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Abstract: This paper presents theoretical considerations 
relating to the possibility of fully identifying the parameters 
of a numerical model describing a building structure. An 
input–output method with system momentum change 
is proposed for this purpose, thanks to which the basic 
matrices describing the system were identified, that is, 
the mass matrix M, the damping matrix C and the stiffness 
matrix K. The proposed way of system identification 
is based on the knowledge of the vibration excitation 
(the input signal) and the structure’s dynamic response 
(the output signal) to the applied excitation, and the 
analyses are performed in the time domain. The reverse 
problem defined in this way consists of determining the 
coefficients of matrices M, C and K at any discrete point 
of time. In the case when the vibrations of the system are 
excited by kinematic excitation (ground motion), in order 
for the inverse problem to be solvable, either knowledge 
of the mass matrix or a known modification of the system 
masses is required. This is due to the representation of 
excitation forces, which in the case of kinematic excitation 
contains a mass matrix in their full description. This paper 
presents a method based on an inertial modification, that 
is, adding known masses to the analysed system, which 
entails a change in system momentum. The addition 
of known masses to the system being identified results 
in the introduction of additional known forces into the 
system. In this way, a heterogenous linear algebraic 
system of equations is obtained in the reverse problem 
and the coefficients of the particular matrices M, C and K 
are calculated from this system of equations. Moreover, 
considering the fact that the input signal and the output 

signal are known in many time points, the proposed 
procedure leads to a set of systems of equations.

In order to verify the correctness and effectiveness of 
the proposed system identification method, numerical 
analyses for a shear building model were carried out 
as part of this study. Model vibrations were induced 
kinematically, and the functions describing the 
displacements of the subgrade were assumed in the form 
of a harmonic, the sum of three asynchronous harmonic 
functions, and a real earthquake. The results of numerical 
analyses confirmed the effectiveness of the proposed 
method in each of the three excitations.

Keywords: numerical analyses; input–output method; 
change of system momentum; identification of system 
parameters; kinematic excitation.

1  Introduction
According to Newton’s second law, concerning the change 
of the momentum of a material particle, the cause of the 
motion of the particle is always the force acting on this 
particle. In order to be able to precisely indicate at any 
instant the position of a material particle in space, one 
needs a full description of the forces acting on this particle: 
the external (motion inducing) force and the force of 
inertia. The two forces counter each other at any instant, 
which is the basis for the d’Alembert’s principle [10, 15]. Let 
us assume that the material particle is tied with a base by 
means of an elastic constraint and a damping constraint, 
and the considerations are limited to one possible 
direction of motion of the particle. Then, the material 
particle will be acted on by the following forces: external 
active force F(t); reaction force S(t) originating from the 
elastic constraint, as a restitution force; reaction force R(t) 
originating from the damping force, as a resistance-to-
motion force; and inertial force B(t) arising as a result of 
the motion of the particle with an acceleration. According 
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to the d’Alembert’s principle at any instant, all the above-
mentioned forces must form a balanced system, whereby 
a reverse problem can be formulated. Let us assume 
now that in a given time interval of the observation of 
material particle motion, the trajectory of the motion and 
external active force F(t) causing this motion are known. 
Thus, generally speaking, the system’s input signal and 
output signal are known and on their basis one can 
determine the system’s parameters (the particle’s mass, 
the elastic constraint stiffness and the damping constraint 
parameter). The reverse problem presented in this way, 
consisting in identifying the system’s parameters on the 
basis of the knowledge of the input signal and the output 
signal, expresses an experimental modal analysis (EMA). 
This is one of the basic experimental methods used in, i.a., 
building structure dynamics, the theoretical foundations 
of which are extensively described in [9]. In one of this 
handbook’s chapters, several topics connected with EMA 
(e.g., system modal characteristics determination, kinds 
of measurements, error estimation) are discussed and 
procedural algorithms for this method as applied to a 
dynamical system with one or many degrees of freedom 
are exhaustively described.

In specialist literature, besides classical modal 
analysis, one can also find operational modal analysis 
(OMA). Its basic assumption is that the input signal 
(the excitation of the analysed building structure) is 
not known as it is of environmental nature. Using OMA, 
from a system’s dynamic response (the input signal) one 
can derive such modal parameters as eigenfrequencies, 
damping coefficients and vibration eigenforms. The 
evolution of modal analysis from the input–output type 
method to the input-alone type method was described 
by Cunha and Caetano in [6]. The authors presented 
experimental results of many years of research for real 
building structures such as dams, buildings and bridges.

For several decades owing to their popularity, the two 
methods have been the subject of numerous scientific 
publications. The theoretical foundations for the methods 
of identifying system parameters were provided in, i.a., 
studies [10, 12, 16]. In professor Ljung’s monograph [16], 
published in 1987, many topics, from linear and non-
linear systems, through methods of estimating system 
parameters, to model validation, were discussed. The 
authors of study [12], published in 1989, analysed the 
existing system identification methods with regard to the 
dynamic behaviour of building structures under various 
environmental loads (earthquakes, wind, excitation 
by water waves). In order to verify the methods, they 
carried out numerical analyses on theoretical models of a 
suspension bridge, a marine tower and a shear building. 

Another valuable monograph dealing with modal analysis 
is [10] published in 2001. It reviews modal analysis 
methods, discusses in detail several theoretical problems 
and provides examples of modal analysis application in 
the investigation of real building structures.

In the dynamics of building structures, the 
importance of modal analysis increases when a building 
structure (being designed or existing) is located in 
a seismic activity zone. Then, engineers work out 
structural solutions protecting building structures against 
environmental hazards. Hence, several scientific papers 
on modal analysis are devoted to (existing or model) 
building structures subjected to seismic loads. The 
dynamic parameters of structures under seismic loads are 
presented in, i.a., studies [2, 4, 5, 8, 11, 20, 22]. The results 
of modal analysis investigations carried out on laboratory 
models are reported in, i.a., papers [3, 14, 21].

One of the basic computational building models 
frequently used in building dynamics is a shear building 
structure. This model is particularly popular in dynamic 
analyses of real slender buildings to which rigid floor 
assumption applies. The results of modal analyses carried 
out on a shear building model are reported in, i.a., papers 
[13, 19, 21]. Their authors showed the proposed algorithms 
to be highly effective in identifying the system’s modal 
parameters when the structure’s excitation and dynamic 
response are known [19, 21] or when only the input signal 
is known [13].

The knowledge of the input signal is one of the basic 
prerequisites in modal analyses of real building structures 
and determines the choice of an identification method. 
The artificial excitation of vibrations by means of force 
exciters can be impossible to accomplish in a real building 
structure, whereas its environmental excitation can be 
difficult to identify. The impossibility of getting the input 
signal rules out the use of classical modal analysis, but 
one can still use operational modal analysis. However, 
also the latter method has a certain drawback – having no 
knowledge of the excitation forces one cannot precisely 
determine the eigenforms. This means that the identified 
generalized displacements are proportional to and proper 
for a given form, but accurate to a constant multiplier. 
This problem had been addressed for over a decade or 
so, and a new method consisting in changing the mass of 
an investigated system was proposed [1, 7, 17, 18, 23]. The 
authors of the studies showed, on the basis of experimental 
investigations [1, 7, 18, 23] or numerical analyses [17], that 
thanks to a modification of an investigated structure, 
consisting in a controlled change of its mass, one can 
obtain precise eigenforms. By adding known masses to 
the system, when knowing its dynamic response (the 
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input signal), one actually introduces additional known 
forces into the system, whereby it is possible to properly 
scale the generalized displacements.

The idea of modifying the system by changing its 
mass is also used in the present paper. According to 
Newton’s second law, a change in a system’s mass entails 
a change in its momentum. Considering the above, it 
is proper to call the method used as a ‘input–output 
method with system momentum change’. The known 
input signal constitutes the system’s kinematic excitation, 
while the output signal is the system’s dynamic response 
(displacements, velocities, accelerations). The numerical 
analyses were carried out in the time domain, changing 
stepwise the momentum of the system which was a 
shear building model. The main aim of this study was 
to demonstrate the possibility of full identification of 
the mass M, damping C and stiffness K matrices, which 
completely describe the analysed object. In difference to 
the cited scientific works and the identification methods 
used in them, the approach presented in this work leads 
to obtaining linear, algebraic systems of equations, the 
unknowns of which are the coefficients of the M, C and K 
matrices. This way significantly simplifies the calculations 
that must be performed to identify the parameters of the 
system compared to the methods discussed earlier (EMA, 
OMA). However, the proposed method requires the system 
mass modification, consisting in adding known masses 
to the analysed model and conducting the experiment 
iteratively. Such a procedure is necessary due to the loading 
of the structure in the form of kinematic excitation. This is 
related to the specific description of the excitation vector 
(input signal) in this case, which requires knowledge of 
the mass matrix M. However, if this matrix is unknown, 
the only way to determine the excitation vector is the 
known modification of the masses of the analysed system, 
which in effect allows obtaining non-zero solutions from 
algebraic systems of equations.

2  Theoretical basis
The theoretical considerations presented in this section 
apply to linear discrete dynamical systems which can 
constitute numerical models of real building structures. In 
a general case, the vibration of such systems are described 
by the equation [9, 15]:

( ) ( ) ( ) ( )tttt FqKqCqM =++  (1)

where M, C and K are mass, damping and stiffness 
matrices, respectively. The system excitation is vector F(t) 
of the excitation forces, while the system vibrations are 
described by a set of generalized Lagrangian coordinates 
contained in vector q(t). In the case when the system 
excitation is a kinematic excitation instead of a strictly 
force excitation, the equivalent vector of the excitation 
forces consists of the inertial forces produced by the 
motion of the base. Then, equation of motion (1) assumes 
the form

( ) ( ) ( ) ( )tttt zMqKqCqM  -=++ (2)

where ( )tz  is the vector representing the accelerations of 
the base.

The full identification of the system consists in the 
precise determination of matrices M, C and K through a 
stepwise change of its momentum. This change is effected 
using the method of a set of successive realizations. In 
the first step, one gets the system’s dynamic response as 
the reference. In each successive step, the momentum 
is changed by adding known masses to the system, in 
the places and along the directions of the structure’s 
generalized displacements. Let us then denote the matrix 
of the known added masses as follows:

,...2,1, =D iiM (3)

where the subscript ‘i’ designates the number of the step. 
In the first step, the matrix of the added masses amounts 
to zero matrix, and equation (2) assumes the form
      

( ) ( ) ( ) ( )tttt zMqKqCqM  1111111 -=++ (4)

where ( ) ( ) ( )ttt 111 ,, qqq   are the known displacement, 
velocity and acceleration vectors, respectively, describing 
the structure’s motion caused by known acceleration ( )tz  
of the subgrade. In the next step, equation (2) is written 
as follows:
   

( ) ( ) ( ) ( )tttt zMqKqCqM  2222222 -=++ (5)

Besides the obvious effect on the mass matrix, the 
system modification can also affect the damping matrix. 
Therefore, the Rayleigh damping model, which takes 
into account a possible effect of a change in mass 
on the structure’s damping, was adopted for further 
transformations. Hence, the relations between the first 
(reference) step matrices and the ones in the next steps 
(denoted as ‘i+1’) are as follows:
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In relation (6), m and k are Rayleigh damping coefficients, 
which in a discrete dynamical system can be interrelated 
with the reliable dimensionless damping coefficient of the 
structure. Then, damping in the discrete system applies to 
the structure’s two selected significant eigenfrequencies 
wj, wk (e.g., the two first base frequencies), and it is 
postulated that the following relation is true

k
k

kjj
j

ωk
ω
mγγωk

ω
m

+===+ (7)

whereas

const=== γγγ kj (8)

where g is then the structure’s reliable dimensionless 
damping coefficient. By transforming relations (7) and 
(8), one gets

γ
ωω

kγ
ωω

ωω
m

kjkj

kj

+
=

+
=

1, (9)

Considering that in each successive step of system 
momentum change, the input signal (kinematic excitation) 
and the output signal (the dynamic response of the 
system) are known, and equation (5) can be generalized 
and written for step ‘i+1’ as follows:

( ) ( ) ( ) ( )tttt iiiiiii zMqKqCqM  1111111 +++++++ -=++ (10)

Taking into account relations (6), the equation in step ‘i+1’ 
can be written as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )ttttttt
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(11)

According to equation (4), its left side, as an equivalent 
vector of the excitation forces in the first step, can be 
substituted into relation (11), whereby one gets
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and finally after ordering expression (12), one gets
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To simplify the notation of relation (13), let us assume that

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )ttt

ttt
ttt

ii

ii

ii

111

111

111
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++

D=-
D=-
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(14)

Then, formula (13) transforms to this form

( ) ( ) ( ) ( ) ( ) ( )( )tttttt iiiiii 111111111 ++++++ ++D-=D+D+D qqzMqKqCqM  m
(15)( ) ( ) ( ) ( ) ( ) ( )( )tttttt iiiiii 111111111 ++++++ ++D-=D+D+D qqzMqKqCqM  m

As already mentioned, the full identification of a discrete 
dynamical system here consists in determining matrices 
M1, C1 and K1, but because of the use of the Rayleigh 
damping model, besides damping matrix C1, an unknown 
coefficient m appears in equation (15). In linear discrete 
dynamical systems, matrices M1 and K1 are symmetric 
positive definite matrices whose dimension is equal to 
the number of the system’s dynamic degrees of freedom. 
Thus, also damping matrix C1 will satisfy this condition. 
Let us assume that parameter d specifies the number of 
the system’s dynamic degrees of freedom. Then, thanks 
to relation (15), one can formulate exactly d equations 
in step ‘i+1’, and the total number of unknowns in the 
identification of the system can be expressed by the 
formula

1
2
3

2
3 2

u ++= ddn (16)

while the number of needed iterations is given by the 
formula

d
nn u

r = (17)
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In the case of fractional values, number nr should be 
rounded upwards. Table 1 shows the number of needed 
system momentum changes for the number of dynamic 
degrees of freedom.

It should be added here that in the dynamics of building 
structures, many computational models are described 

using sparse matrices or simply diagonal matrices. 
This depends on the choice of generalized Lagrangian 
matrices and is connected with the occurrence of static 
couplings (the stiffness matrix) or inertial couplings (the 
mass matrix). If in the process of identifying the system’s 
parameters one assumes generalized coordinates in 
such a way that no inertial couplings occur, the mass 
matrix will be diagonal and the number of unknowns 
will decrease in comparison with the one determined 
from relation (16). Also the number of needed iterations 
connected with a change of system momentum can be 
lower, which undoubtedly has an advantageous effect on 
the realization of the experiment.

3  Description of computational 
model
The calculation model in this paper is a discrete linear 
dynamical system having a shear building structure, 
shown in Figure 1. The model has three dynamic degrees 
of freedom and its vibrations are induced kinematically. 
An energy analysis carried out using the Lagrangian 
method [15] yields the following matrices describing the 
considered system:
- The mass matrix
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It follows from the notation of the system’s kinetic energy 
Ek and the calculations of the particular derivatives that 
the mass matrix is diagonal and has the form


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Table 1: Number of needed iterations – changes in momentum of 
system being identified.

Number of 
dynamic 
degrees of 
freedom d

Number of relations 
given by relation 
(15)

Number of 
unknowns
nu

Number of 
iterations
nr

2 2 10 5
3 3 19 7

4 4 31 8

5 5 46 10

6 6 64 11

7 7 85 13

8 8 109 14

Figure 1: Shear building computational model.
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- The stiffness matrix
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It follows from the notation of the system’s potential 
energy Ep and the calculations of the particular derivatives 
that the stiffness matrix has the form
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- The equivalent vector of excitation forces
It follows from the system’s kinetic energy written 
according to relation (18) that the structure’s load 
constitutes the inertial forces resulting from the motion of 
the base
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-  The damping matrix
Consistently with the assumptions presented in Section 2, 
for computer simulations, the Rayleigh damping model in 
which the damping matrix has the form (cf. formula 6)
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was assumed. Taking into account relations (19), (21), 
(22), (23), equation (15), constituting the basis for the 
identification of the analysed system, assumes the form
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is the known matrix of the masses added to the system 
in step ‘i+1’. In relations (24) and (25), the superscript of 
the expressions does not represent raising to a power, but 
only the number of the step.

In the analysed computational shear building 
structure model, the mass matrix is diagonal and in fact 
contains three unknowns (m11, m22, m33). The stiffness 

Table 2: Computational model data in particular iteration steps.

Iteration 
step

1
ref.

2 3 4 5 6 7

m1 [kg] 10.724

m2 [kg] 10.134

m3 [kg] 20.32

Dm1 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6

Dm2 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6

Dm3 [kg] 0 0.1 0.2 0.3 0.4 0.5 0.6

k1 [N/m] 2100

k2 [N/m] 2100

k3 [N/m] 2100

m  [1/s] 0.077466

k  [s] 0.00094753
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matrix, although not diagonal, is symmetric, and so it 
contains six unknowns (k11, k12, k13, k22, k23, k33). The damping 
matrix for the Rayleigh damping model is symmetric, and 
so it also contains six unknowns (c11, c12, c13, c22, c23, c33). 
Taking additionally unknown parameter into account, one 
gets precisely 16 unknowns describing the investigated 
system. Relation (24) at any instant of the action of the 
kinematic excitation makes it possible to formulate three 
independent algebraic equations. Therefore, by changing 
the system’s momentum six times, one can obtain a 
sufficient number of independent algebraic equations to 
determine the 16 unknowns. It should be emphasized that 
in a general case, the number of equations, the number 
of unknowns and the number of needed iterations 
(changes of system momentum) are consistent with Table 
1 and formulas (16), (17). The peculiar structure of the 
computational model, its number of dynamic degrees of 
freedom and the way of choosing generalized coordinates 
describing the motion of the structure have a decisive 
bearing on the reduction of the number of unknowns. In 
the presented example, although the dynamic scheme 

has three degrees of freedom, from the overall number of 
19 unknowns (see Table 1), the problem boils down to 16 
unknown coefficients at any time instant.

4  Numerical analyses – description 
and results

4.1  General description

The identification of the parameters of the investigated 
system in this paper is based on the input–output method 
with system momentum change, and the numerical 
analyses are carried out in the time domain. As already 
known, this approach requires that the input signal 
and the output signal be known, which means that a 
numerical model for computer calculations must be 
precisely defined. The model data needed to perform 
the calculations are presented in Table 2. These are the 
assumed floor mass, column stiffness and Rayleigh 

Figure 2: Diagrams of applied kinematic excitations: a) harmonics, b) sum of three harmonic functions and c) real earthquake.
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damping model coefficient values and the values of the 
masses added in the particular iteration steps. In the 
first iteration step, the reference system response to the 
set kinematic excitation is determined, whereby vectors 

( ) ( ) ( )ttt 111 ,, qqq   are determined. In the second step, the 
known masses Dm1, Dm2, Dm3 (see tab. 2) are introduced 
into the system and then the excitation of structure 
vibrations is repeated using the same input signal as in 
the first step. This time one gets vectors ( ) ( ) ( )ttt 222 ,, qqq 

. In each subsequent iteration step, the procedure is 
carried out similarly as in the second step, that is, the 
system’s masses are appropriately modified (see Table 2) 
and the dynamic response of the structure for the known 
excitation is modified.

Since the system being identified in this paper is a 
numerical model, all the parameters describing it are 
known by assumption. Thus, the model’s equation of 
motion on the basis of which the reference response is 
determined has precisely this form
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(26)

When a real building structure is the system being 
identified, the equation describing its vibration is not 
known at the start as it is the target of identification. Then, 
generalized Lagrangian coordinates consistent with the 
considered dynamic degrees of freedom are assumed. 
Consequently, one obtains the equation of motion in form 
(1) or (2), as for a discrete dynamical system. Whereas both 
the dynamic response and the excitation of a real system 
are obtained by registering, for example, acceleration 
by means of accelerometers, velocity by means of 
vibrometers and displacements by means of linear 
displacement transducers. In the numerical model being 
identified accelerations, velocities and displacements 
are not registered, but determined in each iteration step. 
Then, when one has got all the input and output signals, 
the system being identified is treated as a real building 
structure whose parameters are unknown.

In order to demonstrate that the identification method 
proposed in this paper is effective, the investigated system 
was subjected to three different kinematic excitations. In 
the first case, it was assumed that the motion of the base is 
harmonic – described by the sine function. In the second 

case, it was assumed that the base motion is described by 
a function being the sum of three asynchronous harmonic 
functions, which means that the resultant motion is not 
periodic. In the third case, the record of a real earthquake 
– the 2006 Kiholo Bay earthquake with a magnitude of 
6.7 degrees on the Richter scale which took place in the 
archipelago of Hawaiian islands on 15 October 2006 – was 
assumed as the kinematic excitation. The earthquake data 
are available on the server of the United States Geological 
Survey which continuously monitors earthquakes in North 
America. Exemplary diagrams of the functions describing 
the displacements of the base are shown in Figure 2.

4.2  First kinematic excitation – harmonic 
function

In this case, the vibrations of the computational model 
were induced by subgrade displacement described by the 
following harmonic function:

( ) ( )ttz 2832.6sin002.0= (27)

In each step of iteration, connected with a change of 
system momentum, the dynamic response in the form 
of displacements, velocities and accelerations of the 
structure was determined. It should be noted here that 
the numerical integration of the equations of motion 
yields discrete time functions describing the motion of 
the structure. Then, the time step assumed for numerical 
analyses, connected with the integration of the equations, 
is a parameter inverse to the sampling frequency of the 
measuring apparatus used to register the vibration of real 
structures. Thus, in both experimental investigations and 
the computer calculations presented here, all the values 
of the input signal and the output signal are known in 
discrete time points. Thanks to this in each discrete time 
point within the experiment range, one gets a system of 
algebraic equations (see 28) from which the unknown 
parameters of the system are determined. Exemplary 
values of the structure’s displacements, velocities and 
accelerations determined at instant t = 5s for each iteration 
step are presented in Table 3. In the first iteration step, 
equation (26) was solved, while in each subsequent step 
of system, momentum change equation (26) modified in 
accordance with relation (15) was solved. 

Using the data in Table 3 and relation (24), the 
following system of equations was obtained for time t = 5s:
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81-46.116745=912.6143024-9407.791576+428.7860447-921.9327974-
812.0266607-640.9179933+733.8746860+21.2475239

216.1117615=849.2118442-9593.310607+324.1190650-618.3526911-
510.0440403-938.7681557+732.6307104+820.8759344

14.92085451=630.3471718-9523.905615+324.1190650-618.3526911-
510.0440403-938.7681557+732.6307104+820.8759344

71-2.7066072=510.6977134-4336.343548+324.1190650-618.3526911-
510.0440403-938.7681557+732.6307104+820.8759344

757.6566262=740.9214762-3481.392565+919.3700510-314.7099217-
98.02552201-634.8881536+29.71998+819.2234936

345.1866501=725.4420296-6420.780699+919.3700510-314.7099217-
98.02552201-634.8881536+29.71998+819.2234936

527.5138709=89.21914707-5262.145656+919.3700510-314.7099217-
98.02552201-634.8881536+29.71998+819.2234936

177.7675492=132.4023565-366.308967+614.5597423-611.0277101-
95.99174926-29.1839893+325.0588096+916.2521968

65.5016091=720.4798733-9315.408627+614.5597423-611.0277101-
95.99174926-29.1839893+325.0588096+916.2521968

242.7100866=67.80574934-4188.563378+614.5597423-611.0277101-
95.99174926-29.1839893+325.0588096+916.2521968

475.5470684=423.1285660-8247.798788+59.71084141-67.33095308-
43.96353024-621.5490141+718.5776789+711.9913844

764.9466251=414.9494750-1209.014199+59.71084141-67.33095308-
43.96353024-621.5490141+718.5776789+711.9913844

342.4262007=6.05599538-2118.799330+59.71084141-67.33095308-
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149.9841956=412.5327633-9125.692174+74.84836544-43.64596636-
81.96049503-511.8642109+910.2295828+16.53010923

443.0529533=98.30954712-5103.217791+74.84836544-43.64596636-
81.96049503-511.8642109+910.2295828+16.53010923

827.5510670=43.57412521-755.4196630+74.84836544-43.64596636-
81.96049503-511.8642109+910.2295828+16.53010923
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The solution of system of equations (28) yielded the 
following results:
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Using results (27) and relation (23), parameter k of the 
assumed Rayleigh damping model was calculated:
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All the obtained results (see 29 and 30) are perfectly 
consistent with the data assumed for the computational 
model (see 26 and tab. 2.). This is evidence of the high 
effectiveness of the proposed input–output method with 
system momentum change. One should also bear in mind 
that analyses made using this method are performed in the 
time domain. Hence, in each discrete time point for which 
the input signal and the output signal are determined, one 
gets a system of equations analogous to (28). The solution 
of the whole set of systems of equations obviously yields 
sets of values of the particular model parameters being 
determined. In numerical analyses, these sets contain 
the same recurring elements, for example, m11 = {10.724, 
10.724, ..., 10.724}. Whereas in the case of experiments 
conducted on real structures, the set of values determined 
for a particular parameter most probably will range 
around the expected value. This is owing to, among other 
things, the accuracy with which physical quantities are 
measured. Then, statistical calculus can prove helpful in 
determining the sought values of the parameters of the 
model being identified.

Table 3: Dynamic response of computational model at time instant t = 5s.

Iteration step Displacements
[mm]

Velocities
[mm/s]

Accelerations
[mm/s2]

1q 2q 3q
1q 2q 3q 1q 2q 3q z

1 1.051 1.933 2.552 -4.227 -9.333 -13.72 -33.09 -53.37 -62.55 0

2 0.855 1.568 2.067 -3.574 -8.309 -12.53 -27.55 -43.05 -49.98 0

3 0.655 1.199 1.581 -3.028 -7.475 -11.56 -21.21 -32.47 -37.77 0

4 0.452 0.830 1.097 -2.602 -6.827 -10.80 -14.24 -21.83 -25.92 0

5 0.249 0.462 0.615 -2.305 -6.361 -10.23 -6.878 -11.30 -14.41 0

6 0.047 0.097 0.141 -2.140 -6.069 -9.842 0.541 -0.984 -3.222 0

7 -0.151 -0.261 -0.326 -2.102 -5.945 -9.627 7.686 9.010 7.682 0
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4.3  Second kinematic excitation – sum of 
three harmonics

In this case, computational model vibrations were induced 
by subgrade displacement described by a function being a 
sum of three asynchronous harmonic functions:

( ) ( ) ( ) ( )ttttz 6239.11sin0014.08858.8sin001.02832.6sin002.0 ++=
(31)( ) ( ) ( ) ( )ttttz 6239.11sin0014.08858.8sin001.02832.6sin002.0 ++=

Owing to this, the obtained function z(t) is neither 
harmonic nor periodic. The choice of such a function was 
dictated by a desire to see what effect the non-periodicity 
of the function representing system excitation can have on 
model identification.

The system parameter identification procedure was 
carried out similarly as in Section 4.2, that is, in each 
step of iteration connected with a change of system 
momentum, the dynamic response of the model was 
determined. Exemplary values of structure displacements, 
velocities and accelerations determined at instant t = 9.3s 
for each iteration step are presented in Table 4. Similarly 
as in the case of the first kinematic excitation, also this 
time equation (26) was solved in the first iteration step, 
whereas in each successive step of system, momentum 
change equation (26) modified consistently with relation 
(15) was solved.

Using the data contained in Table 4 and relation (24), 
the following system of equations was obtained at time 
instant t = 9.3s

Table 4: Dynamic response of computational model at time instant t = 9.3s.

Iteration step Displacements
[mm]

Velocities
[mm/s]

Accelerations
[mm/s2]

1q 2q 3q
1q 2q 3q 1q 2q 3q z

1 -3.578 -7.647 -11.07 -21.71 -53.28 -83.45 144.3 378.9 603.6 -240.5

2 -3.044 -6.558 -9.494 -21.76 -53.65 -84.01 149.0 363.4 552.0 -240.5

3 -2.502 -5.469 -7.946 -22.22 -53.78 -83.11 151.1 344.6 503.3 -240.5

4 -1.936 -4.385 -6.465 -22.85 -53.46 -80.94 143.3 319.3 461.3 -240.5

5 -1.344 -3.319 -5.085 -23.17 -52.44 -77.80 122.1 287.1 427.9 -240.5

6 -0.742 -2.297 -3.826 -22.70 -50.48 -74.00 89.30 250.2 402.7 -240.5

7 -0.162 -1.346 -2.697 -21.10 -47.46 -69.80 51.76 212.2 383.6 -240.5

Figure 3: Spectral power density determined from displacements registered during 2006 Kiholo Bay earthquake.
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1264.82246=2101.787623-5473.460286-187.6417638+563.9492661+
933.5102992+917.5170996+818.4247867-28.3480409-

79-1280.0294=8245.037358-92244.83187-674.5239503+53.4091166+
627.3683629+913.0320330-229.7669565-226.7314837-

1-237.24963=9173.409156-61036.66277-674.5239503+53.4091166+
627.3683629+913.0320330-229.7669565-226.7314837-

5901.698106=784.0147407-6168.819066-674.5239503+53.4091166+
627.3683629+913.0320330-229.7669565-226.7314837-

33-1166.8073=9205.154998-61887.87250-560.3876204+842.6380928+
8921.4630956+535.8448126-332.3621705-918.5464644-

88-310.51540=1139.765411-734.873516-560.3876204+842.6380928+
8921.4630956+535.8448126-332.3621705-918.5464644-

4651.004619=263.9377849-7.06559793+560.3876204+842.6380928+
8921.4630956+535.8448126-332.3621705-918.5464644-

11-1005.6663=9157.478664-11452.66980-945.4786040+31.8413011+
915.8994745+847.8861985-28.7009364-98.93126894-

65-302.08010=1103.725688-9504.228349-945.4786040+31.8413011+
915.8994745+847.8861985-28.7009364-98.93126894-

3474.898086=345.0687800-251.5835252+945.4786040+31.8413011+
915.8994745+847.8861985-28.7009364-98.93126894-

27-768.16438=3104.722098-8964.068923-230.1508674+221.1254740+
110.5974539+846.5678067-821.3418071-82.07500342-

24-235.50879=67.6786329-8333.618075-230.1508674+221.1254740+
110.5974539+846.5678067-821.3418071-82.07500342-

7324.153781=528.6746002-813.8082376+230.1508674+221.1254740+
110.5974539+846.5678067-821.3418071-82.07500342-

03-434.09489=650.7546985-463.941934-714.8381290+710.5132757+
15.36255430+830.5043010-511.8904730-510.41032115

01-132.68628=432.8941830-4184.299237-714.8381290+710.5132757+
15.36255430+830.5043010-511.8904730-510.41032115

166.28415=714.0887676-728.2643538-714.8381290+710.5132757+
15.36255430+830.5043010-511.8904730-510.41032115
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The solution of system of equations (32) yielded the 
following results:
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Using results (33) and relation (23), also parameter k of the 
assumed Rayleigh damping model was determined:
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Also this time all the obtained results (see 33 and 34) 
perfectly agree with the data assumed for the computational 
model (see 26 and Table 2). Based on obtained results, it is 
possible to formulate the fundamental conclusion that the 
identification method proposed in this paper is effective 
in the case of describing kinematic excitation using a non-
periodic function that meets the conditions of oscillatory 
motion (limited amplitudes, passing through a neutral 
position).

4.4  Third kinematic excitation – 2006 Kiholo 
Bay earthquake

In this case, computational model vibrations were 
excited by subgrade displacement – the 2006 Kiholo 
Bay earthquake record made by the United States 
Geological Survey. Data, in the form of discrete functions 
of displacements, velocities and accelerations, relating 
to this earthquake are available from the USGS servers 
under the National Strong Motion Project. A diagram 
of the displacements registered during the earthquake 
is presented in Figure 2. On their basis, spectral power 
density was determined to show the dominant harmonic 
components of the signal (see fig.3).

The system parameters identification procedure was 
carried out similarly as in Section 4.2, that is, in each step 
of iteration connected with system momentum change, the 
model’s dynamic response was determined. Exemplary 
values of the displacements, velocities and accelerations 

Table 5: Dynamic response of computational model at time instant t = 7.71s.

Iteration step Displacements
[mm]

Velocities
[mm/s]

Accelerations
[mm/s2]

1q 2q 3q
1q 2q 3q 1q 2q 3q z

1 5.039 7.062 9.491 17.36 23.66 13.55 -1274 -605.3 -933.9 648.8

2 4.324 6.151 8.897 25.15 22.09 14.97 -1172 -498.1 -965.6 648.8

3 3.508 5.281 8.293 31.56 19.94 16.40 -1025 -432.6 -991.9 648.8

4 2.614 4.444 7.685 35.78 17.88 17.78 -843.2 -398.6 -1014 648.8

5 1.681 3.623 7.079 37.28 16.25 19.11 -645.9 -379.1 -1034 648.8

6 0.754 2.798 6.479 36.02 14.96 20.44 -454.0 -356.7 -1056 648.8

7 -0.122 1.960 5.888 32.30 13.60 21.88 -285.5 -318.9 -1079 648.8
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of the structure determined at instant t = 7.71s for each 
iteration step are presented in Table 5. Similarly as in the 
case of the first and second kinematic excitations, also 
this time equation (26) was solved in the first iteration 
step, whereas in each subsequent iteration step of system 
momentum change, equation (26) modified consistently 
with relation (15) was solved.

Using the data presented in Table 5 and relation (24), 
the following system of equations was obtained at time 
instant t = 7.71s:

879-2396.0602=83193.792975-119892.78439+6136.0333269-8851.0207146-
1551.6125575-2783.2509938+24100.576281-56149.366907

671856.05468=77102.183404-91221.46538-4530.1177232-142.6455680-
0242.8518927-8768.8399335+3486.9529490-71186.558827

271-1640.2708=9774.8122473-482485.14768+4530.1177232-142.6455680-
0242.8518927-8768.8399335+3486.9529490-71186.558827

881-1153.8526=6180.090106-418207.05595+4530.1177232-142.6455680-
0242.8518927-8768.8399335+3486.9529490-71186.558827

781399.31343=576.4314554-011007.63961-0824.1219281-3434.3953682-
733.5875940-7155.5517626+1474.0464211-48199.227731

168-1222.7249=8665.0124090-262261.41832+0824.1219281-3434.3953682-
733.5875940-7155.5517626+1474.0464211-48199.227731

359-155.69481=79149.139646-196288.58761+0824.1219281-3434.3953682-
733.5875940-7155.5517626+1474.0464211-48199.227731

2987.641069=6853.3537093-92801.492912-1918.0600145-3826.1780535-
1424.2538987-3942.3188219+2357.7317527-93184.132489

861-858.70429=3253.6537073-272066.95369+1918.0600145-3826.1780535-
1424.2538987-3942.3188219+2357.7317527-93184.132489

09475.138348=62107.326162-434315.55608+1918.0600145-3826.1780535-
1424.2538987-3942.3188219+2357.7317527-93184.132489

97614.109680=0432.8055542-42579.904420-1511.9772681-5217.8125436-
5515.3108379-6528.5008950+4137.1584195-03142.027895

055-504.41853=5839.8838048-341726.69868+1511.9772681-5217.8125436-
5515.3108379-6528.5008950+4137.1584195-03142.027895

44680.431732=0263.1298561-572497.19191+1511.9772681-5217.8125436-
5515.3108379-6528.5008950+4137.1584195-03142.027895

37280.841366=5814.9678173-25317.769679-855.93668343-789.11549276-
157.14885848-2514.1512976+2615.6330800-6777.9256561

605-186.67215=822.0944363-111071.32759+855.93668343-789.11549276-
157.14885848-2514.1512976+2615.6330800-6777.9256561

81487.804542=6525.1547041-981021.30514+855.93668343-789.11549276-
157.14885848-2514.1512976+2615.6330800-6777.9256561
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The solution of system of equation (35) yielded the 
following results:

(36)
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Using results (36) and relation (23), parameter k of the 
assumed Rayleigh damping model was calculated:
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Also this time all the obtained results (see 36 and 37) 
perfectly agree with the data assumed for the computational 
model (see 26 and tab. 2.). Taking into account the fact that 
the real earthquake signal is usually a function of many 
harmonic components, based on the obtained results, it is 
possible to draw a fundamental conclusion – the method 
of system identification proposed in the paper is effective 
for a complex description of kinematic excitation. The 
discrete Fourier transform performed on the real signal 
of the 2006 Kiholo Bay earthquake (see Fig. 3) indicates 
a significant influence of dozen harmonic components 
causing vibrations of the analysed model. In this sense, 
the complexity of the signal should be understood as 
a finite sum of harmonic functions modelling a given 
excitation. Despite such complexity of the kinematic 
excitation, the proposed identification method allows 
obtaining accurate M, C and K matrices, consistent with 
the assumed numerical model.

5  Conclusions
In this paper, the theoretical considerations regarding the 
possibility of full identification of a numerical model’s 
parameters by means of the input–output method with 
system momentum change have been presented. The 
aim of the work is to identify the matrices M, C and K, 
describing the fully analysed discrete dynamic system. 
The proposed system identification method is based 
on the knowledge of the vibration excitation (the input 
signal) and the structure’s dynamic response to the 
applied excitation. The reverse problem defined in this 
paper consists of determining the coefficients of matrices 
M, C and K, which in the case of kinematic excitation 
of the system vibrations is possible only when a known 
change in the momentum of the analysed object is made. 
In order to obtain a full description of the excitation 
vector (see eq. 2), the mass matrix must be known. When 
this matrix is not known, the system must be modified 
in order for the reverse problem to be solvable. Adding 
known masses to the analysed system is equivalent to 
introducing additional known forces to the equation of 
motion. As a result, this procedure leads to obtaining a 
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linear, non-homogeneous, algebraic system of equations, 
from which the unknown coefficients of the individual 
matrices M, C, K are determined. If at the same time one 
takes into account the fact that the equation of motion of 
the computational model (see eq. 1, 2) defined in the time 
domain must be satisfied in any time point, one will get 
a set of systems of equations since in each discrete time 
point for which the values of the input signal and the 
output signal are known it is possible to write a system of 
algebraic equations.

In order to verify the correctness and effectiveness of 
the proposed system identification method, numerical 
analyses were carried out for a shear building model. 
The results presented in Sections 4.2–4.4 in each of the 
analysed cases of kinematic excitation confirmed the 
effectiveness of the proposed method. For both harmonic 
excitation, the sum of three harmonic components and 
the real earthquake, accurate values of the numerical 
model parameters were determined, consistent with 
the assumed values. Such precise results were probably 
obtained because the identified object was a numerical 
model whose dynamic response (the output signal) can 
be obtained with practically any precision. According 
to the description of the numerical analyses, presented 
in Section 4, first all the necessary geometric-material 
data relating to the computational model were assumed 
and an equation of motion was written in the base of 
the assumed generalized Lagrangian coordinates. Then, 
series of calculations, consisting in determining the 
model’s dynamic response to the applied kinematic 
excitations while modifying the system masses in the 
particular experiment steps, were performed. Any results 
obtained in this way depend on the assumed calculation 
accuracy, which is limited only by the memory capacity of 
the computer performing the calculations. This is both an 
advantage and a disadvantage of the proposed method, as 
in experimental investigations conducted on real building 
structures, it may be difficult or simply impossible to 
attain the proper accuracy.

The theoretical considerations and numerical analyses 
performed in this paper allow to formulate a general 
conclusion that the proposed method can be useful in 
experimental studies carried out on laboratory models of 
building structures in order to determine the appropriate 
damping model applied to specific structures subjected to 
kinematic excitations. Many research centres in the world 
investigating problems relating to the dynamics of building 
structures have suitable measuring instrumentation and 
shake tables. If all the requirements of the proposed 
input–output method with system momentum change 
are satisfied, this method can be successfully used to 

identify model parameters. One should emphasize here 
the main advantage of the proposed method: mainly, the 
full identification of system parameters. Knowing mass 
matrix M and stiffness matrix K, one can determine the 
eigenfrequencies and eigenvectors of the analysed model. 
The identification of damping matrix C, besides making 
it possible to determine the damping coefficients, opens 
up possibilities of defining the most accurate damping 
model for the given building structure. Thus, the proposed 
method makes it possible to determine an optimal 
damping model (e.g., mass damping, material damping, 
the Rayleigh model, the constant damping decrement 
model) in laboratory investigations, to be used in 
numerical analyses, for example, at the stage of designing 
a real building structure. Taking into account the fact that 
the proposed method refers to linear systems in which the 
damping matrix preserves symmetry and is proportional 
to the M and K matrices, it is possible to show what extent 
the identified damping matrix is correlated with the mass 
matrix and to what extent with the stiffness matrix. In this 
sense, the potential of the presented method is limited to 
the identification of basic damping models, such as the 
Rayleigh model.

The advantages and disadvantages of the proposed 
input–output method with system momentum change 
need to be further verified in experimental investigations 
on laboratory models of building structures. The numerical 
analyses the results of which are reported in this paper have 
corroborated the theoretical considerations regarding 
the correctness of the proposed method formulation. 
Therefore, as part of further verification of the method, 
experimental investigations on laboratory models with the 
use of a shake table and a video measurement system are 
to be carried out. The results of the planned experimental 
investigations will be presented in the next publications.
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