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Summary

Mathematical model of the volume and solute flowsotigh artificial polymeric
membrane under occurrence of the concentration daoynlayers on both sides of this
membrane is presented. This nonlinear model, basdtle Kedem-Katchalsky and Rayleigh
equations, describes the volume flux generatedshyotic and hydrostatic forces, thicknesses
of the concentration boundary layers, concentratiamd hydrostatic pressures on the
membrane-concentrations boundary layers’ bordeesid®s, this model shows that the
volume flows and individual forces causes the flowmfuences on the thickness of
concentration boundary layers.

The nonlinear equations for volume flux, conceimraand thickness of concentration
boundary layers can be used to numerical calcumatidinear regime of the hydrodynamical
stability.

Keywords: membrane transport, Kedem-Katchalsky equatiocnacentration boundary layers,
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Transport membranowy niejednorodnych roztworéw niedektrolitow:
model matematyczny oparty na réwnaniach Kedem-Katchlsk’'ygo i
Rayleigha

Streszczenie

Przedstawiono model matematyczny przeptywow ctobgiowych i substancji
rozpuszczonej przez sztugzmembragn polimerows, w warunkach istnienia po obydwu jej
stronach sgzeniowych warstw granicznych. Ow nieliniowy modepasty na réwnaniach
Kedem-Katchalsky’ego i Rayleigha, opisuje struimiebjctosciowy generowany przez



bodziec osmotyczny i hydrauliczny, gruld stzeniowych warstw granicznych,¢genia i
cisnienia mechaniczne na granicach membraggesiowe warstwy graniczne. Ponadto ten
model pokazujeze przeptywy ohjtosciowe i poszczegdblne bace wywotupce te przeptywy
maja wptyw na grubé¢ sigzeniowych warstw granicznych.

Otrzymane nieliniowe rownania nadagic do obliczée numerycznych w liniowym
rezimie stabilndci hydrodynamicznej.

Stowa kluczowe transport membranowy, rownania Kedem-Katchalgiy, estzeniowe
warstwy granicznezshiowa liczba Rayleigha

INTRODUCTION

The famous Kedem-Katchalsky equations, descrildilegpassive membranes transport
was published in 1958 [1]. In the following years Kedem i A. Katchalsky presented a
version of equations describing the membrane tahsyf electrolyte solutions regarding
electrical effects [2] and active transport [3].eTdctive membrane transport was studied also
by other authors [4]. In these papers the concimia boundary layers were not regarded.
The few first of meaning papers, in which creatioihthese layers were regarded and
published by Dainty [5] and Ginsburg and Katchalfy But not till the end of last century
papers devoted to the modification of the KedemeKalsky (KK) equations were published.
In these papers the range of KK equations’ apjptinatto membrane systems containing the
concentration boundary layers was expanded. Papéilished by ASlezak [7, 8], M. Kargol
[9] and A. Kargol [10] had significant contributiam the study of this problem.

A membrane is an interphase between two adjacembgeneous phases (solutions)
acting as a selective barrier, regulating the parts of substances between the two
compartments. Homogeneity of these phases can lievad e.g. by mechanical devices
(stirrers). In case of binary homogeneous andalilgplutions the transport can be described
by the volume J,) and soluteJy) fluxes. Relationships between the fluxes andgireerating
forces (AP and/or An) have been described by Kedem-Katchalsky equatiphs The

classical version of these equations is as follows

J, =L (AP -anm) (1)
J. =aAr+C(l-0)J, )(2

where Ly, ¢ and w are the hydraulic permeability, reflection and usel permeability

coefficients; AP =R, — R is the mechanical pressure differendez=RT(C,-C, is)the



osmotic pressure differencéRT — product of the gas constant and thermodynamic
temperatureC, and C, — solutions concentratiorG = (C, - C,)[In(C,C, = +(C,+C)

— the average solute concentration in membrane.

In most cases, spontaneously occurring transpordegses in the external field such as
the electric or gravitational field, lead to creatiof local and/or global non-homogeneity in
solutions that modify the membrane transport [1R-Ohe of the reasons for forming this
non-homogeneity is the concentration polarizateading to the temporal-spatial evolution of
and thermodynamic flows and forces [8, 15, 16]cé&se of ion-exchange membranes and
electrolyte solutions, concentration polarizatisnai well-known phenomenon arising at the
interface between an ion-exchange membrane andraige solution when an electric
current passes through the system [17, 18]. Ipridsninent form, concentration polarization
is observed by the fact that the transmembrane diogs not increase with increasing of
driving force and reaches a limiting flux [19-21The theoretical modelling of the
concentration polarization phenomenon is basedcherNernst-Planck, Poisson [22-24], Fick
[15, 25, 26] and Kedem-Katchalsky [27-29] equations

In the case of the nonelectrolyte solutions trarnsgioough a neutral membrane, the
concentration polarization consists in formationtted concentration boundary layers (CBL)
at both sides of this membrane [np. 7-10, 12-16je Tayers can be treated as a liquid
membrane with suitable transport properties [8, Otle of the effects of the temporal-spatial
evolution of the concentration boundary layershis évolution of the concentrations field.
This evolution causes that solutions concentrat@nsiterfaces: membrane/solution in the

stationary state @;,C,), are crucially different from concentrations imetinitial moment
(C,.C,). These concentrations fulfil conditiors,<C, and C,>C, [15, 30]. Usually the
width of the CBLs is estimated by flux measuremeletg. 7, 8, 14, 31]. Alternatively,

microelectrodes placed near the membrane surfatdeaised to determine thickness from
the time-course of near membrane concentrationggsafi6,20,21,32,33-35]. Concentration
profiles may be also registered with optical methfii#t, 15, 25, 36, 37]. It means that these
layers, by reducing the concentration gradient ecithe membrane, limit both the osmotic
and diffusive flows. Kinetics of these flows, orethbhenomenological level, is controlled by

the concentration Rayleigh number [14, 37]:

R. =ga.f.d*(Dv)™ 3)



whereg is the gravitational acceleratiamh;- the fluid depth along the gravitational direction,

a. =(0pldC)/p — the variation of density with concentrationf. =0C/dz — the

concentration gradien) — the solute diffusion coefficient amd— kinematic viscosity.

Near-membrane concentrations boundary layers playaf additional kinetics barriers
in transport processes of rapidly permeating suwst through natural and artificial
membranes [38-43]. The rate and effectiveness ematal transformations within the CBLs
are affected by the availability of the reactadt®ar-membrane boundary layers are the
source of an inaccurate Michaelis constant in mamdrtransport [42]. The size of CBLs
seems to have regulatory functions. Variationspithelial function or luminal stirring can for
example readily influence the absorption of smaillenules [40, 41]. In terrestrial conditions,
the concentration boundary layers can be destrbyeshtural convection and sedimentation
[44].

In the present paper the mathematical model ofvtleme and solute flows through
artificial polymeric membrane under occurrencehaf toncentration boundary layers on both
sides of this membrane is presented. This nonlineadel, based on the Kedem-Katchalsky
and Rayleigh equations, describes the volume flemegated by osmotic and hydrostatic
forces, thicknesses of the concentration boundawers, concentrations and hydrostatic
pressures on the membrane-concentrations boundgeysl borders. Besides, this model
shows that the volume flows and individual forcemuses the flows influences on the
thickness of concentration boundary layers. Thelinear equations for volume flux,
concentration and thickness of concentration bound@yers can be used to numerical
calculation in linear regime of the hydrodynamistlbility.

The paper is organized as follows. We charactaheemodel of membrane system in
section 2. In section 3 we present the mathematicalel of volume and solute flows of non-
homogeneous non-electrolyte solutions based orK#dwem-Katchalsky equations. In this
section we obtain two alternative third order egpregt for volume flux. The coefficients, that
appear in these equations, depend on transpornpsges of complex concentration boundary
layers-membrane or membrane, difference of the amechl and/or osmotic pressures and
thicknesses of the concentration boundary layenss@ thicknesses can be calculated on the
basis on Rayleigh equation. In section 4 the ma#tieal model of the thicknesses of
concentration boundary layers is presented. Weirolbta fourth order equations in which
the coefficients are dependent on transport paemseff complex membrane-concentration

boundary layers or membrane, difference of the dsmand/or mechanical pressures and



other parameters, which can be experimentally oeterd in series of independent

experiments [8, 37].

MEMBRANE SYSTEM

Let us consider the single-membrane system presecteematically in Fig.1. In this
system the compartment3 &nd ), containing diluted and heterogeneous (not meachby
stirred) binary solutions of the same non-electelgre separated by isotropic, symmetrical,
selective and electroneutral membrane M. In thistesy water and a dissolved substance
diffused through the membrane will lead to formatiof concentration boundary layers
(CBLs) || and }. These layers can be treated as pseudomembrayieq. [8he transport
processes are isothermal and stationary and noicalereactions occur in the solutions. We
denote the concentrations of solutions at bounslafdd and M/k, by Ce andC; respectively,
while the concentrations of solutions outside tberuaries are denoted K& andC;. The
concentrations satisfy the conditior3>C,, Ci>C,, C>C, and C,>C;. We denote the
mechanical pressure at boundarigM land M/k, by P. and P; respectively, while the
mechanical pressures outside the boundaries amedehyP, andPy. The pressures satisfy
the conditionsP,>P,, Pi>P,, PP, and P,>P;,. The membrane (M) is characterized by the
hydraulic permeability L(=Lpm), reflection 6=cn) and solute permeability afawm)
coefficients. The layers|(land (}) are characterized by the hydraulic permeability, (),
reflection ¢;=0, 0,=0) and solute permeabilityaf, ) coefficients, respectively. The
hydraulic permeability, reflection and solute peatiéity coefficients of complex /M/l,, are
denoted byt s, 0s and a, respectively. The parameters, Lpn, Lom, Lps, 01, 0nh, om, 0s, @, G,
whn and ay are defined by the expressions listed in tabl@He volume fluxes through the

layers |, I, membrane M and complex\/I,, are denoted b¥,, Jwn, Jym andJdys, respectively.

DESCRIPTION OF THE MEMBRANE TRANSPORT OF NON-
HOMOGENEOUS SOLUTIONS BASED ON KEDEM-KATCHALSKY
EQUATIONS

The starting point of our description are equati@sand (2). On the basis of equation

1 we can write:



Jin =LpAR =L,(R-P ) 4)
I = LR, - Ly 0,0 =L, (R-P)-L,0,RT(C -C) (5
J,=L,AR =L, (R.-R) (6)
Js =L (AP -0 Am) (7)
At steady state, the following condition is fuléid
‘Jsh = ‘Jvm = 'Jvl = ‘va (8)
Combining egs. (4)-(6) we obtain

- I—p{LpI[F)I +0RT(C _C )] + I—phl:)h} + I-pILphF) (9)
L +L,(L, +L,)

pl Ph

- L{L,[R —oRT(C -C )]+ L,R}+L,L.R (10)
L +L,(L, +L,)

pl ph
Subtraction equations (9) and (10) leads to exjmess

5_p = Ly LuAP+ L, oRT(L, +L,)(C -C,) a1
¢ Lyl +L(Ly +L5)

For coefficientdps, Ly, Ly andLp, the next relation applies

Lps_l = Lp‘l +L, I (12)

ph

From above relation results that Lif, —o and L ,, —oo, we obtainL .— L . Combining
equations (4), (5) and (7) we obtain other versmfithe equations (9) and (10)
P=P -

i h psph

P.=LL,(AP-cAm)+ R (14)

e

L, '(AP-o. AT ) (13)

Combining equations (9), (10) and (12) or eqs. €éiR) (14), the equation (11) can be written

as

P-P =L, [LAP+0RT(L, -L,)(C -C,)] (15)
Besides, combining equations (4), (6) - (8) we waite
Ly (P —R)=Ls@AP-0Am =L, (R -R) (16)
Taking into consideration equation (15) in equafi@nwe obtain
Jm =L [AP-0, RT(C -C, )] (17)

Occurrence of the concentratio@ and C, in above equation can be determined by

optical methods [15,25]. These concentrations caocalb®ilated on the basis of equation (2)

[27-29]. In order to calculate these concentratibiesfollowing considerations will be made.



The solute fluxes through the layédgd,, membrane M and complexM/|,, are denoted

by Jg, Jsn, Jsm andJs, respectively. Besides, permeability coefficieotsolute layerd, and
I, can be written agy =D, (RTJ,) ™" andw, = D, (RTJ,)™" [6].

In order to calculat€, i C,, equation 2 can be written as

Jp = Dh5r1_l(Ch -C) +%(Ch +C)J,, (18)

‘Jm = meT(C| - Ce) + %‘Jvm(Ci + Ce)(l_ Jm) (19)
3, =D (C,~C) +1(C,+C)J, (20)
J.=whm+], Cl-0,) (21)

At steady state, the following conditions are fiéfi
‘Jsh:‘Jsm:‘Js!:‘Jss 22)
From equations (18)-(22) it appears that two e>gioes for botlC, and C, can written.

Two methods of obtaining these expressions will tesgnted below. The first method leads

to equations, in which the coefficients, and o (transport coefficients refers to complex
[/M/ly occur. The second method leads to equations, ichatie coefficientse and o
(transport coefficients refers to membrane) occur.
The first method is a consequence of the followiogstderations. Combining equations

(18), (20)-(22) we obtain

C, =[D,C, - w,0,Am+J,6,(0,C -1C)I(D, -13,5,)" (23)

C. =[D,C +@Am+3,6(3C, -0.C)(D, +33,9) (24)
wherew, = {.w,,, 0, = {0, and &G { <1.
If we assume thad, =9, =0 we obtainC,=C, andC_=C,. For J,=0, equations (23) and (24)

reduced to form

C =C,-w,D, oA 36
C.=C, +w,D A 244)
Taking into consideration equations (23) and (2#4equation (17) we obtain
Vidu +Vodum *+¥adum + V5 =0 (25)
where
V1=399, (26)
v, =—3[(D,8 -D,4,) + L, 5,6 (AP +30,Am)] (27)



Y3 =-D,D, + L [3AP(D,d - D,4,) -0,RTC0o,(D,d, +D,0))] (28)

ps[

Va =L {DyDAP -0 AN D, D, - w.RT(D,J, + D91} (29)
Here are main conclusions appearing from equaféin (

1. ForAP=0 egs. (27)-(29) reduced to the form = -3[(D,J, —D,3,) +3L0,9,0,A7],
Ys =—-D,D, - Lps{UmRT[C_:Us(D| o, +D,9)]} and

y4 = _Lps{JmAn[DhDI _a)sRT(Dlah + Dhal)]} .

2. The conditiorC;,=C#0 reduces only equations (27) and (29) to form
¥, =—3[(D,d -D,5,) + Lpsa_ha_lAP] andy, = Lps{ D,D,AP[D, D, —w,RT(D, 9, +D,,9,)]} .

3. For non selective membrane-¢==0) we obtain:y, = -3[(D,d, - D,J,) + L 5,9,4P],

Vs =~DyD, +5 L [AP(D,d —-D,4,)], y, = L, D,DAP.

4.1f D,=D,=D and g =9,=90 we obtain the following form of equations (26)-}29
n= %52’ V. = _%[Lpsd2 (AP"‘%O’mAﬂ)] » V3 = -D*+ Lps{ZAPUmRTC_:JsDé]} and

¥, = L DIDAP - g, A7(D - 2a,RTJ)] .

5. Taking into account the conditiah=J,, =0, we can write the egsuations (26)-(29) in
following forms j; =0, y, =0, y, =-D;D, andy, =L D,D, (AP -0, Amr). These

conditions and expression (12) enable transformaifdhe equation (25) to equation (1).

The second method is a consequence of the folloeangiderations. Combining
equations (18) - (20) and (22) we obtain the follapforms of equations foC; andC,

C = C,[DyD, +aRTD, 4 ~5J,,(0D, 6 + D4, +aRT5IJh)+%‘]vm20-5Idh] +
" D,D, +(D,4 +D,3,)aRT +3J, (D, -D,&,) +1J,.°(1-20)3,6,

C{aRTD, 4, -~ 1J,,3,[aRTS + (1-0)D]+1J,." (1-0)}9 3,
I:)hDI + (Dh5l + I:)I Jh)aRT +%‘Jvm(Dh5I - I:)I Jh) +%‘]vm2 (1_ 20-)5|5h

(30)




C = C,[DyD, +aRTD,S, —13,,(0D,6, + D, J) +aRTGJ,) + £, 09,6,] +
DD, +(D,J +D,6,)aRT +3J,,(D,J —D,6,) +13,,” (L-20)35,

2 Yvm
(31)
Ci{aRTD, 4 +13,,3[aRT, + (-0)D,] +1J,," 1-0)5,6,}
DhDI + (thl + DI 5h)aRT +%‘Jvm(Dh5I - DI 5h) +%‘Jvm2 (1_ 20-)5|5h

A condition 9, =9, =0 reduces equations (30) and (31), analogously ease of
equations (23) and (24), to forn&s=C, andC_=C,. Next, the conditiod,=0, reduces
equations (30) and (31) to following forms

C =[C,(D,D, +&RTD,J,) + C,aRTD,J,]D, D, +(D,J, + D,J,)aRT]™ (30a)
C. ={C[D,D, +&RTD,J,] +C,aRTD,J,}[ D, D, +(D,J, +D,J,)aRT]™ (31a)

Taking into consideration equations (3), (8) andw@)obtain

Xidu + Xody + Xedum + Xa =0 (32)
where
X, =1-20)39, 33
X, =3l0(D,d, —D,4,) —5L,A1-20)3,6, (AP + dhm)] (34)
Xs =D,D, +(D,4, +D,3,)aRT -3 L 0AP(D,, —D,J,) + (35)
3 L,oRT{C,[D,J, - D, (1-20)]-C[D,d,(1-20) - D41}
Xo = —Lp[DhDI (AP —ah\m) + APaRT (D, 9, + D,J,)] (36)

Discussion of these equations leads to the follgwionclusions:

1. If we assume thakP =0, in equations (12) and (13) we obtain
X. =3l0(D,9 —D,d,) -3 L, 1-20)9 0,00

X; =D,D, +(D,9, +D,3,)aRT _%LpU(Dhél -D,o,) +
3 L,oRT{C,[D,9, - D9, (1-20)]-C/[D,J,(1-20) -D,J |}

Xa = Lp[DhDIOA”_ WRT (D9, +D,9, )]

2. If we assume th&@,=C;20, in equations (12) and (14) we obtain
X, =3[0(D,6, —D,d,) -3 L,(A-20)5J,AP]
Xs =D,D, +(D,4, +D,4,)aRT -3 L ,0AP(D, 4 —D,d,) +
3 L,oRT{C,[D,J, -D,4 (1-20)]-C[D,J,(1-20)-D,4 1}



X4 =L, AP{D,D, +«RT(D, 4, +D,9,)}

3. For non selective membrang £0), x, =;9,9,, X, =—;L,3J,AP,

Xs =D,D, +(D,d +D,4,)aRT, x, =_LpAP[DhDI +wRT (D9, +D,9,)].

4. For D,=D,=D and §=9,=0, equations (33)-(36), are simplified to forms
X, =1(1-20)0% x,= —%Lps(l—ZO')dz(AP+OAIT), X; =D[D + RT (2dw+ 2Lp02(_2)]
and y, = -L  D[D(AP - dAm) + 2coRTAP |.

5. For permselelective membrana £1) we obtain
X1 = _%ddh
X, =3l(D,4, —=D,J,) +3 Lpsaldh (AP +Am)]

X3 =DyD, (D4 +D,9,)aRT - L
+CRT(D,, +D,9))]

%AP(Dhél - DI 5h) -

sl

X1 =~Ls[DyD, (AP -Am) + APaRT (D9, + D, 9,)]

6. For g =0.5, equations (33)-(36) can be written in follog/iforms

X, =0 (33a)
X, =%(D,6, - D,9,) (34a)
Xs; =D,D, +RT[(D,d, +D,J,)a +%Lp(ChD, o, +C/D,9)] (353)
-4+L,AP(D,9 -D,9,)
X4 =—L,[D,D, (AP -1Am) + APaRT (D, 6, + D, 4,)} (36a)

Taking into account the conditiogg, =0, the equation (32) reduces to following form

)(2"]vm2 +X3‘Jvm +X4 :O
In above equation the coefficienpg, x,, X; and y,are illustrated by expressions (34a)-

(36a).

7. The condition §,=9,=0 enable to write the expressions (&%) in forms
=0, x,=0, xs=D,b, and x,=-L,D,D,(AP-0Am) These conditions and

expression (12) transform equation (32) to equatlon

10



8.Foro =3, §,=0,=0 andD,=D,=D equations (33a)-(36a) can be written in following
forms y, =0, x, =0, x, =D[D+RTd(w+L,C)] and

X, =—L,D[D(AP -3 Am) + 2aRTAP] . Besides, fory, =0 and x, =0, the equation (32)
can be written in following form [29]

J, = L,[(D +2aRT)AP -4 DA[D + RT 2w+ L C)] .

In order to calculate the mechanical pressure réiffee described by equation (15) analogical

procedure can be used.

EQUATIONS FOR THICKNESSES OF CONCENTRATION BOUNDARY
LAYERS

In order to calculated, and J, we will use the definition of concentration Raglei
number, presented by equation (3) (Rayleigh eguptlbwe identify the thickness, and J,
of concentration boundary layer§ and I, with d [14], then using the relations
Ay fe =92L(C.—C)PL )" AenBen =92(C, -C,)(p,J,)" equation. 3 can be written

in the following forms

-1

5" =R00u o B Jc.-C)) )

-1

5h3 = Ren thhvh[g(g_gj(ch _Ci):| (38)

Taking into account equations (23) and (24) in equat(37) and (38), respectively,

we obtain the following system of equations

9,0 -89,6-9,=0 (39)
K0, +K,0, —Kky =0 (40)
where
J = g(g—gj(wsAm%Jv[Ch (1-0,)-C d+0o)l} 1j4
9, =33, Ry v, D, 2j4
9, =R, oVv,D,’ (43)

11



Kl—g(apj(a)AlT +13,[C A-0,)-C, A+ 0]} (44)

oC
Ky =3 RenOV1 Dy (45)
K3 = R, 04V, D, 46§

If we assume thal, = @ equations (41)-(46), we obtaif) = g(g—gjwsAn, d,=0

3, =R,pVv,D,%, k, = g(g—gjwsAﬂ, k, =0 andk, = R, p,V,D,”. Then equations (39) and

(40) are reduced to following forms [28,29]

o - ) 025
o =Ry {D V|p[gw (GCJAH} } (47)

_ 025 0p N
5, =R, {D vhp{gw(acjm} } (48)

The basis of second method derivation of the egnatior thicknesses of
concentration boundary layers is regarding the ®ojs(30) and (31) in equations (37) and

(38), respectively. In results we obtain the folilogvsystem of equations [45]

(:81 —ﬁzd)(—0'15|4 +0'35| _a6)4(a25l4 —0’55| —0'4)_4 -

y s (49)
(Bs *+ B:0,)(-a,9," + @30, +a,)(a@,0, —as, —0'4)_1 ~ B0~ Bs =
(a,+@,0)(B.8," =BG, = Be) (B0, + B, + B) ™ = (50)
(B; + a55h)(ﬂ15h4 - B;9, _ﬂe)(ﬂ25h4 + [0, +/84)_l -a,0,-0;=0
where
a, = g(ggj(D @\77+13,D,[C, A-0)-C, A+ 0)]} , (51)
a, - g(ggj 13, L@ +33,[C, 0-0)~C, 1-30)]} (52)
a,=D D,V Ry («RT +1J,0), a, =D’Ryav, («RT -], 0) (53)
as :%JvmzRCI DoV, 0-20),
ag = DhD|2R0|p|V| , (54)
B = Q(ZZJ(D ahrr-3J,,0,[C,1+0)-C 1-0)]}, (55)

12



ﬁz-g[a"jw (@ T-33,,[C, (1-30) +C, (L~ 0]} (56)

oC
B; = DDy oV Ry (aRT =3 3,,0) (57)
B, =D, *Rey ooV, (WRT +1 3, 0) (58)
By =4 ReuDyoV, (L= 20) (59)
Bs =D,D,*Rg, .V, - 0f6

Taking the following cases into considerations:
1. If we assume thal,=0 in equations (43)-(54) we obtain

0
a, = g(ang aArmr, a,=D,D,pVR,aRT , a, =D, RC,p,V,aRT as=D,D, RC|,0|V|

0
B = g(ang w71, B, =D D, pV,RyaRT, B, =D, RChpthaRT Bs =D,D, RCthth'

Q'Z:aS:IBZ:IBS:O

This causes the equations (43) and (44) reductidormas
ﬂl(_a15|4 + 0'35| - a6)4(_a4)_4 - /83(_0'15|4 + 0'35| + ae)(_a4)_l - ﬂ45| - ﬂe =0 (61)

a.(B.8," = B:0, = Bs) (B.) ™" = B (B8, = Bs0, = Bo)(B,) " — 0,0, — a5 =0 (62)

This case was considered in previous paper [46].

2. If we assume tha®, =R,,=R., D,=D,=D, p=p,=p, V,=V,=V and 9 =9,=9 in

equations (43)-(54) we obtain

a, = g(g_ng{aA”-'-%Jvm[Ch l-0)-C @Q+o)]}.
az=g[a"jw (@ r+13,[C, (L-0) ~C, 1-30)]}
ﬂlzg(a—pjo{aﬂn 13,.[C, A+ 0)-C, -]},

C
ﬁz=g(a—pj% wl AT=53,,[C,(1-30) +C 1~ o)}

Y
@]
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a, =D’pUR.(a«RT +1J,.0), a, =D?R.pV(«RT -1J,.0)
By =D*pWR («RT -3J,,0), B, =D*R.pv(aRT +4J,,0)

as = 5 =%Jvm2RCD10V(1_20-) , 05 =f; =D°Repv.
The above conditions reduce the equations (43) &g following form
a,0°+a,0'-a.0’ - (a,+a,)0-a,= 0 (63)

B.0° = " +as0” +(B;+ B,)0 +a, =0 (64)

3. If we introduce the conditions from point 2 eiguations (47) and (48) we can write
a=06=y,a,=B=a,=p0,=y, anda, = 55 = y,. Reduction number of equations from
two to one is a consequence of this conditionsw,Nbis equation can be written as

}/154 —2}/25—}/3 = 0 (65)

where y; = g(g—ngaAn, ¥, = D?pUR.aRT, y,=D°R.pv.

CONCLUSIONS

In the paper we presented the mathematical modehefvolume and solute flows
through artificial polymeric membrane under occnoe of the concentration boundary layers
on both sides of this membrane is presented. Towdimear model, based on the Kedem-
Katchalsky and Rayleigh equations, describes tHanwe flux generated by osmotic and
hydrostatic forces, thicknesses of the concentmtaboundary layers, concentrations and
hydrostatic pressures on the membrane-concentsabionndary layers’ borders. Besides, this
model shows that the volume flows and individuatés causes the flows influences on the
thickness of concentration boundary layers.

The starting point of this model is an equation (&hich contains unknown
concentrations@,, C,) and pressuresH, P.) in borders of concentration boundary layers-
membrane. These concentrations and pressures czaldogated. The equation (15) which
transforms equation (5) to equation (17) is a tesdl calculation. The methods of
calculations ofC, and C, proposed in the paper lead to pairs of equati(®®), (24) and
(30), (31), alternatively. Regarding these equationequation (17) leads to two third order

equations for volume flux, in which coefficientscocring at J in the same power differ from
each other (see eqgs. 26-29 and 33-36). In equa@g29) and (33)-(36) the thicknesses of

14



concentrations boundary layers occur. The equai(@d)s(29) and (39)-(46), and (32)-(36)
and (49)-(60) make two alternative mathematical eldf membrane transport of non-
homogenous solutions. The nonlinear equationsdlume flux, concentration and thickness
of concentration boundary layers can be used toenigal calculation in linear regime of the

hydrodynamical stability.
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Fig. The membrane system: M membrane;;land } — the concentration boundary layers
(CBLS); @, w, anm anda, — the solute permeability coefficients; and P, — the mechanical
pressures outside the boundarigsandP; — the mechanical pressure at boundaridsé and
M/ly; C and C, — the concentrations of solutions outside the boresaC. and C; — the
concentrations of solutions at boundari@sl land M/k; Jy, dvn, Im andJdy,, — the volume
fluxes through the layers I, membrane M and complexM/l,, respectively;);, Jn, Jn andJs

- the solute fluxes through the layard, membrane M and complexM/I, respectively;

Rys 1. Uktad membranowy: M membrana; i I, — sttzeniowe warstwy graniczne (CBLS);
a, A, @y, ah— Wspotczynniki przepuszczalnosci substancji rozpesaej;P; i Py — cignienia
hydrostatyczne za zewtnz warstw;P. i P; — ci$nienia mechaniczne na granicagMl|oraz
M/l C i C, — skzenia roztwordw na zewtrz warstw; Ce i Ci — stzenia roztworéw na
granicach |IM oraz M/k, Jy, dn, Jdum | Iy — Strumienie olgtosciowe odpowiednio przez
warstwy | i |, membrag M oraz kompleks M/ly; J, Jn, Im | Js — strumienie substancji

rozpuszczonej odpowiednio przez warstwiyld, membrag M oraz kompleksAM/I .
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Tablel. Interpretation of phenomenological coeffitse

Tabela 1. Interpretacja wspétczynnikéw fenomenologych

coefficient

definition

stirred solution

unstirred solutions

membrane (M)

membrane (M)

system (IM/I})

hydraulic

permeability

+~[3)
P AP Amr=0

me = (J_Vm]
APm A, =0

Lps = (J_VSJ
APS AT =(

reflection
coefficient

g

(o
Am J,=0

( j =
S
S =0

solute

permeability

[ 75?)
w
A, o

W= —=
AT, Js=0
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