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Zbigniew LEONOWICZ1

PARAMETRIC METHODS FOR TIME-FREQUENCY ANALYSIS OF
ELECTRIC SIGNALS

The author presents a new approach to spectral analysis of electric signals and related problems en-
countered in power systems. This approach includes the use of high-resolution subspace spectrum esti-
mation methods (such as MUSIC and ESPRIT) as replacement of widely used Fourier Transform-based
techniques. The author proves that such an approach can offer substantial advantages in parameter estima-
tion accuracy, classification accuracy and many other aspects of power system analysis, especially when
analyzing non-stationary waveforms.

The problems treated in this work include theoretical analysis of the limitations of FFT-based analy-
sis, problems in applications of Short Time Fourier Transform, description and characteristic properties of
subspace frequency estimation methods – MUSIC and ESPRIT; estimation of the model order, theoretical
development of time-varying spectrum, application of filter banks and advantages when applying to line
spectra analysis, space-phasor for analysis of three-phase signals, power quality assessment using indices
with practical application to waveforms from an arc furnacepower supply, numerical analysis of perfor-
mance of investigated methods and a novel approach to classification of power system events based on
time-frequency representation and selection of "areas of interest" in time-frequency plane.

The author concludes that the use of high-resolution methods significantly improves the accuracy of
many parameter estimation techniques applied to power system analysis.

1 Instytut Podstaw Elektrotechniki i Elektrotechnologii Politechniki Wrocławskiej, Wybrzėze Wyspi-
ańskiego 27, 50-370 Wrocław.



Notation

In this monograph, the symbols for discrete signals: voltages, currents and others are
always mentioned; subscripts are used to distinguish between electrical phases: e.g., a, b
and c. The symbols for continuous signals are explicitly mentioned. Vectors are written
in boldface lowercase letters and matrices are written in boldface uppercase letters. Com-
plex signals would have a tilde and vectors and matrices withcomplex signals would
have tilde, as well. The meaning of the following symbols are, if nothing else is stated:
XT transpose operator,X∗ complex conjugate,XH hermitian transpose, i.e., complex
conjugate transpose,Re{X} real part of a complex quantity,Im{X} imaginary part of
a complex quantity,X+ inverse (pseudoinverse) of a matrixX.

Å complex amplitude
C autocovariance function
Cx autocovariance matrix
C{.} covariance matrix operator
Cn.. amplitude of a harmonic/interharmonic group/subgroup
e eigenvector of the correlation matrix
E {.} expected value
E matrix of eigenvectors
f space–phasor
f1 fundamental frequency
fR, fS , fT symmetric three–phase components
H transmittance
↓ M M–times decimation



PX orthogonal projection matrix
P (ω) power spectrum
P (t, ω) time–varying power spectrum
rx[n] autocorrelation sequence
Rx correlation matrix of the random processx
Rx (t) correlation function of the random processx
R (t, ω) time–varying autocorrelation function
s, si vector of signal samples
Ss(ω) spectrogram, energy density spectrum
Sx

�
ejω
�

power density spectrumx
w vector of componentsejωn

W (t, ω) Wigner–Ville distribution
δ (n) discrete impulse
σ2

0 (n) noise variance
U matrix of eigenvectorsbθ estimator of the parameterθ
{.}ML in the maximum–likelihood sense
η vector of noise samples
λ eigenvalue of the correlation matrix
Λ matrix of eigenvalues
µ Lagrange coefficient
Γ selector matrix
∇a∗ complex gradient ofa
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Abbreviations

AC alternate current
AIC Akaike Information Criterion
ESPRIT Estimation of Signal Parameters via Rotational Invariance Technique
FFT Fast Fourier transform
LP Linear Prediction
LMS Least Mean Squares
LNI Load Nonlinearity Indicator
LS Least Squares
LSE Least Squares Estimator
MDL Minimum Description Length
MIBS Minka’s Bayesian model order Selection Criterion
MLE Maximum Likelihood Estimator
MSE Mean Square Error
MUSIC Multiple Signal Classification method
PHD Pisarenko Harmonic Decomposition
RMS Root-Mean Square
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
STHD Short-Time Harmonic Distortion Index
SVD Singular Value Decomposition
TF, TF {.} time–frequency, TF transformation, TF transformof {.}
THD Total Harmonic Distortion
WFT Windowed Fourier Transform



Preface

The problem of spectral analysis can be described as the ideaof finding the spectral
contents of a given signal.

The meaning of the signal decomposition into its spectral components originates
from the very early works of the Pythagoreans, in their analysis of the motion of the
planets, in the discovery of the law of musical harmony, in the works of Newton on the
spectrum of the light (1677), in the analysis of vibrating membranes by Bernoulli (1738)
and Euler (1755), and in Prony approximation of vibrating mechanisms (1793).

The contemporary Fourier analysis, commonly used, takes its origins in the works of
Fourier (1807), although some elements of the Fast Fourier Transform can be found in
Gauss’s works on orbital mechanics (1805).

One of the main tools of signal analysis is the power spectrum. Various algorithms of
the power spectrum estimation found a wide application in numerous areas of science,
also in power system analysis.

Accurate and fast determination of the parameters of the spectral components of the
investigated signal is important for different reasons.

Real-world signals contain usually many spectral components which differ in fre-
quency, often with additional noise, moreover, their parameters can change with time.
The accuracy of the estimation is limited by the resolution,bias, variance of the
estimator, length of the data sequence, interactions between individual components,
phase-dependence and many other factors.

In many areas of technical sciences, like telecommunications, electronics, automatic
control, power system protection and control, there is a need for identification of the
working state, signal separation and estimation of the signal parameters, identification
of the harmonic components and their parameters.

Between 1940 and 1960 signal processing was analog and primarily a part of physics.
Then, the analog signal processing lost its importance withthe onset of digital signal
processors. Fast computational algorithms, such as Fourier transform, allowed the signal
filtering to be performed in a very short time. Then, signal processing acquired great



support from statistics. The next revolution occurred in 1979–1980 with the advent of
new methods from mathematics and quantum physics, like Wigner transform.

The signal is a physical carrier of useful information. The motivation for leaving the
immediate representational space (mostly time representation in which plain data are
given) and pass to a transformed space is to obtain a clearer picture of specific charac-
teristics of the signal. It is like "looking"’ at the signal from a particular angle, to obtain
better "view" of its properties.

Non-parametric methods require little or noa priori knowledge of the signal. These
methods usually employ larger representational space thanused for the plain data. The
redundancy is compensated by better structuring of the information contained in the
analyzed signal.

On the other hand the non-parametric (conventional) spectral estimators such as the
FFT or autocorrelation methods are limited in their resolving power, requiring long ob-
servation intervals in order to achieve acceptable accuracy and reduce leakage. For data
sets of short duration, these conventional techniques are untenable, and an alternative ap-
proach is required. This has led to parametric (model based)spectral estimation, which
has proven usefulness in extracting high resolution frequency spectra from relatively
short data sets, providing the structure of the signal is known. The components of a
known order related structure can be accurately tracked andextracted from the back-
ground of noise and components of an unknown structure.
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Research objective

This work extends and summarizes some previous publications of the author(see
[29], [32]–[53], [55]–[62]). The goal is to present a new approach to many problems en-
countered in power systems. This approach includes the use of high-resolution subspace
spectrum estimation methods (such as MUSIC and ESPRIT) as replacement of classical
FFT-based techniques. The author argues that such an approach can offer substantial
advantages in parameter estimation accuracy, classification accuracy and many other
aspects of power system analysis, especially when analyzing non-stationary waveforms.
Based on theoretical considerations and numerous practical applications, the following
thesis will be proven:

High-resolution subspace methods, together with time-frequency representa-
tion and analysis of electrical signals provides substantial improvements to so-
lutions of numerous problems of power system analysis in thefrequency domain.

The problems treated in this work include:
• detailed theoretical analysis of the limitations of Fourier Transform-based analysis,

problems in applications of Short Time Fourier Transform,
• description and characteristic properties of subspace frequency estimation methods

– MUSIC and ESPRIT; estimation of the model order,
• theoretical development of time-varying spectrum,
• application of filter banks, advantages when applying to line spectra,
• space-phasor for analysis of three-phase signals,
• power quality assessment using indices with practical application to waveforms from

an arc furnace power supply,
• numerical analysis of performance of investigated methods,
• novel approach to classification of power system events based on time-frequency

representation and selection of "areas of interest".



The author argues that for the analysis of narrow-band (line-spectra) it is sufficient
to analyze narrow band-limited and time-limited areas of their time-frequency represen-
tations (see Chapter 4). Such an approach not only provides sufficient information for
subsequent analysis (see Section 4.2); it also improves itsperformance by enhancing the
signal-to-noise ratio, improving the resolution (see Chapter 5) and improving the clas-
sification rate of correlation-based classification approach (see Theorem 13). The use of
high-resolution methods significantly improves the accuracy of many parameter estima-
tion techniques. Both approaches combined allow further improvements (see chapter 10
where numerous examples are shown).
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Contributions

Scientific contributions of this work can be summarized as follows:
• coherent theoretical formulation and development of the basis of time-frequency

analysis of electrical non-stationary signals, which include:
detailed description, characterization and performance analysis of two selected

parametric spectrum estimation methods: MUSIC and ESPRIT,
formulation of conditions for time-varying spectrum estimation,

• analysis and justification of space–phasor transformationof three–phase electric sig-
nals,

• analysis of advantages of application of band-pass filters and filter banks for line
spectra,

• numerical analysis of selected methods of model order selection,
• introduction, analysis and comparison of new methods of calculation of power qual-

ity indices using parametric spectrum estimation methods,
• development of a new method of classification based on selection of areas in the

plane of time-frequency parametric representation of signals,
• extensive numerical simulations for comparison of variousperformance aspects of

parametric spectrum estimation methods.



Chapter 1

Introduction

1.1. Time-domain analysis

Prior to the introduction of the Fast Fourier Transform and the implementation of the
first real-time spectral analyzers, the spectral analysis was mainly performed by looking
at the time waveform of the signal. Although this allowed detection and diagnosis of
faults by examining the major repetitive components of a signal, complex signals with a
multitude of components could not be accurately assessed1.

Several techniques can be used to enhance the characteristics that are otherwise not
easily observable from the time waveform. These include time-synchronous averaging,
and auto-correlation of the signal. Time synchronous averaging uses the average of the
signal over a large number of cycles, synchronous to the running speed of the ma-
chine. This attenuates any contributions due to noise or non-synchronous vibrations. The
auto-correlation function is the average of the product andallows us to indirectly obtain
information about the frequencies present in the signal. However, these techniques pro-
vide only a limited amount of additional information. The need to distinguish between
components of a similar nature or hidden within a multi-component signal led to the
mathematical representation of these signals in terms of their orthogonal basis functions,
a field of mathematics whose origins date back to Joseph Fourier’s investigations into the
properties of heat transfer.

1.2. Frequency-domain analysis

The advent of the Fourier Series in the early 1800’s by JosephFourier (1768–1830)
provided the foundations for modern signal analysis, as well as the basis for a significant
proportion of the mathematical research undertaken in the19th and20th centuries.

Fourier’s most important work was his mathematical theory of heat conduction ex-
posed inAnalytic Theory of Heat (Théorie Analytique de la Chaleur)(1822). As one of

1 This introduction is partially based on the review "Surfing the Wavelets" in [1].
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Figure 1.1. Jean-Baptiste Joseph Fourier

the most important books published in the19th century, it marked an epoch both in the
history of pure and applied mathematics. In it, Fourier developed the theory of the series
known by his name and applied it to the solution of boundary-value problems in partial
differential equations. This work brought to a close a long controversy, and henceforth it
was generally agreed that almost any function of a real variable can be represented by a
series involving the sines and cosines of integral multiples of the variable. After a long
and distinguished career, Fourier died in Paris on May 16, 1830 at the age of 62.

A major development which revolutionized the computational implementation of the
Fourier transform was the introduction of the Fast Fourier Transform (FFT) by Cooley
and Tukey in 1965, which enabled the implementation of the first real-time spectral
analyzers. The FFT improved the computational efficiency ofthe Fourier transform of
a signal represented by discrete data points. Despite the functionality of the Fourier
transform, especially in regard to obtaining the spectral analysis of a signal, there are
several shortcomings of this technique. The first of these isthe inability of the Fourier
transform to accurately represent functions that have non-periodic components, that are
localized in time or space, such as transient impulses. Thisis due to the Fourier transform
being based on the assumption that the signal to be transformed is periodic in nature and
of infinite length. Another deficiency is its inability to provide any information about the
time structure of a signal, as results are averaged over the entire duration of the signal.
This is a problem when analyzing signals of a non-stationarynature, where it is often
beneficial to be able to acquire a correlation between the time and frequency domains
of a signal. Another problem of Fourier analysis is spectralsmearing. It substantially
affects the results obtained by conventional spectral analysis.

A variety of alternative schemes have been developed to improve the description of
non-stationary signals. These range from developing mathematical models of the signal,
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to converting the signal into a pseudo-stationary signal through angular sampling, and
time-frequency analysis of the signal.

1.3. Time-Frequency signal analysis

As noted by Jean Ville in 1947, there are two basic approachesto time-frequency
analysis. The first approach is to initially cut the signal into slices in time, and then
to analyze each of these slices separately to examine their frequency content. Another
approach is first to filter different frequency bands, and then cut these bands into slices
in time and analyze their energy contents.

The first of these approaches is used for the construction of the Short Time Fourier
Transform and the Wigner–Ville transform, while the secondleads to filter-bank methods
and to the Wavelet Transform.

In 1946, the first time-frequency wavelets (Gabor wavelets)were introduced by Den-
nis Gabor, an electrical engineer researching into communication theory. Jean Ville
(1947) proposed another approach for obtaining a mixed signal representation. Ville’s
work was tied into the research of Hermann Wigner (1932), a physicist working in the
field of quantum mechanics, and led to the development of the Wigner–Ville transform.
Unfortunately the Wigner–Ville transform renders imperfect information about the en-
ergy distribution of the signal in the time-frequency domain, and an atomic decomposi-
tion of a signal based on the Wigner–Ville transform does notexist.

After the first time-frequency wavelets introduced by Dennis Gabor, there has been a
proliferation of activity with comprehensive studies on the time-frequency analysis and
its implementation into many fields of science.

Non-parametric (conventional, Fourier Transform based) spectral estimators such as
the FFT or auto-correlation methods are limited in their resolving power, requiring long
observation intervals in order to achieve acceptable accuracy and reduce leakage. For
data sets of short duration, these conventional techniquesare useless, and an alternative
approach has been developed. The parametric (model based) spectral estimation, which
has proven useful in extracting high resolution frequency spectra from relatively short
data sets, providing the structure of the signal is known (a priori knowledge) was intro-
duced. The components of a known order related structure canbe accurately tracked and
extracted from a background of noise and components of an unknown structure.
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1.4. Analysis of non-stationary signals

A variety of alternative schemes to analyze the properties of non-stationary signals
have been developed to improve the description of their frequency domain content.
Each of these techniques has its own particular domain of application and addresses
certain problems, butnot all, encountered in the analysis of non-stationary signals. In-
vestigations are to include angle domain analysis, parametric spectral estimation and
time-frequency analysis. A comparison of these techniquesis presented below, includ-
ing some practical examples illustrating how they can be used to assist in the analysis of
non-stationary data.

1.4.1. Classes of non-stationary signals

Two major classes have been identified, evolutionary harmonic signals and transient
signals. A third class, evolutionary broad band signals also exists, however this form of
non-stationary signal is rare in the domain of power systems.

Evolutionary narrow-band (harmonic) signals

Evolutionary harmonic signals consist of several non-stationary narrow band tones,
superimposed on a background of random noise. These signalsare usually a result of the
waveforms being related to some underlying periodic time-varying phenomenon, such
as the rotational speed of a generator. Further complications arise when a signal consists
of a combination of stationary and non-stationary harmonicsignal components, and/or
involves varying signal amplitude with time.

Evolutionary broad-band signals

An evolutionary broad band signal is one whose spectral density covers a broad band
of frequencies, which are of a time varying nature. The approach usually adopted when
analyzing signals of an evolutionary broad band nature is tominimize the observation
period while maintaining a reasonable spectral resolution, thus enabling analysis over an
essentially stationary segment of the signal. A method thathas proven useful in analyzing
signals of this form is auto-regressive modelling, which accentuates the most prominent
features, while attenuating the less prominent components.

Transient signals

Transient signals are short time events, whose time behaviour cannot be predicted
and are totally varying in nature, both in time, frequency and other parameters. Transient
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signals (impulsive noise) are usually a result of load or supply voltage or current steep
changes.

1.4.2. Parametric spectral estimation

As previously explained, non-parametric spectral estimators are limited in their re-
solving power. The development of parametric (model-based) spectral estimation meth-
ods allowed extraction of high resolution spectra from relatively short data sets, provid-
ing adequate knowledge of the structure of the signal. The components of a known order
related structure can be therefore accurately tracked and extracted from a background of
noise and components of an unknown structure.

The basic idea is that if the signaly(t) depends on a finite set of parameters, then
all of its statistical properties can be expressed in terms of these parameters, including
its power spectrumPxx(f) [84]. The most common and simplest of the parametric esti-
mation techniques is auto-regressive (AR) modelling of thesignal [85]. Auto-regressive
modelling consists in estimating the order of the coefficients of the model, which when
applied to the input signal will minimize the prediction–error of the signal. Normally, the
minimization criterion of the model will be entropy based, which essentially maximizes
the random nature of the error signal.

Non-Gaussian processes or processes that include colourednoise cannot be ade-
quately modelled by its second order statistics, motivating higher order parametric es-
timation techniques, such as auto-regressive moving average (ARMA) estimation. Al-
though AR and ARMA estimation have proven successful in analyzing signals of an
evolutionary harmonic or broad band nature, the problem of transient signal analysis
cannot be still adequately addressed [85]. Another mathematical model approach that
has been highly successful in analyzing signals of an evolutionary harmonic nature is
adaptive Kalman filtering. However, as with AR and ARMA models, an accurate knowl-
edge of the structure of signals is required before a reasonable model can be obtained
[85].

The area of parametric spectral estimation was developed inthe direction of
eigen-analysis-based methods, among others. These methods of spectrum estimation are
based on the linear algebraic concepts of subspaces and so have been called "subspace
methods" [85]. Their resolution is theoretically independent of the signal-to-noise ratio
(SNR). The model of the signal in this case is a sum of sinusoids in the background
of noise of a known covariance function. Pisarenko [68] firstobserved that the zeros
of the z-transform of the eigenvector, corresponding to theminimum eigenvalue of the
covariance matrix, lie on the unit circle, and their angularpositions correspond to the
frequencies of the sinusoids. In a later development it was shown that the eigenvectors
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might be divided into two groups, namely, the eigenvectors spanning the signal space and
eigenvectors spanning the orthogonal noise space. The eigenvectors spanning the noise
space are the ones whose eigenvalues are the smallest and equal to the noise power. One
of the most important techniques, based on the Pisarenko’s approach of separating the
data into signal and noise subspaces is the MUSIC method [76]and ESPRIT method
[74], investigated in this work.

Extension to analysis of non-stationary signals leads to sliding time-window ap-
proaches, when the time-varying signal is assumed to be locally stationary (inside the
current analysis window).



Chapter 2

Fourier Analysis

Fourier analysis is one of the major accomplishments of physics and mathematics
[15]. It is rooted in the central concept offrequency. The frequential description of the
signal gives the basis for better understanding of the phenomena analyzed. It often sup-
plies an essential complement to thetemporaldescription. There are several reasons for
using Fourier analysis:

1) the temporal and frequential description of the signal are complementary;
2) mathematical structure of the Fourier transform is well suited for common transform

methods;
3) Fourier transform serves as a basis for development of a large number of algorithms,

programs, processors and machines for frequency analysis.

Classical Fourier analysis employs two complementary representations to describe
the signal: the signalx(t) as a time function and its Fourier transformX(ω):

X (ω) =
Z +∞

−∞
x (t) e−jωtdt. (2.1)

2.1. Limitations

In general, it is difficult to recognize properties ofx (t) from properties ofX(ω).
Based on the uncertainty principle it follows thatx (t) andX(ω) cannot be both simul-
taneously small [18]. The computation of one value ofX(ω) necessitates the knowledge
of the complete history of the signal. In the inverse Fouriertransform:

x(t) =
Z +∞

−∞
X(ω)ejωtdω (2.2)

any value ofx(t) at the time instantt can be regarded as a superposition of an infinite
number of complex exponentials, that is, everlasting and completely non-local waves.
This kind of representation may in certain circumstances distort the real properties of
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the signal. This is the case when dealing with transient signals, which vanish after a
certain time [15].

The author’s interest in time-frequency representations of electric signals is due
to the fact that most multi-component (distorted) waveforms in power systems are
time-varying. Widely used FFT-based methods, including STFT, present many short-
comings which in some cases lead to inaccurate results. In [4]–[6], [29], [37], [57]–[60],
parametric time-frequency analysis was developed and applied to the various prob-
lems of power system operation, including arc furnace supply, synchronous machines
and inverter drives. In the author’s works ([32], [41], [48], [55], [53]) non-parametric
time-frequency methods were also considered (STFT, S-transform and Wigner–Ville
transform).

Time-frequency methods explicitly consider the time dependence of the frequency
contents of the signal.

In mathematics uncertainty principles involve functionsf and their transformsF .
Classical uncertainty principle is called Heisenberg–Pauli–Weyl inequality [18].

Theorem 1. If f ∈ L2(R) anda, b ∈ R are arbitrary, then:ÊZ +∞

−∞
(x − a)2 |f(x)|2 dx ·

ÊZ +∞

−∞
(ω − b)2 |F (ω)|2 dω ≥ 1

4π
‖f‖2

2 . (2.3)

It follows that the support of the signal cannot be arbitrarily small both in time and
in frequency domains. The experience also proves that shortimpulse extends over a
large frequency range. This type of constraint is imposed bythe Fourier duality [15]. For
signalx(t) with limited energy, the product of the duration∆t and the bandwidth∆ω
of the signal is bounded from below, which is expressed by:

∆t · ∆ω ≥ 1

4π
. (2.4)

The duality of the Fourier transform is the direct consequence of the definition of the
latter. For the proof, see [15].

2.2. Time-Frequency Approach

Time-frequency analysis is the search for representationsthat present the informa-
tion contained inx(t) andX(ω) simultaneously. The goal is a joint description of the
temporal and spectral behavior of the signal. Such a representation is two-dimensional.
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The ideal time-frequency representation ofx(t) shows the frequency spectrum at
each instantt. But this ideal representation does not exist.

Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform is the most widely used method for analysis of
non-stationary signals [13]. It is based on a simple and intuitive concept: the conventional
Fourier transform gives no information about the time location of the spectral peaks,
because its basis functions are not localized in time. In order to extract such information,
one breaks the time-localized signal into smaller time fragments and apply the Fourier
analysis to each of the time segments. The sum of such partialspectra shows the time
variation of the spectral content of a given signal in time.

In most of the author’s research, STFT played the role of a "benchmark" or a tool for
comparing the accuracy of the new methods investigated. Wide application of STFT
makes it an ideal choice for this task ([50], [58]). Temporalwindow function as in
STFT was also applied by the author for different parametricmethods in order to obtain
time-frequency representations of signals (e.g., [32], [44]).

When trying to achieve better time resolution, it is possible to choose shorter time
intervals but up to a certain limit, when the segment spectrum becomes meaningless and
without any relation to the true spectral content of the signal. In the case of parametric
methods, which allow exact spectral estimation based on very short data sequences, such
a limitation affects less the results ([23] ,[60]).

In order to obtain information about the signal at a certain time pointt it is necessary
to use the temporal window functionh(τ), which preserves the signal inside a certain
time interval and suppresses the signal at all other times: amodified signal is obtained
by multiplying the original signal by the window function:

st(τ) = s(τ) · h(t − τ). (2.5)

Due to the window function, centered around the time pointt, emphasizing the signal
around that point, the Fourier transform of the signalst also reflects the spectral content
of it around that timet:

St(ω) =
1√
2π

Z ∞

−∞
e−jωts(τ) · h(τ − t)dτ. (2.6)

The energy density spectrum, commonly namedspectrogramat the timet is defined
as:

Definition 2. For a given window functionh(t), the spectrogram of a signals(t) is
defined by:

Ss(t, ω) =

����Z +∞

−∞
s(τ)h∗(τ − t)e−jωτdτ

����2 . (2.7)
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Evaluation of the spectrogram combines a linear operation (Fourier transform of
the weighted signal) with quadratic operation (modulus squared). The opposite order of
operations is applied in the Wigner–Ville distribution [11], which is not considered in
this work.

The total energy of the signal transformed by STFT is given by[13]:

|SSTFT (t, ω)|2 =

���� 1

2π

Z ∞

−∞
s (τ)h (τ − t) e−jωτdτ

����2 . (2.8)

The marginals can be obtained by integrating:

• time marginal – over the frequencyω:

P (t) =
Z ∞

−∞
|SSTFT (t, ω)|2 dω =

Z ∞

−∞
|s (τ)|2 |h (τ − t)|2 dτ 6= |s (t)|2 . (2.9)

and similarly,

• frequency marginal – over the timet:

P (ω) =
Z ∞

−∞

���S �ω′����2 ���Sh

�
ω′����2 dω′ 6= |S (ω)|2 . (2.10)

From equations (2.9) and (2.10) it follows that, in general case, the marginals of the
spectrogram are not correctly satisfied, because the spectrogram scrambles the energy
distribution of the signal with the energy distribution of the window function [13].

As a consequence:
• the averages of time and frequency are never correctly givenby the spectrogram;
• the spectrogram does not possess any finite support property;
• there exists an inherent trade-off between the time and frequency localization of the

spectrogram. The uncertainty principle quantifies this dependency;
• the choice of an optimal window function is difficult and mustbe done for every

class of signals or for the purpose of the analysis;
• if the time window function is shortened, the result of the spectrogram approaches the

instantaneous frequency of the signal, but, at the same time, the standard deviation
of the signal representation goes to infinity [13].
As an illustrative example [13], the spectrogram of the signal s(t) composed of one

sinusoidal component and one impulse with the use of Gaussian window functionh(t)
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is given by

s(t) = ejω0t +
√

2πδ(t − t0), (2.11)

h(t) =
�

a

π

� 1
4
e

−at2

2 , (2.12)

|St(ω)|2 =
1√
aπ

e
−j(ω−ω0)2

a +

É
a

π
e−a(t−t0)2 +

+
2√
π

e
−(ω−ω0)2

a−a(t−t0)2 cos [ω (t − t0) − ω0t] . (2.13)

The first two terms in (2.13), so called self-terms , depend onthe size of the window
function in such a way that if one of the terms becomes larger,the other must become
smaller, and vice versa. The third term represents oscillating cross-terms which fall on
the self-terms of the spectrogram [13]. For detailed discussion about the properties of
STFT , see [13, pp. 102–112].



Chapter 3

Parametric frequency estimation

3.1. Eigenanalysis-based methods

3.1.1. Introduction

Parametric methods are those which take advantage of known parameters of the
signal, such as the number of tones (spectral components) itcontains. Non-parametric
methods do not make such assumptionsa priori. Model-based methods for estimation
of the discretepart of the spectrum only relate to the eigenvector decomposition of
the correlation matrix , unlike the model-based estimatorsfor the continuous part of
the spectrum (like auto-regressive model or maximum entropy method) which relate to
the triangular decomposition of the correlation matrix [85]. Consequently, since wave-
forms in power systems belong mostly to the group of signals with discrete spectrum,
eigendecomposition-based methods are best suited for their analysis [4].

3.1.2. Preliminaries

The following signal model is assumed:

x[n] =
NX

k=1

Ak exp(jωkn) + z[n] (3.1)

whereAk ∈ C is a complex number representing the magnitude and phase of the kth

frequency component andz[n] represents the noise.
The structure of signals composed of several frequency components, usually starts

with examining its autocorrelation matrix.
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3.1.3. Autocorrelation matrix

The autocorrelation matrix [67] serve as a basis of further developments. It is defined
as follows. Letx be a stochastic vector consisting ofN samples of a stochastic process
x:

x =

266664 x (0)
x (1)

...
x (N − 1)

377775 . (3.2)

Correlation matrix of a discrete stochastic process is defined as:

Rx = E
�
x · x∗T©

=

266664 E
�
|x (0)|2

©
E {x (0) x∗ {1}} · · · E {x (0) x∗ (N − 1)}

E {x (1) x∗ (0)} E
�
|x (1)|2

©
· · · E {x (1) x∗ (N − 1)}

...
...

. . .
...

E {x (N − 1) x∗ (0)} E {x (N − 1)x∗ (1)} · · · E
�
|x (N − 1)|2

© 377775
=

266664 Rx (0, 0) Rx (0, 1) · · · Rx (0, N − 1)
Rx (1, 0) Rx (1, 1) · · · Rx (1, N − 1)

...
...

. . .
...

Rx (N − 1, 0) Rx (N − 1, 1) · · · Rx (N − 1, N − 1)

377775 . (3.3)

The autocorrelation sequence of a signalx[n] is defined as:

rx = E{x[n]x∗[n − k]}, (3.4)

and the autocorrelation matrix ofx[n] is defined as:
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Rx =

2666666664 rx [0] rx [−1] . . . rx [−N + 1]

rx [1] rx [0]
. ..

...
. . . . .. . . .

...
. .. rx [0] rx [−1]

rx [N − 1] rx [1] rx [0]

3777777775 . (3.5)

For a stationary random signal, the correlation matrix has the form of a symmetric
Toeplitz matrix.

3.1.4. Autocovariance matrix

The autocovariance matrix is defined as:

Cx = E
�
(x− mx) · (x − mx)∗T

©
(3.6)

wheremx is the mean value of a time series.

Estimation of covariance matrix by forward–backward approach

All of the eigenanalysis-based methods (like MUSIC and ESPRIT) derive their es-
timates of frequency from the sample covariance matrixR̂. Numerical experiments are
claimed to show that better results can be obtained by using amodified sample covari-
ance matrix:

Ř =
1

2
(R̂ + JR̂TJ) (3.7)

whereJ is the so-calledreversal matrix:

J =

264 0 1

. ..

1 0

375 . (3.8)

Since better results can be obtained only in the case of smallnumber of samples, the
theoretical explanation for the superiority is not easy. The heuristic explanation is based
on the reasoning, presented in [81]: The second term in (3.7)represents a centrosymmet-
rical (bisymmetrical) matrix with elements symmetric (in the real-valued case) about its
main diagonal and about its anti-diagonal. The true matrixR is also persymmetric1,
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whereas the sample covariance matrixR̂ is not. Therefore, it can be expected that the
frequency estimates are likely to be more accurate by using the forward–backward ap-
proach.

3.2. Subspace methods – Introduction

In the next sections, two parametric algorithms: MUSIC and ESPRIT will be intro-
duced, both of which assume a known number of components in the measured signal2.
The idea is better illustrated by simple cases, as shown below, which lead to the Pis-
arenko method in section 3.2.3 and are subsequently extended to advanced parametric
methods in sections 3.3 and 3.4.

3.2.1. Single frequency component in noise

The one-component signal model can be expressed as:

x[n] = A1e
jω1n + z[n] (3.9)

wherez[n] is the white noise. It can be shown that the autocorrelation in (3.4) becomes:

rx[k] = |A1|2ejω1k| {z }
signal

+ σ2
0δ[k]| {z }
noise

, (3.10)

which can be represented, using the autocorrelation matrixof (3.5) as:

Rx = Rsignal + Rnoise. (3.11)

In the case of one-component signal, the rank of the matrixRsignal is one, i.e., it has
only one non-zero eigenvalue. Additionally:

Rsignal = |A1|2e1e
∗T
1 (3.12)

wheree1 = [ 1 ejω1 ejω12 . . . ejω1(M−1) ] is an eigenvector of the matrixRsignal

with eigenvalueλ1 = M |A1|2.

1 Persymmetric – matrix that is symmetric about if northeast-southwest diagonal, i.e.,ai,j =
an−j+1,n−i+1

2 This section is partially based on [31].
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3.2.2. Multiple frequency components in noise

The simple example in 3.2.1 can be extended to a multi-component case. The signal
model is expressed as follows:

x[n] =
KX

k=1

Ake
jωkn + z[n]. (3.13)

After decomposition into signal and noise parts:

Rx = Rsignal + Rnoise =
KX

k=1

|Ak|2eke
∗T
k + σ2

0I (3.14)

whereek = [ 1 ejωk ejωk2 . . . ejωk(M−1) ]. Equation (3.14) can be rewritten as:

Rx = EΛE∗T + σ2
0I (3.15)

whereE = [e1 . . . eK ]| {z }
M×K

and

Λ =

266666664 |A1|2 0

|A2|2
...

. . .
...

|AK |2 0

0 . . . . . . . . . 0

377777775| {z }
M×M

(3.16)

It can therefore be seen that the autocorrelation matrix decomposes intosignal and
noisesubspaces.

3.2.3. Pisarenko harmonic decomposition

This idea, based on Caratheodory’s theorem3, was proposed in [68]. The method
assumes thatM = K + 1, i.e., the dimension of the signal subspace isK and that
of the noise is one. There exists only one noise eigenvalue and one noise eigenvector,

3 Caratheodory’s theorem detefines the conditions which guarantee that the parameters of representa-
tion of a signal as the sum of complex harmonics and noise can be determined uniquely.
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denoted, respectively, byλn = σ2
0 andun. The noise eigenvector is orthogonal to the

signal subspace:

un ⊥ usignal ⇐⇒ un annihilates the signal components. (3.17)

This is equivalent to (whereek = [ 1 ejωk ejωk2 . . . ejωk(M−1) ]) :

e∗Ti un[k]e−jωik = 0. (3.18)

This leads to the statement calledannihilating filterwhich can be described by:

Un(z) =
KX

k=0

un[k]z−k =
KY

k=0

(1 − ejωkz−1). (3.19)

Proposition 3. The annihilating filter of (3.19) has zeros lying on the unit circle and
their angular positions correspond to the frequencies of the signal. Suppose that the
eigenvectors are unit norm. Then:

uiRx = λiui,
u∗T

i Rxui = λiu
∗T
i ui = λi,

ui

�PK
k=1 |Ak|2eke

∗T
k + σ2

0I
�

= λi,PK
k=1 |Ak|2|e∗Tk uk|2 = λi − σ2

0 .

(3.20)

It is possible, after the calculation of the signal frequencies, to determine the powers
|Ak|2 using(3.20) . The phase information is obviously lost as with all correlation-based
methods.

Example 4. The procedure of estimating signal frequencies is as follows:
1) From the availableN data samples the autocorrelation sequencerx[k] is com-
puted for a chosen number of delaysk.

2) The autocorrelation matrix is formed as:

Rx =

2666666664 rx [0] rx [1] . . . rx [N − 1]

rx [1] rx [0]
. . .

...
. .. . . . . . .

...
. . . rx [0] rx [1]

rx [N − 1] rx [1] rx [0]

3777777775 . (3.21)
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3) The autocorrelation matrix is eigendecomposed as:Rx = UΛU∗T , whereU =
[u1,u2, . . . ,uk].

4) The smallest eigenvalueλmin and the corresponding eigenvectorumin are found.
5) The annihilating filter is formed using the minimum eigenvectorumin as:

Un(z) =
KX

k=0

umin[k]z−k. (3.22)

6) The roots of (3.22) are found asz = e±jωk .

3.2.4. Pisarenko pseudospectrum

It is possible to plot so-called pseudospectra ("pseudo-" because the amplitude of the
peaks in this spectrum carries no information about the truepower of each frequency
component), by evaluating (3.18) at different frequencies:

S(ejω) =
1

|e(ω)∗T umin|2
. (3.23)

3.3. MUSIC

The performance of Pisarenko method is very poor in practical applications [85].
The idea of MUSIC (Multiple Signal Classification) was developed in [76] where the
averagingwas proposed for improving the performance of Pisarenko estimator. Instead
of using only one noise eigenvector, the MUSIC method uses many noise eigenfilters.
The number of computed eigenvaluesM > K + 1. All eigenvalues can be partitioned
as follows:

λ1 ≥ λ2 ≥ . . . λK| {z }
K signal eigenvalues

≥ λK+1 ≥ λK+2 ≥ . . . λM| {z }
M−K noise eigenvalues

. (3.24)

Instead of one annihilating filter (as in Pisarenko’s estimator), MUSIC method uses
M − K noise eigenfilters.

Ui(z) =
M−1X
m=0

ui[m]z−m; i = K + 1, . . . ,M. (3.25)

Every eigenfilter hasM −1 roots,K roots are common for all eigenfilters. The common
K roots can be found by averaging.
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Spurious peaks in MUSIC

MUSIC differs from Pisarenko’s method in that correlation matrix is not limited to
the dimensionK + 1, but may be of any dimensionM > K. This larger autocorrelation
matrix is decomposed into its eigenvectors and eigenvalues, and the eigenvectors asso-
ciated with the largestK eigenvalues are assumed to span the signal space. This implies
that the noise space had the dimensionM − K. Therefore, for each noise eigenvector
there will beK zeros which lie on the unit circle and additionalM −K− 1 zeros which
can lie anywhere (also close to the unit circle) in the Z-plane. These additional zeros
can give rise to spurious peaks which make it difficult to distinguish between the noise
related peaks and the true signal peaks. Pisarenko’s methodis not affected because it
uses only one noise vector.

3.3.1. MUSIC pseudospectrum

It is possible to plot the pseudospectra by evaluating (3.26) at different frequencies:

S(ejω) =
1PM

k=K+1 |e(ω)∗T uk|2
(3.26)

or by using the projection matrix Pnoise = UnoiseU
∗T
noise, where Unoise =

[uK+1 . . .uM ], as:

S(ejω) =
1

e(ω)∗T Pnoisee(ω)
. (3.27)

3.3.2. MUSIC and Root-MUSIC

In spectral MUSIC the frequencies of the components can be obtained from the esti-
mated signal pseudospectrum (3.26) by finding the position of the maxima. Alternative
approach, similar to (3.22) is possible by constructing thepolynomials using the eigen-
vectors spanning the noise subspace, as in (3.25). The rootsof each of such polynomials
correspond to signal zeros. Now the following expression can be defined [71]:

D(z) =
MX

i=K+1

[Ui(z)][U∗
i (1/z∗)]. (3.28)

The MUSIC spectrum can be obtained by evaluatingD(z) on the unit circle
(D(z)|z=ejω = D(ejω).
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Using the property that all signal zeros are the roots of (3.25), equation (3.28) can be
transformed to:

D(z) = c
MY

j=1

(1 − zjz
−1)(1 − z∗j z) (3.29)

=
KY

j=1

(1 − zjz
−1)(1 − z∗j z)

· c
MY

j=K+1

(1 − zjz
−1)(1 − z∗j z)

= H1(z)H∗
1 (1/z∗)H2(z)H∗

2 (1/z∗) (3.30)

wherec is a constant andH1(z) contains the signal zeros, whereasH2(z) contains the
extraneous zeros which lie inside the unit circle on the complex plane. The root-MUSIC
procedure uses the most straightforward way to find the rootsof D(z) and identify the
frequencies of the signal components by using the knowledgethat all those roots lie on
the unit circle.

3.4. ESPRIT

The original ESPRIT (Estimation of Signal Parameter via Rotational Invariance
Technique) was described by Paulraj, Roy and Kailath and later developed, for exam-
ple, in [74]. It is based on a naturally existing shift invariance between the discrete time
series which leads to rotational invariance between the corresponding signal subspaces.
The shift invariance is illustrated below.

Proposition 5. The vectorx of N data samples of the processx[n] = Aejω1n (single
signal case) can be partitioned as follows:

x = [x0, x1, . . . , xN−1],

x = A[1, ejω1 , ejω12, . . . , ejω1(N−1)],

x = [x0, x1, . . . , xN−2| {z }
s1

, xN−1],

x = [x0, x1, . . . , xN−2, xN−1| {z }
s2

], (3.31)
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and
s2 = ejω1s1.

This approach can be extended to the multiple signal case. After the eigendecompo-
sition of the autocorrelation matrix as:

Rx = U∗T ΛU (3.32)

it is possible to partition a matrix by using specialselector matriceswhich select the first
and the last(M − 1) columns of a(M × M) matrix, respectively:

Γ1 = [IM−1|0(M−1)×1](M−1)×M ,

Γ2 = [0(M−1)×1|IM−1](M−1)×M . (3.33)

By using matricesΓ two subspaces are defined, spanned by two subsets of eigenvec-
tors as follows:

S1 = Γ1U,

S2 = Γ2U. (3.34)

Theorem 6. (Rotational invariance)
For the matrices defined asS1 andS2 in (3.34), for everyωk; k ∈ N, representing

different frequency components, and matrixΦ, defined as:

Φ =

266664 ejω1 0 · · · 0
0 ejω2 0 0
...

...
. . .

...
0 0 · · · ejωk

377775 (3.35)

the following relation can be proven [28]:

[Γ1U]Φ = Γ2U. (3.36)

The matrixΦ contains all information about frequency components. In order to ex-
tract this information, it is necessary to solve (3.36) forΦ. By using a unitary matrix
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(denoted byT)4, the following equations can be derived:

Γ1(UT)Φ = Γ2(UT),

Γ1U (TΦT∗T)| {z }
eig. ofΦ

= Γ2U. (3.37)

In further considerations the only interesting subspace isthe signal subspace,
spanned by signal eigenvectorsUs. Usually it is assumed that these eigenvectors cor-
respond to the largest eigenvalues of the correlation matrix andUs = [u1,u2, . . . ,uK ].
ESPRIT algorithm determines the frequenciesejωK as the eigenvalues of the matrixΦ.

In theory, equation (3.36) is satisfied exactly [85]. In practice, matricesS1 andS2

are derived from an estimated correlation matrix, so this equation does not hold exactly,
which means that (3.36) represents an overdetermined set oflinear equations.

3.4.1. Total least squares ESPRIT

Total least squares (TLS) approach takes into account possible errors (∆S1 , ∆S2)
for both estimated matricesS1 andS2. The total least squares problem has the form:

(S1 + ∆S1)Φ = S2 + ∆S2 . (3.38)

The TLS solution minimizes the Frobenius5 norm of the error matrix

||∆S1∆S2||F . (3.39)

The solution can be obtained using the singular value decomposition6. Let V be the
matrix of right singular vectors of the matrix[S1S2]. If the matrixV is partitioned into
four square parts of equal size, as follows:

V =

�
V11 V12

V21 V22

�
, (3.40)

4 complex orthogonal matrix, with unit length columns, for which X
∗T

X = I.
5 The Frobenius norm, also called the Euclidean norm of anm×n matrixX, is a matrix norm defined

as||X||F =
ÈPm

i=1

Pn

j=1
|xij |2.

6 The Singular Value Decomposition (SVD) of the matrixX produces a diagonal matrixS, of the
same dimension asX and with nonnegative diagonal elements in decreasing order, and unitary matricesU
andV, so thatX = USV

T .
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then the solution is given by [85]:

ΦTLS = −V12V
−1
22 . (3.41)

3.5. Properties of frequency estimation methods

The performance (error of estimation) of the subspace methods has been extensively
investigated in the literature, especially in the context of the Direction-of-Arrival (DOA)
estimation.

Comparison of mean square error is useful for theoretical assessment of accuracy of
both methods with emphasis on root-MUSIC and ESPRIT. Both methods are similar in
the sense that they are both eigendecomposition-based methods which rely on decompo-
sition of the estimated correlation matrix into two subspaces: noise and signal subspace.
On the other hand, MUSIC uses the noise subspace to estimate the signal components,
while ESPRIT uses the signal subspace. In addition, the approach is in many points dif-
ferent. Numerous publications were dedicated to the analysis of the performance of the
aforementioned methods (e.g., [70],[19],[82],[83], [71],[25],[26]). Unfortunately, due to
many simplifications, different assumptions and the complexity of the problem, pub-
lished results are often contradictory and sometimes misleading.

Other parametric spectrum estimation methods, like min-norm [59], were investi-
gated by the author. Additionally, excellent resolution ofthese methods enabled efficient
use of them as a tool for detection of closely spaced sinusoidal components in the con-
text of detection of out-of-step operation of synchronous machines [29], [37]. However,
the comparison of accuracy of two different parametric methods is for the first time
presented in this work.

When roughly summarizing different results from the literature, a resume of basic
parameters can be established, as shown in Table 3.1.

Table 3.1. Comparison of basic performance characteristics of parametric spectral methods.

Method Computational cost Accuracy Risk of false estimates

Periodogram small medium medium

Pisarenko small low none

MUSIC high high medium

ESPRIT medium very high none
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3.6. Performance analysis of MUSIC

The root-MUSIC algorithm (see 3.3.2) uses the estimated covariance matrix to com-
pute the signal zeros from (3.28). From (3.29) we can obtain the relation between the
error of the signal zeros and the estimatedD(z) [71]. When analyzing the mean squared
error (MSE) of the signal zeros estimates, the relationshipbetween the errors in signal
zeros and the estimatedD(z) (as in (3.29)) is as follows:

D(z) = c
L−1X
l=1

(1 − (zl + ∆zl)z
−1)(1 − (zl + ∆zl)

∗z). (3.42)

When evaluating the errors ofD(z) on the unit circle (D(z)|z=ejω = D(ejω)):

D(ejωi) = c|∆zi|2
L−1Y

l=1,l 6=i

|(1 − (zl + ∆zl)z
−1
i |2

≈ c|∆zi|2
L−1Y

l=1,l 6=i

|(1 − zlz
−1
i )|2. (3.43)

Taking the expected value on both sides, we obtain:

E{|∆zi|2} =
E{D(ejωi)}

c
QL−1

l=1,l 6=i |(1 − zlz
−1
i )|2

= SMUSIC
E{D(ejωi)}

L
(3.44)

whereL is the number of samples andSMUSIC can be seen as a sensitivity parameter of
the root-MUSIC method and is equal to [71]:

SMUSIC =
L

c
QL−1

l=1,l 6=i |(1 − zlz
−1
i )|2

= L lim
ω→ωi

|1 − ejωie−jω|2
D(ejω)

. (3.45)

After introducting the derivative ofV(ω):

V
′T (ω) =

1√
L

�
0, jejω, 2je2jω , ..., j(L − 1)e(j(L−1)ω)

�
(3.46)
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and taking into account thatD(jω) = VH(ω)PnoiseV(ω), SMUSIC becomes:

SMUSIC =
L

V
′H(ωi)PnoiseV

′(ωi)
(3.47)

where, (see (3.14), (3.25) and (3.27)),Pnoise = I − Psignal.
From (3.15) and considering that:

D(jω) = VH(ω)(I − Psignal)V(ω)

= 1 − VH(ω)

 
MX
l=1

ele
H
l

!
V(ω), (3.48)

and that estimated̂el = el + ηl, whereη is the respective estimation error , it is possible
to formulate the MSE of the roots in root-MUSIC [71], as (see (3.44)):

E{|∆zi|2} =
SMUSIC

L
· (L − M)σ2

noise

N

 
MX

k=1

λk

(λk − σ2
noise)

2

! ���VH(ωi)ek

���2 (3.49)

whereN is the dimension of the covariance matrix andM is the dimension of signal
subspace.

In the case of single signal source with the following parameters: powerP1,
λsignal

1 = L ·P1, λ1 = λsignal
1 +σ2

noise, ande1 = V(ω1), the sensitivity of root-MUSIC
is given by [71] (see (3.47)):

SMUSIC =
L

VH
1 (ω1)PnoiseV1(ω1)

=
12L

(L − 1)(L + 1)
. (3.50)

Using (3.49), the expected error of estimation will be [70]:

E{|∆z1|2} =
12L

(L − 1)(L + 1)
· λ1σ

2
noise(L − 1)

LN(LP1)2
≈ 12σ2

noise

L2P1N
. (3.51)

The analysis of more than one source case is analytically very difficult (see [71]) and
demands more arbitrary assumptions about the SNR and other signal parameters. Al-
though reported results of numerical simulations show goodcorrespondence to derived
analytical expressions, their usefulness is quite limited.
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3.7. Performance analysis of ESPRIT

In the case of ESPRIT algorithm (see 3.4), the main source of errors is the estimate
of the matrixΦ. Equation (3.36) can be solved forΦ using Least Squares or Total Least
Squares approach (3.41). The choice of approach has no influence on asymptotical per-
formance of ESPRIT as shown in [71].

The error in the matrixΦ, denoted by∆Φ, causes errors in the eigenvalues ofΦ. The
error of an eigenvalue (here denoted by∆zi), which can be regarded as a performance
index of ESPRIT and can be approximated by:

∆zi = pi∆Φei (3.52)

whereei is the eigenvector ofΦ corresponding to the eigenvaluezi, whereaspi is the
correspondingleft eigenvector, so thatΦei = ziei andpiΦ = zipi.

From (3.38), the approximation of error∆Φ can be derived using:

(S1 + ∆S1)(Φ + ∆Φ) ≈ (S2 + ∆S2) (3.53)

as:

∆Φ ≈ S+
1 ∆S2 − S+

1 ∆S1Φ (3.54)

By substituting (3.54) in (3.52) it is possible to obtain expression for MSE of∆zi

(whereΓ1,Γ2 are defined as in (3.33),U as in (3.32) andζ is the respective eigenvalue
estimation error), as [70]:

E{|∆zi|2} = piS
+
1 (Γ1 − z∗i Γ2) E

�
∆Ueie

H
i ∆H

U

©
· (Γ1 − z∗i Γ2)

H
S+H

1 pH
i

= pH
i S+H

1

24 MX
j=1

|eij|2 (Γ1 − z∗i Γ2) E
�
ζjζ

H
j

©
(Γ1 − z∗i Γ2]

H

35
· piS

+
1

= pH
i S+H

1 (Γ1 − z∗i Γ2)

24 MX
j=1

|eij |2
λj

N

LX
k=1,k 6=j

λk

(λj − λk)
2 UkU

H
k

35
· (Γ1 − z∗i Γ2)

H
piS

+
1 (3.55)
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whereL is the number of samples,N is the dimension of the covariance matrix andM
is the dimension of signal subspace.

In the case of single signal source with the following parameters: powerP1,

λsignal
1 = L · P1, U1 = V(ω1) = 1√

L

�
1, ejω1 , . . . , ej(L−1)ω1

�T
, the dominant term

of MSE of ESPRIT is given by substituting for the parameters in (3.55) [70]:

E{|∆z1|2} ≈ 2σ2
noise

L2P1N
. (3.56)

It can be noted that, approximately, the mean square error ofMUSIC (3.51) is six
times higher than the MSE of ESPRIT (3.56) in the case of a single signal source.



Chapter 4

Time-Varying Spectrum

4.1. Quasi-stationarity

One of the main problems in stochastic signal analysis is that it is impossible to
average over the infinite sample of realizations of a stochastic process. Under the as-
sumption ofergodicity, it is possible to carry out the averaging over time. In the case of
non-stationary processes, even such an operation is not allowed, because the averaging
over time removes all time-varying characteristic parameters of the signal [64]. When
analyzing non-stationary processes the term ofquasi-stationarityis introduced. It is as-
sumed that the autocovariance functionC of the signal changes slowly enough to satisfy
the condition:

|C (t + τ, t − τ) − Cs (2τ)| < ε (T ) . (4.1)

It is assumed that at every time pointt there exists a stationary functionCs and a time
interval T for which the inequality (4.1) holds. Thestationarity intervalTs is such a
shortestT that satisfies this equation.

Definition 7. A stochastic process isquasi-stationary if Ts > 0 for a givenε > 0,
whereε is a measure of approximation.

4.2. Locally stationary processes

Gaussian processes can be fully characterized by their second order moments which
are often sufficient to build stochastic models, even for non-Gaussian processes [63].
Many spectral estimation algorithms allow one to estimate the covariance operator from
few or only one realization, by taking advantage of its diagonalization in the Fourier
basis. Since one only takes into account second order moments, the process is assumed
stationary in the wide sense. When the process is non-stationary, the covariance oper-
ator may have complicated time-varying properties. Its estimation is then much more
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difficult. In this work, only locally stationary processes are considered whose covariance
operators have time varying properties that vary smoothly and slowly in time. To esti-
mate the covariance of a locally stationary process one searches for a local basis which
estimates the necessary covariance values. The window sizemust be adapted to the size
of the intervals where the process is approximatively stationary. The size of approxi-
mate stationarity intervals is not known in advance, so in some publications adaptive
algorithms are introduced that search for the "best" interval [15].

Locally stationary processes appear in many physical systems that change slowly
in time or space. Over short time intervals, such processes can be approximated by a
stationary process [13]. This is the case for many problems in electrical power systems.
Many recorded waveforms have a strong almost stationary component (e.g., fundamental
frequency of the power supply and weaker time-varying components of stochastic or de-
terministic origin which can have significant non-stationary character [5]). The length of
stationary time intervals can however vary greatly depending upon the type of problem.

Since the size of approximate stationarity intervals is notknown in advance, it is
possible to design an algorithm that searches throughout a given time interval, for a
"best" time-frequency region which allows the performanceindex to be maximized (e.g.,
best classification rate, best parameter estimation accuracy). This search can be based on
the information provided by few previous realizations of the process.

Approximation by a stationary process

Let X(t) be a real valued zero-mean process with correlation [63]:

R(t, u) = E{X(t)X(u)}. (4.2)

We define the covariance operatorC{.} for arbitrary function f(t) ∈ L
2 as:

C{f(t)} =
Z ∞

−∞
R(t, u)f(u)du. (4.3)

The inner product is a random variable which is a linear combination of the process
values at different times:

〈f,X〉 =
Z ∞

−∞
f(t)X(t)dt. (4.4)

For anyf, g ∈ L
2, the covariance operator yields the cross-correlation:

〈C{f}, g〉 = E{〈f,X〉〈g,X〉∗}. (4.5)
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The covariance can be expressed from the distance betweent and u and their
mid-point position. When the process is stationary, its covariance satisfies the condition:

R(t, u) = C0(t − u). (4.6)

Under assumption that the process is locally stationary, wecan assume that in the
neighborhood of anyx ∈ R , there exists a finite interval of sizel(x) where the process
can be approximated by a stationary process.

The covariance operator can also be interpreted as a time-varying convolution:

C{f(t)} =
Z ∞

−∞
C0

�
t + u

2
, t − u

�
du. (4.7)

Under assumption thatC(v,w) is a smooth function ofv we can introduce a
time-varying spectrum by application of Fourier transform

S(w,ω) =
Z ∞

−∞
R
�
v − w

2
, v +

w

2
)
�

e−jωwdw. (4.8)

If the processX(t) is locally stationary it is possible to show (by first order approx-
imation) thatS(x, ξ) for any x, ξ can be approximated by an eigenvalue ofC{f(t)}
[63]. Moreover, the approximate eigenvectorεx,ξ is built with complex exponentials

e−jξt over the interval of local stationarity
h
x − l(x)

2 , x + l(x)
2

i
, yielding:

C{εx,ξ} ≈ S(x, ξ)εx,ξ(t). (4.9)

Let h(t) be a smooth window function with support
h
x − l(x)

2 , x + l(x)
2

i
and

εx,ξ(t) = h(t)e−jξt, (4.10)

so:

C{εx,ξ(t)} ≈
Z ∞

−∞
C0(x, t − u)εx,ξ(u)du. (4.11)

Applying the Parseval theorem yields:

C{εx,ξ(t)} ≈ 1

2π

Z ∞

−∞
S(x, ω)ejωtε̂x,ξ(ω)dω (4.12)

where ε̂x,ξ(ω) = ĥx(ω − ξ). Since the energy of̂h(ω) is mostly concentrated inh
− π

l(x) ,
π

l(x)

i
, the energy of̂εx,ξ(ω) is approximately localized in

h
ξ − π

l(x) , ξ + π
l(x)

i
.
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Figure 4.1. Energy concentration of two harmonic componentsin the time-frequency plane.

Since the Fourier transform as in (4.12) is smooth and approximately constant overh
ξ − π

l(x) , ξ + π
l(x)

i
, so in the time-frequency plane(t, ω) the energy ofεx,ξ is mainly

concentrated inside the rectangle:�
x − l(x)

2
, x +

l(x)

2

�
×
�
ξ − 2π

l(x)
, ξ +

2π

l(x)

�
. (4.13)

An important property of locally stationary processes follows from the previous con-
siderations, namely thatS(t, ω) is approximately constant over the time-frequency sup-
port of εx,ξ. This property is shown in Figure 4.1.

A full covariance matrix cannot be estimated reliably from few realizations of the
process. Locally stationary processes are well approximated by a covariance matrix in
an appropriate local basis, which depends upon the sizel(x) of stationarity intervals.
Usually, we do not know this interval in advance. The approximation of covariance ma-
trix should be calculated in practice fromN independent realizations of a zero mean
processX(t) which yields a small expected error.

In practice, such assumptions cannot be easily fulfilled. Inconclusion, it can be
observed that most of the processes can be analyzed inside their stationarity intervals
and inside their frequency support domains (inside their time-frequency supports) where
most of the energy is concentrated. Such an approximation bylocally stationary pro-
cesses allows straightforward analysis of most slowly time-varying signals.

The length of stationarity interval can be determined in accordance with the charac-
teristic parameters of the signal when these parameters areknown in advance. According
to author’s experience such a situation rarely occurs. Usually, the shortest interval is
chosen which still ensures expected accuracy of spectral representation inside chosen
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time interval. In the case of non-parametric methods (like STFT) the most important
limitation is not the length of stationarity intervals of signal under investigation but the
low resolution (spectral smearing) inherent in these methods. In the case of parametric
methods, the trade-off between time and frequency-domain resolution is significantly
lower [61].



Chapter 5

Filter banks for line spectra

5.1. Introduction

Traditionally, the method of spectrum estimation by using the filter banks assumes
that the true spectrum of the signalφ(ω) is constant inside a specified frequency band.
This method is used when there is no information about the structure of the signal (like
line spectra or rational spectra). Typical of this method isa trade-off between the reso-
lution and statistical accuracy. If high resolution is desired, a very sharp pass-band filter
is required. This is obtained only by filters that have very long impulse response. This
means, according to theTime-Bandwidthproduct (TB-product), that only few samples
(in frequency domain) can be used in such a case and statistical accuracy is poor. In
order to improve the statistical accuracy, it is necessary to sum up many samples of
filtered signals in frequency domain. According to the TB-product this means that filter
impulse response has to be relatively short, i.e., filter should not be very narrow in fre-
quency and, consequently, the resolution decreases. This approach is used by the widely
known:Thomson multitaper method(which usesSlepianbaseband filters) and theCapon
method.

Figure 5.1. Filter bank approach for spectrum estimation
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Filter banks can be effectively used as the preprocessing tool for high-resolution
subspace methods [9]. First motivation which directed the author towards filterbank ap-
proach were difficulties in analyzing multi-component distorted waveforms from inverter
drives [5]-[7]. Since a lower number of components inside a chosen frequency band leads
to more accurate results, the subband filtering was applied.The improvement of accuracy
is not only due to limitation to the number of sinusoidal components (which is important
only for parametric methods [34]) but also due to SNR and resolution enhancement, as
shown below.

5.2. Usefulness of filter banks

The problem of estimating the frequencies of sinusoids buried in noise has been of
great interest in the signal processing since 1973 [68]. Although many methods have
been proposed to solve this problem, most involve processing in the fullband. In paper
[86] it was shown that with properly chosen analysis filters,the local signal-to-noise
ratio (SNR) and line resolution in the subbands can be improved.

5.2.1. Subband filtering

When dealing with the problem of estimating the parameters of sinusoids buried in
noise (see 3.2), the input signal model can be expressed as:

x(n) =
NX

i=1

Aisi(n) + η(n); si(n) = ejωin; Ai = |Ai|ejφi (5.1)

whereN sinusoidal signals with amplitudesAi are buried in complex noise processη.
The complex amplitudes are assumed to have constant magnitudes and phase anglesφ
which are pairwise independent. Regardless of the type of filter used in the filter bank
(see Figure 5.2), the filter decomposes the input signalx(n) into the subband signals
xm(n) andvm(n) [86]:

xm(n) =
NX

i=1

AiHmejωiejωn + wm(n) (5.2)

vm(n) =
NX

i=1

AiHmejMωiejωn + ηm(n) (5.3)

for m = 0, 1, . . . ,M − 1, wherewm(n) = hm(n) ∗ η(n) andηm(n) = wm(Mn).
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Figure 5.2.M -channel uniform analysis filter bank

Each subband signal as in (5.2) also consists of sinusoidal components with noise
ηm(n). The autocorrelation function of each subband signal has the form

Rxm(k) =
NX

i=1

Pi|HmejMωi|2ejMωik + Rηmηm(k) (5.4)

wherePi is the power of each sinusoidal component. Under the assumptions that the
noise has the varianceσ2

η and the magnitude of the squared response of the filter is
[|Hmejω|2]↓M = 1 for all m = 0, 1, . . . ,M − 1 (see Figure 5.3), each subband noise
process is white with varianceσ2

η and each of subband signals has the same shape as the
input signal. The difference is that the sinusoidal components are scaled by the frequency
responses of the analysis filters and their frequencies are mapped to other locations,
namelyωi → (Mωi mod 2π) [86].

In [5]–[8], the author applied non-uniform filter banks where the bandwidth and
frequency are adapted to known characteristic parameters of signals under investigation.

5.2.2. Increase of the resolution of line spectra

From the previous considerations it follows that, taken as example, two line spectral
components (sinusoids) are separated in the fullband by∆ω = ωq −ωp (see Figure 5.4),
where

ωp = 2πm
M + θp,

ωq = 2πm
M + θq,

(5.5)
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Figure 5.3. Ideal analysis filter.

for θp > 0, θq < 2π
M . Additionally, ∆ωf = θq − θp and the autocorrelation function is

given by:
Rxms(k) = MPpe

jω̂pk + MPqe
jω̂qk + σ2

ηδ(k) (5.6)

whereω̂p = Mωp mod 2π, ω̂q = Mωq mod 2π.
Then, from (5.5) it follows that:

ω̂p = Mθp,
ω̂q = Mθq,

(5.7)

and

∆ωs = M∆ω (5.8)

Thus, the spacing between line components increasedM times. Also, the resolution of
the spectrum increased. All frequency estimation methods show a certain threshold, be-
low which two closely spaced sinusoidal components will be estimated as one. As shown
in [33] and [32], such a limitation is significantly lower when comparing non-parametric
and parametric methods.

5.2.3. Backward mapping of the subband frequencies into fullband

When using ideal, non-overlapping filters, the mapping is straightforward. It is not
necessary to use the information from other subbands to map the frequencies correctly.
The problem is much more complicated in the case of overlapping filters where one
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Figure 5.4. Spectrum of two sinusoidal components and filter

frequency component can be present in many subbands (for details, see [88]). The full-
band componentsωf can be obtained by using the following relations from the subband
componentŝωi [87].
• In the case of complex signal model:

ωf,i =
2πm + ω̂i,m

M
. (5.9)

• In the case of real signal model:

ωf,i =

(
πm+ω̂i,m

M , m even,
π(m+1)−ω̂i,m

M , m odd.
(5.10)

5.2.4. Increase of the SNR

Consider the ideal filter as in Figure 5.3 with the magnitude squared response
|Hm(ejω)|2 = 1 for all subbands and the subband frequency rangeIm =

[2πm
M , 2π(m+1)

M ]. The autocorrelation function in that case is expressed by:

Rxm(k) = (MPi)| {z }
P̂i

ejMωik + σ2
ηδ(k). (5.11)
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The power of each sinusoidal component in the subband is equal to P̂i = MPi. From
(10.1) it follows that for eachωi ∈ Im

SNRsubband,i = M · (SNRfullband,i). (5.12)

In the case of low SNR the increase of accuracy of the subspacemethods is to be ex-
pected.

5.2.5. Limits

A simple extension of subband decomposition could lead to the conclusion that it is
possible to increase indefinitely the SNR and resolution of subspace methods by using
decimation factorM as large as possible. In practice, the autocorrelation is estimated
from a finite number of data samples. The quality of this estimation strongly depends on
the number of data samplesNs. When the length of the subband filter isNf , then the
length of each subband signal will be

Ns + Nf − 2

M
+ 1. (5.13)

The large filter length which makes the subband signal longerthan the original number
of data samples introduces a bias to the estimate of the autocorrelation function of the
subband signals, because of the small number of data samplesfiltered by a long filter
sequence.



Chapter 6

Complex space-phasor

The method of symmetric components is widely used for analysis and visualization
of the three-phase electric circuits [54]. This method has strong limitations, e.g., it allows
the analysis of the stationary waveforms only.

In practice, a three-phase signal can include the main component, harmonics and
noise. Additional disturbances can appear due to transientphenomena and non-linear
loads. There exist many possible ways of description of three-phase quantities which
aim to simplify the analysis or modelling of electric systems. One of them is the complex
space-phasor1 [30].

The time-frequency decomposition of the space phasor (computed for three-phase
power system signals) using Wigner–Ville transform and min-norm method was pro-
posed and developed by the author in [32]. It enables tracking the frequency and ampli-
tude changes of non-stationary signals with higher resolution than FFT-based methods
[45], [49], [62]. Space-phasor is also successfully applied to classification schemes in
[40] and [52].

6.1. Definitions

Definition 8. The complexspace-phasor is given by [30]:

f =
(fα + jfβ)√

2
(6.1)

where �
fα

fβ

�
=

r
2

3

�
1 −1

2 −1
2

0
È

3
2 −

È
3
2

�264 fR

fS

fT

375 . (6.2)

1 German: Raumzeiger
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It describes, in addition to the positive-sequence component, an existing
negative-sequence component, harmonic and non-harmonic frequency components of
the signal.

Full and unique description of the three-phase system is possible by introducing the
zero-sequence componentdefined as:

f0 =
1

3
(fR + fS + fT ) . (6.3)

6.2. The space-phasor and three-phase systems

For a three-phase system (as in symmetric components method) it is possible to
formulate the space-phasorf using the instantaneous quantities existing in symmetrical
three-phase system as follows [75]:

fR = A(1) sin (ωt + γ) =
1

2

�
A(1)e

jωt + A∗
(1)e

−jωt
�
ejγ , (6.4)

fS = A(1) sin
�
ωt + γ − 2π

3

�
=

1

2

�
a2A(1)e

jωt + aA∗
(1)e

−jωt
�
ejγ , (6.5)

fT = A(1) sin
�
ωt + γ +

2π

3

�
=

1

2

�
aA(1)e

jωt + a2A∗
(1)e

−jωt
�
ejγ , (6.6)

wherea = ej 2π
3 . After substituting the above equations to (6.1) we obtain:

f = A(1)e
jωtejγ . (6.7)

For the positive-sequence component the space-phasor rotates in the positive direction.
For the negative-sequence component it rotates in the negative direction, and is de-

scribed by the formula:

f = A(2)e
−jωte−jγ . (6.8)

In the case of unsymmetrical sinusoidal three-phase waveforms, the space-phasor is
a sum of two vectors rotating in opposite directions.

f = Å(1)e
jωt + Å

∗
(2)e

−jωt. (6.9)

This equation describes an ellipse whose one axis is equal tothe sum of amplitudes of
the positive- and negative-sequence components and the second axis is equal to their
difference.
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Description of the space-phasor using Fourier series

Any periodic waveform which represents the space-phasor can be transformed to
Fourier series:

f (ωt) =
n=∞X

n=−∞
Anejωt. (6.10)

Existing in the Fourier series expansion harmonics with positive indexes correspond
to the positive-sequence systems which rotate in the direction of the rotor and harmonics
with negative indexes correspond to the negative-sequencesystems which rotate in the
opposite direction to the rotor.

Two main harmonics of the space-phasor with indexesn = 1 andn = −1 corre-
spond to the positive sequence component and negative sequence component, respec-
tively.

Therefore, it follows that:

Å(1) = An|n=1 , Å(2) = A∗
n|n=−1 . (6.11)

Space-phasor and higher harmonic components

When in the three-phase system the higher harmonics (with the frequencies which
are natural multiples of the main component) are present, their time waveforms can be
described as [79]:

fRk (t) = Ak sin (kωt + γk) , (6.12)

fSk (t) = Ak sin
�
k
�
ωt − 2π

3

�
+ γk

�
, (6.13)

fTk (t) = Ak sin
�
k
�
ωt +

2π

3

�
+ γk

�
. (6.14)

Higher harmonics in the symmetrical state of the system belong to the subsequent sys-
tems of voltages, respectively [65]:

• Harmonics with coefficientsk = 1, 4, 7, 10, . . . = 3n + 1;n ∈ N build the
positive-sequence voltage system,

f(k) = Å(k)e
jkωt. (6.15)

• Harmonics with coefficientsk = 2, 5, 8, 11, . . . = 3n + 2; n ∈ N build the
negative-sequence voltage system,
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Figure 6.1. Simple cases of asymmetry and distortion of three-phase waveforms
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f(k) = Å(k)e
−jkωt. (6.16)

• Harmonics with coefficientsk = 0, 3, 6, 9, . . . = 3n; n ∈ N build the zero-sequence
voltage system.

6.3. Visualization of the three-phase system

A plot of the space-phasor in the complex plane is the most simple and natural way of
visualizing a three-phase system [75]. The interpretationof the resulting plot is straight-
forward only in the case of stationary waveforms with small number of harmonics.

In Figure 6.1, simple cases of asymmetry and distortion of three-phase waveforms
are shown.

In the case of asymmetry of the voltages or currents in the three-phase system, a
component with negative frequency appears in the spectrum of the space-phasor (see
Figure 6.1(f)). In the presence of the5th harmonic the plot on the complex plane is a
hypocycloid and in the spectrum a negative frequency component appears (see Figure
6.1(h, i)), while in the presence of the7th harmonic there appears in the spectrum an
additional component with positive frequency (see Figure 6.1(l)).

Consequently, negative components appear also in the spectrum of the space-phasor,
indicating the presence of asymmetry in three-phase currents and voltages in power
system. The author proposed spectral representation of thespace-phasor as a fast and
accurate analysis tool of the three-phase system [49], [43], [58].
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Chapter 7

Estimation of the order of the model

7.1. Information theoretic criteria

The necessity of determining the model order arises in many areas of signal process-
ing. In this chapter, we will focus on approaches based on eigenvalue decomposition
of the signal correlation matrix (time-delayed in vector signal case). Wax and Kailath
[90] presented a new approach for estimating the number of signals in multichannel
time-series, based on statistical classification criteriaAIC (Akaike Information Crite-
rion) and MDL (Minimal Description Length Criterion) [14].Use of such statistical
criteria resolves the problem of estimation of the signal and subspace dimension, which
is necessary to obtain correct estimates of signal parameters, using the methods consid-
ered in this work. Recently proposed criterion [66] based onBayesian statistics will also
be investigated. In this chapter, the author presents investigations of different methods
for model-order selection, compares its suitability for analysis of electric signals and
summarizes research results presented in [34] and [35].

In paper [90], a new approach for estimating the number of signals in multichannel
time-series, based on statistical classification criteriaAIC and MDL is presented. This
approach does not require any subjective threshold setting. Therefore, it resolves the
problem of estimation of the signal and subspace dimension,which is necessary to obtain
the correct estimates of the signal parameters using parametric methods, considered in
this work.

The MDL idea, or shortest description idea, is very natural in statistical classification
problems [72]. It has also been applied to order selection problems in time series, as
a useful alternative to Akaike Information Criterion (AIC)and Bayesian Information
Criterion (BIC) (in fact, the two-stage form of MDL model selection coincides with
BIC).
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It was also shown that all MDL criteria including BIC are consistent and
prediction-optimal, while AIC is not prediction-optimal and inconsistent [73]. A use-
ful observation emanating from this work is that neither MDL(or BIC) nor AIC is a
superior method since all this depends on the bias-variancetrade-off in the model as
shown in early works on MDL in a non-parametric framework [73].

In the seminal paper, Wax and Kailath [90] presented a new approach for estimat-
ing the number of signals in multichannel time-series, based on statistical classification
criteria AIC and MDL. This approach does not require any subjective threshold setting
(see 3.3). This resolves the problem of estimation of the signal and subspace dimen-
sion, which is necessary to obtain correct estimates of the signal parameters, using the
methods considered in this work.

7.1.1. Approach based on "observation"

The most common approach is to calculate the eigenvalues of the correlation matrix
R of the signal, denoted by:

λ1 ≥ λ2 ≥ . . . ≥ λp. (7.1)

The set of the smallest eigenvalues with values equal to the noise varianceσ2 has the
dimensionp − q [90]. If the correlation matrix is exactly known, the numberof signals
q can be determined as the number of the smallest eigenvalues.However, the correla-
tion matrix, estimated from afinite sample size has all different eigenvalues. In real-life
problems, the method of determining the number of signals based on observation of the
eigenvalues is difficult and unreliable, although often used and recommended in practice.
In earlier works the author used the simple "threshold" approach, which he found to be
unreliable and difficult in practical applications [48]. Inmost problems it is necessary to
adjust individually the threshold for each investigated type of signal. Moreover, it is very
difficult to build precise rules which could justify this approach.

7.1.2. Approach based on information theoretic criteria

The information theoretic criteria for model order selection address the following
problem:

Problem 9. Given a set ofN observationsX = {x1, x2, . . . , xN} and a parameterized
family of probability densitiesf(X|Θ) (a family of models), select one model that fits
best the set of observationsN [90].
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Akaike [3] proposed the following criterion defined by:

AIC = −2 log f(X|Θ̂) + 2k (7.2)

whereΘ̂ is the maximum likelihood estimate of the parameter vectorΘ andk is the
number of freely adjustable parameters inΘ. The first term represents the log-likelihood
of the maximum likelihood estimator of the parameters of themodel and the second
term assures that AIC becomes an unbiased estimate of the mean Kullback–Leibler di-
vergence1 between the modelled and estimated densities off(X|Θ).

Further work of Schwartz and Rissanen [73], inspired by Bayesian considerations
and a minimum code-length model yielded the following criterion:

MDL = − log f(X|Θ̂) +
1

2
k log N. (7.3)

In [90], both AIC and MDL criteria were adapted for detectionof the number of signals.
This procedure is recalled here in simplified form.

Based on the assumption that observations are statistically independent complex
Gaussian random vectors, the parameter vector of the signalmodel is composed of the
eigenvalues, eigenvectors of the covariance matrix and thenoise variance.

After some calculations [90] the log-likelihood term in (7.2) or (7.3) becomes the
ratio of the geometric mean to arithmetic mean of a number of the smallest eigenvalues.

The number of free parameters in̂Θ is obtained as the number of the degrees of
freedom of each of the parameters. Finally, both criteria are given by:

AIC(k) = −2 log

� Qp
i=k+1 λ

1
p−k

i
1

p−k

Pp
i=k+1 λi

Ǒ(p−k)N

+ 2k(2p − k), (7.4)

MDL(k) = − log

� Qp
i=k+1 λ

1
p−k

i
1

p−k

Pp
i=k+1 λi

Ǒ(p−k)N

+
1

2
k(2p − k) log N. (7.5)

The number of signals is determined as the value ofk ∈ {0, 1, . . . , p − 1} which
minimizes the value of (7.4) or (7.5).

1 Kullback–Leibler divergence is a natural distance measurefrom a "true" probability distribution P to
an arbitrary probability distribution Q and defined asDKL(P |Q) =

P
i
Pi log Pi

Qi

for discrete variables.



58

The consistency of the above criteria was examined under assumption of increasing
sample size. AIC under this condition yields an inconsistent estimate, by overestimating
the number of signals, whereas the MDL gives always correct results [90].

7.1.3. Bayesian model selection – MInka’s Bayesian model order Selection
Criterion (MIBS)

This method is also based on eigenvalues of the data covariance matrix [66], but uses
the Bayesian framework and Laplace method for approximation of integrals [2].

The PCA model assumes Gaussian distribution of the sources (this model works
reasonably well also for non-Gaussian sources [66]) and theobservation vectorX is
generated from a smaller sources’ vectorsby linear transformation with additive noisee,

X = Hs + m + e. (7.6)

The probability of the model evidenceq can be calculated from the eigenspectrum of the
data covariance matrix,

p(X|q) = p(U)
�Qq

j=1 λj

�−N/2
σ̂
−N(p−q)
ML

· (2π)(m+q)/2|Az |−1/2N−q/2
(7.7)

wherep(U) denotes a uniform prior over all eigenvector matrices,N – number of obser-
vations,σ̂ML – estimate of the noise in the maximum-likelihood sense,m = pq−q(q+1),
and

p(U) = 2−q
qY

j=1

Γ((p − j + 1)/2)π
−(p−i+1)

2 , (7.8)

|Az | =
qY

i=1

pY
j=i+1

N(λ̂−1
j − λ̂−1

i )(λi − λj). (7.9)

whereλl denotes an eigenvalue,λ̂l = λl for l ≤ q andλ̂l = σ2
ML, otherwise.

To find the signal subspace "latent dimension" such value ofq is chosen which max-
imizes the approximation of the model evidencep(X|q).



Chapter 8

Power quality assessment

8.1. Introduction

The termpower qualitycovers a number of electromagnetic phenomena which deal
with the interaction of power-system networks and end-userequipment. End-user equip-
ment is sensitive to certain types of voltage disturbances in the system, but the equip-
ment on its turn may produce current disturbances, which pollute the system. As many
sensitive processes in industrial systems do care about thedisturbances in the supplied
voltages, industries are more concerned about the operational and economic aspects of
these disturbances. Running extensive power quality monitoring programs is important
in order to understand, identify and solve problems regarding power quality. In many
cases, such monitoring programs end up in a huge amount of measured data which makes
analysis difficult [16]. Therefore, the development of automatic tools for assessment of
the measured data is required to help utilities, regulatorsand customers to have a clear
understanding of what is happening in their networks. Powerquality monitoring systems
are demanded nowadays to be able to identify and classify events automatically in or-
der to solve problems in electrical networks in accurate, fast and intelligent way. The
evolution of power quality monitoring in terms of technology and users is presented in
Figure 8.1, as a time-line. In the 1990’s, the technology applied in classification tended
to merge power-system engineering knowledge with signal processing techniques. In
the latest years, pattern recognition, data mining, decision-making and networking were
incorporated as new technologies for automatic classification. This entire advancement
aims at processing raw data and extracting information to obtain knowledge in order
to solve problems with less or without human action. Moreover, users of power qual-
ity event classification schemes have spread from a few field-service engineers in the
1970’s to hundreds of people in the 2000’s; in power utilities, consultant companies and
governmental agencies; working to assess power networks and to include power quality
indexes in power-system economic performance studies [16].
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Figure 8.1. Evolution of power quality monitoring equipment [16]

The author’s research in the field of power quality encompasses methods of harmonic
distortion measurements presented in [58] and [60] dealingwith industrial frequency
converters operation, [8], [4] and [5] – with DC arc furnacessupply, [6] – traction sys-
tems, [7] – analyzing the influence of compensation devices (active and passive filters,
STATCOM, hybrid systems) and [9] where he proposed a new power quality indices’
computation approach, presented in this work (see also Section 10.4).

8.2. Power Quality Indices

A number of power system applications require an accurate knowledge of the spec-
tral components of non-stationary current and voltage waveforms. Especially, the power
quality field, due to the great and increasing interest deserves our attention [4]. The main
application of spectral components in the field of Power Quality refers to the calculation
of waveform distortion indices. Several indices are in common use for the characteriza-
tion of waveform distortions. However, they generally refer to periodic signals which al-
low an "exact" definition of harmonic components and requireonly a numerical value to
characterize them. When the spectral components are time-varying in amplitude and/or
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in frequency (as in the case of non-stationary signals), a wrong use of the term harmonic
can arise and several numerical values are needed to characterize the time-varying nature
of each spectral component of the signal. The IEC Standard drafts [21], [22] deal with
signals which are time-varying. They define, for practical purposes, the harmonic (inter-
harmonic) frequency as an integer (non-integer) multiple of the fundamental frequency.
The same IEC Standard drafts – with reference to Discrete Fourier Transform with 5 Hz
resolution of frequency (200 ms of window length for 50 Hz fundamental frequency)
– introduce the concept of harmonic and interharmonic groupings and characterize the
waveform distortions with the amplitudes of these groupings. Figure 8.2 shows an ex-
ample of two harmonic subgroups (n = 7 andn = 8) and of one interharmonic subgroup
(n = 7.5). The amplitudes of the harmonic and interharmonic subgroupsCn−200ms and
Cn+0.5−200ms can be evaluated, respectively, as:

C2
n−200ms =

1X
k=−1

C2
10n+k, (8.1)

C2
n+0.5−200ms =

8X
k=−2

C2
10n+k, (8.2)

whereC10n+k are the spectral components (RMS value) of the spectral (DFT) output.
According to the norms cited relations (8.1) and (8.2) are computed on 15 successive

200 ms windows in order to obtain values averaged over a 3-second interval. There-
fore, the obtained indices have low resolution in time. Recently, many papers deal with
waveform distortion indices in the case of aperiodic signals. In practice, the main ef-
forts are devoted to the extension of usual indices – such as Total Harmonic Distortion
(THD) , k-factor, communication interference factors and others – to the field of aperi-
odic signals, taking into account the special characteristics of the processing technique
employed. In paper [20], an extension of power quality indices based on the Windowed
Fourier Transform (WFT) is proposed for aperiodic power system signals. The short term
harmonic distortion index (STHD) has been defined there. If the width of the window is
TW , the STHD is defined as:

STHD =

Ì
NfP

i6= 50
∆f

+1

WDFT 2
i

WDFT 50
∆f

+1

(8.3)
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Figure 8.2. Examples of harmonic (↑) and interharmonic (↓) subgroups according to IEC Standard drafts
61000-4-7 and 61000-4-30 [4]
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where: Nf is the number of frequencies for which the WFT has been calculated;
WDFTi is theith component from the WFT;∆f is the frequency resolution.

Similar extensions for other waveform distortion indices such as thek-factor and the
crest factor have been reported.

In this work, the IEC harmonic and interharmonic subgroups introduced by the IEC
Standard drafts, the Total Harmonic Distortion and the spectral component frequency
time variation (time-varying amplitude and frequency of signal components, as in Fig-
ures 10.14, 10.15, 10.40, 10.41) are considered.



Chapter 9

Automatic Classification of Events

The decomposition of a band-limited one-dimensional time-domain signal into
two-dimensional time-frequency domain can reveal more details of the signal and help
to improve the classification performance or pattern recognition [13]. One of many au-
tomatic classification techniques, based on correlation [27], is adopted in this chapter
for classification of events in electric power systems. The classifier proposed makes use
of availablea priori knowledge about the signal, in many ways; it uses the knowledge
about the main characteristics, such as: the expected number of components, parame-
ters of frequency bands which contain most useful information, time interval where the
most significant changes occur. In preprocessing stage, many "regions of interest" in
the time-frequency plane are defined in order to enhance the classification performance.
Previous work of the author includes classification problems of fault-mode operation
of inverter drives (application of neural classifiers [52],[39]), application of correlation
and advanced preprocessing techniques in [10]. The approach presented in this chapter
follows the same idea; in order to evaluate the performance of preprocessing approach
presented, a simple time-domain correlation is chosen as a classifier, since complicated
classification technique can obscure the influence of improperly chosen preprocessing
and make a fair comparison impossible [10].

9.1. Preliminaries

The main goal is to design a classification scheme which, using 2-D time-frequency
parametric representation of a signal, performs better than a straightforward
correlation-based classifier. It is assumed that the transformation to 2-D time-frequency
domain allows one to reveal more details of the signal and therefore improves the ac-
curacy of pattern matching. Additionally, it helps to reveal the correct pattern buried in
noise (disturbances) by exposing the important characteristics of analyzed signal. The
transformation to time-frequency domain allows an easy useof a priori knowledge:
only selected areas of the time-frequency plane can be used for the correlation-based
classification. In [39], the moments computed from time-frequency representation of
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Figure 9.1. Scheme of correlation-based classification relying on TF transformation.

the signal are selected as features. This approach destroysa part of useful information,
so a complicated classifier is needed to obtain acceptable performance. The correlation
scheme developed here improves the performance in the case of matching pattern and
decreases the false classification rate in the case of non-matching patterns when using the
maximum of available information and at the same time enhancing "meaningful" parts
of the signal. Waveforms encountered in power systems have usually quite well known
structure, so it is straightforward to select the frequencyband where the signal of inter-
est shows most characteristic patterns. Similarly, the time point of the occurrence of a
specific pattern can be either determined as the starting point of an event (e.g., beginning
of a short-circuit) or using other techniques (e.g., change-point detection algorithms,
wavelets) [59]. In this way, a rectangular area or multiple areas on the time-frequency
plane can be determined where the correlation-based pattern recognition algorithm can
show possibly best performance. A simplified scheme of this procedure is shown in Fig-
ure 9.1. After the TF transformation of signal and pattern, aspecific area of the TF plane
is selected. Then, the inverse transformation (or approximate reconstruction, e.g. in the
sense of equal energy of the original and reconstructed signal of the time-domain sig-
nal from its calculated parameters) allows usual correlation of time-domain signals and
patterns. Similar approach was presented in [78], althoughapplied to different problems.

9.2. Correlation of signal and pattern

Let us assume a band-limited and time-limited signals(t) and patternp(t), with its
time-frequency representation, as follows:

TF{p(t, f)} ≡ 0 ∀ {t ∈ [t1, t2], f ∈ [f1, f2]} (9.1)

where[t1, t2] and[f1, f2] define supports in time and frequency domains, respectively.
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Lemma 10. Any finite and band-limited signals(t) ⊆ [t1, t2] can be decomposed as
follows, when using its time-frequency representationTF{s(t, f)}:

TF{s(t, f)} = TF{s1(t, f)} ∪ TF{s2(t, f)} (9.2)

whereTF{s1(t, f)} = TF{s(t, f)} andTF{s2(t, f)} = TF{s(t, f)} ∩ TF{s1(t, f)}
.

Such a decomposition assumes thats1(t) is the part of signals(t) which has the same
support in time and frequency as patternp(t) has ands2(t) represents the remaining part
of the signals(t).

If we assume that both signals and the pattern have their respective inverse
time-frequency transforms, then

s(t) = s1(t) + s2(t). (9.3)

Theorem 11. For any band-limited and finite signals(t) and patternp(t), which can be
decomposed intos(t) = s1(t) + s2(t) the following condition is fulfilled:

max [|R(s1(t), p(t))|] > max [|R(s2(t), p(t))|] (9.4)

wheremax [|R(u(t), v(t))|] (maximum of the magnitude of the normalized correlation
function) is defined as:

max [|R(u(t), v(t))|] = max

24������ R∞
−∞ u(t)v∗(t − τ)dtÈR∞

−∞ u2(t)dt
ÈR∞

−∞ v2(t)dt

������35 . (9.5)

Equation (9.4) is a consequence of the assumptions that the signal s1(t) is similar
to the patternp(t) and has the same localization in time-frequency plane ands2(t) lies
outside the area in the time-frequency plane where the pattern p(t) is localized.
Proof. From the above assumption it follows that:

max [|R(s1(t), p(t))|] > max [|R(s2(t), p(t))|]. (9.6)

The normalized correlation of the signals(t) = s1(t) + s2(t) is:

R(s(t), p(t)) =

R∞
−∞ s1(t)p(t + τ)dt +

R∞
−∞ s2(t)p(t + τ)dtqR∞

−∞
�
s2
1(t) + 2s1(t)s2(t) + s2

2(t)
�
dt
ÈR∞

−∞ p2(t)dt
(9.7)

Since: ÊZ ∞

−∞

�
s2
1(t) + 2s1(t)s2(t) + s2

2(t)
�
dt >

ÊZ ∞

−∞
s2
1(t)dt. (9.8)
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It follows that:
max [|R(s1(t), p(t))|] > max [|R(s(t), p(t))|]. (9.9)

In the case of single pattern in the time-frequency plane, the above considerations
show that the presence of the pattern in the signal assures the highest correlation coeffi-
cient when correlating pattern and signal.

In the case of multiple patterns, some precautions must be observed. The main con-
dition for the classification scheme to work properly is to assure that all patterns occupy
mutually exclusive areas in the time-frequency plane. Thiscondition is usually easily
fulfilled for waveforms commonly encountered in power systems [50].

Corollary 12. In the case of patternspi,j which do have non-disjoint time-frequency
representations, such as:

TF{pi(t, f)} ∩ TF{pj(t, f)} 6= ∅ (9.10)

the problem can arise, namely a high correlation coefficientin the case where the pattern
is not present in the signal. It is necessary to define a mutually exclusive pattern to
any other pattern. This is quite straightforward when dealing with the representation of
signal in the time-frequency plane.

Any patternp(t) can be represented as a sum of two mutually exclusive patterns,
pk(t), pl(t), wherepl(t) represents part which is nullified for any disjoint set of patterns
(it represents the non-disjoint part of any set of patterns),

p(t) = pk(t) + pl(t). (9.11)

Theorem 13. If the signals(t) is weakly correlated with the patternp(t), then the cor-
relation ofs(t) with patternpk(t) yields smaller correlation coefficient than in the case
of correlation of the signals(t) with p(t),

max [|R(s(t), p(t))|] > max [|R(s(t), pk(t))|]. (9.12)

Proof. Equation (9.12) can be transformed in a similar way as (9.7):

max [|R(s(t), p(t))|] = max

24 R∞
−∞ s(t)pk(t + τ)dt +

R∞
−∞ s(t)pl(t + τ)dtqR∞

−∞
�
p2

k(t) + 2pk(t)pl(t) + p2
l (t)

�
dt
ÈR∞

−∞ s2(t)dt

35
(9.13)

and (see (9.5))



68

max [|R(s(t), pk(t))|] = max

24������ R∞
−∞ s(t)pk(t + τ)dtÈR∞

−∞ p2
k(t)dt

ÈR∞
−∞ s2(t)dt

������35 . (9.14)

From (9.12), assuming the mutual exclusivity of the patterns pk(t) andpl(t) (9.11), the
following can be concluded:����Z ∞

−∞
s(t)pl(t + τ)dt

���� > ����Z ∞

−∞
s(t)pk(t + τ)dt

���� (9.15)

and ÊZ ∞

−∞

�
p2

k(t) + 2pk(t)pl(t) + p2
l (t)

�
dt ≈

ÊZ ∞

−∞
p2

k(t)dt. (9.16)

Finally, from equations (9.13)–(9.16), it follows that theproof is completed, so:

max [|R(s(t), p(t))|] > max [|R(s(t), pk(t))|]. (9.17)

The considerations presented above show that transformation of the signal to
time-frequency domain, selection of particular areas in time-frequency plane (mutually
exclusive areas), subsequent calculation of parameters ofthe signal and pattern inside
the preselected "areas of interest" leads to anincreaseof the maximum correlation co-
efficient of the correlated signal and pattern (when signal and pattern are similar) and
to adecreaseof the maximum correlation coefficient when both signal and pattern are
dissimilar.



Chapter 10

Experiments and simulations

10.1. Signal-to-Noise Ratio (SNR)

By using a known property of the autocorrelation function [28] it is possible to define
two useful SNR measures. For a zero-mean, wide-sense stationary process composed of
i sinusoidal components, wherePi is the power of each sinusoidal component andη
represents the noise process (wide-sense stationary random process uncorrelated with
the signal).

The local SNR is defined as:

SNRlocal,i =
Pi

Rη(0)
. (10.1)

It can be regarded as the measure of the correctness of estimation of the frequency
of a given spectral component.

The global SNR is:

SNRglobal =

PN
i=1 Pi

Rη(0)
. (10.2)

This measure can give the likelihood of the estimation of thefrequencies in the av-
erage.

10.2. Basic performance comparison of MUSIC and ESPRIT

Several experiments with simulated, stochastic signals were performed, in order to
compare different performance aspects of both parametric methods MUSIC and ES-
PRIT, compared to commonly used power spectrum (FFT based method). Testing signals
are designed to belong to a class of waveforms often present in power systems. Each run
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Figure 10.1. MSE of frequency and power estimation (ESPRIT,MUSIC) depending on SNR. Averaged
1000 independent runs

of spectrum and power estimation is repeated many times (Monte Carlo approach) and
the mean-square error (MSE) is computed.

Parameters of test signals:
• one 50 Hz main harmonic with unit amplitude,
• random number of higher odd harmonic components with randomamplitude (lower

than 0.5) and random initial phase (from 0 to 8 higher harmonics) if not otherwise
specified,

• sampling frequency 5000 Hz,
• each signal generation repeated 1000–100000 times with reinitialization of random

number generator,
• SNR = 20 dB if not otherwise specified,
• size of the correlation matrix = 50 if not otherwise specified,
• signal length 200 samples if not otherwise specified.

Selected results are presented below:
Figure 10.1 shows a strong dependence of the accuracy of the frequency estimation

on SNR and almost no dependence of amplitude estimation (with exception to MUSIC
which shows higher errors for very low and very high noise levels).

The size of the correlation matrix must be chosen very carefully, as can be seen from
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Figure 10.2. MSE of frequency and power estimation (ESPRIT,MUSIC) depending on the size of
correlation matrix. Averaged 1000 independent runs

Figure 10.2. In the case of both methods, there exists an optimum of the size (relative to
the data length) which assures lowest estimation error. There exists a trade-off between
increasing accuracy of the estimated correlation matrix and increasing numerical errors
with the matrix size.

The data sequence length has stronger influence for the accuracy of MUSIC method
than ESPRIT (Figure 10.3). For shorter data lengths ESPRIT method is faster to calcu-
late; this advantage vanishes with increasing number of data samples taken in calcula-
tion.

The investigation of the method of calculation of the correlation matrix shows sur-
prisingly (see Subsection 3.1.4) that the forward–backward approach causes higher esti-
mation error than simple forward approach (Figure 10.4). Itis only advantageous when
the size of the correlation matrix is large. In this case, thematrix is better conditioned
which eases the operation of matrix inversion.

In Figures 10.5 and 10.6 the results are shown where the amplitude of higher har-
monics was gradually increased from 0.1 to 0.9 of the fundamental 50 Hz component. In
such a way the problem of masking the higher low-amplitude harmonic components by
a strong fundamental component was investigated. The results show an extremely high
masking effect in the case of power spectrum, while MUSIC andESPRIT methods show
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(a) 0–1000 sampl. (b) 0–100 sampl.

Figure 10.7. Accuracy of the dimension estimation by AIC, MDL and MIBS depending on the signal
length

very little dependence (almost no dependence in the case of ESPRIT method). This is
a very important feature which partially explains excellent performance of parametric
methods in the task of calculation of power quality indices (see Section 10.4).

10.3. Estimation of the number of components

The performance with regard to accuracy of the estimation ofthe number of compo-
nents is tested using simulated signals with Gaussian noise[35]. The sampling frequency
was set to 1000 Hz and each calculation was repeated 1000 times for independent real-
izations of the signal. Firstly, the estimation accuracy isdetermined as a percentage of
runs when a signal parameter was estimated correctly. It wasinvestigated depending on
the signal length (two sinusoids of 50 and 150 Hz with unit amplitude and SNR 20 dB1).

Figure 10.7 shows that the accuracy of MIBS strongly dependson the number of
samples and achieves only 68% accuracy for the window of 500 samples chosen for
further investigations. Excellent performance of AIC should be noted as it achieves over
90% for 20 samples only.

Figure 10.8 presents the masking problem of the weaker components by the stronger
one. One component with the basic frequency has the fixed amplitude and the second
has it gradually decreasing. Generally MDL offers best accuracy close to 100% down to

1 SNR [dB] = 10 log10

�
σ2

s

σ2

0

�
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(a) 0–1000 sampl. (b) 0–100 sampl.

Figure 10.8. Accuracy of the dimension estimation by AIC, MDL and MIBS depending on the relative
amplitude of two sinusoidal components

(a) 0–100 Hz (b) 0–30 Hz

Figure 10.9. Accuracy of the dimension estimation by AIC, MDL and MIBS depending on the difference
of frequencies of two sinusoids with equal amplitude
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(a) (b)

Figure 10.10. Accuracy of the dimension estimation by AIC, MDL and MIBS depending on the number
of signal components (a) and on SNR (b)

0.08 with exception of the smallest relative amplitudes where MIBS achieves over 50%
accuracy for values as low as 0.04.

In Figure 10.9, the results are presented which show the lowest difference in fre-
quency that still allows two separate components of the sameamplitude to be detected.
AIC performs poorly and fails by the values of 50 and 74 Hz (24 Hz difference), whereas
MDL needs only 12 Hz difference for correct estimation. As before, MIBS offers advan-
tage for the lowest values of difference.

An increasing number of sinusoids with the same amplitude was also estimated, see
Figure 10.10a. AIC failed when the number of components increased to four and other
methods – when by five (the frequencies were 50, 100, 150, 200,250 Hz).

The Gaussian noise has little influence on accuracy as shown in Figure 10.10b. The
highest immunity shows MIBS with accuracy of almost 70% for SNR as low as –5 dB,
followed by MDL (100% for –2 dB) and AIC (100% for 4 dB).

Analysis of current during the switching of the capacitor banks

The switching of the capacitor bank in the transmission linewas simulated using the
EMTP software [12] with the simulation parameters as shown in Figure 10.11. The sam-
pling frequency was 10 kHz and the length of the analysis window was set to 100 sam-
ples (0.01 s). The A-phase current is shown in Figure 10.12, and its short-time Fourier
transform in Figure 10.13. The first capacitor bank was switched on at the timet = 0.03
s and the second capacitor bank at the timet = 0.09 s.
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Figure 10.11. Scheme of the simulated transmission line system

The number of components was determined online using the AICcriterion (with lim-
itation to maximum of four components) for each analyzed time interval of 100 samples.
To keep the picture legible, in Figure 10.14 only the first twocomponents are shown.
Components were sorted according to their frequency.

In Figure 10.15 the corresponding amplitudes (derived fromcomponents’ powers
computed by theroot-MUSICprocedure) are shown. The first component corresponds
to the fundamental harmonic of 50 Hz. With exception to shortintervals (around the
switching points) where the stationarity assumption is notsatisfied, the results of esti-
mation of frequency are reliable and correspond precisely to the time waveform. The
second component has a transient, exponentially decaying character with frequency of
476 Hz after the switching of the first capacitor bank which changes to 270 Hz after the
second switching operation.

The application of statistical model order selection (in this case, estimation of the
number of sinusoidal components) allow the parameters of the signal to be tracked
on-line . It can also be used as one of the input values of the system of automatic detec-
tion and classification [34], [35].

In this section, the influence of the estimation accuracy of the sample correlation
matrix (depending on the length of the signal), as well as theinfluence of the number of
components and of their relative amplitudes on the accuracyof statistical estimation of
the number of components has been presented. The use of information-theoretic criterion
like AIC, together with high-resolution parametric estimation method, like ESPRIT or
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Figure 10.12. Waveform of the A-phase current during switching of the capacitor banks in the
transmission line
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Figure 10.13. Short-Time Fourier Transform of the A-phase current during switching of the capacitor
banks in the transmission line
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Figure 10.15. Time–varying amplitude of two components of the current



80

MUSIC, allows precise on-line estimation of the signal parameters by using the sliding
window approach in the case where the parameters of the components are time-varying.

10.4. Power quality indices

In this section, the waveforms obtained from a power supply of a typical DC arc
furnace plant are analyzed. The IEC groups and subgroups areestimated by using FFT
and the results are compared with advanced methods: the ESPRIT and the root-MUSIC
methods.

10.4.1. Experimental setup and preprocessing

The simulated DC arc furnace plant consists of a DC arc furnace connected to a
medium voltage ac busbar with two parallel thyristor rectifiers that are fed by trans-
former secondary windings with∆ and Y connections, respectively, it is shown in Fig-
ure (10.16). The power supply of arc furnace is modelled using Power System Blockset
in MatlabR©. The electric arc was simulated with a Chua’s circuit2, which shows good
similarity with real measurements [8].

Figure 10.16. Simulated DC arc furnace plant

2 Chua’s circuit is a simple electronic circuit that exhibitsclassic chaos theory behaviour. Introduced
in 1983 by Leon O. Chua.
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Figure 10.17. Voltage waveform of the arc furnace supply – medium voltage AC busbar

The medium voltage busbar is connected to the high voltage busbar with a HV/MV
transformer whose windings are∆–Y connected. The power of the furnace is 80 MW.
The other parameters are: Transformer T1 – 80 MVA, 220kV/21kV; Transformer T2 –
87 MVA, 21kV/0.638kV/0.638kV. Examples of waveforms at thearc furnace supply on
the MV side are shown in Figures 10.17 and 10.18.

• The evaluation of harmonic and interharmonic subgroups hasbeen made us-
ing the following assumptions: window length – 200 ms non-overlapping. For
each window, thenth harmonic subgroup includes all spectral components in-
side the frequency interval[n · f1 − 7.5, n · f1 + 7.5] Hz. The interharmonic
subgroup includes all the spectral components inside the frequency interval
]n · f1 + 7.5, (n + 1) · f1 − 7.5[ Hz [9]. When applying parametric methods filters
have been applied for preprocessing of data. In particular,a bandstop Butterworth
IIR filter blocking the main (50Hz) component; a lowpass (40 Hz) Butterworth IIR
filter applied for analyzing interharmonics groupings forn = 0.5 and bandpass But-
terworth IIR filters for other subgroups.

• The evaluation of Total Harmonic Distortion (THD) has been done with following
assumptions: The window length is assumed to be 200 ms and thesuccessive win-
dows until 3 s non-overlapping. For each window, the THD includes all harmonic
and interharmonic components up to 1000 Hz.
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Figure 10.18. Current waveform of the arc furnace supply – medium voltage T2 input

10.4.2. Results and discussion

From the analysis of subsequent Figures 10.20–10.36, it canbe noted that the results
obtained by using "Ideal IEC" give a very high value of the progressive average referred
to the IEC interharmonic subgroups. This difference can be explained by the problem of
spectral leakage present in the DFT based algorithms (STFT)and therefore the high en-
ergy content leaking into the neighborhood of the fundamental component of the voltage
waveform. As shown below, the high resolution methods give results closer to the "Ideal
IEC" than the ones obtained with STFT for the evaluation of the progressive average
related to the 11th in Figure 10.25 and 13th in Figure 10.26 for harmonic subgroups.

Figure 10.19 reports the THD values obtained with the different techniques. It should
be noted that there is no visible advantage of using advancedspectral methods for esti-
mation of THD.

When analyzing current as well as voltage waveforms, a poor performance of
root-MUSIC (shown in Figures 10.20 and 10.29) can be observed. This can be attributed
to spurious roots (see Section 3.3) which in rare cases can ruin the results. STFT and
ESPRIT methods give comparable results.

In some rare cases parametric methods give less accurate results (Figure 10.23) or
almost identical when comparing to non-parametric STFT (Figure 10.24).
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The advantage of using parametric methods becomes evident when analyzing higher
harmonic groups of the currents (Figures 10.25 and 10.26) and voltages (Figures
10.33–10.36).
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Figure 10.19. Total Harmonic Distortion of the current evaluated with parametric spectral methods
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Figure 10.20. Progressive average of the first harmonic subgroup of the current
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In the case of voltage harmonic subgroups estimation (Figures 10.29–10.32) the re-
sults are comparable to those obtained using STFT. Again, root-MUSIC performs poorly
in first harmonic subgroup estimation (Figure 10.29).
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Figure 10.21. Progressive average of the third harmonic subgroup of the current
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Figure 10.22. Progressive average of the fifth harmonic subgroup of the current
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Figure 10.23. Progressive average of the third harmonic subgroup of the current
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Figure 10.24. Progressive average of the fifth harmonic subgroup of the current
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Figure 10.25. Progressive average of the eleventh harmonicsubgroup of the current
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Figure 10.26. Progressive average of the thirteenth harmonic subgroup of the current
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Figure 10.27. Progressive average of the first interharmonic subgroup of the current
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Figure 10.28. Progressive average of the second interharmonic subgroup of the current
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Figure 10.29. Progressive average of the first harmonic subgroup of the voltage
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Figure 10.30. Progressive average of the fifth harmonic subgroup of the voltage
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Figure 10.31. Progressive average of the seventh harmonic subgroup of the voltage
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Figure 10.32. Progressive average of the eleventh harmonicsubgroup of the voltage
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Figure 10.33. Progressive average of the first interharmonic subgroup of the voltage

2 4 6 8 10 12 14

0.95

1

1.05

1.1

1.15

1.2

1.25

k

C
m

ea
n(k

) 
[p

.u
.]

Ideal IEC
STFT
ESPRIT
rootMUSIC

Figure 10.34. Progressive average of the second interharmonic subgroup of the voltage
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Figure 10.35. Progressive average of the eleventh interharmonic subgroup of the voltage
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Figure 10.36. Progressive average of the twelfth interharmonic subgroup of the voltage
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Table 10.1. Mean square error (MSE) of the progressive average of the current harmonic subgroups
estimation. Value of Ideal IEC [A]

Method 1st 3rd 5th 7th 11th 13th

STFT 3.38 1.23 0.23 0.85 16.00 2.23

ESPRIT 5.96 1.33 0.22 0.05 2.83 2.08

MUSIC 5.80 1.37 0.22 0.07 1.26 2.24

Ideal IEC [A] 1757.90 17.00 13.85 23.64 95.50 46.76

Table 10.2. Mean square error (MSE) of the progressive average of the current interharmonics subgroups
estimation. Value of Ideal IEC [A]

Method 1st 2nd 11th 12th

STFT 34.88 52.47 24.93 4.60

ESPRIT 9.22 3.02 2.67 8.14

MUSIC 8.40 6.19 4.57 5.35

Ideal IEC [A] 61.13 43.56 29.26 29.58

Table 10.3. Mean square error (MSE) of the progressive average of the voltage harmonics subgroups
estimation. Value of Ideal IEC [V]

Method 1st 3rd 5th 7th 11th 13th

STFT 221.29 106.37 6.30 2.27 92.53 28.74

ESPRIT 202.17 201.79 2.37 6.33 14.18 27.36

MUSIC 1085.90 210.50 3.08 5.14 12.14 28.91

Ideal IEC [V] 11718.00 124.80 26.17 19.63 242.57 158.60

Tables 10.1–10.4 show values of the mean square error (MSE) of the estimation of
interharmonic subgroups and allow comparison with the value of Ideal IEC. Values of
MSE show excellent performance of parametric methods when computing interharmonic
subgroups and slightly decreased accuracy in the case of harmonic subgroups, especially
of voltage waveforms.

For all results presented previously, it can be seen (Table 10.5) that the ESPRIT
method offers reduction of the average relative MSE of estimation of harmonic sub-
groups by 54% and MUSIC method by 50%, compared to FFT-based method.
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Table 10.4. Mean square error (MSE) of the progressive average of the voltage interharmonics subgroups
estimation. Value of Ideal IEC [V]

Method 1st 2nd 11th 12th 13th

STFT 367.48 205.84 116.20 26.29 55.41

ESPRIT 107.87 23.24 7.76 11.81 15.90

MUSIC 118.49 9.42 20.08 13.21 17.78

Ideal IEC [V] 70.20 75.20 72.69 82.87 75.70

Table 10.5. Relative mean square error (MSE) of the progressive average of harmonic and interharmonic
subgroups estimation

Method Error of current Error of voltage Total error

harmonics interharm. harmonics interharm.

STFT 0.057 1.271 1.419 4.480 1.731

ESPRIT 0.029 0.180 2.193 0.531 0.796

MUSIC 0.027 0.231 2.364 0.563 0.861

10.5. Classification of events

10.5.1. Introduction

The problem of classifyingsignals obtained from the industrial power frequency con-
verters, using a new method (presented in Chapter 9) is considered in this section. The
object of signal classification can be control or optimization of the modern frequency
power converters, which generate a wide spectrum of harmonic components. Especially,
the task of fault detection is difficult. A subset of faults, which are usually not detected
by the protections (in underload conditions), is particularly hard to classify. In large
converter systems, which generate not only characteristicharmonics typical of the ideal
converter operation, but also a considerable amount of non-characteristic harmonics and
interharmonics, the task of fault detection is particularly difficult [28], [58]. The char-
acteristics of the signal can be better analyzed and understood if the correct represen-
tation is chosen. In case of heavily distorted signals, whose contents change with time,
it can be expected that the time and frequency characteristics are the most important.
The parametric time-frequency transformation can provideadvantages when analyzing
non-stationary signals due to its better temporal resolution, excellent performance in the
presence of noise, and no phase dependence as with classicalFourier-based spectra. In
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Figure 10.37. Simplified scheme of the simulated converter configuration. R – resistance of the
short-circuit

the case of time-frequency representation of a signal it is possible to study simultane-
ously the time and frequency characteristics of the signal with best possible resolution
non-parametric time-frequency transformations than. Thesignal classification is the as-
signment of the time-series to a specific class with given characteristics.

10.5.2. Numerical simulations

The signals under investigation are short-circuit currents obtained from a 3 kVA
PWM converter simulated with the Power System Blockset of MATLAB R© (Figures
10.37 and 10.38). Simulation system contains inverter and asynchronous machine mod-
els, as well as fault simulation circuit and space-phasor online computation modules.

Parameters of the simulated converter drive include:

• six-pulse (three-arm bridge) PWM inverter with ideal switches, carrier frequency
1000 Hz,

• three-phase supply with 25 kV/600 V 50 kVA transformer,
• lowpass filter with L = 0.2 mH, C = 5µF to 10µF,
• squirrel-cage type asynchronous machine Un = 220 V, Pn = 2.2 kW, 50 Hz.

For classification purposes, all investigated three-phasewaveforms were transformed
to the complex space-phasor (see Equation (6.1)). Then its absolute value (example in
Figure 10.39 for short-circuit resistance R = 1Ω) is transformed to its time-frequency
representation using parametric ESPRIT method with the help of temporal sliding win-
dow as shown in Figure 10.40.

Taken the representation of the waveform in time-frequencyplane, as the next step,
the areas in this plane can be chosen, either manually (basedon observation) or automat-
ically (based on some optimization algorithm, which, e.g.,minimizes the classification
error). Optimization approach is not developed in this work.
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Figure 10.38. Model of the inverter drive in MATLABR© SimPowerSystem
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Figure 10.39. Absolute value of the space phasor of the inverter output currents. Short-circuit resistance R
= 1 Ω
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Figure 10.41. Corresponding amplitudes of components as inFigure 10.40

In Figure 10.40, the time-frequency representation (ESPRIT-based) of the modu-
lus of the space-phasor of inverter output currents is presented. Three components are
shown here and the fundamental component is removed. Corresponding amplitudes of
components are shown in Figure 10.41. Selected areas for subsequent reconstruction are
outlined as rectangular areas in time-frequency plane and summarized below:

• time interval: 0.27–0.3 s; frequency band: 92–108 Hz,
• time interval: 0.27–0.3 s; frequency band: 143–165 Hz,
• time interval: 0.3–0.35 s; frequency band: 112–138 Hz,
• time interval: 0.3–0.35 s; frequency band: 165–200 Hz.

There follows a classification procedure. As already shown in Figure 9.1, the pa-
rameters of the signal and pattern are extracted from their time-frequency representa-
tions, by taking only those parts of the signal which are contained within the selected
"regions of interest" (examples shown in Figures 10.42). Extracted parameters (compo-
nents’ frequencies, amplitudes, duration in time, etc.) allow "reconstitution" (incomplete
reconstruction) of preprocessed signals and patterns. Theprocedure is then followed by
computation of classical, time-domain correlation sequence. The result of classification
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Figure 10.42. Reconstructed signal from components as shown in Figure 10.40

depends on the highest value of the correlation coefficient which shows, to some ex-
tent, the degree of similarity between signal under classification and previously selected
pattern.

Result of application of the classification scheme described are presented in Table
10.6. Over 500 waveforms were simulated using different drive parameters (parameters
of LC filter (from 5µF to 10µF), value of short-circuit resistance (from 1Ω to 100Ω),
value of the shaft mechanical torque applied to the asynchronous machine (from 50 to
100 Nm – see Figure 10.38) in order to validate this classification approach.

From the analysis of Table 10.6 it should be noted that the useof high-resolution
ESPRIT method and selection of areas of obtained time-frequency representation al-
lows highest sensitivity of detection of a pattern (here: short-circuit waveform) hidden
in the current waveform at the converter output (precisely the signal is composed of all
three currents in the form of space-phasor). Classical time-domain correlation is almost
useless for this classification task.

Table 10.6. Average of the highest correlation coefficientsover 500 trials using ESPRIT, STFT and
time–domain correlation

Method Classification Classification Time–domain

ESPRIT–based STFT–based Correlation

Signal contains pattern 0.63 0.57 0.35

No pattern 0.15 0.22 0.33
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In this section, a new method of classification of electric signals has been presented,
based on the time-frequency representation and automatic signal classification with the
help of a standard correlation technique. The investigations proved the validity of the
proposed approach, however this method can lead to further improvements which can
additionally increase its performance. Further work can include the design of the clas-
sification system with many classes, optimized and/or automatic choice of "areas of
interest" in the time-frequency plane, application of other classification algorithms, etc.



Conclusions

The main goal of this work was to present a new approach to analysis in spectral
domain of power systems using parametric spectrum estimation methods. After detailed
theoretical treatment of many aspects of the approach proposed, including preprocessing
using bandpass filters or filter banks (Chapter 5), estimation of the model order (Chapter
7), and analysis of non-stationary waveforms (Chapter 4) (including classification of
events, Chapter 9), the second part is presented, devoted mainly to practical aspects and
numerical analysis (Chapter 10).

In practical applications, one of the most important questions concerns the optimal
choice of analysis methods when taking into account known parameters of the signal and
limitations of the chosen analysis technique. These problems were addressed in section
10.2. Testing signals were chosen that correspond to most often encountered waveforms
in power systems. Most important results show that an optimal size of the correlation
matrix can be chosen. Further increase of the size of the correlation matrix or the use of
forward–backward technique does not improve the accuracy –such a conclusion contra-
dicts the established widespread opinions. In general, parametric methods show similar
values of accuracy (with slight advantage of ESPRIT method)which greatly outperform
the accuracy of FFT-based non-parametric method. Moreover, parametric methods show
almost complete immunity to masking effect (see Figure 10.5) to variable initial phase
of harmonic components and to many other deficiencies off FFT-based techniques, as
shown in [32]). Interestingly, when comparing strongly simplified theoretical expres-
sions related to performance of ESPRIT and MUSIC (see equations (3.51) and (3.56)),
the main result is confirmed in numerical simulations (ESPRIT is more accurate than
MUSIC), although the difference of performance is not as high as sixfold.

Results of estimation of the model order concern the problemspecific to parametric
methods. It is necessary to obtain the exact number of components contained within
the analyzed signal. Wrong estimation of the number of components leads to errors,
although ESPRIT seems to be less affected [35]. The analysisperformed by the author
shows the possibility of application of known statistical information criteria (Section
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10.3). It should be noted that the on-line estimation of the number of components works
well for few components only, but this shortcoming can be overcome by narrow-band
local analysis of the signal. This approach limits the number of components to be de-
termined, improves the SNR and increases the spacing between close spectral lines (im-
proves resolution), as shown in Chapter 5). However, in manyapplications there is no
need for estimation of the number of components because thisinformation is known in
advance.

Chapter 8 and section 10.4 are devoted to the assessment of the power quality. Most
power quality indices use FFT-based techniques. It was shown that application of para-
metric methods allows approximately 50% reduction of the estimation error (page 92).
This result was obtained despite the fact that for comparison a procedure was chosen
where the minimum error is expected for FFT-based technique(i.e., analysis window
length equal to one period of the fundamental harmonic). Even higher gains in accu-
racy were achieved when analyzing waveforms with high inter/sub-harmonic contents
[58, 60].

The proposed classification approach, presented in Chapter9, uses the space-phasor
for representation of three-phase signal, its parametric time-frequency representation and
subsequent selection of most significant areas in the time-frequency plane.

The author proved that for the analysis of narrow-band (line-spectra) it is sufficient
to analyze narrow band- and time-limited areas of their time-frequency representations
plane (see Chapter 4). Such approach not only provides sufficient information for sub-
sequent analysis (see Section 4.2). It also improves its performance by enhancing the
signal-to-noise ratio, improving the resolution (see Chapter 5) and improving the clas-
sification rate of correlation-based classification approach (see Theorem 13). The use of
high-resolution methods significantly improves the accuracy of many parameter estima-
tion techniques. Both approaches combined allow further improvements (in Chapter 10
numerous examples are shown).

There exist in the recent literature a large group of methodsaiming at reduction
of the computational burden associated with the estimationof the correlation matrix.
These methods include subspace tracking, projection approximation, partial update of
the correlation matrix and many others, not considered in this work. From preliminary
investigations the author concluded that the expected gainin computation time is not a
justification for significant increase of the error of parameter estimation, especially for
non-stationary signals. With the constant increase of computational power of modern
processors the calculation time becomes less troublesome than the accuracy of results
achieved. Moreover, the results presented in Figure 10.2 show that optimal accuracy is
practically achieved when using quite small correlation matrices which can be computed
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in little time (see Figures 10.2 and 10.3). The complete TLS-ESPRIT procedure includ-
ing correlation matrix computation takes 0.01–0.1 s only onan average PC running
MatlabR© 3.

In the light of precedent considerations the main thesis (see page 9) of this work
appears to be proven.

Outlook
The approaches to signal analysis in power systems, presented in this work, will be

extended in the future in many ways.
Sliding window approach, used for non-stationary signal analysis, can be modified

by using variable length windows, where the window length can be determined on the
basis of optimization of a chosen output parameter. Such an approach is quite widely
applied (e.g., in [63]), although the advantages seem not tobe very important for the
applications considered in this work.

Classification procedure can be improved by applying the optimization procedure to
the choice of "areas of interest", by applying other classification algorithms [40], other
time-frequency representations. It is foreseeable that such improvements could bring
about some inhancement in sensitivity and specificity of theclassification procedure.

One important problem is the reliable estimation of waveform parameters when the
signals under investigation have a strong stochastic nature (for example, electric arc
furnace). It is often desirable to get representative results also for such signals which
present impulse disturbances. In such cases robust statistical methods can be efficiently
applied and allow elimination of stochastic (non-repetitive) part of the signal [36].

3 PC with 2.8 GHz processor clock , 1 GB of RAM, MatlabR© ver. 7.0.1.
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Parametrycznemetody analizy
czasowo-częstotliwósciowej sygnałów elektrycznych

Praca niniejsza jest kontynuacją i rozwinięciem cyklu publikacji autora (Literatura
strony 103–108 pozycje literaturowe [4]–[10], [29], [32]–[53], [55]–[62]), mającą na
celu ich usystematyzowanie i uzupełnienie. Autor proponuje nową metodologię analizy
widmowej sygnałów elektrycznych (w tym trójfazowych) i wiele metod pochodnych
przy pomocy metod podprzestrzeni (metod o wysokiej rozdzielczości, parametrycznych
metod estymacji widma, takich jak MUSIC i ESPRIT), a także poddaje analizie właści-
wości ró̇znych metod analizy widmowej, zastosowanych w praktyce.

W pracy przestawiono kilka nowych koncepcji, które wzajemnie się uzupełniając,
tworzą ramy nowego podejścia do analizy widmowej sygnałów elektrycznych. Kon-
cepcje te obejmują zagadnienie wykorzystania większej dokładności metod parame-
trycznych w porównaniu do klasycznych metod wykorzystujących transformatę Fouri-
era, koncepcję analizy i identyfikacji na podstawie wybranych obszarów reprezentacji
czasowo–częstotliwościowej sygnału, wykorzystania wektora przestrzennego do trans-
formacji sygnałów trójfazowych, wykorzystania filtrów pasmowych (banki filtrów) do
poprawy dokładnósci wyznaczania parametrów.

Praca obejmuje szczegółową analizę teoretyczną prezentowanych zagadnień, która
jest jednak ścísle podporządkowana praktycznym aspektom zastosowania metod
parametrycznych do analizy sygnałów elektrycznych. Przedstawiono w pracy także
wyniki badán symulacyjnych obejmujących porównanie dokładności metod parame-
trycznych, wyznaczania rzędu modelu, wskaźników jakości energii i klasyfikacji za-
kłócén.
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