$ sciendo Studia Geotechnica et Mechanica, 2025; 47(1): 89-102
Original Study Open Access
Krzysztof Majcher*

Identification of mass, damping and stiffness
matrices of multi degree of freedom system
subjected to kinematic excitations

https://doi.org/10.2478/sgem-2025-0008
received December 23, 2024; accepted January 27, 2025.

Abstract: This paper presents theoretical considerations
relating to the possibility of fullyidentifying the parameters
of a numerical model describing a building structure. An
input-output method with system momentum change
is proposed for this purpose, thanks to which the basic
matrices describing the system were identified, that is,
the mass matrix M, the damping matrix C and the stiffness
matrix K. The proposed way of system identification
is based on the knowledge of the vibration excitation
(the input signal) and the structure’s dynamic response
(the output signal) to the applied excitation, and the
analyses are performed in the time domain. The reverse
problem defined in this way consists of determining the
coefficients of matrices M, C and K at any discrete point
of time. In the case when the vibrations of the system are
excited by kinematic excitation (ground motion), in order
for the inverse problem to be solvable, either knowledge
of the mass matrix or a known modification of the system
masses is required. This is due to the representation of
excitation forces, which in the case of kinematic excitation
contains a mass matrix in their full description. This paper
presents a method based on an inertial modification, that
is, adding known masses to the analysed system, which
entails a change in system momentum. The addition
of known masses to the system being identified results
in the introduction of additional known forces into the
system. In this way, a heterogenous linear algebraic
system of equations is obtained in the reverse problem
and the coefficients of the particular matrices M, C and K
are calculated from this system of equations. Moreover,
considering the fact that the input signal and the output

*Corresponding author: Krzysztof Majcher, Faculty of Civil
Engineering, Wroctaw University of Science and Technology,
Wybrzeze Wyspiafiskiego 27, 50-370 Wroctaw, Poland,
E-mail: krzysztof.majcher@pwr.edu.pl

signal are known in many time points, the proposed
procedure leads to a set of systems of equations.

In order to verify the correctness and effectiveness of
the proposed system identification method, numerical
analyses for a shear building model were carried out
as part of this study. Model vibrations were induced
kinematically, and the functions describing the
displacements of the subgrade were assumed in the form
of a harmonic, the sum of three asynchronous harmonic
functions, and a real earthquake. The results of numerical
analyses confirmed the effectiveness of the proposed
method in each of the three excitations.

Keywords: numerical analyses; input—output method;
change of system momentum; identification of system
parameters; kinematic excitation.

1 Introduction

According to Newton’s second law, concerning the change
of the momentum of a material particle, the cause of the
motion of the particle is always the force acting on this
particle. In order to be able to precisely indicate at any
instant the position of a material particle in space, one
needs a full description of the forces acting on this particle:
the external (motion inducing) force and the force of
inertia. The two forces counter each other at any instant,
which is the basis for the d’Alembert’s principle [10, 15]. Let
us assume that the material particle is tied with a base by
means of an elastic constraint and a damping constraint,
and the considerations are limited to one possible
direction of motion of the particle. Then, the material
particle will be acted on by the following forces: external
active force F(t); reaction force S(t) originating from the
elastic constraint, as a restitution force; reaction force R(t)
originating from the damping force, as a resistance-to-
motion force; and inertial force B(t) arising as a result of
the motion of the particle with an acceleration. According
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to the d’Alembert’s principle at any instant, all the above-
mentioned forces must form a balanced system, whereby
a reverse problem can be formulated. Let us assume
now that in a given time interval of the observation of
material particle motion, the trajectory of the motion and
external active force F(f) causing this motion are known.
Thus, generally speaking, the system’s input signal and
output signal are known and on their basis one can
determine the system’s parameters (the particle’s mass,
the elastic constraint stiffness and the damping constraint
parameter). The reverse problem presented in this way,
consisting in identifying the system’s parameters on the
basis of the knowledge of the input signal and the output
signal, expresses an experimental modal analysis (EMA).
This is one of the basic experimental methods used in, i.a.,
building structure dynamics, the theoretical foundations
of which are extensively described in [9]. In one of this
handbook’s chapters, several topics connected with EMA
(e.g., system modal characteristics determination, kinds
of measurements, error estimation) are discussed and
procedural algorithms for this method as applied to a
dynamical system with one or many degrees of freedom
are exhaustively described.

In specialist literature, besides classical modal
analysis, one can also find operational modal analysis
(OMA). Its basic assumption is that the input signal
(the excitation of the analysed building structure) is
not known as it is of environmental nature. Using OMA,
from a system’s dynamic response (the input signal) one
can derive such modal parameters as eigenfrequencies,
damping coefficients and vibration eigenforms. The
evolution of modal analysis from the input—output type
method to the input-alone type method was described
by Cunha and Caetano in [6]. The authors presented
experimental results of many years of research for real
building structures such as dams, buildings and bridges.

For several decades owing to their popularity, the two
methods have been the subject of numerous scientific
publications. The theoretical foundations for the methods
of identifying system parameters were provided in, i.a.,
studies [10, 12, 16]. In professor Ljung’s monograph [16],
published in 1987, many topics, from linear and non-
linear systems, through methods of estimating system
parameters, to model validation, were discussed. The
authors of study [12], published in 1989, analysed the
existing system identification methods with regard to the
dynamic behaviour of building structures under various
environmental loads (earthquakes, wind, excitation
by water waves). In order to verify the methods, they
carried out numerical analyses on theoretical models of a
suspension bridge, a marine tower and a shear building.
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Another valuable monograph dealing with modal analysis
is [10] published in 2001. It reviews modal analysis
methods, discusses in detail several theoretical problems
and provides examples of modal analysis application in
the investigation of real building structures.

In the dynamics of building structures, the
importance of modal analysis increases when a building
structure (being designed or existing) is located in
a seismic activity zone. Then, engineers work out
structural solutions protecting building structures against
environmental hazards. Hence, several scientific papers
on modal analysis are devoted to (existing or model)
building structures subjected to seismic loads. The
dynamic parameters of structures under seismic loads are
presented in, i.a., studies [2, 4, 5, 8, 11, 20, 22]. The results
of modal analysis investigations carried out on laboratory
models are reported in, i.a., papers [3, 14, 21].

One of the basic computational building models
frequently used in building dynamics is a shear building
structure. This model is particularly popular in dynamic
analyses of real slender buildings to which rigid floor
assumption applies. The results of modal analyses carried
out on a shear building model are reported in, i.a., papers
[13, 19, 21]. Their authors showed the proposed algorithms
to be highly effective in identifying the system’s modal
parameters when the structure’s excitation and dynamic
response are known [19, 21] or when only the input signal
is known [13].

The knowledge of the input signal is one of the basic
prerequisites in modal analyses of real building structures
and determines the choice of an identification method.
The artificial excitation of vibrations by means of force
exciters can be impossible to accomplish in a real building
structure, whereas its environmental excitation can be
difficult to identify. The impossibility of getting the input
signal rules out the use of classical modal analysis, but
one can still use operational modal analysis. However,
also the latter method has a certain drawback — having no
knowledge of the excitation forces one cannot precisely
determine the eigenforms. This means that the identified
generalized displacements are proportional to and proper
for a given form, but accurate to a constant multiplier.
This problem had been addressed for over a decade or
so, and a new method consisting in changing the mass of
an investigated system was proposed [1, 7, 17, 18, 23]. The
authors of the studies showed, on the basis of experimental
investigations [1, 7, 18, 23] or numerical analyses [17], that
thanks to a modification of an investigated structure,
consisting in a controlled change of its mass, one can
obtain precise eigenforms. By adding known masses to
the system, when knowing its dynamic response (the
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input signal), one actually introduces additional known
forces into the system, whereby it is possible to properly
scale the generalized displacements.

The idea of modifying the system by changing its
mass is also used in the present paper. According to
Newton’s second law, a change in a system’s mass entails
a change in its momentum. Considering the above, it
is proper to call the method used as a ‘input-output
method with system momentum change’. The known
input signal constitutes the system’s kinematic excitation,
while the output signal is the system’s dynamic response
(displacements, velocities, accelerations). The numerical
analyses were carried out in the time domain, changing
stepwise the momentum of the system which was a
shear building model. The main aim of this study was
to demonstrate the possibility of full identification of
the mass M, damping C and stiffness K matrices, which
completely describe the analysed object. In difference to
the cited scientific works and the identification methods
used in them, the approach presented in this work leads
to obtaining linear, algebraic systems of equations, the
unknowns of which are the coefficients of the M, C and K
matrices. This way significantly simplifies the calculations
that must be performed to identify the parameters of the
system compared to the methods discussed earlier (EMA,
OMA). However, the proposed method requires the system
mass modification, consisting in adding known masses
to the analysed model and conducting the experiment
iteratively. Such a procedureis necessary due to theloading
of the structure in the form of kinematic excitation. This is
related to the specific description of the excitation vector
(input signal) in this case, which requires knowledge of
the mass matrix M. However, if this matrix is unknown,
the only way to determine the excitation vector is the
known modification of the masses of the analysed system,
which in effect allows obtaining non-zero solutions from
algebraic systems of equations.

2 Theoretical basis

The theoretical considerations presented in this section
apply to linear discrete dynamical systems which can
constitute numerical models of real building structures. In
a general case, the vibration of such systems are described
by the equation [9, 15]:

M §(t)+C q(r)+ K q(¢)=F(r) ®)
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where M, C and K are mass, damping and stiffness
matrices, respectively. The system excitation is vector F(f)
of the excitation forces, while the system vibrations are
described by a set of generalized Lagrangian coordinates
contained in vector ¢(t). In the case when the system
excitation is a kinematic excitation instead of a strictly
force excitation, the equivalent vector of the excitation
forces consists of the inertial forces produced by the
motion of the base. Then, equation of motion (1) assumes
the form

M(t)+Cqt)+Kq(t)=-Mi(t) @

where i(t ) is the vector representing the accelerations of
the base.

The full identification of the system consists in the
precise determination of matrices M, C and K through a
stepwise change of its momentum. This change is effected
using the method of a set of successive realizations. In
the first step, one gets the system’s dynamic response as
the reference. In each successive step, the momentum
is changed by adding known masses to the system, in
the places and along the directions of the structure’s
generalized displacements. Let us then denote the matrix
of the known added masses as follows:

AM, ,i=12,.. ©)

where the subscript ‘i’ designates the number of the step.
In the first step, the matrix of the added masses amounts
to zero matrix, and equation (2) assumes the form

M, th(t)"'cl ql(t)"'Kl ql(t):_Ml Z(t) (4)

where q,(?), q,(z), §,(r) are the known displacement,
velocity and acceleration vectors, respectively, describing
the structure’s motion caused by known acceleration z(t)
of the subgrade. In the next step, equation (2) is written
as follows:

M, tiz(t)"'cz qz(t)"'Kz qz(t):_Mz Z(t) )

Besides the obvious effect on the mass matrix, the
system modification can also affect the damping matrix.
Therefore, the Rayleigh damping model, which takes
into account a possible effect of a change in mass
on the structure’s damping, was adopted for further
transformations. Hence, the relations between the first
(reference) step matrices and the ones in the next steps
(denoted as ‘i+1’) are as follows:
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M, =M, +AM,,,

K., =K,

- (6)
C, =uM, +xkK,
Cpi =M, +xK,, = u(M, +AM,, )+ kK, =C, + uAM,,

In relation (6), m and k are Rayleigh damping coefficients,
which in a discrete dynamical system can be interrelated
with the reliable dimensionless damping coefficient of the
structure. Then, damping in the discrete system applies to
the structure’s two selected significant eigenfrequencies
wj, wk (e.g., the two first base frequencies), and it is
postulated that the following relation is true

H H
—HKO, =y, =y, ="—+KO, 7
op W,
whereas
Y; =7y =y =const (8)

where g is then the structure’s reliable dimensionless
damping coefficient. By transforming relations (7) and
(8), one gets

0,0, 1
V., K=—"""—Y) )
o, + o,

ﬂ:
Ct)j + w,

Considering that in each successive step of system
momentum change, the input signal (kinematic excitation)
and the output signal (the dynamic response of the
system) are known, and equation (5) can be generalized
and written for step ‘i+1’ as follows:

M[+1 qi+1(l)+ci+1 qi+1 (t)+Ki+1 q[+1(t)= _Mi+1 Z(t) (10)

Taking into account relations (6), the equation in step ‘i+1’
can be written as follows:

(M1 +AM!+|)ql+|(t)+(C| +/uAMHI)qHI(t)+KI qt+|(t):7Ml Z l)fAMM Z(t)
M, ‘.im(t)JrCl qu(t)JrKl qx+|(t):7Ml i(t)iAMlH (i(l)Jrqu(t)Jrﬂqm(l»

(1)

According to equation (4), its left side, as an equivalent
vector of the excitation forces in the first step, can be
substituted into relation (11), whereby one gets
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M, qi+1(t)+C1 Qf+1(t)+K1 q[+l(t):
=M, ql(t)+C1 ql(t)+Kl ql(l)fAMm (i(t)+qi+l(t)+:uqi+l(t))
(12)

and finally after ordering expression (12), one gets

M, (('j,.+l(l)—('jl(t))+cl (qm(t)_ql(t))"'Kl (qi+1(t)_ql(t)):
=-AM,,, (i(t)"‘tim (t)+ﬂqi+1 (t)) )

To simplify the notation of relation (13), let us assume that

4 (t)_ql (t) =Aq,, (t)

qi+l(t)_ql(t): Aqm (t) (14)

q,., (t)_ q, (t) =Aq,, (t)

Then, formula (13) transforms to this form
Ml Aﬁh—l (t)+ Cl Aqi+1 (t)+ I<l Aqi+1 (t) = (15)

—AM,, (#(0)+ G,y () + 24, (0)

As already mentioned, the full identification of a discrete
dynamical system here consists in determining matrices
M, C, and K,, but because of the use of the Rayleigh
damping model, besides damping matrix C,, an unknown
coefficient m appears in equation (15). In linear discrete
dynamical systems, matrices M, and K, are symmetric
positive definite matrices whose dimension is equal to
the number of the system’s dynamic degrees of freedom.
Thus, also damping matrix C, will satisfy this condition.
Let us assume that parameter d specifies the number of
the system’s dynamic degrees of freedom. Then, thanks
to relation (15), one can formulate exactly d equations
in step ‘i+1’, and the total number of unknowns in the
identification of the system can be expressed by the
formula

3
2

n, = d2+%d+1 (16)

while the number of needed iterations is given by the
formula

n =—% 17)
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Table 1: Number of needed iterations — changes in momentum of
system being identified.

Number of Number of relations Number of Number of
dynamic given by relation  unknowns iterations
degrees of (15) n, n
freedom d
2 2 10 5
3 3 19
4 4 31 8
5 5 46 10
6 6 64 11
7 7 85 13
8 8 109 14
ms gs(1) + z(1)
L ——
Jz“]f 3 %]C 3
m: qo(1) + =(1)
—
%]C 2 %]C 2
mi gi(f) + =z(7)
e
‘2L]C 1 Jz“ff 1
(1) z(7)
ST ST

Figure 1: Shear building computational model.

In the case of fractional values, number n_should be
rounded upwards. Table 1 shows the number of needed
system momentum changes for the number of dynamic
degrees of freedom.

Itshouldbeadded here thatin the dynamics ofbuilding
structures, many computational models are described
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using sparse matrices or simply diagonal matrices.
This depends on the choice of generalized Lagrangian
matrices and is connected with the occurrence of static
couplings (the stiffness matrix) or inertial couplings (the
mass matrix). If in the process of identifying the system’s
parameters one assumes generalized coordinates in
such a way that no inertial couplings occur, the mass
matrix will be diagonal and the number of unknowns
will decrease in comparison with the one determined
from relation (16). Also the number of needed iterations
connected with a change of system momentum can be
lower, which undoubtedly has an advantageous effect on
the realization of the experiment.

3 Description of computational
model

The calculation model in this paper is a discrete linear
dynamical system having a shear building structure,
shown in Figure 1. The model has three dynamic degrees
of freedom and its vibrations are induced kinematically.
An energy analysis carried out using the Lagrangian
method [15] yields the following matrices describing the
considered system:

— The mass matrix

Sl (0)+2(0)
s,
iyt
Sy

It follows from the notation of the system’s kinetic energy
E, and the calculations of the particular derivatives that
the mass matrix is diagonal and has the form

m 0 0 m, 0 0

0 my O0|=|0 m O
0 0 m, 0 0 m,

M, =
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Table 2: Computational model data in particular iteration steps.

Iteration 1 2 3 4 5 6 7
step ref.

m, [kg] 10.724

m, [kg] 10.134

m, [kg] 20.32

Am, [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6
Am, [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6
Am, [kgl 0 0.1 0.2 0.3 0.4 0.5 0.6
k [N/m] 2100

k,IN/m] 2100

k,[N/m] 2100

n[1/s]  0.077466

K [s] 0.00094753

— The stiffness matrix

E [ kl+;k1j(q1(t)+z() A+
(Lt b Y+ 000
@"3+i"3)(%(f>+Z<f>—qz<r>—z<r>>2

(k +k )ql(t) szz()

+

1
2

+
N | =

(20)

3‘13()

E):_kzch(t)"‘(k +k )‘b()

=—k;, Q2(t)+k3 q3(t)

It follows from the notation of the system’s potential
energy E, and the calculations of the particular derivatives
that the stiffness matrix has the form

kl +k2 _k2 0 kll k12 k13 kll k12 k13

K = -k ky+ky —kyl=lky ky ky|= ky ks
0 — ks ks ky  ky o ks sym. ks
1)

— The equivalent vector of excitation forces

It follows from the system’s kinetic energy written
according to relation (18) that the structure’s load
constitutes the inertial forces resulting from the motion of
the base

§ sciendo

%(z)
(1) [=-M, Z(r) (22)
0 m, z(t)

—ml'z'(t) m 0 0
F(t): —mzé(t) =— 0 m, O
—m3é(t) 0

— The damping matrix

Consistently with the assumptions presented in Section 2,
for computer simulations, the Rayleigh damping model in
which the damping matrix has the form (cf. formula 6)

m 0 0 k+k, -k 0
Ci=uM +xK, =0 m, 0 |+x| —k ky+ky —ky|=
0 0 m 0 -k K
S G G i G G (23)
=€ Cpn Oy | = Cn Oy
G G GOy Sym. C33

was assumed. Taking into account relations (19), (21),
(22), (23), equation (15), constituting the basis for the
identification of the analysed system, assumes the form

my,; 0 0 Aqu(t) ¢ Cnp O AQfH(t)
0 m, 0 Aqu(I) Cpn Cy Aq?l(t)
0 0 my Aqgﬂ(t) Sym. C33 Aqgﬂ(t)
ki ko ks A%M(t)
+ ky Ky Aq;”(t) = (24)
Sym ks Aq?l (t)
Am™ 0 o |[z0)] [a"@)] [4"@)
0 a0 |||+ a0 | 4] a0
o o ) x0) [a0] 40
where
Am* 0 0
-AM,,,=—-| 0 Am)" 0 (25)
0 0 Ami"

is the known matrix of the masses added to the system
in step ‘i+1’. In relations (24) and (25), the superscript of
the expressions does not represent raising to a power, but
only the number of the step.

In the analysed computational shear building
structure model, the mass matrix is diagonal and in fact

contains three unknowns (m,, m,, m,). The stiffness
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Figure 2: Diagrams of applied kinematic excitations: a) harmonics, b) sum of three harmonic functions and c) real earthquake.

matrix, although not diagonal, is symmetric, and so it
contains sixunknowns (k,, k,, k.., k,, k,, k,.). The damping
matrix for the Rayleigh damping model is symmetric, and
so it also contains six unknowns (c,, C,,, C,;, C,,» Cy C,).
Taking additionally unknown parameter into account, one
gets precisely 16 unknowns describing the investigated
system. Relation (24) at any instant of the action of the
kinematic excitation makes it possible to formulate three
independent algebraic equations. Therefore, by changing
the system’s momentum six times, one can obtain a
sufficient number of independent algebraic equations to
determine the 16 unknowns. It should be emphasized that
in a general case, the number of equations, the number
of unknowns and the number of needed iterations
(changes of system momentum) are consistent with Table
1 and formulas (16), (17). The peculiar structure of the
computational model, its number of dynamic degrees of
freedom and the way of choosing generalized coordinates
describing the motion of the structure have a decisive
bearing on the reduction of the number of unknowns. In
the presented example, although the dynamic scheme

has three degrees of freedom, from the overall number of
19 unknowns (see Table 1), the problem boils down to 16
unknown coefficients at any time instant.

4 Numerical analyses — description
and results

4.1 General description

The identification of the parameters of the investigated
system in this paper is based on the input-output method
with system momentum change, and the numerical
analyses are carried out in the time domain. As already
known, this approach requires that the input signal
and the output signal be known, which means that a
numerical model for computer calculations must be
precisely defined. The model data needed to perform
the calculations are presented in Table 2. These are the
assumed floor mass, column stiffness and Rayleigh
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damping model coefficient values and the values of the
masses added in the particular iteration steps. In the
first iteration step, the reference system response to the
set kinematic excitation is determined, whereby vectors
ql(t), ql(t), ('jl(t) are determined. In the second step, the
known masses Am,, Am,, Am, (see tab. 2) are introduced
into the system and then the excitation of structure
vibrations is repeated using the same input signal as in
the first step. This time one gets vectors q, (t), qz(t), q, (t)
. In each subsequent iteration step, the procedure is
carried out similarly as in the second step, that is, the
system’s masses are appropriately modified (see Table 2)
and the dynamic response of the structure for the known
excitation is modified.

Since the system being identified in this paper is a
numerical model, all the parameters describing it are
known by assumption. Thus, the model’s equation of
motion on the basis of which the reference response is
determined has precisely this form

10.724 0 Gi(e)] [ 48104 —1.9898 0 a(t)
0  10.134 Gy(e)|+] -1.9898 47647 —1.9898 || ¢i(¢) |+
0 0 2032 q;(z) 0 —~1.9898  3.5639 | ¢i(r)
4200 -2100 q.(t) 10.724 £(¢)
+|-2100 4200 2100 qi(c)|=-] O  10.134 z(t
0 —2100 2100 | ¢\(r) 0 2032 || £(r
(26)

When a real building structure is the system being
identified, the equation describing its vibration is not
known at the start as it is the target of identification. Then,
generalized Lagrangian coordinates consistent with the
considered dynamic degrees of freedom are assumed.
Consequently, one obtains the equation of motion in form
(1) or (2), as for a discrete dynamical system. Whereas both
the dynamic response and the excitation of a real system
are obtained by registering, for example, acceleration
by means of accelerometers, velocity by means of
vibrometers and displacements by means of linear
displacement transducers. In the numerical model being
identified accelerations, velocities and displacements
are not registered, but determined in each iteration step.
Then, when one has got all the input and output signals,
the system being identified is treated as a real building
structure whose parameters are unknown.

In order to demonstrate that the identification method
proposed in this paper is effective, the investigated system
was subjected to three different kinematic excitations. In
the first case, it was assumed that the motion of the base is
harmonic - described by the sine function. In the second
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case, it was assumed that the base motion is described by
a function being the sum of three asynchronous harmonic
functions, which means that the resultant motion is not
periodic. In the third case, the record of a real earthquake
— the 2006 Kiholo Bay earthquake with a magnitude of
6.7 degrees on the Richter scale which took place in the
archipelago of Hawaiian islands on 15 October 2006 — was
assumed as the kinematic excitation. The earthquake data
are available on the server of the United States Geological
Survey which continuously monitors earthquakes in North
America. Exemplary diagrams of the functions describing
the displacements of the base are shown in Figure 2.

4.2 First kinematic excitation — harmonic
function

In this case, the vibrations of the computational model
were induced by subgrade displacement described by the
following harmonic function:
2z(¢)=0.0025in(6.2832¢) 27)
In each step of iteration, connected with a change of
system momentum, the dynamic response in the form
of displacements, velocities and accelerations of the
structure was determined. It should be noted here that
the numerical integration of the equations of motion
yields discrete time functions describing the motion of
the structure. Then, the time step assumed for numerical
analyses, connected with the integration of the equations,
is a parameter inverse to the sampling frequency of the
measuring apparatus used to register the vibration of real
structures. Thus, in both experimental investigations and
the computer calculations presented here, all the values
of the input signal and the output signal are known in
discrete time points. Thanks to this in each discrete time
point within the experiment range, one gets a system of
algebraic equations (see 28) from which the unknown
parameters of the system are determined. Exemplary
values of the structure’s displacements, velocities and
accelerations determined at instant ¢ = 5s for each iteration
step are presented in Table 3. In the first iteration step,
equation (26) was solved, while in each subsequent step
of system, momentum change equation (26) modified in
accordance with relation (15) was solved.
Using the data in Table 3 and relation (24), the
following system of equations was obtained for time ¢ = 5s:
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Table 3: Dynamic response of computational model at time instant ¢ = 5s.

Iteration step Displacements Velocities Accelerations

[mm] [mm/s] [mm/s?]

4 9> 95 q} ‘b q.3 ql qz iis z
1 1.051 1.933 2.552 -4.227 -9.333 -13.72 -33.09 -53.37 -62.55 0
2 0.855 1.568 2.067 -3.574 -8.309 -12.53 -27.55 -43.05 -49.98 0
3 0.655 1.199 1.581 -3.028 -7.475 -11.56 -21.21 -32.47 -37.77 0
4 0.452 0.830 1.097 -2.602 -6.827 -10.80 -14.24 -21.83 -25.92 0
5 0.249 0.462 0.615 -2.305 -6.361 -10.23 -6.878 -11.30 -14.41 0
6 0.047 0.097 0.141 -2.140 -6.069 -9.842 0.541 -0.984 -3.222 0
7 -0.151 -0.261 -0.326 -2.102 -5.945 -9.627 7.686 9.010 7.682 0

6.530109231c,, +10.22958289c,, +11.86421095¢,; - 1960495038k, , +
-3.645966364k,, - 4.848365447k  +55.41966307m,, -3.5741252144 = 27.55106708
6.530109231c,, +10.22958289¢,, +11.86421095¢,; -1.960495038k,, +
-3.645966364k,, - 4.848365447k,, +103.2177915m,, -8.309547129 4 = 43.05295334
6.530109231c,, +10.22958289c,, +11.86421095¢;, - 1960495038k, +
-3.645966364k,; - 4.848365447ks, +125.6921749m., -12.53276334 4 = 49.98419561
11.99138447¢,, +18.57767897c,, +21.54901416¢,, -3.963530244k,, +
-7.330953086k,, -9.710841415k,; +118.7993302m,, - 6.05599538 1 = 42.42620073
11.99138447¢,, +18.57767897¢,, +21.54901416¢,, - 3963530244k, , +
-7.330953086k, -9.710841415k,, +209.014199 1m,, - 14.94947504. = 64.94662517
11.99138447¢,, +18.57767897c, +21.54901416¢,; - 3.963530244k,, +
-7.330953086k, -9.710841415k,, +247.7987888m,, - 23.12856604 1 = 75.54706844
16.25219689¢,, +25.05880963c,, +29.1839893c,, - 5.991749269k,, +
-11.02771016k,, -14.55974236k,, +188.5633784m,, - 7.8057493464 = 42.71008662
16.25219689¢,, +25.05880963c,, +29.1839893¢,, - 5.991749269k,, +
-11.02771016k,, - 14.55974236k, +315.4086279m,, - 20.47987337 1 = 65.5016091
16.25219689¢,, +25.05880963 ¢, +29.1839893¢,, -5.991749269k, +
-11.02771016k, - 14.55974236k;, +366.308967m,, - 32.4023565 1, = 77.76754921
19.22349368¢,, +29.71998¢,, +34.88815366¢,, -8.025522019%, , +

-14.70992173k,, - 19.37005109k,, +262.1456565m,, -9.219147078 4 = 27.51387095
19.22349368¢,, +29.71998¢,, +34.88815366¢,, -8.025522019%, +

-14.70992173k,, -19.37005109k,, +420.7806996m,, - 25.44202967 11 = 45.18665013
19.22349368c¢,, +29.71998c,, +34.88815366¢, -8.025522019%, +

-14.70992173k,, -19.37005109k,; +481.3925653m,, - 40.92147627 4 = 57.65662627
20.87593448¢,, +32.63071047¢,, +38.76815579c,; - 10.04404035k,, +
-18.35269116k,, - 24.11906503k,, +336.3435484m,, -10.69771345 4 = -2.706607271
20.87593448¢,, +32.63071047¢,, +38.76815579¢,, -10.04404035k,, +
-18.35269116k,, - 24.11906503k,, +523.9056159m,, -30.347171864 = 4.920854511
20.87593448c¢,, +32.63071047c,; +38.76815579¢4, - 10.04404035k,, +
-18.35269116k,, - 24.11906503k, +593.31060791,, - 49.21184428,1 =16.11176152
21.2475239¢,, +33.87468607¢,, +40.91799336¢,; -12.02666078k,, +
-21.93279749k,, - 28.78604474k,, +407.7915769m,, -12.61430249 11 = -46.11674581

(28)

The solution of system of equations (28) yielded the
following results:

m,, =10.724kg, m,, =10.134kg, my, =20.32kg,

K, =42002, k. =-21002, &, =0
m m

ky, =4200N, k= 2100N, £, =21002
m m

. _ 9)
i =4.8104&, € =_1'9898&’ €3 =0
m m

e, =476475 o~ 108088 o —35630 N8
m m m

1=0.0774659s"

Using results (27) and relation (23), parameter k of the
assumed Rayleigh damping model was calculated:

umy, +xk, =c,

(30)

0.0774659-10.724 + k- 4200 =4.8104 = & =0.00094753s

All the obtained results (see 29 and 30) are perfectly
consistent with the data assumed for the computational
model (see 26 and tab. 2.). This is evidence of the high
effectiveness of the proposed input—output method with
system momentum change. One should also bear in mind
that analyses made using this method are performed in the
time domain. Hence, in each discrete time point for which
the input signal and the output signal are determined, one
gets a system of equations analogous to (28). The solution
of the whole set of systems of equations obviously yields
sets of values of the particular model parameters being
determined. In numerical analyses, these sets contain
the same recurring elements, for example, m,, = {10.724,
10.724, ..., 10.724}. Whereas in the case of experiments
conducted on real structures, the set of values determined
for a particular parameter most probably will range
around the expected value. This is owing to, among other
things, the accuracy with which physical quantities are
measured. Then, statistical calculus can prove helpful in
determining the sought values of the parameters of the
model being identified.
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Table 4: Dynamic response of computational model at time instant t = 9.3s.

Iteration step Displacements Velocities Accelerations
[mm] [mm/s] [mm/s?]
4 9> 95 ql qz 43 éjl qz g z
1 -3.578 -7.647 -11.07 -21.71 -53.28 -83.45 144.3 378.9 603.6 -240.5
2 -3.044 -6.558 -9.494 -21.76 -53.65 -84.01 149.0 363.4 552.0 -240.5
3 -2.502 -5.469 -7.946 -22.22 -53.78 -83.11 151.1 344.6 503.3 -240.5
4 -1.936 -4.385 -6.465 -22.85 -53.46 -80.94 143.3 319.3 461.3 -240.5
5 -1.344 -3.319 -5.085 -23.17 -52.44 -77.80 122.1 287.1 427.9 -240.5
6 -0.742 -2.297 -3.826 -22.70 -50.48 -74.00 89.30 250.2 402.7 -240.5
7 -0.162 -1.346 -2.697 -21.10 -47.46 -69.80 51.76 212.2 383.6 -240.5
2
PSD [cm™/Hz]
6p
or
4af
3

Ma
LI B e e e B e e e B
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Figure 3: Spectral power density determined from displacements registered during 2006 Kiholo Bay earthquake.

4.3 Second kinematic excitation — sum of
three harmonics

In this case, computational model vibrations were induced
by subgrade displacement described by a function being a
sum of three asynchronous harmonic functions:

2(¢)=0.0025in(6.2832¢)+

0.001sin(8.8858¢)+0.0014sin(1 .6239¢) G

Owing to this, the obtained function z(t) is neither
harmonic nor periodic. The choice of such a function was
dictated by a desire to see what effect the non-periodicity
of the function representing system excitation can have on
model identification.

The system parameter identification procedure was
carried out similarly as in Section 4.2, that is, in each
step of iteration connected with a change of system
momentum, the dynamic response of the model was
determined. Exemplary values of structure displacements,
velocities and accelerations determined at instant ¢ = 9.3s
for each iteration step are presented in Table 4. Similarly
as in the case of the first kinematic excitation, also this
time equation (26) was solved in the first iteration step,
whereas in each successive step of system, momentum
change equation (26) modified consistently with relation
(15) was solved.

Using the data contained in Table 4 and relation (24),
the following system of equations was obtained at time
instant t = 9.3s
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Table 5: Dynamic response of computational model at time instant t = 7.71s.

Iteration step Displacements Velocities Accelerations

[mm] [mm/s] [mm/s?]

4 9> 95 q} ‘b q.3 ql qz iis z
1 5.039 7.062 9.491 17.36 23.66 13.55 -1274 -605.3 -933.9 648.8
2 4.324 6.151 8.897 25.15 22.09 14.97 -1172 -498.1 -965.6 648.8
3 3.508 5.281 8.293 31.56 19.94 16.40 -1025 -432.6 -991.9 648.8
4 2.614 4.444 7.685 35.78 17.88 17.78 -843.2 -398.6 -1014 648.8
5 1.681 3.623 7.079 37.28 16.25 19.11 -645.9 -379.1 -1034 648.8
6 0.754 2.798 6.479 36.02 14.96 20.44 -454.0 -356.7 -1056 648.8
7 -0.122 1.960 5.888 32.30 13.60 21.88 -285.5 -318.9 -1079 648.8

0.4103211551¢,, -11.89047305¢,, - 30.50430108¢,, +5.362554301k,, +
+10.51327577k,, +14.83812907k,, - 28.26435387m,, - 14.08876767 11 = 166.28415
0.4103211551c,, - 11.89047305¢,, - 30.50430108c,, +5.362554301k,, +
+10.51327577k,, +14.83812907k,, - 184.2992374m,, - 32.89418304 4 = -132.6862801
0.4103211551c,; - 11.89047305¢,, - 30.50430108c,, +5.362554301k,, +
+10.51327577k,, +14.83812907k, - 463.941934m,, - 50.75469856 11 = -434.0948903
-2.075003428¢,, - 21.34180718c,, - 46.56780678c,, +10.59745391k,, +
+21.12547402k,, +30.15086742k,, +13.80823768m,, - 28.67460025 1 = 324.1537817
-2.075003428¢,, - 21.34180718c,, - 46.56780678¢,, +10.59745391k,, +
+21.12547402k,, +30.15086742k, -333.6180758m,, - 67.6786329 4 = -235.5087924
-2.075003428¢,, - 21.34180718c, - 46.56780678c,, +10.59745391k,, +
+21.12547402k, +30.15086742k,, - 964.0689238m,, -104.7220983 11 = -768.1643827
-8.931268949¢,, - 28.7009364c,, - 47.88619858¢,, +15.89947459k,, +
+31.8413011k,, +45.47860409%,, +51.58352522m,, - 45.06878003 1 = 474.8980863
-8.931268949¢,, - 28.7009364c,, - 47.88619858¢,, +15.89947459%,, +
+31.8413011k,, +45.47860409k,, - 504.2283499m,, -103.725688 14 = -302.0801065
-8.931268949¢,, - 28.7009364c,, - 47.88619858c¢;, +15.89947459k,, +

+31.841301 1k, +45.47860409k, -1452.66980 1, - 157.4786649 4 = -1005.666311
-18.54646449¢,, -32.36217053c,, - 35.84481265¢,, +21.463095689%,, +
+42.63809288k,, + 6038762045k, +7.06559793m,, - 63.937784924 = 651.0046194
-18.54646449¢,, - 32.36217053c,, - 35.84481265¢,, +21.463095689%,, +
+42.63809288k, +60.38762045k, - 734.873516m,, -139.76541 114 = -310.5154088
-18.54646449¢,, -32.36217053c,, - 35.84481265¢,, +21.463095689k, , +
+42.63809288k, +60.38762045k, - 1887.872506m, - 205.15499891 = -1166.807333
-26.73148372¢,, -29.76695652¢,, -13.03203309¢,, +27.36836296k,, +
+53.4001166k,, +74.52395036k,; -168.8190666m,, -84.01474077 1 = 901.6981065
-26.73148372¢,, - 29.76695652¢,, -13.03203309¢,, +27.36836296k,, +
+53.4001166k, +74.52395036k, -1036.662776m,, -173.4091569,. = -237.249631
-26.73148372¢,, - 29.76695652¢,; - 13.03203309¢,, +27.36836296k,; +
+53.4001166k, +74.52395036k,, - 2244.831879m, - 245.0373588 = -1280.029479
-28.3480409¢,, - 18.42478678¢,, +17.51709969¢,; +33.51029929k,, +
+63.94926615k,, +87.64176381k,, - 473.4602865m,, -101.7876232,1 = 1264.82246

The solution of system of equations (32) yielded the
following results:

my, =10.724kg, m,, =10.134kg, m,, =20.32kg,

K, =4200, &, =-21002, &, =0
m m

ky, =4200N, k, =2100Y, &, =2100N
m m m

N-s N-s 33)

0y =48104—5 ¢, =—19898"> ¢, =0
m m

e =476475 o~ 108088 o _3563008
m m m

1=0.0774659s™

Using results (33) and relation (23), also parameter k of the
assumed Rayleigh damping model was determined:

wmy + ik =c

(34)
0.0774659-10.724 + k- 4200 = 4.8104

= xk=0.00094753s

Also this time all the obtained results (see 33 and 34)
perfectlyagreewith thedataassumed forthecomputational
model (see 26 and Table 2). Based on obtained results, it is
possible to formulate the fundamental conclusion that the
identification method proposed in this paper is effective
in the case of describing kinematic excitation using a non-
periodic function that meets the conditions of oscillatory
motion (limited amplitudes, passing through a neutral
position).

4.4 Third kinematic excitation — 2006 Kiholo
Bay earthquake

In this case, computational model vibrations were
excited by subgrade displacement — the 2006 Kiholo
Bay earthquake record made by the United States
Geological Survey. Data, in the form of discrete functions
of displacements, velocities and accelerations, relating
to this earthquake are available from the USGS servers
under the National Strong Motion Project. A diagram
of the displacements registered during the earthquake
is presented in Figure 2. On their basis, spectral power
density was determined to show the dominant harmonic
components of the signal (see fig.3).

The system parameters identification procedure was
carried out similarly as in Section 4.2, that is, in each step
of iteration connected with system momentum change, the
model’s dynamic response was determined. Exemplary
values of the displacements, velocities and accelerations
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of the structure determined at instant t = 7.71s for each
iteration step are presented in Table 5. Similarly as in the
case of the first and second kinematic excitations, also
this time equation (26) was solved in the first iteration
step, whereas in each subsequent iteration step of system
momentum change, equation (26) modified consistently
with relation (15) was solved.

Using the data presented in Table 5 and relation (24),
the following system of equations was obtained at time
instant t = 7.71s:

77.925656167¢,, -15.633080026¢,, +14.151297625¢,, - 7.14885848 15k, +
-9.1154927678k,, - 59366834385k ; +1021.3051498m,, -25.154704165 1 = 487.80454281
77.925656167¢,, - 15.633080026¢,, +14.151297625¢,, - 7.1488584815k,, +
-9.1154927678k,, - 5.9366834385k,; +1071.327591 1m,, - 22.09443638 1 = -186.67215605
77.925656167¢,, -15.633080026¢,, +14.151297625c, - 7.1488584815k,, +
-9.1154927678k, - 5.9366834385k,, - 317.76967925m,; - 14.967817358 41 = 280.84136637
142.02789503¢,, -37.158419541¢,, +28.500895065¢,; - 15.310837955k, , +
-17.812543652k,, -11.977268115k,; +2497.1919157m,, - 63.129856102 = 680.43173244
142.02789503c,, - 37.158419541c,, +28.500895065¢,, - 15310837955k, +
-17.812543652k, - 11.977268115k,; +1726.6986834m,, -39.883804858 1 = -504.41853055
142.02789503¢,, - 37.158419541c,, +28.500895065¢5, - 15.310837955k,, +
-17.812543652k, - 11.977268 115k, - 579.90442042m,, - 32.805554204 41 = 614.10968097
184.13248993¢,, - 57.731752723¢,, +42.318821939¢,, - 24.253898714k,, +
-26.178053538k,, - 18.060014519k,, +4315.5560843m,, -107.32616262 = 475.13834809
184.13248993c,, - 57.731752723c,, +42.318821939c,, - 24.2538987 14k, +
-26.178053538k, -18.060014519k,, +2066.9536927m,, - 53.6537073321 = -858.70429861
184.13248993c,, - 57.731752723c,, +42.318821939¢,, - 24.2538987 14k ; +
26178053538k, -18.060014519k, -801.49291292m,, - 53.3537093684 = 987.6410692
199.22773148¢,, - 74.046421114c,, +55.55176267 ¢, - 33.58759407k,, +
-34.305368234k,, - 24.121928108k,, + 6288.5876119m,, -149.139646791 = -155.69481359
199.22773148c,, - 74.046421114c,, +55.551762671c,, - 33.58759407k,, +
-34.395368234k,, - 24.121928108k,, + 2261.4183226m,, - 65.012409086 41 = -1222.7249168
199.22773148¢,, - 74.046421114c,; +55.55176267 lcs, - 33.58759407k,, +
-34.395368234k,, - 24.121928 108k, -1007.6396101ms, - 76.43145545, = 1399.3134378
186.55882771c,, -86.952949034c,, +68.839933587c,, - 42.8518927024,, +
-42.64556801k, - 30.117723245k,, +8207.0559541m,, -180.0901066,4 = -1153.8526881
186.55882771c,, -86.952949034c,, +68.839933587c,, - 42.851892702k,, +

- 42.64556801k,, -30.117723245k,, +2485.1476848m,, - 74.812247397 1 = -1640.2708271
186.55882771c,, -86.952949034c,, +68.839933587c,, - 42.851892702k,; +

- 42.64556801k,, -30.117723245ky, -1221.465389m, - 102.18340477 1 = 1856.0546867
149.36690756¢,, -100.57628124c,, +83.250993827¢, - 51.612557515k,, +
-51.020714688k,, - 36.033326961k, +9892.784391 Im,, -193.79297583 11 = -2396.0602879

(35)

The solution of system of equation (35) yielded the
following results:

m,, =10.724kg, m,, =10.134kg,

k”:4200§, kn:—ZIOOE, ki; =0
m m

my, =20.32Kkg,

ky, =42008 ) &, =—21002, &, =21002
m m m

. ) (36)
c, =481045 ¢ —_10898NS o g
m m
e, =47647N8 o 10808 NS L _3563 N8
m m m

1=0.0774659s™
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Using results (36) and relation (23), parameter k of the
assumed Rayleigh damping model was calculated:

umy +rk, =c (37)

0.0774659-10.724 + k- 4200 =4.8104 = x=0.00094753s

Also this time all the obtained results (see 36 and 37)
perfectlyagreewith thedataassumed forthe computational
model (see 26 and tab. 2.). Taking into account the fact that
the real earthquake signal is usually a function of many
harmonic components, based on the obtained results, it is
possible to draw a fundamental conclusion — the method
of system identification proposed in the paper is effective
for a complex description of kinematic excitation. The
discrete Fourier transform performed on the real signal
of the 2006 Kiholo Bay earthquake (see Fig. 3) indicates
a significant influence of dozen harmonic components
causing vibrations of the analysed model. In this sense,
the complexity of the signal should be understood as
a finite sum of harmonic functions modelling a given
excitation. Despite such complexity of the kinematic
excitation, the proposed identification method allows
obtaining accurate M, C and K matrices, consistent with
the assumed numerical model.

5 Conclusions

In this paper, the theoretical considerations regarding the
possibility of full identification of a numerical model’s
parameters by means of the input-output method with
system momentum change have been presented. The
aim of the work is to identify the matrices M, C and K,
describing the fully analysed discrete dynamic system.
The proposed system identification method is based
on the knowledge of the vibration excitation (the input
signal) and the structure’s dynamic response to the
applied excitation. The reverse problem defined in this
paper consists of determining the coefficients of matrices
M, C and K, which in the case of kinematic excitation
of the system vibrations is possible only when a known
change in the momentum of the analysed object is made.
In order to obtain a full description of the excitation
vector (see eq. 2), the mass matrix must be known. When
this matrix is not known, the system must be modified
in order for the reverse problem to be solvable. Adding
known masses to the analysed system is equivalent to
introducing additional known forces to the equation of
motion. As a result, this procedure leads to obtaining a
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linear, non-homogeneous, algebraic system of equations,
from which the unknown coefficients of the individual
matrices M, C, K are determined. If at the same time one
takes into account the fact that the equation of motion of
the computational model (see eq. 1, 2) defined in the time
domain must be satisfied in any time point, one will get
a set of systems of equations since in each discrete time
point for which the values of the input signal and the
output signal are known it is possible to write a system of
algebraic equations.

In order to verify the correctness and effectiveness of
the proposed system identification method, numerical
analyses were carried out for a shear building model.
The results presented in Sections 4.2-4.4 in each of the
analysed cases of kinematic excitation confirmed the
effectiveness of the proposed method. For both harmonic
excitation, the sum of three harmonic components and
the real earthquake, accurate values of the numerical
model parameters were determined, consistent with
the assumed values. Such precise results were probably
obtained because the identified object was a numerical
model whose dynamic response (the output signal) can
be obtained with practically any precision. According
to the description of the numerical analyses, presented
in Section 4, first all the necessary geometric-material
data relating to the computational model were assumed
and an equation of motion was written in the base of
the assumed generalized Lagrangian coordinates. Then,
series of calculations, consisting in determining the
model’s dynamic response to the applied kinematic
excitations while modifying the system masses in the
particular experiment steps, were performed. Any results
obtained in this way depend on the assumed calculation
accuracy, which is limited only by the memory capacity of
the computer performing the calculations. This is both an
advantage and a disadvantage of the proposed method, as
in experimental investigations conducted on real building
structures, it may be difficult or simply impossible to
attain the proper accuracy.

Thetheoretical considerations and numerical analyses
performed in this paper allow to formulate a general
conclusion that the proposed method can be useful in
experimental studies carried out on laboratory models of
building structures in order to determine the appropriate
damping model applied to specific structures subjected to
kinematic excitations. Many research centres in the world
investigating problems relating to the dynamics of building
structures have suitable measuring instrumentation and
shake tables. If all the requirements of the proposed
input-output method with system momentum change
are satisfied, this method can be successfully used to
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identify model parameters. One should emphasize here
the main advantage of the proposed method: mainly, the
full identification of system parameters. Knowing mass
matrix M and stiffness matrix K, one can determine the
eigenfrequencies and eigenvectors of the analysed model.
The identification of damping matrix C, besides making
it possible to determine the damping coefficients, opens
up possibilities of defining the most accurate damping
model for the given building structure. Thus, the proposed
method makes it possible to determine an optimal
damping model (e.g., mass damping, material damping,
the Rayleigh model, the constant damping decrement
model) in laboratory investigations, to be used in
numerical analyses, for example, at the stage of designing
areal building structure. Taking into account the fact that
the proposed method refers to linear systems in which the
damping matrix preserves symmetry and is proportional
to the M and K matrices, it is possible to show what extent
the identified damping matrix is correlated with the mass
matrix and to what extent with the stiffness matrix. In this
sense, the potential of the presented method is limited to
the identification of basic damping models, such as the
Rayleigh model.

The advantages and disadvantages of the proposed
input-output method with system momentum change
need to be further verified in experimental investigations
on laboratory models of building structures. The numerical
analyses theresults of which are reported in this paper have
corroborated the theoretical considerations regarding
the correctness of the proposed method formulation.
Therefore, as part of further verification of the method,
experimental investigations on laboratory models with the
use of a shake table and a video measurement system are
to be carried out. The results of the planned experimental
investigations will be presented in the next publications.
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