering a robust framework for recycling and reusing
construction and industrial waste. These are synthesized
from aluminosilicate materials to proposing a significant
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reduction in CO, emissions and also proven to be
excelling in mechanical performances and durability
aspects compared to OPC-based materials[4]. The global
warming potential of GPs is markedly lower primarily due
to their synthesis from industrial by-products, thereby
circumnavigating the energy-intensive clinker production
process inherent in OPC manufacturing [5].

This research pivots on the development of a novel
slag-based GP pervious concrete, hybridized with an agro-
waste, i.e., sugarcane bagasse ash (SBA) and construction-
demolition (C&D) wastes, steering the conversation
toward circular economy in construction. The utilization
of such waste materials not only addresses the disposal
issue but also enhances the sustainability quotient of
the concrete produced. SBA, an agricultural by-product,
and C&D wastes, typically viewed as landfill fodder, are
thus valorized, contributing to waste minimization and
resource efficiency. Soft computing models stand at the
forefront of this research, offering a nuanced approach
to predicting and optimizing the mechanical properties
of these novel concrete mixtures. By integrating machine
learning (ML) techniques, this study aims to refine the
prediction accuracy of the concrete’s strength, providing
a robust framework for the application of these materials
in real-world scenarios. This computational approach
aligns with the emphasis on innovative applications of
computing in civil engineering, heralding a new era of
data-driven material science.

The urgency to transition to sustainable construction
practices is further amplified by the dire warnings of
climate scientists. The alarming trajectory of global
warming, exacerbated by the construction sector’s carbon
emissions, necessitates a paradigm shift toward materials
that reduce the carbon footprint. GPs present a promising
solution in this regard, offering a sustainable alternative
to OPC by harnessing the latent hydraulic properties of
industrial by-products. GPs not only contribute to the
reduction of CO, emissions butalso promise enhancements
in the material properties of concrete, including superior
mechanical strength and durability, fostering the
advancement of green construction materials [6]. Hence,
this research underscores the imperative for innovative,
sustainable construction materials, with a particular
focus on GP pervious concrete enhanced with industrial
and agricultural wastes. By incorporating advanced
computational models with sustainable material science,
this study aims to contribute significantly to the field,
offering insights and methodologies that align with the
urgent call for environmental stewardship in construction
practices. Moreover, the prediction of the mechanical
properties of any type of GP pervious concretes is
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considered very much challenging due to the complex
interactions between its heterogeneous components,
including various types of industrial by-products and
the specific conditions required for the alkali-activation.
This work contributes by leveraging ML to unstitch
these intricate relationships, offering a more accurate,
efficient predictive approach. Hence, this research directly
addresses the challenge by utilizing data-driven models
to forecast pervious GPC’s behavior, thereby guiding
the optimization of sustainable concretes. Through this
endeavor, the study also addresses a critical gap in the
current literature and lays down a clear pathway for future
research in sustainable construction materials, resonating
with the global agenda for sustainable development and
climate resilience.

1.2 Review on Earlier Studies in Soft
Computing Applications in AAC and GPC
mixes

The advent of GPC/AAC represents a significant leap
toward sustainable construction practices, aligning with
the global impetus to reduce the environmental footprint
of the building industry. This novel material, synthesized
from industrial by-products, would effectively not only
addresses the urgent need to repurpose waste but also
offers enhanced mechanical properties and durability
compared to traditional Portland cement. The integration
of such soft computing models offers a novel paradigm
to address complex, nonlinear problems inherent in the
concrete research, ranging from mix design optimization to
performance prediction under various conditions. Hence,
these advanced models facilitate a deeper understanding
of the complex interplay between GPC’s compositional
variables and its mechanical attributes, enabling the
optimization of mix designs for tailored applications. As
the construction sector continues to evolve, the fusion of
materials science and computational intelligence heralds
anew era of innovation, where the accelerated design and
deployment of high-performance, eco-friendly materials
become a tangible reality. Table 1 collates seminal works
in the domain, illustrating the scope, methodologies, and
breakthroughs achieved through the application of soft
computing specific to GPC/AAC research, thereby setting
a comprehensive backdrop for the ensuing discussion on
the subject.

To identify which soft computing method was
determined to be the best across the reported studies,
one would typically look for the method that consistently
showed high accuracy, low error rates, and good
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Table 1: Thematic Categorization of Selected Soft Computing Models Used in AAC/GPC Research.

Ref.  Model Key Findings Attributes Future Scopes

[7] ANN Effectively predicted the strength variation due  Predicting strength with the Further refine ANN models to
to molar concentration changes in activator use of 70% results for training  enhance predictive accuracy
solutions with R? values over 0.96 and 30% sample results for

testing

[8] GEP Developed numerical models to predict GGBS- Compressive strength Expand GEP models to include
based GPC strength, demonstrating high prediction of GGBS-based GPC  more variables influencing GPC
accuracy and validation with R2 values ranging ~ with the use of 351 samples properties
from 0.97 to 0.99

[9] GEP Predict the compressive strength of bacteria- Modeling compressive strength Explore GEP’s application in
incorporated GPC, showing minimal error of bacteria-incorporated GPC other GPC types with different
against experimental data admixtures

[10] RFR RFR and GEP were applied to develop empirical ~ Strength prediction of GPC Compare these models against

and models predicting fly-ash GPC strength, where using advanced soft computing other ML techniques for broader
GEP RFR showed better performance through methods developed through applicability
statistical error checks 298 datasets
[11] Al Al techniques like GP, RVM, and GPR showed Al-assisted mix-design tool for ~ Test these Al models in real-
tools high accuracies in predicting GPC strength with ~ GPC world mix-design scenarios for
R2values in the range of 0.93-0.99 validation

[12]  GEP GEP provided an empirical equation for GPC Estimating GPC compressive Enhance the GEP model by
strength prediction using FA, showing good strength using GEP developed incorporating more diverse
model accuracy and generalization capability through 298 datasets datasets

[13] ANN, Comparative analysis of ANN, RSM, and GEP Predictive modeling of EGC Improve GEP models or explore

RSM, showed RSM and ANN outperformed GEP compressive strength. The RSM  hybrid approaches for better
and in accuracy for predicting the strength of showed 96% accuracy, whereas prediction in EGC
GEP engineered GP composite (EGC) the ANN had 93%

[14] ML Ensembled ML techniques, particularly AdaBoost Applying ML for strength Further explore the potential
and random forest, outperformed individual prediction of GP composites; of ensembling techniques in
methods in predicting GPC strength, and the AdaBoost and random forest predictive accuracy improvement
R2 values of 0.90 for ensemble methods were showed superior predictions
obtained.

[15]  ANN, ANN model excelled in predicting the Compressive strength Enhance model reliability with

M5P-Tree, compressive strength of GGBS/FA-based GPC, prediction for broader datasets and explore
LR, and showcasing its potential over other models GPCcompositesdeveloped real-time prediction capabilities
MLR through 220 datasets

[16]  ANN ANN models showed promise in predicting Strength prediction for alkali-  Validate ANN models in diverse
strength characteristics of AAC masonry activated masonry blocks AAC formulations and structural
blocks, with significant accuracy in trainingand  developed through 108 applications
validation phases datasets

[171  GEP GEP demonstrated high accuracy in predicting Predictive modeling for fiber- ~ Apply GEP in broader FRGC
the compressive strength of FRGC, supporting reinforced geopolymer concrete applications and investigate
its use in optimizing concrete mixes; Rz values in (FRGC)developed through 393  other fiber types and contents
the range of 0.97-0.99 indicating GEP’s robust  datasets
performance and reliability

[5] ANN, Utilized ANN and advanced regression Optimization of high- Extend analysis to include long-

MPR, techniques for predicting the performance of performance GPC mixes, with  term performance and durability
and high-strength GPC, focusing on sustainable and the use of 81 sample data predictions

SA-LR

cost-effective solutions
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Continued

Table 1: Thematic Categorization of Selected Soft Computing Models Used in AAC/GPC Research.
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Ref.  Model Key Findings Attributes Future Scopes
[18] NSGA-II Introduced a multi-objective optimization Mix design optimization for fly Expand optimization frameworks
and approach using NSGA-Il and BPNN for ash-based GPC mixes, with the to incorporate additional
BPNN geopolymer mix design, balancing mechanical,  use of 896 sample data environmental and durability
environmental, and economic factors; R? and criteria
other statistical tests were used for validation
[19] LR, AdaBoost model showcased superior Enhancing predictive accuracy  Investigate AdaBoost’s
ANN, prediction accuracy with the highest R2 value for FIA-based GPC strength application in predicting other
and for the compressive strength of FIA-based GPC relevant concrete properties
AdaBoost compared to conventional machine learning
models
[20] SVR The study applied SVR combined with GWO to Prediction of compressive Explore the integration of GWO
and predict the compressive strength of GGBFS- strength for GGBFS-based with other predictive models
GWO based geopolymer concrete, showing high GPC developed through 268 for enhanced optimization and
accuracy and potential for optimization; R2 value datasets prediction
for SVR-GWO was 0.95
[21] LSTM Employed LSTM to forecast the compressive Compressive strength Further refine LSTM models and
strength of FAGC, introducing a novel approach  prediction in FAGC using LSTM  explore their application in real-
with optimized LSTM parameters for better developed using 162 datasets  time monitoring and control of
prediction accuracy GPC properties
[22] XGB The study compared XGB and SVM for predicting Slump and compressive Investigate the applicability
and the slumpand strength of AAC, finding XGB to strength prediction in AAC with  of XGB in broader contexts
SVM perform significantly better with higher R? values a total of 193 datasets of AAC production and other

(respective R? values of 0.94 and 0.97 for slump
and strength), providing a robust tool for AAC
mix design

performance parameters

Abbreviations: AdaBoost: Adaptive Boosting; Al Techniques: artificial intelligence techniques; ANN: artificial neural network; BPNN:back
propagation neural network; GEP:gene expression programing; GWO: Grey Wolf Optimization; LR: linear regression; LSTM: long short-term
memory; ML: machine learning; MLR: multiple linear regression; MPR: multilinear regression; M5P-Tree: M5’ regression tree; NSGA-II:
nondominated sorting genetic algorithm Il; RFR: random forest regression; RSM: response surface methodology; SVM: support vector
machine; SVR: support vector regression; SA-LR: linear regression models enhanced by swarm optimization; XGB: extreme gradient

boosting.

generalization capabilities across different datasets. From
the summarized details shown in Table 1, methods like
GEP, AdaBoost, and RVM have shown high R? values or
have been explicitly mentioned as outperforming others
in the respective studies, indicating their effectiveness
in modeling and prediction tasks within the context of
geopolymer concrete research. However, each study might
have found a particular method to be the best based on
its specific dataset and objectives. For instance, AdaBoost
showed a high R? value, indicating its strong predictive
performance. Similarly, RVM’s high R? value suggests that
it effectively captures the underlying patterns in the data,
making it a robust choice for predicting the properties of
GPC. Overall, it can be believed that while several soft
computing methods demonstrated high accuracy and
predictive capabilities, the “best” method could vary
depending on specific study goals, data characteristics,

and performance metrics used. However, methods
like AdaBoost and RVM stood out in their respective
studies for their predictive prowess. The effectiveness
of a particular method, such as AdaBoost’s ensemble
approach or RVM’s kernel-based learning, often hinges on
how well it can generalize from the training data to make
accurate predictions on unseen data, as evidenced by
their performance metrics. Hence, for a detailed selection
of the best method, one would need to consider not only
the accuracy (like R? values) but also other performance
metrics and the context of each study, including the nature
of the dataset and the specific prediction tasks. Each
method’s strengths and weaknesses should be weighed
against the research objectives and the characteristics of
the data being analyzed.
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Figure 1: Flowchart showing the experimentation and development of soft computing models.

1.3 Research Gaps and Specific Objectives of
Current Investigations

The previous studies have extensively explored individual
soft computing techniques for predicting compressive
strength of GPC/AACmixes. The exploration of suchmodels
in the scope of the study represents a promising frontier,
particularly when these materials are integrated with
sustainability-enhancing components like agro-industrial
wastes. The literature studies strongly reveal a burgeoning
interest in optimizing GPC properties through advanced
computational techniques, yet a discernible gap persists
in the specific domain of pervious concretes developed
using geopolymers and alkali-activated binders. Notably,
the intersection of soft computing with the utilization of
agricultural by-products with the utilization of industrial
wastes such as C&D wastes, foundry wastes, and steel
industry wastes in creating pervious alkali-activated
binder-based concretes remains underexplored. This
research niche holds significant potential for advancing
total sustainable construction practices, leveraging the
inherent benefits of AAC technology,such as reduced
carbon footprint and enhanced material reuse, while
incorporating the permeability attributes essential for
modern infrastructure requirements.

Hence, the current investigation seeks to bridge
this gap by focusing on pervious geopolymer concretes
enhanced with the utilization of specific agro-waste
material and industrial by-products, thereby pushing the
boundaries of sustainability in construction materials.

Moreover, the integration of soft computing models to
predict and optimize the unique properties of these novel
concretes represents an innovative approach that melds
computational intelligence with sustainable material
science. By addressing these gaps, this research outcome
will strongly contribute to the academic discourse that
paves the way for practical advancements in sustainable
construction, promoting enhanced environmental
stewardship and resource efficiency in the industry.
Hence, under the broad scope of soft computing, the
present investigation specifically includes comparisons
of four established and less used ML models. These are
Multiple Linear Regression, Gradient Boost, AdaBoost,
and, XGBoost Regressions. Total of 156 datasets have
been studied, which are cautiously developed in the
sophisticated laboratory.

The detailed literature review focusing on the reported
literatures on soft computing in similar concretes was also
carried out to find out the performance of various models.
Furthermore, an ensemble technique that combines
the predictions from multiple ML algorithms together
to make more accurate predictions than any individual
model was also developed. The performance of the
developed models was evaluated through the statistical
score values, including root mean squared error (RMSE),
mean absolute error (MAE), mean squared error (MSE),
R3score, and coefficient of variation (CV) mean, and the
overall comparison of the models were made. Generalized
flow diagram showcasing the soft-computing scope of the
article is presented in Figure 1.
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2 Materials and Experimental
Methods

2.1 Material Properties

The iron and steel industry by-product in the ground
form (Ground Granulated Blas Furnace Slag,i.e., GGBS) is
used as a major binder, and agro-waste, called sugarcane
bagasse ash (AWA, i.e., SBA), was used as a substitute to
binder at different levels. The GGBS was characterized
by a specific gravity of 2.89 and a fineness of 360 m?/kg,
containing major chemical oxides such as 38.12% silica
(ie., Si0,), 36.89% lime (i.e., Ca0), 14.52% alumina (i.e.,
ALO,), 7.60% magnesium oxide (i.e., MgO), and 1.15%
iron oxide (i.e., Fe,0,). Whereas the SBA was tested with
a specific gravity of 2.49 and a fineness of 462 m?/kg,
comprisedwith 59.28% silica, 16.08% alumina, 8.10%
lime, 5.85% iron oxide, and 4.80% magnesium oxide.
Two types of coarse aggregates were utilized in this
study: naturally crushed granite coarse aggregates (NCA)
and recycled coarse aggregates (RCA) sourced from
demolished building materials, with respective specific
gravities of 2.68 and 2.53. Given the nature of pervious
concrete, whichrequires minimal fine aggregate, the coarse
to fine aggregate ratio was consistently maintained at 9:1
throughout research. Additionally, waste foundry sand
(WFS), an industrial by-product from the metal casting
industry, was engaged as the fine aggregate, exhibiting
a specific gravity of 2.56. All mechanical testing on the
aggregates was carried out in accordance with relevant
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standards [23-26]. The results of particle size distribution
of all these ingredients are presented in Figure 2. The
alkaline activator solution for the concrete mixes was
formulated using 98% pure sodium hydroxide (NaOH)
flakes and liquid sodium silicate (LSS, i.e., NaZSiOB),
sourced from local chemists. The LSS had 14.70% sodium
oxide, 32.80% silicon dioxide, and 52.50% water, with
a specific gravity of 1.57, while NaOH featured a specific
gravity of 2.10. The mixture was created by blending NaOH
with LSS to achieve a target activator modulus (i.e., Ms
value which is the ratio of SiO, to Na,0) and adjusting the
water-to-binder ratio initially to 0.20 and then to 0.40 for
mix preparation by the use of laboratory tap water. The
prepared alkali activator solution was left in a sealed
container for a minimum duration of 24 hours before
use to ensure consistency in the chemical properties for
optimal concrete mix performance.

2.2 Mix Design Strategies of GPC Mixes

The mix design for geopolymer pervious concrete was
developed following the basic guidelines outlined in IRC:
442017 [27], aiming for a low-slump concrete (<25 mm)
with a target compressive strength of 20 MPa. This design
was adapted to create a slag-based geopolymer concrete
(GPC) mix, leveraging insights from previous studies
[3,28]. A satisfactory mix was achieved with 290 kg of total
binding material (GGBS) per cubic meter of concrete and
a water-to-binder (w/b) ratio of 0.40. The mix maintained
a minimum percolation rate of 300 mm per minute,
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Figure 2: Particle size distribution of binder materials and aggregates.
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Table 2: Mix Proportion Details for 1 m*>Geopolymer Pervious Concrete Preparations in kg.

Mix ID GGBS AWA NaOH LSS Water AS NCA RCA FA

M-0-0 290 0 6.583 44.207 92.791 143.58 1881.3 0 199.7
M-0-25 290 0 6.583 44.207 92.791 143.58 1411.03 444.01 199.7
M-0-50 290 0 6.583 44.207 92.791 143.58 940.68 888.03 199.7
M-0-75 290 0 6.583 44.207 92.791 143.58 470.34 1332.05 199.7
M-0-100 290 0 6.583 44.207 92.791 143.58 0 1776.07 199.7
M-5-0 275.5 14.5 6.583 44.207 92.791 143.58 1878.13 0 199.3
M-10-0 261 29 6.583 44.207 92.791 143.58 1874.89 0 198.9
M-15-0 246.5 43.5 6.583 44.207 92.791 143.58 1871.65 0 198.6
M-20-0 232 58 6.583 44.207 92.791 143.58 1868.42 0 198.3
M-5-50 275.5 14.5 6.583 44.207 92.791 143.58 939.065 886.505 199.3
M-10-50 261 29 6.583 44.207 92.791 143.58 937.45 884.98 198.9
M-15-50 246.5 43.5 6.583 44.207 92.791 143.58 935.83 883.45 198.6
M-20-50 232 58 6.583 44.207 92.791 143.58 934.21 881.92 198.3

corresponding to a Darcy’s coefficient of permeability of
5.0 cm/s. The total water content in the activator solution
combined water from the liquid sodium silicate (LSS)
solution with additional water to achieve the desired water
content. Alkali activator solutions (AS) were tailored for
each mix to provide a 4% Na,0 dosage by binder weight,
with a consistent activator modulus (Ms value) of 1.25. Tap
water was used to produce the aqueous-alkali solution.
Initially, GGBS served as the primary binder, with
systematic replacements by SBA ranging from 0% to
20% in 5% increments. To optimize the level of RCA,
adjustments were made from 0% to 100% in place of
NCA. Based on testing, mixes with 0% and 50% RCA were
further adjusted for SBA content. This approach resulted
in 13 distinct mix designs, which is detailed in Table 2.
Each mix, identified by unique Mix IDs like “M-5-50,”
indicates a composition of 5% SBA and 50% RCA. For
each formulation, 12 individual cube samples of size
100-mm facedimension were prepared and air-cured
for 28 days before compressive strength (CS) testing as
per standard directives [29]. The freshly made mixture is
poured into the standard mold in 3 layers, with each layer
being thoroughly compacted using a table vibrator. It is
then carefully finished and left to air-cure in laboratory
conditions. This resulted in 156 cube samples across
all mixes. The glances of casting, air curing and testing
sequence are presented in Figure 3. Additionally, in an
analogous manner,3 cylindrical samples from each mix
of size 100 mm dia. and 200 mm ht. were prepared and

tested for hydraulic conductivity using the falling-head
permeability method, as documented in literature studies
[30,31].

2.3 Development of Machine Learning (ML)
Models

ML algorithms are highly capable of integrating a variety
of complex parameters, including material properties, mix
design, environmental conditions, and curing processes,
which all influence the final strength of concrete. This
predictive capability of ML is proven to be crucial for
the optimization of the material mix and ensuring the
structural integrity with sustainability in construction
projects without the need for extensive physical trial and
error, which can be costly and time-consuming. Hence,
utilizing ML allows for a more accurate and efficient
analysis of the parameters, thereby improving the
predictability of concrete’s performance characteristics
[32,33].

2.3.1 Proposed ML Architecture

Figure 4 presents the flow diagram of the proposed ML
modeling architecture adopted under the current scope
of the investigations. Initially, the “dataset” is introduced
into the system, where it undergoes “data preprocessing.”
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{d) Cylinders for Permeability Test

(f) Compression Testing

Figure 3: Preparation, air-curing, and testing sequence of geopolymer pervious concrete specimens.

This initial step includes a “cleansing” phase that checks
for “null, missing values.” If present, these are addressed
before proceeding. Upon ensuring data integrity, the
process applies “normalization and standard scalar”
methodstostandardize the scale of the data features, which
is decisive for Ml model performance and comparison.
Once the data are standardized, they are divided into two
distinct sets for “training” and “testing,” with 70% of the
data owed for ML model training to capture the underlying
data patterns and 30% reserved for testing to validate
model predictions against concealed data. Following the
application of the various ML model algorithms, the “data
calibration and verification” was adopted to refine the
models and to ensure that the predictions align closely
with the actual data. The process iteratively returned to
model application if the error rates are not within accepted
limits. The “evaluation metrics” play a critical role in
assessing model performance. These statistical metrics
help to quantify the accuracy, precision, and reliability of
the models. Finally, if the errors are acceptable, indicating
that the ML model’s predictions are within a satisfactory
range, the process was concluded. If not, the models are
recalibrated and revalidated to improve its accuracy. This
ML model architecture is designed to be rigorous and
iterative, enhancing the developed ML model’s ability to
predict the CS of pervious GPC with high precision.

2.3.2 Brief Description of the Proposed ML Models

Specifically, multiple linear regression, Gradient Boost,

AdaBoost, and, XGBoost Regressions are applied. Brief

details on every individual ML models are presented

under the following section:

— Multiple linear regression(MLR) model: The MLR
is a statistical technique employed to predict the
outcome of a dependent variable based on two or more
independent variables. This method is instrumental
in analyzing how variations in independent variables
contribute to the overall variance in the dependent
variable. This method allows for the assessment of
individual contributions from each independent
(predictive) variable, providing insights into the
relationships within the data. This approach
is considered vital for understanding complex
interactions in various scientific and engineering
applications [32].

— Gradient Boost Regression (GBR) model: The
GBR utilizes a class within the Scikit-Learn library
designed specifically for regression tasks. This method
capitalizes on the concept of boosting, an ensemble
technique that combines multiple weak predictive
models to create a stronger aggregate model. GBR is
fundamentally built on decision trees, structuring
predictions beginning from the root and branching
out based on various conditions until reaching the
leaves, which represent the final prediction outcomes.
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The effectiveness of each iterative improvement in
GBR depends on the “learning rate,” a parameter that
determines the magnitude of adjustment made to the
model with each successive tree added. A smaller
learning rate may require more trees to converge to
a robust model, enhancing the model’s ability to
generalize but increasing computational complexity.
This method is particularly useful for handling
nonlinear datasets with complex interactions and
dependencies among variables [34].

— AdaBoost Regression (ABR) model: The ABR-tuned
model utilizes an AdaBoost regressor, a powerful
meta-estimator. This method starts by fitting a base
regressor on the initial dataset and subsequently
fits additional copies of the regressor on the same
dataset, adjusting the weights of instances based on
the errors of current predictions. This iterative process
enhances the model’s focus on difficult-to-predict
instances. For this particular application, the ABR
model underwent fine-tuning of its hyperparameters
through Grid Search CV. The tuning optimized several
key parameters: the base estimator was configured as
a decision tree, the learning rate was set at 0.5, the
loss function was designated as linear, and the model
was built with 40 estimators. These adjustments
were specifically tailored to enhance the predictive
accuracy and efficiency of the model in handling
complex regression tasks [35].

— XGBoost Regression (XGBR)model: The XGBR,
short for Extreme Gradient Boosting, is a high-
performance machine learning library that enhances
the gradient-boosted decision tree algorithm through
scalability and parallel processing. Known for its
efficient implementation, XGBR significantly speeds
up the training process of decision trees by utilizing
parallel tree boosting [36]. Under the scope of the
current work, the XGBR model was meticulously
optimized using Grid Search CV to fine-tune its
hyperparameters for optimal performance on the
specific dataset. The best parameters identified were
as follows: the booster type was set to gradient boost
tree; gamma was fine-tuned to 0.001; the importance
type used was “gain”; no GPU was used (gpu_id=-1);
the learning rate was adjusted to 0.1; the maximum
depth of trees was limited to 2 to prevent over-fitting;
the minimum child weight was set at 1; it used 500
estimators; it was configured to run on a single thread
(n_jobs=0); only one tree was computed in parallel
(num_parallel_tree=1); the model’s randomness
is controlled by random_state=0; regularization
on the weights of features was minimal with reg_
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alpha=0 and reg_lambda=1; the balance of positive
and negative weights was neutral (scale_pos_
weight=1); all training data were used in each tree
(subsample=1); the tree method was set to “exact”
to find the best split; and parameter validation was
enabled (validate_parameters=1).

— The Ensemble Voting Regressor (VR) model:
This model employs a robust technique known
as ensemble learning, which enhances prediction
accuracy by combining outputs from multiple
machine learning models. A key strategy within this
approach is the Voting Regressor,which operates by
aggregating the predictions from several regression
models, using either simple or weighted averaging.
This method effectively capitalizes on the wisdom
of the crowd, where the collective predictions are
averaged to enhance the accuracy and stability of the
final result[37].

Hence, for this work, the ensemble integrated the
predictive capabilities of all the four specific models,
i.e., MLR, GBR, ABR (tuned), and XGBR (tuned). The
corresponding weights assigned to each model in the
voting mechanism were carefully calibrated based on
their predictive performance: 0.40 for the MLR model, 0.10
for both the GBR and XGBR models, and 0.80 for the ABR
model. This weighted averaging approach is expected to
optimally balance the individual strengths of each model,
leading to a superior collective prediction capability
that outperforms any single model in the ensemble. This
strategy is particularly effective in reducing variance
and bias, thereby improving the robustness of predictive
outcomes in complex datasets.

2.4 Criteria for Analyzing ML Model
Performance

In the present study, six input parameters (namely,
GGBS, AWA, AAS, NCA, RCA, WFS) and a single output
parameter (i.e.,CS) are considered. The details of the
mixes were given in quite detail and are clearly presented
in Table 2. Furthermore, the processing action was
carriedout. In the processing of the dataset, the initial
step involves preprocessing, where the data were verified
and cleansed by checking for and addressing any missing
or null values. Following this, the data were transformed
to ensure uniform scale across all input features; this was
achieved by applying a Standard Scalar, which normalized
the data and enhanced the model performances. Finally,
to facilitate the application of machine learning models,
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the dataset was strategically split into training and testing
subsets. This segmentation allowed for the effective
training of models on one portion of the data while
validating model accuracy and generalizability on the
other, ensuring stoutness and reliability of the predictive
ML analysis.

In the validation of developed ML models designed
to predict the CS, several key performance metrics are
utilized to assess model accuracy and reliability. Root
Mean Squared Error (i.e., RMSE) is employed to quantify
the average magnitude of the prediction errors, providing
a clear measure of the error variance, which is critical
in evaluating the precision of the predictions. Another
parameter, Mean Absolute Error (i.e., MAE) serves as
another crucial metric, measuring the average magnitude
of errors in predictions without considering their direction.
This metric offers a straightforward representation of
typical prediction errors, allowing to assess the average
deviation from the actual values. Furthermore, Mean
Squared Error (i.e., MSE) is used extensively to highlight
the average of the squares of the errors. By squaring the
errors before averaging, MSE gives a greater weight to
larger errors, making it a vital tool for identifying models
that may have occasional but significant deviations in
prediction accuracy. Furthermore, the famousR2 Score,
or the coefficient of determination, was considered to
play a pivotal role by indicating the proportion of the
variance in the dependent variable that is predictable
from the independent variables in any developed
statistical models. This score is helpful in determining the
goodness of fit of the model, as a higher R? value generally
indicates a model that can explain a larger proportion of
the variance, reflecting a more accurate representation of
the real-world data. All the corresponding formulas are
presented, respectively, under equations (i), (ii), (iii), and
(iv) for RMSE, MSE, MAE, and R? score. Where EV, and PV,
are the measured (i.e., experimental) and predicted (i.e.,
test) values of the target variable (i.e., CS), respectively,
n is the number of data, and EV__ and PV__ are the
average ML model experimental CS value and output CS
value, correspondingly[35].

oy
RMSE =
Iy 2
MSE = ; (EV; — PV)) ®)
_I_ n
MAE —- EV,— PV,
- gl | 3)
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Lastly, the coefficient of variation (i.e., CV) is another critical
statistical metric used in the validation of developed
ML models. CV represents the ratio of the standard
deviation to the mean, expressed as a percentage. This
metric is important for assessing the relative variability
of the model predictions, irrespective of the units of
measurement. Generally, a lower value of CV indicates a
lesser degree of dispersion around the mean, signifying
a model’s consistency in performance across different
samples. In the field of compressive strength prediction,
where consistency is as critical as accurateness, the CV
value provides an essential measure of the reliability
and stability of the developed ML models. Hence,the
evaluation based on the CV value will ensure that the
predictive ML models are totally accurate and consistently
reliable in diverse conditions, which is fundamental for
their realistic deployment in design and quality control
of concrete mixtures [32,38]. The obtained results were
meticulously verified to ensure that they fall within the
accepted error margins. If deviations were observed, the
values were calibrated, and steps of the methodology
were repeated to achieve the desired accuracy. Figure 6
clearly illustrates the flow of adopted methodology under
in the present scope of the explorations.

3 Results and Discussion

3.1 Compressive Strength and Permeability
Results of Pervious GPC mixes

This study’s exploration into pervious GPC mixes has
demarcated a clear trend in the compressive strength(CS)
and hydraulic conductivity (i.e., permeability) dependent
on material proportions. The inclusion of up to 10% SBA
as a replacement for the chief binder GGBS has led to
an approximate 16% increase in compressive strength.
This enhancement highlights the pozzolanic reactivity
of SBA in the matrix. However, further increasing the
SBA content beyond this threshold resulted in a decline
in strength, suggesting an optimal threshold for SBA
incorporation. Conversely, the substitution of NCA with
C&D aggregates (RCA) markedly reduced compressive
strength. At 100% replacement with RCA, the strength
decreased by approximately 42%, underscoring the
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Figure 5: Average compressive strength and hydraulic conductivity of trial pervious GPC mixes.

significant impact of aggregate quality on the mechanical
properties of concretes [39]. This reduction in strength
with an increased RCA content is offset by enhanced
permeability, indicating a trade-off between structural
strength and permeability, which are the major hardened
properties for pervious concretes and are central to this
investigation. Other fresh and hardened properties are not
reported in this study. It is clear from the results that the
mixes with higher strength have low permeability due to
fewer voids. Many researchers revealed that the permeable
concrete composite mixes with lower permeability values
lead to a higher strength [40,41]. This is evident from
the results obtained in laboratory research. As the finer
particles of aggregates fill the gaps between various-sized
coarse aggregates, the permeable mixes become denser.
This increase in fine aggregate content also increases
the surface area of the aggregates and reduces the
average pore diameter size. As a result, water ingress is
reduced, providing greater resistance to the flow of water.
This ultimately leads to a decrease in the coefficient of
permeability value of the permeable composite mixes [42].

These phenomena are visually summarized in
Figure 5, which depicts the inverse relationship between
CS and permeability coefficient across the varied mix

compositions. The standard deviation values in CS across
the mixes suggest a reasonable consistency, with the
observed variances reflecting material heterogeneity and
the impacts of aggregate types on the mix performances.
Furthermore, for all the CS results reported, the observed
standard deviations of the individual sample results were
within the tolerable variation confines of 15% prescribed
as per the standard code of practice for concretes [43]. The
quantified data on CS and permeability will serve as the
foundation for developing ML models aimed at predicting
the performance of these mixes. As the scope of this work
is to develop ML models to study the effects on pervious
GPCs, the obtained results are presented and discussed in
the next section.

3.2 Results on ML Modeling of Pervious
Geopolymer Concretes

The diversity and breadth of training data are crucial for the
robustness of ML models, particularly when developing
predictive models for concrete compressive strength. A
comprehensive dataset, representative of varied conditions
in practical settings, is essential for this purpose [34]. In



§ sciendo

Intelligent Models for Prediction of Compressive Strength of Geopolymer Pervious Concrete Hybridized ... =—— 361

Table 3: Expressive statistics of the dependent and independent variables.

Variable Unit Count Mean std. dev Minimum 25% 50% 75% Maximum
GGBS kg 156 268.16 21.56 232.00 246.5 275.5 290.0 290.0
AWA kg 156 21.85 21.56 0.0 0.00 14.5 43.5 58.0
AAS kg 156 143.59 143.58 143.6 143.6 143.6 143.58
NCA kg 156 1230.18 601.67 0.00 935.8 940.7 1871.7 1881.3
RCA kg 156 610.13 569.48 0.00 0.00 881.9 886.5 1776.1
FA (WFS) kg 156 199.14 0.5321 198.30 198.6 199.3 199.7 199.7

cS MPa 156 27.73 5.544 14.96 24.37 27.79 31.2 39.81

this study, which explores an under-researched area, data
for 156 pervious GPC mix formulations were meticulously
collected through controlled laboratory experiments.
These mixes were air-cured under standard conditions,
and the dataset compiled includes six input variables
reflecting the mix components and one output variable,
which is the compressive strength measured from 100 mm
side cube specimens. The nomenclature and units of these
variables are detailed in Table 2.

3.2.1 Statistical Narrative and Correlation Exploration of
the Input Data

The CS was ascertained using conventional standard
testing methods. Table 3 provides a statistical
breakdown of these variables, illustrating the distribution
characteristics essential for effective ML modeling. These
ML models are tailored to predict the performance of
ordinary strength of pervious GPCs, which typically
feature compressive strengths ranging from 15.0 MPa to
39.8 MPa. These concretes utilize alkali-activated, GP
binders and incorporate both NCA and RCA, with WFS
serving as fine aggregate.

Figure 8 (a) complements this by showing the
frequency distributions of the wvariables, confirming
their suitability for regression analysis in ML which
clearly portrays the relative frequency allocations [35] of
personage input (GGBS, AWA, AAS, NCA, RCA, WFS) and
output (CS) parameters. The corresponding correlation
coefficient matrix is shown in Figure 8 (b). This “Pair
Grid” methodology elucidates the correlations among
various attributes, enhancing the understanding of
inter-variable relationships essential for robust model
development. This visualization facilitates an in-depth
analysis by displaying the pair-wise relationships
between all attributes, thus allowing for a comprehensive

assessment of how each variable interacts within the
dataset. The process of correlation analysis involves
evaluating the degree of association between variables.
Although various correlation coefficients exist, such as
Spearman, Kendall, and Pearson, Pearson’s correlation
coefficient (ny) is majorly recognized by the researchers.
It quantifies the linear relationship between two variables
by dividing the covariance of the variables (cov (X, Y)) by
the product of their std. deviations (cx, O'Y), as expressed in
Eq. (v). Here, x and y are the means of the variables X and
Y, respectively.

_cov(X,Y)
xy T

_ S —x)((vi — )
Ox0y \/2 (x—3%)° \/Z (i —¥)°

)

The Pearson correlation coefficient (ny) has a value range
from -1.0 to +1.0. Higher Py values suggest a well-built
linear relationship impacting the output parameter. A
coefficient of -01indicates a contrary correlation, while the
value”0” suggests that the variables may be uncorrelated
or have a nonlinear relationships, as Pearson’s method
only detects linear correlations. Thus, a zero value does
not imply a lack of correlation but rather that there is no
defined linear dependency between the variables Y and X.

As clearly portrayed in Figure 6 (a) and (b), the
attribute representing the alkali activator solution is
held constant across the dataset. Notably, NCA exhibits
a strong positive correlation (0.80) with CS, indicative
of their contributory role in enhancing mechanical
robustness. Conversely, RCA manifests a prominent
negative correlation (-0.79) with CS, suggesting a clear
detrimental effect on structural integrity when used in
higher proportions.

These statistical relationships emphasize the material
trade-offs, particularly in sustainable construction
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paradigms where the use of recycled materials must be
balanced against strength performance imperatives.

GGBS AWA AAS NCA RCA FA Hence, this approach was considered critical for effectively
1.02 1.02 . 0.29 .0.28 1.06 identifying potential influences and dependencies that
could affect the predictive accuracy of the ML models
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employed in this study [44].
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Figure 6: (a) Corelation matrix showing the affiliation of individual parameters with the other parameters.
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it is necessary to implement normalization. This data
preparation technique standardizes the values within the
dataset to a common scale, enhancing the efficiency of the
learning algorithms and facilitating quicker convergence.
Hence, the Feature standardization is pivotal in ML
modeling as it equalizes the significance of all features
by transforming their values to a uniform range. This
standardization ensures that the model attributes equal
importance to each feature during the learning phase,
promoting a more balanced and effective analysis. As the
methodology employed is well-documented in existing
literature [37,38], thus providing the additional detail
may result in redundancy of fundamental concepts. This
task is achieved by applying the maximum-minimum
normalization technique, which renovates the data using
the equation specified under eq. (vi).

X — Xmin
X, =— "
Xmax - Xmin ©)
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In this formula, X denotes the feature normalized data,
with X . representing the smallest and X __the largest
values of the inputs. X corresponds to the individual
original data before normalization. This technique
benefits the model development process by expediting
calculations and enhancing the accuracy and robustness
of the predictive model. Table 4 displays the normalized
data for the input parameters following feature
standardization, presenting the transformed values that
ensure comparability across the ML study’s variables.

3.2.2 Comparative Exploration of Developed Soft
Computing ML Models

Figure 7 portrays a series of scatter plots comparing
the actual experimental results of CS for pervious GPC
against the values predicted by various ML models. These
plots serve as a illustrative assessment of the models’
performance, showing the degree to which the predicted
values align with the actual experimental outcomes. In
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Figure 7: Actual vs predicted compressive strength results from ML models.

each plot, the dashed sloping line represents the line of
ideal prediction, where the predicted values precisely
match the actual CS values. Hence, the proximity of data
points to this line is indicative of the ML. model’s predictive
accuracy.

The MLR model shows a respectable congruence with
the true values, denoting a solid base model performance.
However, there appear to be deviations, especially as
the CS values increase, suggesting linear regression’s
limitations in capturing complex nonlinear relationships.
The scatter plot for Tuned XGBR demonstrates a better
alignment with the line of perfect prediction, implying
that the tuning process has refined the model to
better encapsulate the complexities of the data. The
GBR, another ensemble method, similarly displays a
commendable predictive performance. The ABR results
indicate a slight improvement over the GBR, which
could be due to the adaptive learning process it utilizes,
placing more emphasis on the instances that previous
models misjudged. Finally, the ensembleVR model-
which aggregates predictions from the aforementioned
models — exhibits a high degree of accuracy, as seen
by the concentration of data points around the line of
perfect prediction. This ensemble approach evidently
synergizes the CS of individual models, thereby improving
the sturdiness and reducing the potential for overfitting.
Overall, while each model has merits, the VR emerged
as the most promising, encapsulating the predictive
power of other models while mitigating their respective
weaknesses.

Furthermore, every model’s performance metrics
(such as RMSE, MAE, and R? score) would quantitatively
complement these visual insights. Lower RMSE and MAE
values, alongside a R? score close to 1, would support

the visual elucidations of the models’ effectiveness in
predicting the strength values.

The key ML model statistical parameters obtained
after scrutinizing the efficacy of various ML models
applied to predict the CS of pervious GPC are presented
in Table 5. Each model’s performance was meticulously
tuned to achieve optimal accuracy, and the results are
collectively presented.

The results of MLR revealed a significant predictive
capability with an R? score of 0.83, suggesting that the
model could explain 83% of the variance in predicted
strength. However, a negative CVmean of -0.14 hints
at potential over fitting issues, which might affect the
model’s performance on unseen data. The XGBoost Tuned,
similarly, displayed robustness with an identical R? score
of 0.88. Its performance metrics, including RMSE, MAE,
and MSE, matched those of the MLR, underscoring its
consistency. However, the more negative CVmean of -0.74
raises concerns about the model’s stability and reliability
across different validation folds. The tunedABR emerged
slightly superior among the individual models, achieving
the highest R2 score of 0.86. This model demonstrated the
lowest RMSE and MSE, indicating its greater accuracy and
consistency in predicting the strength of pervious GPC.
The least negative CVmean of -0.91, although improved
still suggests room for enhancing model generalization.
The GBR tracked closely with the XGBR and MLR models,
mirroring their statistical scores but with a slightly
less negative CVmean of -0.79. This reflects a balanced
performance but with room for improvement in model
training and validation phases. Finally, the VR, an
ensemble of all the aforementioned models, outstripped
the individual predictors by integrating their strengths.
This model achieved the most favorable outcomes, with
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Table 5: Results on Machine Learning Models Applied on Input Data with the Performance Metrics

Statistical Parameters of Multiple Linear XGBoost Tuned AdaBoost Gradient Boost Voting Regressor
ML Models Regression Tuned Regressor
RMSE 1.64 1.63 1.59 1.64 1.52
MAE 1.28 1.30 1.26 1.30 1.21
MSE 2.70 2.70 2.51 2.70 2.32
R?Value 0.83 0.91 0.86 0.88 0.90
CVmean -0.14 -0.74 -0.91 -0.79 -0.11
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Figure 8: Results of RMSE and R? values of developed ML models.

the highest accuracy (R? score of 0.90) and the lowest
error rates (RMSE of 1.52 and MSE of 2.32). Its CVmean
of -0.11 is substantially less negative, indicating a robust
model with consistent performance across different test
scenarios. The comprehensive evaluation emphasizes the
effectiveness of ensemble methods, particularly the VR,
in refining the prediction accuracy for the CS of pervious
GPC. The notable performance of AdaBoost Tuned justified
its significant weightage in the ensemble configuration,
enhancing the overall model efficacy. It can be witnessed
that the error among the predicted and measured strength
value is minimal.

Figure 8 indicates the major metrics (i.e., RMSE and
R? values) for ML models for both the training and test
datasets, which are considered decisive for understanding
model efficacy. In examining the MLR model, we find RMSE
values of 1.64 and 1.72 for the training and test datasets,
respectively, with R?values of 0.82 and 0.83. While linear
regression provides a reasonable baseline for prediction,
the RMSE indicates a moderate discrepancy between
the predicted and actual values, and the R? shows that a
substantial portion, but not all, of the variance is captured

by the model. The GBR improves upon MLR with a lower
RMSE of 1.63 and 1.65 and higher R? values of 0.89 and
0.91 for the training and test datasets, respectively. These
values suggest that this model more accurately predicts CS
and accounts for a greater degree of variance, likely due to
its ability to minimize errors sequentially through multiple
decision trees. The ABR, which adapts by focusing on
instances that previous iterations mispredicted, shows an
RMSE of 1.59 for training data and 1.61 for testing, with R?
values of 0.89 and 0.86.

These statistics indicate a strong model fit in training,
although with a slight reduction in the test phase, hinting
at potential overfitting issues or the need for further
parameter tuning. XGBR, an optimized gradient boosting
library, shows an RMSE of 1.64 in training and 1.79 in
testing, with R? of 0.88 and 0.88. The increase in RMSE for
the test data suggests that this model may not generalize
as well as others, although the consistent R? indicates a
stable prediction of variance across both datasets. Finally,
the VR model, an ensemble of the aforementioned models,
registers the lowest RMSE of 1.52 and 1.59 for the training
and test datasets, respectively, and an R? of 0.88 and 0.90.
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Figure 9: (a) Results showing the errors in predicted vs actual values of compressive strength from the testing dataset.

The VR’s performance indicates that it effectively combines

of model can significantly influence the performance and
the strengths of the individual models, balancing out reliability of CS predictions for pervious GPCs.

their weaknesses and thereby providing more reliable

predictions. The consistent improvement in RMSE and R?

across both datasets underscores the robustness of the 3.2.3 Comparative Analysis of Predictive Accuracy and
ensemble approach[45]. Feature Influence in ML Models
In order to critically evaluate these models, we must

consider both RMSE and R? in tandem. RMSE offers a clear  The juxtaposition of figures under Figure 9(a) and Figure
indication of the average magnitude of the model’s errors, 9(b) shows the predictive efficacy and influence of the
with lower values signifying more accurate predictions. input parameters of various ML models on the CS value.
R? provides insight into the proportion of the variance The X-axis in Figure 9 (a), denoting the sample number,

for the dependent variable that’s captured by the model. providesasequential view of the model’s performance over

Together, these metrics illustrate the models’ predictive the testing dataset. The Y-axis represents the error values,
accuracy and their ability to generalize to novel, reflecting the model’s precision across each sample point.
concealed data. Overall, while each model has its merits, The closeness of the predicted values (depicted by the blue
the VR model emerged as the most effective, leveraging line) to the actual values (represented by the dashed red
the collective power of multiple algorithms to enhance line) signifies a low error margin, reinforcing the model’s
predictive accuracy. The analysis reveals that the choice

robust predictive capabilities under every ML models.
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Figure 9: (b) Results showing the feature score of the ML models for compressive strength.

Comparatively, the VR model demonstrates much
closer alignment between predicted and actual values,
suggestinganenhanced predictive performance. Thisresult
is attributable to the weighted aggregation of predictions
from multiple models, which mitigates individual model
biases and leverages collective intelligence. Occasional
peaks and troughs suggest that while certain samples may
pose a greater challenge in prediction, the model’s overall
performance remains unfalteringly high. Over fine-tuning,
the VR model’s accuracy and reliability, as visually
depicted in this plot, mark a promising advancement in
the domain of soft computing applications within material

science, showcasing a method that could be pivotal in
future engineering innovations.

Conversely, Figure 9 (b) highlights the feature
coefficient scores, revealing the varying degrees of
influence that input variables exert on CS. However, the
ensemble VR model’s feature coefficient scores are not
showcased here due to its methodology of amalgamating
outputs from various other ML models.

For instance, NCA and RCA appear to have
substantial impacts, as demonstrated in their coefficient
magnitudes across models. The discrepancy between the
influence of NCA and RCA underscores the complexity
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Figure 10: Results of predicted values and actual values from the
ensemble Voting Regressor ML model.

of incorporating varying aggregate types and the
nuanced effects on concrete properties. Hence, through
the integration of the insights from both figures, itis
apparent that while individual ML models offer valuable
predictions, the ensemble approach in VR provides a
more robust and accurate predictive performance. This
consolidates the premise that in the realm of complex
material interactions in GPC formulations, ensemble ML
models are paramount in harnessing the predictive power
of soft computing techniques. The disparity between the
coefficients of features across models further corroborates
the necessity of considering multiple models to capture
the heterogeneity of influential factors on the compressive
strength of the composite under consideration. Overall,
these analyses clearly prove that while individual factors
can significantly impact the CS, the integration of
multiple ML models into an ensemble framework like VR
can significantly enhance the accuracy and reliability of
predictions for pervious GPCs.

Figure10 presentsadensity plotjuxtaposing theactual
and predicted values of concrete CS derived from the best-
performing tuned ensemble VR model. The congruence
of the density curves signifies that the predictions closely
align with the actual data [38], confirming the VR model’s
capacity to capture the variance in the dataset effectively.
The proximity of the peaks for both actual and predicted
values stresses the VR’s proficiency in central tendency
prediction.

Moreover, the model’s robustness is evident from
the distribution spread, where both predicted and real
values exhibit similar variance, reinforcing the model’s
credibility. The similarity in the tail lengths of both
distributions further illustrates that extreme values,
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whether high or low, are accurately anticipated by this ML
model [35]. Hence, the VR model’s capacity to generalize
well, indicated by the high degree of similarity between
the density plots of predicted and actual values, lays the
groundwork for its application in optimizing the mix
design for improved pervious GPC performances, thus
opening avenues for future developments in material
technology and computational modeling in this field.

Hence, this investigation exemplifies how
integrating multiple ML techniques can substantially
benefit predictive modeling in sustainable construction
engineering contexts, offering a vigorous tool for designing
better-performing geopolymer concretes for sustainable
future. These encapsulated findings effectively provide
a compelling narrative on the application of advanced
ML methodology to improve the understanding and
prediction of material properties in civil engineering
research. Overall, the developed ML models effectively
persuade all the indispensable conditions for all the
dependent variables, which clearly shows that the
developed ML models are proficient enough to predict
the most-important strength of the pervious geopolymer
concrete mixes.

4 Conclusions and Scopes for
Future Research

This study presented a comprehensive investigation
into the performance of pervious GPC hybridized with
agro-industrial wastes (GGBS, SBA, and WFS) and C&D
wastes, employing advanced soft computing techniques
for CS prediction. The experimentation involved creating
13 distinct GPC mixes with varying percentages of
SBA and RCA content and analyzing their effects on
the 28-day strength and hydraulic conductivity. These
properties were considered to be vital as they directly
relate to the structural integrity and functionality of
pervious concretes. The experimental results elucidated
a significant enhancement in compressive strength with
up to 10% inclusion of SBA, after which the strength
gradually decreased. This finding highlights the optimal
use of SBA in enhancing the geopolymer matrix’s strength
due to its pozzolanic activity up to a certain dosages.
Conversely, increasing the proportion of RCA negatively
impacted the compressive strength due to the poorer
quality of C&D aggregates compared to fresh crushed
granite. However, the increased RCA content improved
the hydraulic conductivity, indicating a beneficial aspect
for permeable concrete applications obliging higher
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permeability. Furthermore, the application of multiple
linear regression, gradient boost, AdaBoost, XGBoost
regressions, and an ensemble model using a Voting
Regressor effectively modeled the compressive strength
of GPC. Among these, the AdaBoost Tuned model and
the ensemble approach emerged as superior, providing
robust predictions with lower error rates, demonstrating
the effectiveness of combining multiple predictive models
to enhance prediction accuracy. The present investigation
effectively confirms that the leveraging advancements
in soft computing models can significantly contribute to
the sustainable development of construction materials,
aligning with global sustainability goals by reducing
industrial waste and enhancing material properties.

Future researchers on the topic may have the
possibility to explore further the balance between
mechanical properties and environmental benefits in GPC
by integrating other types of industrial and agricultural
waste products such as copper slag, rice husk ash, and
fly-ash. There is also an opportunity to refine the ML
models by incorporating more comprehensive datasets
that include additional environmental and operational
variables affecting composite performances. Furthermore,
long-term durability studies under various environmental
conditions could provide deeper insights into the
practical applications and limitations of these materials.
Also, expanding the scope to include fresh concrete
properties and other mechanical parameters could offer a
more holistic view of the material characteristics. Further
studies could also focus on scaling up the production
process and evaluating the economic viability of pervious
GPC in commercial applications.
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Appendix: Dataset used for the investigation
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Unit = kg per cubic meter Unit = MPa
Mix ID GGBS AWA AAS NCA RCA FA [
M-0-0 290 0 143.58 1881.3 0 199.7 32.2
M-0-0 290 0 143.58 1881.3 0 199.7 31.0
M-0-0 290 0 143.58 1881.3 0 199.7 31.6
M-0-0 290 0 143.58 1881.3 0 199.7 32.9
M-0-0 290 0 143.58 1881.3 0 199.7 31.2
M-0-0 290 0 143.58 1881.3 0 199.7 30.4
M-0-0 290 0 143.58 1881.3 0 199.7 34.2
M-0-0 290 0 143.58 1881.3 0 199.7 31.1
M-0-0 290 0 143.58 1881.3 0 199.7 29.9
M-0-0 290 0 143.58 1881.3 0 199.7 34.0
M-0-0 290 0 143.58 1881.3 0 199.7 32.8
M-0-0 290 0 143.58 1881.3 0 199.7 31.0
M-0-25 290 0 143.58 1411.03 444.01 199.7 32.7
M-0-25 290 0 143.58 1411.03 444.01 199.7 27.5
M-0-25 290 0 143.58 1411.03 444.01 199.7 30.3
M-0-25 290 0 143.58 1411.03 444.01 199.7 31.9
M-0-25 290 0 143.58 1411.03 444.01 199.7 32.8
M-0-25 290 0 143.58 1411.03 444.01 199.7 31.2
M-0-25 290 0 143.58 1411.03 444,01 199.7 27.5
M-0-25 290 0 143.58 1411.03 444.01 199.7 27.4
M-0-25 290 0 143.58 1411.03 444.01 199.7 30.0
M-0-25 290 0 143.58 1411.03 444,01 199.7 30.5
M-0-25 290 0 143.58 1411.03 444.01 199.7 28.1
M-0-25 290 0 143.58 1411.03 444.01 199.7 30.6
M-0-50 290 0 143.58 940.68 888.03 199.7 22.6
M-0-50 290 0 143.58 940.68 888.03 199.7 25.8
M-0-50 290 0 143.58 940.68 888.03 199.7 26.2
M-0-50 290 0 143.58 940.68 888.03 199.7 28.0
M-0-50 290 0 143.58 940.68 888.03 199.7 24.4
M-0-50 290 0 143.58 940.68 888.03 199.7 28.7
M-0-50 290 0 143.58 940.68 888.03 199.7 24.9
M-0-50 290 0 143.58 940.68 888.03 199.7 25.0
M-0-50 290 0 143.58 940.68 888.03 199.7 26.8
M-0-50 290 0 143.58 940.68 888.03 199.7 27.9
M-0-50 290 0 143.58 940.68 888.03 199.7 24.3
M-0-50 290 0 143.58 940.68 888.03 199.7 23.2
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Unit = kg per cubic meter Unit = MPa
Mix ID GGBS AWA AAS NCA RCA FA cS
M-0-75 290 0 143.58 470.34 1332.05 199.7 23.8
M-0-75 290 0 143.58 470.34 1332.05 199.7 23.2
M-0-75 290 0 143.58 470.34 1332.05 199.7 21.8
M-0-75 290 0 143.58 470.34 1332.05 199.7 22.8
M-0-75 290 0 143.58 470.34 1332.05 199.7 22.1
M-0-75 290 0 143.58 470.34 1332.05 199.7 22.5
M-0-75 290 0 143.58 470.34 1332.05 199.7 20.5
M-0-75 290 0 143.58 470.34 1332.05 199.7 23.2
M-0-75 290 0 143.58 470.34 1332.05 199.7 21.1
M-0-75 290 0 143.58 470.34 1332.05 199.7 20.8
M-0-75 290 0 143.58 470.34 1332.05 199.7 23.0
M-0-75 290 0 143.58 470.34 1332.05 199.7 21.4
M-0-100 290 0 143.58 0 1776.07 199.7 19.5
M-0-100 290 0 143.58 0 1776.07 199.7 18.6
M-0-100 290 0 143.58 0 1776.07 199.7 18.9
M-0-100 290 0 143.58 0 1776.07 199.7 18.3
M-0-100 290 0 143.58 0 1776.07 199.7 17.5
M-0-100 290 0 143.58 0 1776.07 199.7 16.2
M-0-100 290 0 143.58 0 1776.07 199.7 16.6
M-0-100 290 0 143.58 0 1776.07 199.7 15.0
M-0-100 290 0 143.58 0 1776.07 199.7 19.1
M-0-100 290 0 143.58 0 1776.07 199.7 20.0
M-0-100 290 0 143.58 0 1776.07 199.7 18.4
M-0-100 290 0 143.58 0 1776.07 199.7 18.0
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 32.0
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.2
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 31.1
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.0
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.8
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.1
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 33.2
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 39.0
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 34.0
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.8
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 35.3
M-5-0 275.5 14.5 143.58 1878.13 0 199.3 36.1

M-10-0 261 29 143.58 1874.89 0 198.9 36.2
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Unit = kg per cubic meter Unit = MPa
Mix ID GGBS AWA AAS NCA RCA FA cS
M-10-0 261 29 143.58 1874.89 0 198.9 37.5
M-10-0 261 29 143.58 1874.89 0 198.9 35.4
M-10-0 261 29 143.58 1874.89 0 198.9 38.0
M-10-0 261 29 143.58 1874.89 0 198.9 37.4
M-10-0 261 29 143.58 1874.89 0 198.9 34.0
M-10-0 261 29 143.58 1874.89 0 198.9 32.8
M-10-0 261 29 143.58 1874.89 0 198.9 39.6
M-10-0 261 29 143.58 1874.89 0 198.9 38.9
M-10-0 261 29 143.58 1874.89 0 198.9 37.0
M-10-0 261 29 143.58 1874.89 0 198.9 38.4
M-10-0 261 29 143.58 1874.89 0 198.9 39.8
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.8
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 33.0
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.5
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.0
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.0
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.9
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 26.4
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 31.8
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 30.9
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.8
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 29.8
M-15-0 246.5 43.5 143.58 1871.65 0 198.6 27.3
M-20-0 232 58 143.58 1868.42 0 198.3 26.1
M-20-0 232 58 143.58 1868.42 0 198.3 28.9
M-20-0 232 58 143.58 1868.42 0 198.3 28.6
M-20-0 232 58 143.58 1868.42 0 198.3 24.4
M-20-0 232 58 143.58 1868.42 0 198.3 27.9
M-20-0 232 58 143.58 1868.42 0 198.3 28.9
M-20-0 232 58 143.58 1868.42 0 198.3 26.4
M-20-0 232 58 143.58 1868.42 0 198.3 30.7
M-20-0 232 58 143.58 1868.42 0 198.3 24.8
M-20-0 232 58 143.58 1868.42 0 198.3 22.8
M-20-0 232 58 143.58 1868.42 0 198.3 27.6
M-20-0 232 58 143.58 1868.42 0 198.3 25.0
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.5
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 24.4
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Unit = kg per cubic meter Unit = MPa
Mix ID GGBS AWA AAS NCA RCA FA cS
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.4
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.9
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.2
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 28.9
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 28.6
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.8
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.1
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.3
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 26.9
M-5-50 275.5 14.5 143.58 939.065 886.505 199.3 27.7
M-10-50 261 29 143.58 937.45 884.98 198.9 29.3
M-10-50 261 29 143.58 937.45 884.98 198.9 30.4
M-10-50 261 29 143.58 937.45 884.98 198.9 29.1
M-10-50 261 29 143.58 937.45 884.98 198.9 31.4
M-10-50 261 29 143.58 937.45 884.98 198.9 30.8
M-10-50 261 29 143.58 937.45 884.98 198.9 29.5
M-10-50 261 29 143.58 937.45 884.98 198.9 31.4
M-10-50 261 29 143.58 937.45 884.98 198.9 31.2
M-10-50 261 29 143.58 937.45 884.98 198.9 28.3
M-10-50 261 29 143.58 937.45 884.98 198.9 29.6
M-10-50 261 29 143.58 937.45 884.98 198.9 30.2
M-10-50 261 29 143.58 937.45 884.98 198.9 30.2
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.7
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.8
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.9
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 24.9
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.3
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.0
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 26.2
M-15-50 246.5 43.5 143.58 935.83 883.45 198.6 25.0
M-20-50 232 58 143.58 934.21 881.92 198.3 20.7
M-20-50 232 58 143.58 934.21 881.92 198.3 19.9

M-20-50 232 58 143.58 934.21 881.92 198.3 19.7
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Unit = kg per cubic meter Unit = MPa
Mix ID GGBS AWA AAS NCA RCA FA cS
M-20-50 232 58 143.58 934.21 881.92 198.3 20.5
M-20-50 232 58 143.58 934.21 881.92 198.3 19.9
M-20-50 232 58 143.58 934.21 881.92 198.3 19.7
M-20-50 232 58 143.58 934.21 881.92 198.3 20.4
M-20-50 232 58 143.58 934.21 881.92 198.3 19.8
M-20-50 232 58 143.58 934.21 881.92 198.3 20.0
M-20-50 232 58 143.58 934.21 881.92 198.3 20.4
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