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I. ARTICLES
Antoni Smoluk*

PRE-ORDERS IN ECONOMICS AND MATHEMATICS

Preferences are fundamental for economics and we can find them by suitable experiments.
Measuring the utility is rather a hard problem. The main thesis of this paper says that we can
measure quality if we have defined relation of preference. Occasionally we have showed that the
principle of mathematical induction is an obvious lemma about preference relation. There is also
given some general fixed point theorem in a form of simple lemma. At the end we are giving some
representation theorem. Every order in a finite set is isomorphic with the relation of divisibility in
a set of natural numbers.

1. Theory of preferences is a foundation of economics, because theory of
economical equilibrium can be reduced to theory of preferences. Preferences
are special two-argument relations which are called pre-orders. Relation
P defined in the set X is called pre-order if it is reflective and transitive. Any
order, that is reflexive, antisymmetric and transitive relation, is of course
pre-order. Naturally identity function / from set X into X is a relation of
preference. Also the full relation X x X is a relation of preference. This relation
is the multifunction assigning to every point of the set X set X as its meaning.

Relations of preference are typical in economics and we can easily find them
by suitable public opinion polls. Measuring the utility is a difficult problem
(Luce 1996). In economics we do not have strict definitions, so we cannot
measure phenomena described by economic notions. Level of living is a very
good example of that kind of notion, particularly poverty, other are social
prestige, utility of goods, quality of education, and economical development of
a region. All these notions we may define by one term — preference. Even risk
is a preference (Rybicki, Smoluk 1996). For very large class of preferences
there are theorems on their numerical representation. So we have scales of
utility. It means that if in the set X exists preference, then there exists
numerical function which is increasing and accommodated with the relation of
preference. Such a function is just a numerical representation of the relation of
preference, that is this function measures the phenomenon defined by the
relation. In special cases these functions are even continuous.

Evidently every numerical function uniquely defines preference relation of
a special kind. The set of all numerical functions is imbedded in the set of
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preferences, and set of preferences is imbedded into the family of multifunc-
tions. Our main thesis is the proposition that preference is an origin notion and
the measure results from it. We can measure quality if we have defined a
relation of preference. Of course not every relation of preference has a
numerical representation. For example, a lexicographic order in set R’
(Cartesian product of the set R of real numbers) cannot be measured in the
sense stated above. Pre-order P in the set X is numerically realizable if and
only if there exists a function f: X — R, such that for every member of X is
assigned a number — measure of quality that this member has — with the
following property: for every a, b € X statement aPb is equivalent to the
statement f(a) < f(b). The most important relation of preferences is the
relation of implication in a set of some sentences. Occasionally we show that
principle of mathematical induction is an obvious lemma about preference
relation. In the last we state and prove some general lemma on existing of a
fixed point. That lemma is usually implicitly main part of almost all proofs of
the theorems on the existence of fixed point. It is stated here because the lemma
is universal and uses preferences. We can see that not only principle of
mathematical induction, but also some theorems on existence of a fixed point
follow from a simple lemma concerning the relation of preference. At the end
we are giving some representation theorem. Every order in a finite set is
isomorphic with the relation of divisibility in a set of natural numbers. This at
first glance unusual statement is quite simple and obvious on second thought.

2. The symbol F(X, X) represents the family of all functions f with
arguments and values in a set X. Let further the symbol P(X) represent the
family of all preferences in the set X. If fis an element of the set F(X, X), than
symbol P(f) represents the relation of preference such that xP(f)y if and only
if exists natural number » such that y = £"(x), where f° is the identity function
and ™' := f-f" (composition of functions).

LEMMA. Relation P(f) is a preference relation in the set X. It is called pre-
order generated by the function f

Proof is obvious. If pre-order is generated by a function then for every
element there is a consequence — the successor immediately following this
element.

THEOREM. The transformation which associates the preference relation
P(f) € P(X) with each function ffrom the set F(X, X) is an imbedding.

Proof is simple and is omitted. On the basis of this theorem we can treat
members of the set F(X, X) as preference relations. We can even say that the set
F(X, X) is the subset of P(X).

3. Every function whose domain is the set N = {0,1,..} of natural
numbers is called a sequence. Sequence f is called increasing if the range of it is
an ordered (pre-ordered) set and if n <k, then f, < f;, where f= (f, £, ...).
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If the range is naturally ordered two-element set {0, 1}, that is 0 < 1, then we
can easily put down the family of all increasing sequences: (1,1, 1,...),
0,1,1,..), (0,0,1,..), ... and of course the zero sequence (0,0,0,...). In
that case every increasing sequence is a stationary sequence or a sequence with
finite number of zeros at the beginning and then with all terms equal one. This
statement is just the principle of mathematical induction. If the increasing
sequence has a term equal 1, then all its terms, excluding perhaps a finite
number, are evidently also equal 1.

LEMMA. (Principle of mathematical induction). If a function f: N »> Y
mapping the set N of natural numbers into an ordered set Y is increasing, and the
term £, is a maximal element of the set Y, then the function f is constant function.

Relation of implication is a key for understanding the principle of
mathematical induction. Let / be a relation in some set S of statements defined
as follows: plg if and only if p, g € S and p implies q. Relation / is a pre-order
in the set S. Every pre-order relation generates an order relation. A relation
E defined by the condition: pEq if and only if plg, and glp is an equivalence
relation in the set S. Family of the equivalence classes S/E is, if the set S is non-
empty and closed with respect of negation (p in S implies that non p is in S), the
naturally ordered two points set {0, 1}. The element 0 represents equivalence
class of all false sentences and 1 represents equivalence class of all true
sentences. The element 1 is the unique maximal element of the set {0, 1} of
equivalence classes. We can now express the principle of mathematical
induction in the form stated above in the lemma. It is equivalent with classical
formulation (Smoluk 1987).

If the sequence (p,) of sentences fulfils the conditions:

1° py is true,

2° for every n € N the statement p, implies p,.; is true, then every sentence
Dn is true.

First condition means that the equivalence class py/E is equal 1, and the
second condition means that the sequence (p,/E) of equivalence classes is
increasing. From educational practise we know that above lemma on in-
creasing sequences is quite well accepted, but the principle of mathematical
induction in classical formulation is rather hard for students.

4. Sequence (x,) whose terms are members of the set X is called trajectory
of the point x, relative to a function f € F(X, X) if x,. = f(x,) for every
subscript n eN. From the definition of the pre-order P(f) generated by the
function f it follows that trajectory is an increasing sequence relative to pre-
order P(f).

Trajectory (x,) is a cycle if there exists a natural number m such that 1< m
and xo = f"(x;). Minimal number m with this property is called the cycle
length. Subset 4 of the set X is called invariant relative to function f € F(X, X),
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if image f(A4) of the set 4 is a subset of 4. Of course the set {xo, xi, ...}, that is
the range of the trajectory (x,) relative to the function f] is invariant relative to f.
Pre-order P(f), as any pre-order, is naturally an oriented graph for which X

is the set of the vertices and the set of arrows is U f" . Maximal connected
n=0

(connected in the sense of graph) subset of the set X is called an orbit of the
functions £. Orbits are invariant sets. If the set {a} is invariant relative to
function £, then the element a of the X is called fixed point of the function £, The
set of all fixed points of function f is denoted by Fix(f). There is an important
question: for which function f the set Fix(f) is non-empty? This question
concerns existence and this is the reason why it is so significant in mathematics
and applications. Under what condition the equation

fx)=x,

in not contradictory? Many problems concerning existence of resolutions of
some equations can be reduced to the question whether the set Fix(f) is
non-empty. If x, is a fixed point of the function f, then its trajectory (x,) is
acycle of length 1. If trajectory (x,) is a cycle of length m and a subset 4 of the
set {xo, Xj,...} has m points, then 4 = {x, x;,...} and f(4) = A. It means
that if Y is the family of equivalence classes given by the equivalence relation
E(f) generated by the pre-order P(f), then the set 4 is a member of the family
Y and this class 4 is a fixed point of the mapping

F: Y>Y
which is defined by the equation

F (xIP(f)) =f x)/P(f),

where x/P(f ) is the equivalence class of the member x € X, that is

xIP(f) = {y € X| xP(f)y}.

THEOREM. There exists a cycle of the function £.€ F(X, X) if and only if the
set Fix(F) is non-empty, where the transformation F was defined earlier.

Conclusion. If set X is finite, then every function f € F(X, X) has a cycle.
That means that function F generated by f has a fixed point.

LEMMA. If a function f € F(X, X), X is a compact Hausdorff’s space, and f'is
continuous at point @ €eX which is unique point of accumulation of the
trajectory (x,), then a e Fix(f).

Proof. Because space X is compact and the sequence (x,) has unique
accumulation point @ €X, then a = lim(x,). Function f is continuous at this
point, so we have f(a) = lim(f (x,)). From definition of the trajectory (x,) it
follows that x,., = f(x,), so we receive the conclusion: f(a) = lim(f (x,)) =
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= lim(x,) = a. This simple lemma is an example of general theorem concerning
fixed points.

5. If P is a pre-order in the X, then there is a unique multifunction
h:X — 2%such that A(a) = {x € X| xPa}. Relation P is an order if and only if
the function 4 is an imbedding. In the sequel the empty set is excluded from the
range of multifunction. If f: X — 2% is a multifunction, then by definition f°
is trivial (identical) multifunction such that f °(x) = {x}, for each x € X. For
every natural number n multifunction ™' is defined by induction: £ "'(x) =

= U{ fDIyef® (x)}. Obviously every function f € F(X, X) may be treated as

multifunction if we put H(x) = {h(x)}. If fis a multifunction, then f generates
unique pre-order in X in the same way as ordinary function: namely xPy if and
only if there is such n € Nthat y f"(x).

THEOREM. For every pre-order P in the set X there is a multifunction f such
that

P=P(f).
For proof it is enough to see that if P is a pre-order, then multifunction
f@)={x e X| aPx} generates a pre-order P.
Conclusion. The set of functions F(X, X) is imbedded in the set of all

pre-orders P(X), and the set P(X) of all pre-orders is imbedded in the set
M(X, X) of all multifunctions, so we have

F(X, X) c P(X) c MX, X).

6. THEOREM. Every order in the finite set is isomorphic with divisibility in
the subset of natural numbers (Smoluk 1996).

In a finite set there is not any other order than divisibility. It is not so
strange. Divisions are ideal and relation of divisibility is reduced to the relation
of inclusion of ideals. At the end we receive the universal order — relation of
inclusion in the family of sets.

REFERENCES

Luce, R. D. (1996): The Ongoing Dialogue between Empirical Science and Measurement Theory,
“Journal of Mathematical Psychology™ no. 40, pp. 78-98.

Rybicki, W., Smoluk, A. (1996): O aktuarystyce aktualnie [Up-to-date Remarks on Actuaristics],
“Wiadomosci Ubezpieczeniowe™ no. 4, pp. 33-38.

Smoluk, A. (1987): Podstawy analizy matematycznej [Foundations of Calculus). AE, Wroctaw.

Smoluk, A. (1995): Konflikt a réwnowaga [Conflict and Equilibrium), in: Ekonomia matematyczna
[Mathematical Economics]. AE, Wroctaw. Prace Naukowe AE [Research Papers of the WUE]
no. 706, pp. 159-168.

Smoluk, A. (1996): Pomiar jako zbidr rozmyty [Measurement as a Fuzzy Set], in: Zelia$, A., ed.:
Przestrzenno-czasowe modelowanie i prognozowanie zjawisk gospodarczych [Simulation and
Prediction in Economics. Time and Space Approach]. AE, Krakéw, pp. 81-88.



