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Zbigniew LEONOWICZ

PARAMETRIC METHODS FOR TIME-FREQUENCY ANALYSIS OF
ELECTRIC SIGNALS

The author presents a new approach to spectral analysigdfielsignals and related problems en-
countered in power systems. This approach includes the fusigloresolution subspace spectrum esti-
mation methods (such as MUSIC and ESPRIT) as replacemenidefywsed Fourier Transform-based
techniques. The author proves that such an approach carsoffstantial advantages in parameter estima-
tion accuracy, classification accuracy and many other éspégower system analysis, especially when
analyzing non-stationary waveforms.

The problems treated in this work include theoretical asialpf the limitations of FFT-based analy-
sis, problems in applications of Short Time Fourier Transfodescription and characteristic properties of
subspace frequency estimation methods — MUSIC and ESPRimation of the model order, theoretical
development of time-varying spectrum, application of fibanks and advantages when applying to line
spectra analysis, space-phasor for analysis of threee@igsals, power quality assessment using indices
with practical application to waveforms from an arc furngoever supply, numerical analysis of perfor-
mance of investigated methods and a novel approach to fatasisin of power system events based on
time-frequency representation and selection of "areastefast” in time-frequency plane.

The author concludes that the use of high-resolution metisgghificantly improves the accuracy of
many parameter estimation techniques applied to powegsyahalysis.

1 Instytut Podstaw Elektrotechniki i Elektrotechnologiillechniki Wroctawskiej, Wybrzee Wyspi-
anhskiego 27, 50-370 Wroctaw.



Notation

In this monograph, the symbols for discrete signals: veagurrents and others are
always mentioned; subscripts are used to distinguish legtwkectrical phases: e.g., a, b
and c. The symbols for continuous signals are explicitly tioeed. Vectors are written
in boldface lowercase letters and matrices are writtenlidface uppercase letters. Com-
plex signals would have a tilde and vectors and matrices gothplex signals would
have tilde, as well. The meaning of the following symbols #raothing else is stated:
XT transpose operatoX * complex conjugateX  hermitian transpose, i.e., complex
conjugate transpos&e{ X } real part of a complex quantityyn{ X } imaginary part of

a complex quantityX ™ inverse (pseudoinverse) of a matix
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complex amplitude

autocovariance function
autocovariance matrix

covariance matrix operator
amplitude of a harmonic/interharmonic group/subgroup
eigenvector of the correlation matrix
expected value

matrix of eigenvectors
space—phasor

fundamental frequency

symmetric three—phase components
transmittance

M—times decimation



orthogonal projection matrix
power spectrum

P (t,w) time-varying power spectrum

autocorrelation sequence
correlation matrix of the random process
correlation function of the random process

R (t,w) time-varying autocorrelation function

vector of signal samples
spectrogram, energy density spectrum

Sz ()  power density spectrum
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vector of components’«”

,w) Wigner—Ville distribution

discrete impulse
noise variance
matrix of eigenvectors
estimator of the parametér
in the maximum-likelihood sense
vector of noise samples
eigenvalue of the correlation matrix
matrix of eigenvalues
Lagrange coefficient
selector matrix
complex gradient of;



Abbreviations

AC alternate current

AIC Akaike Information Criterion

ESPRIT Estimation of Signal Parameters via Rotationalriamae Technique
FFT Fast Fourier transform

LP Linear Prediction

LMS Least Mean Squares

LNI Load Nonlinearity Indicator

LS Least Squares

LSE Least Squares Estimator

MDL Minimum Description Length

MIBS Minka'’s Bayesian model order Selection Criterion
MLE Maximum Likelihood Estimator

MSE Mean Square Error

MUSIC Multiple Signal Classification method

PHD Pisarenko Harmonic Decomposition

RMS Root-Mean Square

SNR Signal-to-Noise Ratio

STFT Short-Time Fourier Transform

STHD Short-Time Harmonic Distortion Index

SvD Singular Value Decomposition
TF, TF{} time—frequency, TF transformation, TF transfoof{.}
THD Total Harmonic Distortion

WFT Windowed Fourier Transform



Preface

The problem of spectral analysis can be described as thefdewling the spectral
contents of a given signal.

The meaning of the signal decomposition into its spectrahanents originates
from the very early works of the Pythagoreans, in their agialpf the motion of the
planets, in the discovery of the law of musical harmony, mworks of Newton on the
spectrum of the light (1677), in the analysis of vibratingmteanes by Bernoulli (1738)
and Euler (1755), and in Prony approximation of vibratingchemnisms (1793).

The contemporary Fourier analysis, commonly used, takesiijins in the works of
Fourier (1807), although some elements of the Fast Fouramnsform can be found in
Gauss’s works on orbital mechanics (1805).

One of the main tools of signal analysis is the power spectiarious algorithms of
the power spectrum estimation found a wide application imenous areas of science,
also in power system analysis.

Accurate and fast determination of the parameters of thetrgpeomponents of the
investigated signal is important for different reasons.

Real-world signals contain usually many spectral comptserich differ in fre-
guency, often with additional noise, moreover, their pagars can change with time.
The accuracy of the estimation is limited by the resolutibigs, variance of the
estimator, length of the data sequence, interactions leetiredividual components,
phase-dependence and many other factors.

In many areas of technical sciences, like telecommuniestielectronics, automatic
control, power system protection and control, there is arfee identification of the
working state, signal separation and estimation of theasigarameters, identification
of the harmonic components and their parameters.

Between 1940 and 1960 signal processing was analog andriyisnpart of physics.
Then, the analog signal processing lost its importance thighonset of digital signal
processors. Fast computational algorithms, such as Faraiesform, allowed the signal
filtering to be performed in a very short time. Then, signalgassing acquired great



support from statistics. The next revolution occurred i739980 with the advent of
new methods from mathematics and quantum physics, like &igansform.

The signal is a physical carrier of useful information. Thetiration for leaving the
immediate representational space (mostly time represemtan which plain data are
given) and pass to a transformed space is to obtain a cleatareof specific charac-
teristics of the signal. It is like "looking™ at the signalbim a particular angle, to obtain
better "view" of its properties.

Non-parametric methods require little or agriori knowledge of the signal. These
methods usually employ larger representational spaceuseaah for the plain data. The
redundancy is compensated by better structuring of tharirdton contained in the
analyzed signal.

On the other hand the non-parametric (conventional) splesstimators such as the
FFT or autocorrelation methods are limited in their resaivpower, requiring long ob-
servation intervals in order to achieve acceptable acguaad reduce leakage. For data
sets of short duration, these conventional techniquesraemable, and an alternative ap-
proach is required. This has led to parametric (model bagmehtral estimation, which
has proven usefulness in extracting high resolution frequespectra from relatively
short data sets, providing the structure of the signal issknorhe components of a
known order related structure can be accurately trackedeatrdcted from the back-
ground of noise and components of an unknown structure.



Research objective

This work extends and summarizes some previous publicatdrthe author(see
[29], [32]-[53], [55]-[62]). The goal is to present a new aggch to many problems en-
countered in power systems. This approach includes thefusgloresolution subspace
spectrum estimation methods (such as MUSIC and ESPRITp&cement of classical
FFT-based techniques. The author argues that such an appraa offer substantial
advantages in parameter estimation accuracy, clasdificaiicuracy and many other
aspects of power system analysis, especially when anglyzin-stationary waveforms.
Based on theoretical considerations and numerous priaappdications, the following
thesis will be proven:

High-resolution subspace methods, together with timeufeacy representa-
tion and analysis of electrical signals provides substntnprovements to so-
lutions of numerous problems of power system analysis ifréqgency domain.

The problems treated in this work include:
e detailed theoretical analysis of the limitations of Foufeansform-based analysis,
problems in applications of Short Time Fourier Transform,
e description and characteristic properties of subspacpiémecy estimation methods
— MUSIC and ESPRIT; estimation of the model order,
theoretical development of time-varying spectrum,
application of filter banks, advantages when applying te fipectra,
space-phasor for analysis of three-phase signals,
power quality assessment using indices with practicaliegjibn to waveforms from
an arc furnace power supply,
numerical analysis of performance of investigated methods
novel approach to classification of power system eventsdbasegtime-frequency
representation and selection of "areas of interest".
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The author argues that for the analysis of narrow-band-@peztra) it is sufficient
to analyze narrow band-limited and time-limited areas efrttime-frequency represen-
tations (see Chapter 4). Such an approach not only provigfésient information for
subsequent analysis (see Section 4.2); it also improvesitermance by enhancing the
signal-to-noise ratio, improving the resolution (see Gbap) and improving the clas-
sification rate of correlation-based classification apgho@ee Theorem 13). The use of
high-resolution methods significantly improves the accyief many parameter estima-
tion techniques. Both approaches combined allow furth@ravements (see chapter 10
where numerous examples are shown).



Contributions

Scientific contributions of this work can be summarized dsves:
e coherent theoretical formulation and development of theisbaf time-frequency
analysis of electrical non-stationary signals, whichiael:
detailed description, characterization and performamedyais of two selected
parametric spectrum estimation methods: MUSIC and ESPRIT,
formulation of conditions for time-varying spectrum esition,
e analysis and justification of space—phasor transformatidhree—phase electric sig-
nals,
e analysis of advantages of application of band-pass filtedsfidter banks for line
spectra,
numerical analysis of selected methods of model order thatec
introduction, analysis and comparison of new methods aitalion of power qual-
ity indices using parametric spectrum estimation methods,
e development of a new method of classification based on smbeof areas in the
plane of time-frequency parametric representation ofafgn
e extensive numerical simulations for comparison of varipagormance aspects of
parametric spectrum estimation methods.



Chapter 1

Introduction

1.1. Time-domain analysis

Prior to the introduction of the Fast Fourier Transform gralimplementation of the
first real-time spectral analyzers, the spectral analyas wainly performed by looking
at the time waveform of the signal. Although this alloweded¢ibn and diagnosis of
faults by examining the major repetitive components of aaigcomplex signals with a
multitude of components could not be accurately asséssed

Several technigues can be used to enhance the characsetiistt are otherwise not
easily observable from the time waveform. These includet#ynchronous averaging,
and auto-correlation of the signal. Time synchronous @iegauses the average of the
signal over a large number of cycles, synchronous to theimgnspeed of the ma-
chine. This attenuates any contributions due to noise ossgaohronous vibrations. The
auto-correlation function is the average of the productaltmivs us to indirectly obtain
information about the frequencies present in the signalvé¥er, these techniques pro-
vide only a limited amount of additional information. Theedeto distinguish between
components of a similar nature or hidden within a multi-comgnt signal led to the
mathematical representation of these signals in termsafanthogonal basis functions,
a field of mathematics whose origins date back to Josephét@irnvestigations into the
properties of heat transfer.

1.2. Frequency-domain analysis

The advent of the Fourier Series in the early 1800's by JoSepinier (1768-1830)
provided the foundations for modern signal analysis, atagehe basis for a significant
proportion of the mathematical research undertaken indHeand20 centuries.

Fourier's most important work was his mathematical thedriigat conduction ex-
posed inAnalytic Theory of Heat (Théorie Analytique de la Chalgi$22). As one of

! This introduction is partially based on the review "Surfihg Wavelets" in [1].
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Figure 1.1. Jean-Baptiste Joseph Fourier

the most important books published in th@&” century, it marked an epoch both in the
history of pure and applied mathematics. In it, Fourier ttgyed the theory of the series
known by his name and applied it to the solution of boundaiye problems in partial
differential equations. This work brought to a close a loagtooversy, and henceforth it
was generally agreed that almost any function of a real briean be represented by a
series involving the sines and cosines of integral mukigiethe variable. After a long
and distinguished career, Fourier died in Paris on May 180 the age of 62.

A major development which revolutionized the computatidgmgplementation of the
Fourier transform was the introduction of the Fast Fouriem$&form (FFT) by Cooley
and Tukey in 1965, which enabled the implementation of th& figal-time spectral
analyzers. The FFT improved the computational efficiencthefFourier transform of
a signal represented by discrete data points. Despite tatidnality of the Fourier
transform, especially in regard to obtaining the spectnallysis of a signal, there are
several shortcomings of this technique. The first of theshddnability of the Fourier
transform to accurately represent functions that havepwivdic components, that are
localized in time or space, such as transient impulses.i3 dise to the Fourier transform
being based on the assumption that the signal to be transébisyperiodic in nature and
of infinite length. Another deficiency is its inability to pridle any information about the
time structure of a signal, as results are averaged ovemtire eluration of the signal.
This is a problem when analyzing signals of a non-statiometyire, where it is often
beneficial to be able to acquire a correlation between the #md frequency domains
of a signal. Another problem of Fourier analysis is spectrakaring. It substantially
affects the results obtained by conventional spectralyaisal

A variety of alternative schemes have been developed toavepthe description of
non-stationary signals. These range from developing madktieal models of the signal,
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to converting the signal into a pseudo-stationary signaubh angular sampling, and
time-frequency analysis of the signal.

1.3. Time-Frequency signal analysis

As noted by Jean Ville in 1947, there are two basic approatthéme-frequency
analysis. The first approach is to initially cut the signabislices in time, and then
to analyze each of these slices separately to examine teeudncy content. Another
approach is first to filter different frequency bands, andh ttet these bands into slices
in time and analyze their energy contents.

The first of these approaches is used for the constructioneoBhort Time Fourier
Transform and the Wigner-Ville transform, while the sectaadls to filter-bank methods
and to the Wavelet Transform.

In 1946, the first time-frequency wavelets (Gabor waveletse introduced by Den-
nis Gabor, an electrical engineer researching into comeation theory. Jean Ville
(1947) proposed another approach for obtaining a mixedakigpresentation. Ville's
work was tied into the research of Hermann Wigner (1932),\ssipist working in the
field of quantum mechanics, and led to the development of tigm®-Ville transform.
Unfortunately the Wigner—Ville transform renders impetfanformation about the en-
ergy distribution of the signal in the time-frequency domaind an atomic decomposi-
tion of a signal based on the Wigner—Ville transform doesexst.

After the first time-frequency wavelets introduced by DenBabor, there has been a
proliferation of activity with comprehensive studies oe time-frequency analysis and
its implementation into many fields of science.

Non-parametric (conventional, Fourier Transform baspdgsal estimators such as
the FFT or auto-correlation methods are limited in theiohgag power, requiring long
observation intervals in order to achieve acceptable acguand reduce leakage. For
data sets of short duration, these conventional technigreeaseless, and an alternative
approach has been developed. The parametric (model bamadad estimation, which
has proven useful in extracting high resolution frequermscta from relatively short
data sets, providing the structure of the signal is knosvpr{ori knowledge) was intro-
duced. The components of a known order related structurbecancurately tracked and
extracted from a background of noise and components of amawrk structure.
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1.4. Analysis of non-stationary signals

A variety of alternative schemes to analyze the propertiewn-stationary signals
have been developed to improve the description of theirufsaqy domain content.
Each of these techniques has its own particular domain dfcagipn and addresses
certain problems, butot all, encountered in the analysis of non-stationary signais. In
vestigations are to include angle domain analysis, par@ngbectral estimation and
time-frequency analysis. A comparison of these techniggipsesented below, includ-

ing some practical examples illustrating how they can bé ts@ssist in the analysis of
non-stationary data.

1.4.1. Classes of non-stationary signals

Two major classes have been identified, evolutionary haigrgignals and transient
signals. A third class, evolutionary broad band signals algsts, however this form of
non-stationary signal is rare in the domain of power systems

Evolutionary narrow-band (harmonic) signals

Evolutionary harmonic signals consist of several nonigstary narrow band tones,
superimposed on a background of random noise. These saypealsually a result of the
waveforms being related to some underlying periodic timpmng phenomenon, such
as the rotational speed of a generator. Further complitatitise when a signal consists
of a combination of stationary and non-stationary harmeigaal components, and/or
involves varying signal amplitude with time.

Evolutionary broad-band signals

An evolutionary broad band signal is one whose spectralityecmvers a broad band
of frequencies, which are of a time varying nature. The agghaisually adopted when
analyzing signals of an evolutionary broad band nature iwitimize the observation
period while maintaining a reasonable spectral resolutlus enabling analysis over an
essentially stationary segment of the signal. A methodthaproven useful in analyzing
signals of this form is auto-regressive modelling, whicheatuates the most prominent
features, while attenuating the less prominent components

Transient signals

Transient signals are short time events, whose time betwagennot be predicted
and are totally varying in nature, both in time, frequencgl ather parameters. Transient
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signals (impulsive noise) are usually a result of load ompsupoltage or current steep
changes.

1.4.2. Parametric spectral estimation

As previously explained, non-parametric spectral estingaare limited in their re-
solving power. The development of parametric (model-baspdctral estimation meth-
ods allowed extraction of high resolution spectra fromtieddy short data sets, provid-
ing adequate knowledge of the structure of the signal. Thegpoments of a known order
related structure can be therefore accurately tracked»rateed from a background of
noise and components of an unknown structure.

The basic idea is that if the signal¢) depends on a finite set of parameters, then
all of its statistical properties can be expressed in terfriease parameters, including
its power spectrun®,..(f) [84]. The most common and simplest of the parametric esti-
mation techniques is auto-regressive (AR) modelling ofsilyeal [85]. Auto-regressive
modelling consists in estimating the order of the coeffitsarf the model, which when
applied to the input signal will minimize the predictionraarof the signal. Normally, the
minimization criterion of the model will be entropy basedjigh essentially maximizes
the random nature of the error signal.

Non-Gaussian processes or processes that include colooige cannot be ade-
guately modelled by its second order statistics, motigatilgher order parametric es-
timation technigues, such as auto-regressive moving gedi@RMA) estimation. Al-
though AR and ARMA estimation have proven successful inyamad) signals of an
evolutionary harmonic or broad band nature, the problenrasfsient signal analysis
cannot be still adequately addressed [85]. Another mattieahanodel approach that
has been highly successful in analyzing signals of an a@eolaty harmonic nature is
adaptive Kalman filtering. However, as with AR and ARMA majeln accurate knowl-
edge of the structure of signals is required before a reé®maodel can be obtained
[85].

The area of parametric spectral estimation was developethdandirection of
eigen-analysis-based methods, among others. These raathgpkectrum estimation are
based on the linear algebraic concepts of subspaces andesbden called "subspace
methods" [85]. Their resolution is theoretically indepentof the signal-to-noise ratio
(SNR). The model of the signal in this case is a sum of singsoidhe background
of noise of a known covariance function. Pisarenko [68] filsserved that the zeros
of the z-transform of the eigenvector, corresponding tontirdmum eigenvalue of the
covariance matrix, lie on the unit circle, and their angydasitions correspond to the
frequencies of the sinusoids. In a later development it aasva that the eigenvectors
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might be divided into two groups, namely, the eigenvectpessing the signal space and
eigenvectors spanning the orthogonal noise space. Theveigfers spanning the noise
space are the ones whose eigenvalues are the smallest ahdoeitpe noise power. One
of the most important techniques, based on the Pisarengpi®oach of separating the
data into signal and noise subspaces is the MUSIC methodaftESPRIT method
[74], investigated in this work.

Extension to analysis of non-stationary signals leads ithngl time-window ap-
proaches, when the time-varying signal is assumed to bdylastationary (inside the
current analysis window).



Chapter 2

Fourier Analysis

Fourier analysis is one of the major accomplishments of iphyand mathematics
[15]. It is rooted in the central concept fiEquency The frequential description of the
signal gives the basis for better understanding of the phena analyzed. It often sup-
plies an essential complement to teenporaldescription. There are several reasons for
using Fourier analysis:

1) the temporal and frequential description of the signalcmmplementary;

2) mathematical structure of the Fourier transform is waitlexi for common transform
methods;

3) Fourier transform serves as a basis for development ofja leumber of algorithms,
programs, processors and machines for frequency analysis.

Classical Fourier analysis employs two complementaryesgtations to describe
the signal: the signat(t) as a time function and its Fourier transfoiXiw):
+o0o .
X (w) = x (t) e Idt. (2.1)

J—00

2.1. Limitations

In general, it is difficult to recognize properties ©ft) from properties ofX (w).
Based on the uncertainty principle it follows thaft) and X (w) cannot be both simul-
taneously small [18]. The computation of one valueXdfv) necessitates the knowledge
of the complete history of the signal. In the inverse Fouransform:

2(t) = [ :OX(w)ej“’tdw 2.2)

any value ofz(t) at the time instant can be regarded as a superposition of an infinite
number of complex exponentials, that is, everlasting andpdetely non-local waves.
This kind of representation may in certain circumstancesodi the real properties of
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the signal. This is the case when dealing with transientadsgrwhich vanish after a
certain time [15].

The author’s interest in time-frequency representatiohglectric signals is due
to the fact that most multi-component (distorted) waveforim power systems are
time-varying. Widely used FFT-based methods, including=§Tpresent many short-
comings which in some cases lead to inaccurate results]46[4[29], [37], [57]-[60],
parametric time-frequency analysis was developed andeabpd the various prob-
lems of power system operation, including arc furnace syumyinchronous machines
and inverter drives. In the author’s works ([32], [41], [4885], [53]) non-parametric
time-frequency methods were also considered (STFT, Sfoam and Wigner—Ville
transform).

Time-frequency methods explicitly consider the time dejgete of the frequency
contents of the signal.

In mathematics uncertainty principles involve functighaind their transformg.
Classical uncertainty principle is called Heisenberg+iPg¢eyl inequality [18].

Theorem 1. If f € L?(R) anda, b € R are arbitrary, then:

\/_/_j@ —a)?|f(2)]* du \/'/_jw — b2 |F(w)]? dw > % 15 @3

It follows that the support of the signal cannot be arbilyasmall both in time and
in frequency domains. The experience also proves that @mmilse extends over a
large frequency range. This type of constraint is imposetthby-ourier duality [15]. For
signalz(t) with limited energy, the product of the duratidx and the bandwidti\w
of the signal is bounded from below, which is expressed by:

1
At Aw > —. (2.4)
47
The duality of the Fourier transform is the direct consegeeaof the definition of the

latter. For the proof, see [15].

2.2. Time-Frequency Approach

Time-frequency analysis is the search for representatioaispresent the informa-
tion contained inz(¢) and X (w) simultaneously. The goal is a joint description of the
temporal and spectral behavior of the signal. Such a repiatsen is two-dimensional.
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The ideal time-frequency representationagf) shows the frequency spectrum at
each instant. But this ideal representation does not exist.

Short-Time Fourier Transform (STFT)

The Short-Time Fourier Transform is the most widely usedhmétfor analysis of
non-stationary signals [13]. Itis based on a simple andtiméuconcept: the conventional
Fourier transform gives no information about the time lawatbof the spectral peaks,
because its basis functions are not localized in time. lem@extract such information,
one breaks the time-localized signal into smaller timerfragts and apply the Fourier
analysis to each of the time segments. The sum of such papiaitra shows the time
variation of the spectral content of a given signal in time.

In most of the author’s research, STFT played the role of acbmark" or a tool for
comparing the accuracy of the new methods investigatede \&fplication of STFT
makes it an ideal choice for this task ([50], [58]). Temporahdow function as in
STFT was also applied by the author for different parametiéthods in order to obtain
time-frequency representations of signals (e.qg., [32]))[4

When trying to achieve better time resolution, it is possitdl choose shorter time
intervals but up to a certain limit, when the segment spetttecomes meaningless and
without any relation to the true spectral content of the aighn the case of parametric
methods, which allow exact spectral estimation based onskart data sequences, such
a limitation affects less the results ([23] ,[60]).

In order to obtain information about the signal at a certanetpointt it is necessary
to use the temporal window functidi(r), which preserves the signal inside a certain
time interval and suppresses the signal at all other timesodified signal is obtained
by multiplying the original signal by the window function:

s¢(1) =s(7) - h(t — 7). (2.5)
Due to the window function, centered around the time pgietmphasizing the signal
around that point, the Fourier transform of the signadlso reflects the spectral content
of it around that time:

Si(w) e I¥ts(r) - h(T — t)dr. (2.6)

\/ 27‘(’ / o)
The energy density spectrum, commonly narsgelctrogramat the timet is defined
as:

Definition 2. For a given window functiork(t), the spectrogram of a signai(t) is

defined by:
2

J(t,w) ‘/ (7 — e 7 dr| . @2.7)
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Evaluation of the spectrogram combines a linear operattaurier transform of
the weighted signal) with quadratic operation (modulusasgd). The opposite order of
operations is applied in the Wigner—Ville distribution J1Which is not considered in
this work.

The total energy of the signal transformed by STFT is givefill3y.

) 2
o / s h(r—tyeTar] 2.8)

|SsTrr (t,w)
The marginals can be obtained by integrating:

e time marginal — over the frequency

P = [ ISsrertw)Pdo= [ s b= 0P dr £1s@F. @9

and similarly,

e frequency marginal — over the tinte

P(w):/f:o‘S(w/

From equations (2.9) and (2.10) it follows that, in geneesle; the marginals of the
spectrogram are not correctly satisfied, because the sgeatn scrambles the energy
distribution of the signal with the energy distribution b&twindow function [13].

[ ‘Sh ()] du’ #1S @) (2.10)

As a consequence:
the averages of time and frequency are never correctly diyehe spectrogram;
the spectrogram does not possess any finite support property
there exists an inherent trade-off between the time andifnegy localization of the
spectrogram. The uncertainty principle quantifies thisedelency;
e the choice of an optimal window function is difficult and mumt done for every
class of signals or for the purpose of the analysis;
¢ ifthe time window function is shortened, the result of thecpogram approaches the
instantaneous frequency of the signal, but, at the same thmestandard deviation
of the signal representation goes to infinity [13].
As an illustrative example [13], the spectrogram of the aigiit) composed of one
sinusoidal component and one impulse with the use of Gaussi@dow functionh(t)
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is given by

s(t) = el £ \2r8(t —ty), (2.11)

a\ 4 7at2

ht) — (-) : e~ (2.12)

s

1 —i(w-wp)? a 2
S 2 _ @ 44 /= —a(t—to)* 4
|St(w) «/aﬂe 7Te

—(w—wq)?

2 —\wW=wo)
+ _eafa(t7t0)2 coSs [w (t _ to) — wot] . (213)
N

The first two terms in (2.13), so called self-terms , depenthersize of the window
function in such a way that if one of the terms becomes latherpther must become
smaller, and vice versa. The third term represents osoijatross-terms which fall on
the self-terms of the spectrogram [13]. For detailed disicusabout the properties of
STFT, see [13, pp. 102-112].



Chapter 3

Parametric frequency estimation

3.1. Eigenanalysis-based methods

3.1.1. Introduction

Parametric methods are those which take advantage of knawamgters of the
signal, such as the number of tones (spectral componerdshiains. Non-parametric
methods do not make such assumptiangriori. Model-based methods for estimation
of the discretepart of the spectrum only relate to the eigenvector decoitiposof
the correlation matrix , unlike the model-based estimatorshe continuous part of
the spectrum (like auto-regressive model or maximum egtropthod) which relate to
the triangular decomposition of the correlation matrix][85onsequently, since wave-
forms in power systems belong mostly to the group of signalk discrete spectrum,
eigendecomposition-based methods are best suited foratheiysis [4].

3.1.2. Preliminaries

The following signal model is assumed:

N
zln) = 3 Ay exp(jwgn) + 2[n] (3.1)
k=1
where A, € C is a complex number representing the magnitude and phase &'t
frequency component andn| represents the noise.
The structure of signals composed of several frequency ooemnis, usually starts
with examining its autocorrelation matrix.



24

3.1.3. Autocorrelation matrix

The autocorrelation matrix [67] serve as a basis of furtleeetbpments. It is defined
as follows. Letx be a stochastic vector consisting/gfsamples of a stochastic process
X:

X = : , (3.2)
w(N.— 1)

Correlation matrix of a discrete stochastic process is ddfas:

R, :5{X'X*T}

€ {lx ()} E{e (0)2*{1}} - E{x(0)z" (N -1)}
_ | e (0)} € {le (I} e et (N - 1)}
E{z (N —ll)a:* 0} E{z(N —'1)95* 1y --- g{|x(N— 1)*}
[ R, (0,0) R, (0,1) R, (0,N —1) ]
R, (1,0) R, (1,1) R, (1,N —1)
— : : . : . (3.3)
Ry(N—1,0) Ro(N—1,1) - Ry(N—1,N—1)
The autocorrelation sequence of a signjal] is defined as:
ry = E{z[n|z*[n — K|}, (3.4)

and the autocorrelation matrix ofn] is defined as:
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72 [0] re [—1] cer T [-N+1] ]
T2 [1] 7z (0]
1y [0] 7z [—1]
| 72 [V —1] 7z [1] 7z [0] J

For a stationary random signal, the correlation matrix hasform of a symmetric
Toeplitz matrix.

3.1.4. Autocovariance matrix
The autocovariance matrix is defined as:
C, =€ {(x—my) (x—m,)"} (3.6)

wherem,, is the mean value of a time series.

Estimation of covariance matrix by forward—backward approach

All of the eigenanalysis-based methods (like MUSIC and ESWPRerive their es-
timates of frequency from the sample covariance ma®iNumerical experiments are
claimed to show that better results can be obtained by usmgdified sample covari-
ance matrix:

. 1 - A
R = 5(R +JRTJ) (3.7)

whereld is the so-calledeversal matrix
[0 ]

J = { J . (3.8)
1 0

Since better results can be obtained only in the case of smmalber of samples, the
theoretical explanation for the superiority is not easye hikuristic explanation is based
on the reasoning, presented in [81]: The second term in (8presents a centrosymmet-
rical (bisymmetrical) matrix with elements symmetric (hetreal-valued case) about its
main diagonal and about its anti-diagonal. The true maRiis also persymmetrig
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whereas the sample covariance mafRixs not. Therefore, it can be expected that the
frequency estimates are likely to be more accurate by usiadarward—backward ap-
proach.

3.2. Subspace methods — Introduction

In the next sections, two parametric algorithms: MUSIC a&dPRIT will be intro-
duced, both of which assume a known number of componentsim#rasured sigrial
The idea is better illustrated by simple cases, as showmwbelbich lead to the Pis-
arenko method in section 3.2.3 and are subsequently exteéndedvanced parametric
methods in sections 3.3 and 3.4.

3.2.1. Single frequency component in noise

The one-component signal model can be expressed as:
z[n] = A1/ + z[n) (3.9)

wherez([n] is the white noise. It can be shown that the autocorrelatidi3.i4) becomes:

ro[k] = |A1 P + 636[k], (3.10)
—_———— ——
signal noise

which can be represented, using the autocorrelation mat(i2.5) as:
R, = Rsignal + Rooise- (311)

In the case of one-component signal, the rank of the m#gix,,,; is one, i.e., it has
only one non-zero eigenvalue. Additionally:

Rsignal = ‘A1’2919>{T (312)

wheree; = [ 1 &1 ez . Jr(M-1) Jisan eigenvector of the matBR;gna
with eigenvalue\; = M |A;|2.

! Persymmetric — matrix that is symmetric about if northesmithwest diagonal, i.eg;; =

An—j+1,n—i+1
2 This section is partially based on [31].
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3.2.2. Multiple frequency components in noise

The simple example in 3.2.1 can be extended to a multi-comtarase. The signal
model is expressed as follows:

K
x[n] = Z Apel¥r™ 4 2[n). (3.13)
k=1

After decomposition into signal and noise parts:

K
Rx = Rsignal + Rnoise = Z |Ak|2ekezT + 0(2)1 (3-14)
k=1
wheree, =[ 1 ek eiws2 | ei«s(M=1) ] Equation (3.14) can be rewritten as:
R, = EAE*T + 521 (3.15)
whereE = [e; ... ex] and
—_——
MxK
[ AL 0]
| A2 :
A— : (3.16)
[Ak|* | 0
0 0 |
M;M

It can therefore be seen that the autocorrelation matrivmeoses intsignal and
noisesubspaces.

3.2.3. Pisarenko harmonic decomposition

This idea, based on Caratheodory’s thectemas proposed in [68]. The method
assumes thal/ = K + 1, i.e., the dimension of the signal subspacesisand that
of the noise is one. There exists only one noise eigenvaldeoaa noise eigenvector,

8 Caratheodory's theorem detefines the conditions whichagiiee that the parameters of representa-
tion of a signal as the sum of complex harmonics and noise eaetermined uniquely.
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denoted, respectively, by,, = o2 andu,. The noise eigenvector is orthogonal to the
signal subspace:

up L usignal <= up annihilates the signal components (3.17)
This is equivalent to (Where, = [ 1 eiwr  eiwr2 | efwr(M—1) ]):
eiTu,[kle 7“* = 0. (3.18)

This leads to the statement calladnihilating filter which can be described by:

K

K
U,(z) = Z u,[k)z7F = H (1 —e@kz™h, (3.19)
k=0 k=0

Proposition 3. The annihilating filter of (3.19) has zeros lying on the urnitle and
their angular positions correspond to the frequencies @f signal. Suppose that the
eigenvectors are unit norm. Then:

ufTRa:ui = )\iu;kTui =\,
W [Yhs Akl erefl + o31) = A,
Sis [AkPle a2 = N\ — o3

(3.20)

It is possible, after the calculation of the signal frequiesc to determine the powers
| A |2 using(3.20) . The phase information is obviously lost ak afitcorrelation-based
methods.

Example 4. The procedure of estimating signal frequencies is as falow
1) From the availableN data samples the autocorrelation sequemgék] is com-
puted for a chosen number of deldys
2) The autocorrelation matrix is formed as:

[ . [0] e [1] ceo T[N —1]]
e [1] re [0]
R, = ; : ) (3.21)
Tz [0] Tz [1]
| 72 [N —1] Ty [1] r. 0] |
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3) The autocorrelation matrix is eigendecomposedRs:= UAU*!, whereU =
[ug,ug,...,ug.

4) The smallest eigenvalug,;,, and the corresponding eigenvectaf,, are found.

5) The annihilating filter is formed using the minimum eigaor umi, as:

K
Un(2) = Y upin[k]e . (3.22)
k=0
6) The roots of (3.22) are found as= e®7%*,

3.2.4. Pisarenko pseudospectrum

It is possible to plot so-called pseudospectra ("pseudecabse the amplitude of the
peaks in this spectrum carries no information about the paveer of each frequency
component), by evaluating (3.18) at different frequencies

1

S(elv) = @ Tu (3.23)

3.3. MUSIC

The performance of Pisarenko method is very poor in prdctipplications [85].
The idea of MUSIC (Multiple Signal Classification) was demd in [76] where the
averagingwas proposed for improving the performance of Pisarenkmair. Instead
of using only one noise eigenvector, the MUSIC method usesymaise eigenfilters
The number of computed eigenvaluks > K + 1. All eigenvalues can be partitioned
as follows:

A 2>X 2> AR 2 A1 > A2 > . A (3.24)

K signal eigenvalues M — K noise eigenvalues

Instead of one annihilating filter (as in Pisarenko’s estorjaMUSIC method uses
M — K noise eigenfilters.

M-1
Ui(z) = Z uimlz™™; i=K+1,...,M. (3.25)

m=0

Every eigenfilter had/ — 1 roots, K roots are common for all eigenfilters. The common
K roots can be found by averaging.
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Spurious peaks in MUSIC

MUSIC differs from Pisarenko’s method in that correlatioatnix is not limited to
the dimensionk + 1, but may be of any dimensial/ > K. This larger autocorrelation
matrix is decomposed into its eigenvectors and eigenvahrasthe eigenvectors asso-
ciated with the largesk” eigenvalues are assumed to span the signal space. Thissmpli
that the noise space had the dimensidn— K. Therefore, for each noise eigenvector
there will beK zeros which lie on the unit circle and additiord] — K — 1 zeros which
can lie anywhere (also close to the unit circle) in the Z-plahhese additional zeros
can give rise to spurious peaks which make it difficult toidgish between the noise
related peaks and the true signal peaks. Pisarenko’s méethumt affected because it
uses only one noise vector.

3.3.1. MUSIC pseudospectrum

It is possible to plot the pseudospectra by evaluating §3aP8ifferent frequencies:

. 1
S(e?) = (3.26)
Sl le(w) T ugf?
or by using the projection matrix Pnoise = UmiseU;:gise, where U,,yise
[Ugy1...up], as: )
S(e?) = . 3.27
() e(w)*TPhoisee(w) (3:27)

3.3.2. MUSIC and Root-MUSIC

In spectral MUSIC the frequencies of the components can tasrmu from the esti-
mated signal pseudospectrum (3.26) by finding the positidheomaxima. Alternative
approach, similar to (3.22) is possible by constructingpblgnomials using the eigen-
vectors spanning the noise subspace, as in (3.25). Theabetsh of such polynomials
correspond to signal zeros. Now the following expressianlmEdefined [71]:

M

D(z)= Y [UiNU; /=), (3.28)

i=K+1

The MUSIC spectrum can be obtained by evaluatibgz) on the unit circle
(D(z)|z:ej“’ = D(e]w)-
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Using the property that all signal zeros are the roots of5j3.2quation (3.28) can be
transformed to:

—1=

D(z) = c[[Q -2z ~-z52) (3.29)

J

Il
—

(1—2zz" )(1—2]2)

I
= -

1

-c H (1—zz" 1—232)
j=K+1

—  Hy(2)H{(1/2")Ha()H3 (1/2") (3.30)

J

wherec is a constant and/; (z) contains the signal zeros, wherddg(z) contains the
extraneous zeros which lie inside the unit circle on the demplane. The root-MUSIC
procedure uses the most straightforward way to find the mfoi3(z) and identify the
frequencies of the signal components by using the knowldufeall those roots lie on
the unit circle.

3.4. ESPRIT

The original ESPRIT (Estimation of Signal Parameter viada®ohal Invariance
Technique) was described by Paulraj, Roy and Kailath aret téveloped, for exam-
ple, in [74]. It is based on a naturally existing shift imzarce between the discrete time
series which leads to rotational invariance between theesponding signal subspaces.
The shift invariance is illustrated below.

Proposition 5. The vectorx of N data samples of the proces§] = Ae/“1" (single
signal case) can be partitioned as follows:

X = [.I(),.Z’l,...,wN_l],
x = A[l,ej“’l,ej“’l?,...,ej“’l(N_l)],
X = [xo,x17"'al'N72amel]>

~~

S1

X = [300,301,---,$N—2,$N—£], (3.31)

'

S2
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and
So = 63“151 .

This approach can be extended to the multiple signal caset tiie eigendecompo-
sition of the autocorrelation matrix as:

R, = UTAU (3.32)

it is possible to partition a matrix by using speaalector matricesvhich select the first
and the lastM — 1) columns of a M x M) matrix, respectively:

Iy = [Tu-1l0m—1)xilv—1)xm>
Ty = [0r—1nx1lIa—1lv—1)xm- (3.33)

By using matriced™ two subspaces are defined, spanned by two subsets of eigenvec
tors as follows:

S: = I'U,
S, = I'LU. (3.34)
Theorem 6. (Rotational invariancg

For the matrices defined &, and S, in (3.34), for everywy; k € N, representing
different frequency components, and mafbixdefined as:

[ eJvr g ... 0 "
0 €e“2 0 0
R (3.35)
0 0 .- ek

the following relation can be proven [28]:
[, U]® =T,U. (3.36)

The matrix® contains all information about frequency components. teoto ex-
tract this information, it is necessary to solve (3.36) 4or By using a unitary matrix
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(denoted byT')*, the following equations can be derived:

I (UT)® =Ty, (UT),
r,u(TeTT) =1,U. (3.37)
———

eig. of ®

In further considerations the only interesting subspacéhéssignal subspace
spanned by signal eigenvectdik,. Usually it is assumed that these eigenvectors cor-
respond to the largest eigenvalues of the correlation matd U, = [u;, ug, ..., ux].
ESPRIT algorithm determines the frequenci&s< as the eigenvalues of the matdx

In theory, equation (3.36) is satisfied exactly [85]. In pic; matricesS; and So
are derived from an estimated correlation matrix, so thisaign does not hold exactly,
which means that (3.36) represents an overdetermined Beeaf equations.

3.4.1. Total least squares ESPRIT

Total least squares (TLS) approach takes into accountlpessirors Ag,, Ag,)
for both estimated matricés; andS,. The total least squares problem has the form:

(S1+ Ag,)® =S, + Ag,. (3.38)
The TLS solution minimizes the Frobentusorm of the error matrix
[|As, Ag,||F- (3.39)

The solution can be obtained using the singular value deositigprf. Let V be the
matrix of right singular vectors of the matrj$,S,]. If the matrixV is partitioned into
four square parts of equal size, as follows:

vV — { Vi Vi } ’

3.40
Va1 Voo ( )

4 complex orthogonal matrix, with unit length columns, forighX*TX = 1I.

5 The Frobenius norm, also called the Euclidean norm ehiatn matrix X, is a matrix norm defined
as||X||r = /2070, 200 |zl
® The Singular Value Decomposition (SVD) of the mat¥x produces a diagonal matri, of the

same dimension a&X and with nonnegative diagonal elements in decreasing ,aaddrunitary matrice®J
andV, so thatX = USVT.
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then the solution is given by [85]:

Brig = -V V. (3.41)

3.5. Properties of frequency estimation methods

The performance (error of estimation) of the subspace ndsthas been extensively
investigated in the literature, especially in the contéxhe Direction-of-Arrival (DOA)
estimation.

Comparison of mean square error is useful for theoreticasssnent of accuracy of
both methods with emphasis on root-MUSIC and ESPRIT. Botthatks are similar in
the sense that they are both eigendecomposition-baseddsethnich rely on decompo-
sition of the estimated correlation matrix into two subgEamoise and sighal subspace.
On the other hand, MUSIC uses the noise subspace to estingagighal components,
while ESPRIT uses the signal subspace. In addition, theoapfris in many points dif-
ferent. Numerous publications were dedicated to the aisabfghe performance of the
aforementioned methods (e.g., [70],[19],[82],[83], [{2%],[26]). Unfortunately, due to
many simplifications, different assumptions and the cowifyleof the problem, pub-
lished results are often contradictory and sometimes adshg.

Other parametric spectrum estimation methods, like mimnb9], were investi-
gated by the author. Additionally, excellent resolutionttafse methods enabled efficient
use of them as a tool for detection of closely spaced sinakc@mponents in the con-
text of detection of out-of-step operation of synchronowhines [29], [37]. However,
the comparison of accuracy of two different parametric éshis for the first time
presented in this work.

When roughly summarizing different results from the litara, a resume of basic
parameters can be established, as shown in Table 3.1.

Table 3.1. Comparison of basic performance charactesisfiparametric spectral methods.

Method H Computational cosl‘ Accuracy | Risk of false estimate$
Periodogram small medium medium
Pisarenko small low none

MUSIC high high medium
ESPRIT medium very high none
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3.6. Performance analysis of MUSIC

The root-MUSIC algorithm (see 3.3.2) uses the estimatedriamvce matrix to com-
pute the signal zeros from (3.28). From (3.29) we can obtanrélation between the
error of the signal zeros and the estimafe@) [71]. When analyzing the mean squared
error (MSE) of the signal zeros estimates, the relationbbigveen the errors in signal
zeros and the estimatdd(z) (as in (3.29)) is as follows:

L-1
D(z)=c Z(l —(z+Az)z"H(A — (51 + Az)*2). (3.42)
=1

When evaluating the errors @¥(z) on the unit circle D(z)|.—jw = D(e?%)):

L—1
D(e3“) = c|Az) 11 (1= (214 Az)z P
I=1,1#i
L—1
~ oAz I] 10—z P (3.43)
I=1,1#i

Taking the expected value on both sides, we obtain:

E{D(e)}
eIl e (1= 2z )2

= Swusc S (3.44)

E{laz*} =

whereL is the number of samples ad;ysic can be seen as a sensitivity parameter of
the root-MUSIC method and is equal to [71]:

L 1= edwiemiw?
Smusic = — — =L lim ————F —— (3.45)
Myl —az P eme D(e)
After introducting the derivative oV (w):
/ 1 . ) .
V7T(w) = —=(0,je/%,2je%%, .. (L —1 eUL=1w) 3.46
(w) 7L (0, 5e7*, 2j J(L—1) ) (3.46)



36

and taking into account thd(jw) = V# (w)PnoiseV (w), Smusic becomes:

L

S = — - 3.47
MUSIC = T S () (3.47)
where, (see (3.14), (3.25) and (3.2Hhoise = I — Psignal.
From (3.15) and considering that:
D(jw) = V"(w)(I - Psigna)V(w)

M
= 1-VH (@) (Z elelH> V(w), (3.48)

=1

and that estimated, = e; + 1;, wheren is the respective estimation error , it is possible
to formulate the MSE of the roots in root-MUSIC [71], as (s8el)):

S L-M J?wise I A 2
£flast) - e [Ty (Z ﬁ) [V (@49

k=1 ~ Onoise

where N is the dimension of the covariance matrix ahflis the dimension of signal
subspace.

In the case of single signal source with the following parerse power P,
Asional — 1P Ay = A9 62 L ande; = V(wi), the sensitivity of root-MUSIC
is given by [71] (see (3.47)):

L 12L
s - - . 3.50
MUSIC = N (o)) Proise Vi (w1) (L — 1)(L + 1) (3.50)

Using (3.49), the expected error of estimation will be [70]:

12L Aol (L—1) 1202 .
EIA 2y X noise ~ noise 351
Uaaly =75z "IN@h)y PN (3:51)

The analysis of more than one source case is analyticalfydifficult (see [71]) and
demands more arbitrary assumptions about the SNR and ogmel parameters. Al-
though reported results of numerical simulations show gawrdespondence to derived
analytical expressions, their usefulness is quite limited
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3.7. Performance analysis of ESPRIT

In the case of ESPRIT algorithm (see 3.4), the main sourcerofseis the estimate
of the matrix®. Equation (3.36) can be solved f@rusing Least Squares or Total Least
Squares approach (3.41). The choice of approach has norioum asymptotical per-
formance of ESPRIT as shown in [71].

The error in the matrixp, denoted byA 4, causes errors in the eigenvaluesbofThe
error of an eigenvalue (here denotedAy;), which can be regarded as a performance
index of ESPRIT and can be approximated by:

Az; = p;Age; (3.52)
wheree; is the eigenvector o corresponding to the eigenvalug whereasp; is the
correspondindeft eigenvector, so thabe; = z;e; andp; ® = z;p;.

From (3.38), the approximation of errdx® can be derived using:
(S1+Ag)(®+ Ag) =~ (S2+ Ag,) (3.53)

as:

Agp ~STAg, —S]Ag, ® (3.54)

By substituting (3.54) in (3.52) it is possible to obtain egsion for MSE ofA z;
(whereI'(, I'; are defined as in (3.33Y/ as in (3.32) and is the respective eigenvalue
estimation error), as [70]:

5{|Azl|2} = plST (Fl — ZZ*I‘Q)E {AUelelHAg}
- (Ty — 2Ty s Hpff

= p/'si” {% leij|> (T1 — 27 T2) £ {¢;¢H} (01 — Zfrz]H}

Jj=1
- PiST

= plSTH (D) — 2Ty) [Z]e 222 i #UUH-I
N 1 ? b= TN A = “

(Ty — 2 *Ty) p:ST (3.55)
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whereL is the number of sampled/ is the dimension of the covariance matrix ahd
is the dimension of signal subspace.

In the case of single signal source with the following partrse power P,
Asnal — P U = Viw) = s [1,ejw1,...,ej(L—1)“1]T, the dominant term
of MSE of ESPRIT is given by substituting for the parametar€3i55) [70]:

202 .
€{|Azl|2} ~ #ﬁzj\j’ (3.56)

It can be noted that, approximately, the mean square errbtUBIC (3.51) is six
times higher than the MSE of ESPRIT (3.56) in the case of desisignal source.



Chapter 4

Time-Varying Spectrum

4.1. Quasi-stationarity

One of the main problems in stochastic signal analysis isithia impossible to
average over the infinite sample of realizations of a stdithasocess. Under the as-
sumption ofergodicity, it is possible to carry out the averaging over time. In theeocaf
non-stationary processes, even such an operation is ooteal| because the averaging
over time removes all time-varying characteristic pararsetf the signal [64]. When
analyzing non-stationary processes the termguasi-stationarityis introduced. It is as-
sumed that the autocovariance functiérof the signal changes slowly enough to satisfy
the condition:

IC(t+7,t—71)—Cs(27)| <e(T). (4.2)

It is assumed that at every time pointhere exists a stationary functiary and a time
interval T' for which the inequality (4.1) holds. Th&tationarity intervalT; is such a
shortestl” that satisfies this equation.

Definition 7. A stochastic process iguasi-stationary if T, > 0 for a givene > 0,
wheree is a measure of approximation.

4.2. Locally stationary processes

Gaussian processes can be fully characterized by theinderder moments which
are often sufficient to build stochastic models, even for-Gaussian processes [63].
Many spectral estimation algorithms allow one to estimagecovariance operator from
few or only one realization, by taking advantage of its dizgjzation in the Fourier
basis. Since one only takes into account second order meptbatprocess is assumed
stationary in the wide sense. When the process is non+stayiothe covariance oper-
ator may have complicated time-varying properties. Itgvedion is then much more
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difficult. In this work, only locally stationary processa® @onsidered whose covariance
operators have time varying properties that vary smoothty slowly in time. To esti-
mate the covariance of a locally stationary process onelsesufor a local basis which
estimates the necessary covariance values. The windownsigebe adapted to the size
of the intervals where the process is approximatively atiatiy. The size of approxi-
mate stationarity intervals is not known in advance, so ime@ublications adaptive
algorithms are introduced that search for the "best" iratidi5b].

Locally stationary processes appear in many physical systhat change slowly
in time or space. Over short time intervals, such procesapsbe approximated by a
stationary process [13]. This is the case for many problenedectrical power systems.
Many recorded waveforms have a strong almost stationarypoaent (e.g., fundamental
frequency of the power supply and weaker time-varying camepts of stochastic or de-
terministic origin which can have significant non-statigneharacter [5]). The length of
stationary time intervals can however vary greatly depggndipon the type of problem.

Since the size of approximate stationarity intervals is kraiwn in advance, it is
possible to design an algorithm that searches throughouieam gime interval, for a
"best" time-frequency region which allows the performaimciex to be maximized (e.g.,
best classification rate, best parameter estimation angurghis search can be based on
the information provided by few previous realizations @ girocess.

Approximation by a stationary process

Let X (¢) be a real valued zero-mean process with correlation [63]:

R(t,u) = E{X(t)X (u)}. 4.2)

We define the covariance opera®f.} for arbitrary function f(¢) € .2 as:

U} = [ Rit.u)f(wdu (4.3
The inner product is a random variable which is a linear comuodn of the process
values at different times:
(.x) = [ roxat (4.4

For anyf, g € L2, the covariance operator yields the cross-correlation:

(C{f} 9) = EL(f, X) (g, X)) (4.5)
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The covariance can be expressed from the distance betiveed v and their
mid-point position. When the process is stationary, itsatiance satisfies the condition:

R(t,u) = Co(t — u). (4.6)

Under assumption that the process is locally stationarycaveassume that in the
neighborhood of any: € R, there exists a finite interval of siZéx) where the process
can be approximated by a stationary process.

The covariance operator can also be interpreted as a tim@xgaconvolution:

Clf(t )}_/ co( . ,t—u)du. 4.7)

Under assumption tha€(v,w) is a smooth function oy we can introduce a
time-varying spectrum by application of Fourier transform

S(w,w) = /j:o R <U - %,v + %)) eI day. (4.8)

If the processX (¢) is locally stationary it is possible to show (by first ordepegx-
imation) thatS(x, &) for any =, £ can be approximated by an eigenvalue®ff (t)}
[63]. Moreover, the approximate eigenvec'@rg is built with complex exponentials

e~7¢ over the interval of local statlonarlt&z ””) , T+ (””)] yielding:

Cleg e} = S(x,8)ere(t). (4.9)
Let h(t) be a smooth window function with suppqrt — @, x4+ @ and
erelt) = h(t)e 7%, (4.10)

SO:

Cleae(t) / Co(z,t — u)eg ¢(u)du. (4.11)

Applying the Parseval theorem yields:
Clere®} = 5= [ Sla,w)e 2, lw)ds (4.12)

T J—oc0

whereé, ¢(w) = he(w — €). Since the energy of(w) is mostly concentrated in
[—@, ﬁ] the energy of, ((w) is approximately localized ir{g — ﬁ,f + @]
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Figure 4.1. Energy concentration of two harmonic compasiarnhe time-frequency plane.

1(x)

Since the Fourier transform as in (4.12) is smooth and apmetely constant over
£ — @,54- @] so in the time-frequency plarn,w) the energy ok, ¢ is mainly
concentrated inside the rectangle:

I(x) l(x) 27 27
|:$—T,$+T:|X|:£—@,£+m . (413)
An important property of locally stationary processesdat from the previous con-
siderations, namely th&t(¢, w) is approximately constant over the time-frequency sup-

port of ¢, ¢. This property is shown in Figure 4.1.

A full covariance matrix cannot be estimated reliably froewfrealizations of the
process. Locally stationary processes are well approeithly a covariance matrix in
an appropriate local basis, which depends upon thel$izeof stationarity intervals.
Usually, we do not know this interval in advance. The appration of covariance ma-
trix should be calculated in practice froid independent realizations of a zero mean
processX (t) which yields a small expected error.

In practice, such assumptions cannot be easily fulfilledcdnclusion, it can be
observed that most of the processes can be analyzed ingidestétionarity intervals
and inside their frequency support domains (inside theietfrequency supports) where
most of the energy is concentrated. Such an approximatiolodally stationary pro-
cesses allows straightforward analysis of most slowly timeying signals.

The length of stationarity interval can be determined iroagance with the charac-
teristic parameters of the signal when these parametekanaven in advance. According
to author’s experience such a situation rarely occurs. lysube shortest interval is
chosen which still ensures expected accuracy of specpatsentation inside chosen
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time interval. In the case of non-parametric methods (liké-5) the most important
limitation is not the length of stationarity intervals ofsal under investigation but the
low resolution (spectral smearing) inherent in these nagthin the case of parametric

methods, the trade-off between time and frequency-donesnlution is significantly
lower [61].



Chapter 5

Filter banks for line spectra

5.1. Introduction

Traditionally, the method of spectrum estimation by using filter banks assumes
that the true spectrum of the signaw) is constant inside a specified frequency band.
This method is used when there is no information about thetstre of the signal (like
line spectra or rational spectra). Typical of this method tsade-off between the reso-
lution and statistical accuracy. If high resolution is dedj a very sharp pass-band filter
is required. This is obtained only by filters that have vemygdmpulse response. This
means, according to tiEme-Bandwidttproduct (TB-product), that only few samples
(in frequency domain) can be used in such a case and sttiaticuracy is poor. In
order to improve the statistical accuracy, it is necessargum up many samples of
filtered signals in frequency domain. According to the TBérct this means that filter
impulse response has to be relatively short, i.e., filteukhoot be very narrow in fre-
guency and, consequently, the resolution decreases. piieach is used by the widely
known: Thomson multitaper methd@ahich usesSlepianbaseband filters) and tii&apon
method

4 ¢()

selection filter

.
Ll

®

frequency

Figure 5.1. Filter bank approach for spectrum estimation
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Filter banks can be effectively used as the preprocessiolgfa@o high-resolution
subspace methods [9]. First motivation which directed thite@ towards filterbank ap-
proach were difficulties in analyzing multi-component ditgéd waveforms from inverter
drives [5]-[7]. Since a lower number of components insidb@sen frequency band leads
to more accurate results, the subband filtering was apflieelimprovement of accuracy
is not only due to limitation to the number of sinusoidal caments (which is important
only for parametric methods [34]) but also due to SNR andlutiem enhancement, as
shown below.

5.2. Usefulness of filter banks

The problem of estimating the frequencies of sinusoidseblin noise has been of
great interest in the signal processing since 1973 [68hadgh many methods have
been proposed to solve this problem, most involve procgsdaithe fullband. In paper
[86] it was shown that with properly chosen analysis filtdh& local signal-to-noise
ratio (SNR) and line resolution in the subbands can be ingmov

5.2.1. Subband filtering

When dealing with the problem of estimating the parametésinnisoids buried in
noise (see 3.2), the input signal model can be expressed as:

N
z(n) = Aisi(n) +n(n); si(n) = " A; = Ayl (5.1)
=1

where N sinusoidal signals with amplitudes; are buried in complex noise procegs
The complex amplitudes are assumed to have constant mdgsitind phase angles
which are pairwise independent. Regardless of the typetef fised in the filter bank
(see Figure 5.2), the filter decomposes the input sigiia) into the subband signals
Zm(n) andv,, (n) [86]:

N
Tm(n) = Z AiH,p,e¥ied%n 4w, (n) (5.2)
i=1
N . .
Um(n) = AiHpe?M@ielon 4+, (n) (5.3)
=1

form=0,1,..., M — 1, wherew,,(n) = h;,(n) xn(n) andn,,(n) = w,,(Mn).
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Figure 5.2.M-channel uniform analysis filter bank

Each subband signal as in (5.2) also consists of sinusoadaponents with noise
nm(n). The autocorrelation function of each subband signal hafottm

N
Rym(k) =Y Pi|Hpye?M@i2elMek L R (k) (5.4)
=1

where P, is the power of each sinusoidal component. Under the assumspthat the
noise has the varianc.ze?7 and the magnitude of the squared response of the filter is
[[Hmed ! = 1forallm = 0,1,...,M — 1 (see Figure 5.3), each subband noise
process is white with varianoe?7 and each of subband signals has the same shape as the
input signal. The difference is that the sinusoidal comptsare scaled by the frequency
responses of the analysis filters and their frequencies amped to other locations,
namelyw; — (Mw; mod 27) [86].

In [5]-[8], the author applied non-uniform filter banks whehe bandwidth and
frequency are adapted to known characteristic paramettsigrals under investigation.

5.2.2. Increase of the resolution of line spectra

From the previous considerations it follows that, takenxasrle, two line spectral
components (sinusoids) are separated in the fullbartby= w, — w, (see Figure 5.4),
where

wp = P+,

5.5
wg = Hf+0, 5:9)
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Figure 5.3. Ideal analysis filter.

for 6, > 0,0, < 2Z. Additionally, Aw; = 6, — 6, and the autocorrelation function is
given by: - -
Rams(k) = MP,e’*?k + M Pye’*ek + 026(k) (5.6)

wherew, = Mw, mod 27, v, = Mw,; mod 2.
Then, from (5.5) it follows that:

wp = M6,

oy = Mo, (5.7)
and

Aws = MAw (5.8)

Thus, the spacing between line components incredgdines. Also, the resolution of
the spectrum increased. All frequency estimation methbds/s certain threshold, be-
low which two closely spaced sinusoidal components will fingated as one. As shown
in [33] and [32], such a limitation is significantly lower wineomparing non-parametric
and parametric methods.

5.2.3. Backward mapping of the subband frequencies into fithand

When using ideal, non-overlapping filters, the mapping riaightforward. It is not
necessary to use the information from other subbands to heafseéquencies correctly.
The problem is much more complicated in the case of oventapfilters where one
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Figure 5.4. Spectrum of two sinusoidal components and filter

frequency component can be present in many subbands (fhtsdesiee [88]). The full-
band components; can be obtained by using the following relations from thebsural
componentsy; [87].

e Inthe case of complex signal model:

2rm + Wi m

Wei = (59)
¢ Inthe case of real signal model:
™M+ m
im even
e — o " 5.10
f77' { 7r(m+}\/)[7wl’m , m Odd ( )

5.2.4. Increase of the SNR

Consider the ideal filter as in Figure 5.3 with the magnitudeased response

|H(e’“)|> = 1 for all subbands and the subband frequency radge =

[2zm, W]. The autocorrelation function in that case is expressed by:

Rom (k) = (MP;) M 1 025(k). (5.11)
Py
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The power of each sinusoidal component in the subband id eémua = M P;. From
(10.1) it follows that for eachy; € I,,

SN Reuppand,i = M - (SN Rruivand,i)- (5.12)

In the case of low SNR the increase of accuracy of the subgpatieods is to be ex-
pected.

5.2.5. Limits

A simple extension of subband decomposition could leaddgatnclusion that it is
possible to increase indefinitely the SNR and resolutiorubSpace methods by using
decimation factorM as large as possible. In practice, the autocorrelationtisated
from a finite number of data samples. The quality of this eatiiom strongly depends on
the number of data sampléé,. When the length of the subband filter A&, then the
length of each subband signal will be

NS+Nf—2
M

The large filter length which makes the subband signal lotitgar the original number
of data samples introduces a bias to the estimate of the@udtation function of the
subband signals, because of the small number of data safilfdesd by a long filter
sequence.

+1. (5.13)



Chapter 6

Complex space-phasor

The method of symmetric components is widely used for aisabsd visualization
of the three-phase electric circuits [54]. This method lasg limitations, e.g., it allows
the analysis of the stationary waveforms only.

In practice, a three-phase signal can include the main coermip harmonics and
noise. Additional disturbances can appear due to tranpie@omena and non-linear
loads. There exist many possible ways of description ofetlpfease quantities which
aim to simplify the analysis or modelling of electric syste®ne of them is the complex
space-phasor[30].

The time-frequency decomposition of the space phasor (ateddor three-phase
power system signals) using Wigner—Ville transform and-monm method was pro-
posed and developed by the author in [32]. It enables trgdkia frequency and ampli-
tude changes of non-stationary signals with higher relmmiuhan FFT-based methods
[45], [49], [62]. Space-phasor is also successfully apbti® classification schemes in
[40] and [52].

6.1. Definitions

Definition 8. The complexspace-phasor is given by [30]:

£ — (fa +jf5) (6.1)

R

! German: Raumzeiger

where

S =
|
ool =
|
Sm
NI

{ fs J : (6.2)
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It describes, in addition to the positive-sequence compipnean existing
negative-sequence component, harmonic and non-harmegogncy components of
the signal.

Full and unique description of the three-phase system isilplesby introducing the
zero-sequence componefdfined as:

fo=3 Un+ fs + fr). 63)

6.2. The space-phasor and three-phase systems

For a three-phase system (as in symmetric components n)athisdpossible to
formulate the space-phasbusing the instantaneous quantities existing in symmétrica
three-phase system as follows [75]:

1 . ) .
frR = Agysin(wt+7) = 3 (A(l)e”"t + Az‘l)e_wt) e, (6.4)

2 : . .
fs = A(ysin (wt + v - %) = (a2A(1)e]“’t + aAfl)e_]“’t) 7, (6.5)

2
fr = A(l)sin(wtﬁ-'y—&-%):

1
2
1 . . .
5 (aA(l)ert + azA’("l)e*J“’t) eV, (6.6)

wherea = /5. After substituting the above equations to (6.1) we obtain:
f= A(l)ejwtej'y. (67)

For the positive-sequence component the space-phastesatahe positive direction.
For the negative-sequence component it rotates in theimeghtection, and is de-
scribed by the formula:

f=Apge e (6.8)

In the case of unsymmetrical sinusoidal three-phase wawafahe space-phasor is
a sum of two vectors rotating in opposite directions.

f = A(l)ej“’t —+ A?Q)efj“’t. (69)

This equation describes an ellipse whose one axis is equlaétsum of amplitudes of
the positive- and negative-sequence components and tbadsexis is equal to their
difference.
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Description of the space-phasor using Fourier series

Any periodic waveform which represents the space-phasorbeatransformed to
Fourier series:

n=oo
flwt)= Y Ape/h. (6.10)
n=—00
Existing in the Fourier series expansion harmonics withtpesindexes correspond
to the positive-sequence systems which rotate in the @reof the rotor and harmonics
with negative indexes correspond to the negative-sequgystems which rotate in the
opposite direction to the rotor.

Two main harmonics of the space-phasor with indexes 1 andn = —1 corre-
spond to the positive sequence component and negativersgguemponent, respec-
tively.

Therefore, it follows that:

Ay = A, Ao = A}l (6.11)

n=1> n=—1"

Space-phasor and higher harmonic components

When in the three-phase system the higher harmonics (wétlirdguencies which
are natural multiples of the main component) are preseet;, time waveforms can be
described as [79]:

fre(t) = Agsin(kwt + ), (6.12)
for(t) = Agsin {k (wt—%)—i—’wf}, (6.13)
fre(t) = Apsin {k (wt+2§>+7k}. (6.14)

Higher harmonics in the symmetrical state of the systemngto the subsequent sys-
tems of voltages, respectively [65]:

e Harmonics with coefficientss = 1,4,7,10,... = 3n + 1;:n € N build the
positive-sequence voltage system,

f(k) = A(k)ejkwt‘ (615)

e Harmonics with coefficientss = 2,5,8,11,... = 3n + 2; n € N build the
negative-sequence voltage system,
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Figure 6.1. Simple cases of asymmetry and distortion oktiptease waveforms
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f(k) = A(k)e—jkwt. (616)

e Harmonics with coefficients = 0,3,6,9,... = 3n; n € N build the zero-sequence
voltage system.

6.3. Visualization of the three-phase system

A plot of the space-phasor in the complex plane is the mogilsiand natural way of
visualizing a three-phase system [75]. The interpretaticthe resulting plot is straight-
forward only in the case of stationary waveforms with smalner of harmonics.

In Figure 6.1, simple cases of asymmetry and distortion @etphase waveforms
are shown.

In the case of asymmetry of the voltages or currents in theetphase system, a
component with negative frequency appears in the spectfutimeospace-phasor (see
Figure 6.1(f)). In the presence of ti3" harmonic the plot on the complex plane is a
hypocycloid and in the spectrum a negative frequency compioappears (see Figure
6.1(h, i)), while in the presence of thHé" harmonic there appears in the spectrum an
additional component with positive frequency (see Figul€ly.

Consequently, negative components appear also in thegpeof the space-phasor,
indicating the presence of asymmetry in three-phase dgrrmd voltages in power
system. The author proposed spectral representation dpee-phasor as a fast and
accurate analysis tool of the three-phase system [49], [88].



Chapter 7

Estimation of the order of the model

7.1. Information theoretic criteria

The necessity of determining the model order arises in meggsaf signal process-
ing. In this chapter, we will focus on approaches based oanggjue decomposition
of the signal correlation matrix (time-delayed in vectayreil case). Wax and Kailath
[90] presented a new approach for estimating the numbergoiats in multichannel
time-series, based on statistical classification critédi@d (Akaike Information Crite-
rion) and MDL (Minimal Description Length Criterion) [14]Jse of such statistical
criteria resolves the problem of estimation of the signal subspace dimension, which
is necessary to obtain correct estimates of signal parasetsing the methods consid-
ered in this work. Recently proposed criterion [66] base@apesian statistics will also
be investigated. In this chapter, the author presentstigations of different methods
for model-order selection, compares its suitability foalgsis of electric signals and
summarizes research results presented in [34] and [35].

In paper [90], a new approach for estimating the number afadggin multichannel
time-series, based on statistical classification critAti@ and MDL is presented. This
approach does not require any subjective threshold seffingrefore, it resolves the
problem of estimation of the signal and subspace dimensgibith is necessary to obtain
the correct estimates of the signal parameters using paiiameethods, considered in
this work.

The MDL idea, or shortest description idea, is very naturatatistical classification
problems [72]. It has also been applied to order selecti@blpms in time series, as
a useful alternative to Akaike Information Criterion (Al@hd Bayesian Information
Criterion (BIC) (in fact, the two-stage form of MDL model setion coincides with
BIC).
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It was also shown that all MDL criteria including BIC are catent and
prediction-optimal, while AIC is not prediction-optimahd inconsistent [73]. A use-
ful observation emanating from this work is that neither Mz BIC) nor AIC is a
superior method since all this depends on the bias-varitnade-off in the model as
shown in early works on MDL in a non-parametric framework][73

In the seminal paper, Wax and Kailath [90] presented a newoaph for estimat-
ing the number of signals in multichannel time-series, basestatistical classification
criteria AIC and MDL. This approach does not require any scije threshold setting
(see 3.3). This resolves the problem of estimation of thaadignd subspace dimen-
sion, which is necessary to obtain correct estimates ofigrakparameters, using the
methods considered in this work.

7.1.1. Approach based on "observation"

The most common approach is to calculate the eigenvaluée afdrrelation matrix
R of the signal, denoted by:
A > X > 0> A, (7.1)

The set of the smallest eigenvalues with values equal todlse variance? has the
dimensionp — ¢ [90]. If the correlation matrix is exactly known, the numtadrsignals
g can be determined as the number of the smallest eigenvafiaegever, the correla-
tion matrix, estimated from finite sample size has all different eigenvalues. In real-life
problems, the method of determining the number of signadedan observation of the
eigenvalues is difficult and unreliable, although ofterduesed recommended in practice.
In earlier works the author used the simple "threshold" aepgin, which he found to be
unreliable and difficult in practical applications [48].imost problems it is necessary to
adjust individually the threshold for each investigateoketyf signal. Moreover, it is very
difficult to build precise rules which could justify this ajpach.

7.1.2. Approach based on information theoretic criteria

The information theoretic criteria for model order selextiaddress the following
problem:

Problem 9. Given a set ofV observationsX = {z1, z», ..., 2y} and a parameterized
family of probability densitieg’(X|©) (a family of models), select one model that fits
best the set of observationé [90].
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Akaike [3] proposed the following criterion defined by:
AIC = —2log f(X|©) + 2k (7.2)

where© is the maximum likelihood estimate of the parameter ve@oand & is the
number of freely adjustable parameter®inThe first term represents the log-likelihood
of the maximum likelihood estimator of the parameters of tiedel and the second
term assures that AIC becomes an unbiased estimate of the kodlhack—Leibler di-
vergencé between the modelled and estimated densitie&( af|©).

Further work of Schwartz and Rissanen [73], inspired by Biyeconsiderations
and a minimum code-length model yielded the following citte:

A 1
MDL = —log f(X1|©) + §k10g N. (7.3)

In [90], both AIC and MDL criteria were adapted for detectifrthe number of signals.
This procedure is recalled here in simplified form.

Based on the assumption that observations are statigticelependent complex
Gaussian random vectors, the parameter vector of the sigoaél is composed of the
eigenvalues, eigenvectors of the covariance matrix anddfse variance.

After some calculations [90] the log-likelihood term inZY.or (7.3) becomes the
ratio of the geometric mean to arithmetic mean of a numbenettmallest eigenvalues.

The number of free parameters éhis obtained as the number of the degrees of
freedom of each of the parameters. Finally, both critergagaren by:

1 (p—k)N
)\P
AIC(k) = —2log szk:# + 2k(2p — k), (7.4)
p—k ~i=k+1
(p—k)N
Vo 1
MDL(k) = —log "“*# + 5k(2p — k) log N. (7.5)
p— kzz k+1

The number of signals is determined as the valué ef {0,1,...,p — 1} which
minimizes the value of (7.4) or (7.5).

1 Kullback—Leibler divergence is a natural distance meaSora a “true” probability distribution P to
an arbitrary probability distribution Q and definedag 1. (P|Q) = ). P; log g for discrete variables.
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The consistency of the above criteria was examined undangssn of increasing
sample size. AIC under this condition yields an inconsiststimate, by overestimating
the number of signals, whereas the MDL gives always corestlts [90].

7.1.3. Bayesian model selection — MInka’'s Bayesian modeldgr Selection
Criterion (MIBS)

This method is also based on eigenvalues of the data cogariaatrix [66], but uses
the Bayesian framework and Laplace method for approximaifantegrals [2].

The PCA model assumes Gaussian distribution of the southissniodel works
reasonably well also for non-Gaussian sources [66]) andliservation vectoX is
generated from a smaller sources’ veby linear transformation with additive noise

X=Hs+m+e (7.6)

The probability of the model evidengecan be calculated from the eigenspectrum of the
data covariance matrix,
N/Z—N(p—q)

p(Xlg) = pU) (ITj=
.(QW)((szq)l/ﬂj)alz‘ 1>/|2LN a/2 (7:7)

wherep(U) denotes a uniform prior over all eigenvector matridés; number of obser-
vations,oy — estimate of the noise in the maximum-likelihood senses pg—q(q+1),
and

q +1
pU) = 29[ T((p—j+1)/Qn 2, (7.8)
=1
q ]P R .
1Azl = I TI MO =AH =) (7.9)
i=1j=i+1

where)\; denotes an eigenvalu&b =)forl<gq and)\;, = a,%,”_, otherwise.
To find the signal subspace "latent dimension" such valugi®thosen which max-
imizes the approximation of the model evideng&|q).



Chapter 8

Power quality assessment

8.1. Introduction

The termpower qualitycovers a number of electromagnetic phenomena which deal
with the interaction of power-system networks and end-ageipment. End-user equip-
ment is sensitive to certain types of voltage disturbanogbe system, but the equip-
ment on its turn may produce current disturbances, whiclujgothe system. As many
sensitive processes in industrial systems do care abodigshebances in the supplied
voltages, industries are more concerned about the opeahttmd economic aspects of
these disturbances. Running extensive power quality mdng programs is important
in order to understand, identify and solve problems regagrgiower quality. In many
cases, such monitoring programs end up in a huge amount emeebdata which makes
analysis difficult [16]. Therefore, the development of amiédic tools for assessment of
the measured data is required to help utilities, reguladas customers to have a clear
understanding of what is happening in their networks. Pauality monitoring systems
are demanded nowadays to be able to identify and classifyteaitomatically in or-
der to solve problems in electrical networks in accuratst &nd intelligent way. The
evolution of power quality monitoring in terms of technojognd users is presented in
Figure 8.1, as a time-line. In the 1990’s, the technologyliadpn classification tended
to merge power-system engineering knowledge with signatgasing techniques. In
the latest years, pattern recognition, data mining, daeigiaking and networking were
incorporated as new technologies for automatic classificat his entire advancement
aims at processing raw data and extracting information tainkknowledge in order
to solve problems with less or without human action. Moreousers of power qual-
ity event classification schemes have spread from a few $ieldice engineers in the
1970's to hundreds of people in the 2000’s; in power utBitieonsultant companies and
governmental agencies; working to assess power netwotkanclude power quality
indexes in power-system economic performance studies [16]
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Figure 8.1. Evolution of power quality monitoring equipr§tb]

The author’s research in the field of power quality encomgmesethods of harmonic
distortion measurements presented in [58] and [60] dealiitly industrial frequency
converters operation, [8], [4] and [5] — with DC arc furnasepply, [6] — traction sys-
tems, [7] — analyzing the influence of compensation deviaetve and passive filters,
STATCOM, hybrid systems) and [9] where he proposed a new powelity indices’
computation approach, presented in this work (see alsdoBeld.4).

8.2. Power Quality Indices

A number of power system applications require an accuradevkatdge of the spec-
tral components of non-stationary current and voltage Weawres. Especially, the power
quality field, due to the great and increasing interest desavur attention [4]. The main
application of spectral components in the field of Power uedfers to the calculation
of waveform distortion indices. Several indices are in camrase for the characteriza-
tion of waveform distortions. However, they generally reafeperiodic signals which al-
low an "exact" definition of harmonic components and reqairly a numerical value to
characterize them. When the spectral components are tamyig in amplitude and/or
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in frequency (as in the case of non-stationary signals),ang/use of the term harmonic
can arise and several numerical values are needed to driwac¢he time-varying nature
of each spectral component of the signal. The IEC Standafisd21], [22] deal with
signals which are time-varying. They define, for practiaaigmses, the harmonic (inter-
harmonic) frequency as an integer (non-integer) multipka® fundamental frequency.
The same IEC Standard drafts — with reference to Discreteétolransform with 5 Hz
resolution of frequency (200 ms of window length for 50 Hzdamental frequency)
— introduce the concept of harmonic and interharmonic grmgand characterize the
waveform distortions with the amplitudes of these groupirigigure 8.2 shows an ex-
ample of two harmonic subgroups € 7 andn = 8) and of one interharmonic subgroup
(n = 7.5). The amplitudes of the harmonic and interharmoni@eaupsC,, 200ms and
Ch+0.5—200ms Can be evaluated, respectively, as:

1
C2 _200ms = > Clonis (8.1)
k=1

8
C2+0.5—200m5 = Z Clz()n—i—lm (82)
k=—2
whereC,, .« are the spectral components (RMS value) of the spectral JDEput.
According to the norms cited relations (8.1) and (8.2) aramated on 15 successive
200 ms windows in order to obtain values averaged over a @seimterval. There-
fore, the obtained indices have low resolution in time. Rédgemany papers deal with
waveform distortion indices in the case of aperiodic signii practice, the main ef-
forts are devoted to the extension of usual indices — suclotad flarmonic Distortion
(THD) , k-factor, communication interference factors and others the field of aperi-
odic signals, taking into account the special charactesigif the processing technigue
employed. In paper [20], an extension of power quality indibased on the Windowed
Fourier Transform (WFT) is proposed for aperiodic poweteyssignals. The short term
harmonic distortion index (STHD) has been defined therdadfwidth of the window is
TW,the STHD is defined as:

Ny
> VVDFTZ-2
i;«ég—(}-H
STHD = 8.3
WDFTso (8.3)
Aaf
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where: N; is the number of frequencies for which the WFT has been catied)
W DFT; is thei® component from the WFTA f is the frequency resolution.

Similar extensions for other waveform distortion indicastsas thé:-factor and the
crest factor have been reported.

In this work, the IEC harmonic and interharmonic subgroupsoduced by the IEC
Standard drafts, the Total Harmonic Distortion and the specomponent frequency
time variation (time-varying amplitude and frequency @&l components, as in Fig-
ures 10.14, 10.15, 10.40, 10.41) are considered.



Chapter 9

Automatic Classification of Events

The decomposition of a band-limited one-dimensional tdoaiain signal into
two-dimensional time-frequency domain can reveal moraildedf the signal and help
to improve the classification performance or pattern reitimmn[13]. One of many au-
tomatic classification techniques, based on correlatidf, [ adopted in this chapter
for classification of events in electric power systems. Tlaedifier proposed makes use
of availablea priori knowledge about the signal, in many ways; it uses the knayeded
about the main characteristics, such as: the expected mushisemponents, parame-
ters of frequency bands which contain most useful inforamattime interval where the
most significant changes occur. In preprocessing stagey fitagions of interest" in
the time-frequency plane are defined in order to enhancedhsification performance.
Previous work of the author includes classification proldesh fault-mode operation
of inverter drives (application of neural classifiers [53R]), application of correlation
and advanced preprocessing techniques in [10]. The agpmrasented in this chapter
follows the same idea; in order to evaluate the performafggemrocessing approach
presented, a simple time-domain correlation is chosen &ssaifter, since complicated
classification technique can obscure the influence of imgrtgpchosen preprocessing
and make a fair comparison impossible [10].

9.1. Preliminaries

The main goal is to design a classification scheme whichguaib time-frequency
parametric representation of a signal, performs bettem tla straightforward
correlation-based classifier. It is assumed that the toamsftion to 2-D time-frequency
domain allows one to reveal more details of the signal ancetbee improves the ac-
curacy of pattern matching. Additionally, it helps to reMifee correct pattern buried in
noise (disturbances) by exposing the important charatitesiof analyzed signal. The
transformation to time-frequency domain allows an easyafsa priori knowledge:
only selected areas of the time-frequency plane can be usetid correlation-based
classification. In [39], the moments computed from timexfrency representation of
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Figure 9.1. Scheme of correlation-based classificatignnglon TF transformation.

the signal are selected as features. This approach destigt of useful information,
so a complicated classifier is needed to obtain acceptabierpence. The correlation
scheme developed here improves the performance in the tasatching pattern and
decreases the false classification rate in the case of néehimg patterns when using the
maximum of available information and at the same time enhgritneaningful" parts
of the signal. Waveforms encountered in power systems hawvally quite well known
structure, so it is straightforward to select the frequenagd where the signal of inter-
est shows most characteristic patterns. Similarly, the fioint of the occurrence of a
specific pattern can be either determined as the startimg pban event (e.g., beginning
of a short-circuit) or using other techniques (e.g., chgmgjat detection algorithms,
wavelets) [59]. In this way, a rectangular area or multipieaa on the time-frequency
plane can be determined where the correlation-based pageognition algorithm can
show possibly best performance. A simplified scheme of ttasgdure is shown in Fig-
ure 9.1. After the TF transformation of signal and patterspecific area of the TF plane
is selected. Then, the inverse transformation (or appratémeconstruction, e.g. in the
sense of equal energy of the original and reconstructedalsafrthe time-domain sig-
nal from its calculated parameters) allows usual cormbatif time-domain signals and
patterns. Similar approach was presented in [78], altheygitied to different problems.

9.2. Correlation of signal and pattern

Let us assume a band-limited and time-limited sigr{a) and patterrp(t), with its
time-frequency representation, as follows:

TF{p(t, f)} =0V {t S [tl,tQ], fe [fl, fz]} (9.1)
where(ty, to] and[f1, f2] define supports in time and frequency domains, respectively
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Lemma 10. Any finite and band-limited signal(t) C [¢1,t2] can be decomposed as
follows, when using its time-frequency representalii{ s(¢, f)}:

TF{s(t, )} = TF{s1(¢, f)} U TF{s2(t, )} (9.2)
whereTF{s(t, f)} = TF{s(¢, f)} and TF{sa(¢t, f)} = TF{s(¢t, )} N TF{s1(¢, f)}

Such a decomposition assumes thdt) is the part of signak(¢) which has the same
support in time and frequency as pattgtn) has ands.(¢) represents the remaining part
of the signals(¢).

If we assume that both signals and the pattern have theirectge inverse
time-frequency transforms, then

s(t) = s1(t) + sa(t). 9.3)

Theorem 11. For any band-limited and finite signal¢) and patternp(t), which can be
decomposed inte(t) = s1(t) + s2(t) the following condition is fulfilled:

max [[R(s1(t), p(t))[] > max [[R(s2(t), p(t))]] (9.4)

wheremax [|R(u(t),v(t))|] (maximum of the magnitude of the normalized correlation
function) is defined as:

max [|[R(u(t),v(t))|] = max [ Jooo ult)v7(t — 7)dt -‘ .
||/ w2 @)t /T, o2 ()t |
Equation (9.4) is a consequence of the assumptions thatghal s, (¢) is similar
to the patterrp(¢) and has the same localization in time-frequency planesa(d lies
outside the area in the time-frequency plane where therpatte) is localized.
Proof. From the above assumption it follows that:

max [|[R(s1(t), p(t))[] > max [[R(sa(t), p(t))]]- (9.6)

The normalized correlation of the signdl) = s1(t) + sa(t) is:

(9.5)

JZ5e s1O)p(t + T)dt + 25 s2(t)p(t + T)dt

R(s(t), =
(s(2). p(£)) V12 [8300) + 281 (0)sa(t) + s3(8)] dt /5 P (Bt

(9.7)

[e.e]

\//Oo [s2(t) + 2s1(t)s2(t) + s3(t)] dt > / s2(t)dt. (9.8)

—00 —00
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It follows that:
max [|R(s1(t), p(t))[] > max [[R(s(t), p(£))]]. (9.9)

[ ]

In the case of single pattern in the time-frequency plane,athove considerations
show that the presence of the pattern in the signal asswrdsghest correlation coeffi-
cient when correlating pattern and signal.

In the case of multiple patterns, some precautions must bereed. The main con-
dition for the classification scheme to work properly is tewas that all patterns occupy
mutually exclusive areas in the time-frequency plane. Thisdition is usually easily
fulfilled for waveforms commonly encountered in power sgsg50].

Corollary 12. In the case of patterng; ; which do have non-disjoint time-frequency
representations, such as:

TF{pi(tv f)} N TF{pj(t7 f)} 7é @ (910)

the problem can arise, namely a high correlation coefficierihe case where the pattern
is not present in the signal. It is necessary to define a miytuadclusive pattern to
any other pattern. This is quite straightforward when deglivith the representation of
signal in the time-frequency plane.

Any patternp(t) can be represented as a sum of two mutually exclusive pattern
pr(t), pi(t), wherep;(t) represents part which is nullified for any disjoint set oftpats
(it represents the non-disjoint part of any set of patterns)

p(t) = pi(t) +pi(t). (9.11)

Theorem 13. If the signals(t) is weakly correlated with the pattem(t), then the cor-
relation of s(¢) with patternpy(¢) yields smaller correlation coefficient than in the case
of correlation of the signa$(¢) with p(t),

max [|R(s(t), p(t))[] > max [[R(s(t), pi(t))|]- (9.12)
Proof. Equation (9.12) can be transformed in a similar way as (9.7):

[ J2oe s()pr(t + 1)dt + [C20 s()pi(t + T)dt -I

[\/ffooo [P2() + 2pi()pu(t) + pP(2)] dt\/ [ SQ(t)dtJ

(9.13)

max [[R(s(t), p(t))|] = max

and (see (9.5))



68

Joo0 s()pi(t + 7)dt

VIS pi(t)dt /125, s2(t)dt

From (9.12), assuming the mutual exclusivity of the patesr(t) andp;(¢) (9.11), the
following can be concluded:

max [[R(s(t), pi(1))[] = max {

} . (9.14)

/O:O s(t)py(t + 7)dt| > /O:O s(t)pr(t + T)dt‘ (9.15)

and

o0

pa(t)dt. (9.16)

Finally, from equations (9.13)—(9.16), it follows that theof is completed, so:

\//O:o [pz(t) + 2pi(t)pi(t) +pl2(t)] dt ~ /

max [[R(s(t), p(t))[] > max [[R(s(t), px(t))]]- (9.17)

[ ]

The considerations presented above show that transfamati the signal to
time-frequency domain, selection of particular areasrretfrequency plane (mutually
exclusive areas), subsequent calculation of parametdigedignal and pattern inside
the preselected "areas of interest" leads tinareaseof the maximum correlation co-
efficient of the correlated signal and pattern (when signal pattern are similar) and
to adecreaseof the maximum correlation coefficient when both signal aattgyn are
dissimilar.



Chapter 10

Experiments and simulations

10.1. Signal-to-Noise Ratio (SNR)

By using a known property of the autocorrelation functio8][Ris possible to define
two useful SNR measures. For a zero-mean, wide-sensensiatiprocess composed of
i sinusoidal components, whef® is the power of each sinusoidal component and
represents the noise process (wide-sense stationarymapoiress uncorrelated with
the signal).

The local SNR is defined as:

P;
Ry(0)
It can be regarded as the measure of the correctness of tistiméthe frequency

of a given spectral component.
The global SNR is:

SN roal,i = (101)

N
N p
SNRyjopat = S5
ioral = . 0)
This measure can give the likelihood of the estimation offtequencies in the av-
erage.

(10.2)

10.2. Basic performance comparison of MUSIC and ESPRIT

Several experiments with simulated, stochastic signale werformed, in order to
compare different performance aspects of both parametgihads MUSIC and ES-
PRIT, compared to commonly used power spectrum (FFT basttbaje Testing signals
are designed to belong to a class of waveforms often pres@aiwer systems. Each run
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Figure 10.1. MSE of frequency and power estimation (ESPRITSIC) depending on SNR. Averaged

1000 independent runs

of spectrum and power estimation is repeated many times t@@arlo approach) and
the mean-square error (MSE) is computed.

Parameters of test signals:

one 50 Hz main harmonic with unit amplitude,

random number of higher odd harmonic components with ranalmplitude (lower
than 0.5) and random initial phase (from 0O to 8 higher hareg)nif not otherwise
specified,

sampling frequency 5000 Hz,

each signal generation repeated 1000-100000 times withiaézation of random
number generator,

SNR = 20 dB if not otherwise specified,

size of the correlation matrix = 50 if not otherwise specified

signal length 200 samples if not otherwise specified.

Selected results are presented below:

Figure 10.1 shows a strong dependence of the accuracy afetfpgeincy estimation

on SNR and almost no dependence of amplitude estimatioh éxiteption to MUSIC

which shows higher errors for very low and very high noiselg)

The size of the correlation matrix must be chosen very cliyefis can be seen from
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Figure 10.2. MSE of frequency and power estimation (ESPRITSIC) depending on the size of
correlation matrix. Averaged 1000 independent runs

Figure 10.2. In the case of both methods, there exists amaptiof the size (relative to
the data length) which assures lowest estimation erroneléests a trade-off between
increasing accuracy of the estimated correlation matrikinareasing numerical errors
with the matrix size.

The data sequence length has stronger influence for theaagooi MUSIC method
than ESPRIT (Figure 10.3). For shorter data lengths ESPRifhiodl is faster to calcu-
late; this advantage vanishes with increasing number @f siamnples taken in calcula-
tion.

The investigation of the method of calculation of the catieh matrix shows sur-
prisingly (see Subsection 3.1.4) that the forward—bactveqproach causes higher esti-
mation error than simple forward approach (Figure 10.4% ¢inly advantageous when
the size of the correlation matrix is large. In this case,ntatrix is better conditioned
which eases the operation of matrix inversion.

In Figures 10.5 and 10.6 the results are shown where the taglof higher har-
monics was gradually increased from 0.1 to 0.9 of the funadah®&0 Hz component. In
such a way the problem of masking the higher low-amplitudenlbaic components by
a strong fundamental component was investigated. Thetseshubw an extremely high
masking effect in the case of power spectrum, while MUSICEBS8&RIT methods show
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Figure 10.3. MSE of frequency and power estimation (ESPRITSIC) and average calculation time
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Figure 10.4. MSE of frequency and power estimation (ESPRITSIC) depending on the method of
calculation of the correlation matrix (straight versusifard—backward approach). Averaged 1000
independent runs
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Figure 10.7. Accuracy of the dimension estimation by AIC, Méhd MIBS depending on the signal
length

very little dependence (almost no dependence in the casSBRET method). This is
a very important feature which partially explains excdllparformance of parametric
methods in the task of calculation of power quality indicese(Section 10.4).

10.3. Estimation of the number of components

The performance with regard to accuracy of the estimaticghe@humber of compo-
nents is tested using simulated signals with Gaussian f88$el he sampling frequency
was set to 1000 Hz and each calculation was repeated 1008 fimidependent real-
izations of the signal. Firstly, the estimation accuracgésermined as a percentage of
runs when a signal parameter was estimated correctly. linvastigated depending on
the signal length (two sinusoids of 50 and 150 Hz with unit kienghe and SNR 20 dB.

Figure 10.7 shows that the accuracy of MIBS strongly depemdthe number of
samples and achieves only 68% accuracy for the window of &@tpkes chosen for
further investigations. Excellent performance of AIC dlddoe noted as it achieves over
90% for 20 samples only.

Figure 10.8 presents the masking problem of the weaker coemge by the stronger
one. One component with the basic frequency has the fixeditahpland the second
has it gradually decreasing. Generally MDL offers best esxxyiclose to 100% down to

1 SNR [dB] = 10log,, (j—z)
0
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Figure 10.8. Accuracy of the dimension estimation by AIC, Méand MIBS depending on the relative
amplitude of two sinusoidal components
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Figure 10.9. Accuracy of the dimension estimation by AIC, M&nhd MIBS depending on the difference
of frequencies of two sinusoids with equal amplitude
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Figure 10.10. Accuracy of the dimension estimation by AI@QMand MIBS depending on the number
of signal components (a) and on SNR (b)

0.08 with exception of the smallest relative amplitudes rghdIBS achieves over 50%
accuracy for values as low as 0.04.

In Figure 10.9, the results are presented which show thesiodiéference in fre-
guency that still allows two separate components of the samp@itude to be detected.
AIC performs poorly and fails by the values of 50 and 74 Hz (24difference), whereas
MDL needs only 12 Hz difference for correct estimation. Afobe, MIBS offers advan-
tage for the lowest values of difference.

An increasing number of sinusoids with the same amplitude also estimated, see
Figure 10.10a. AIC failed when the number of componentseimeed to four and other
methods — when by five (the frequencies were 50, 100, 150,2510Hz).

The Gaussian noise has little influence on accuracy as showigirre 10.10b. The
highest immunity shows MIBS with accuracy of almost 70% fbiRSas low as -5 dB,
followed by MDL (100% for —2 dB) and AIC (100% for 4 dB).

Analysis of current during the switching of the capacitor banks

The switching of the capacitor bank in the transmission\ias simulated using the
EMTP software [12] with the simulation parameters as shawFigure 10.11. The sam-
pling frequency was 10 kHz and the length of the analysis aind/as set to 100 sam-
ples (0.01 s). The A-phase current is shown in Figure 104@ its short-time Fourier
transform in Figure 10.13. The first capacitor bank was $witcon at the timeé = 0.03
s and the second capacitor bank at the time0.09 s.
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Figure 10.11. Scheme of the simulated transmission linesys

The number of components was determined online using thecAti€rion (with lim-
itation to maximum of four components) for each analyzedtinterval of 100 samples.
To keep the picture legible, in Figure 10.14 only the first twammponents are shown.
Components were sorted according to their frequency.

In Figure 10.15 the corresponding amplitudes (derived foamponents’ powers
computed by theoot-MUSIC procedure) are shown. The first component corresponds
to the fundamental harmonic of 50 Hz. With exception to slimtrvals (around the
switching points) where the stationarity assumption issatisfied, the results of esti-
mation of frequency are reliable and correspond preciselhe time waveform. The
second component has a transient, exponentially decayiagcter with frequency of
476 Hz after the switching of the first capacitor bank whichraes to 270 Hz after the
second switching operation.

The application of statistical model order selection (iis ttase, estimation of the
number of sinusoidal components) allow the parameters efsthnal to be tracked
on-line . It can also be used as one of the input values of thesyof automatic detec-
tion and classification [34], [35].

In this section, the influence of the estimation accuracyhefgtample correlation
matrix (depending on the length of the signal), as well asrtfieence of the number of
components and of their relative amplitudes on the accurésyatistical estimation of
the number of components has been presented. The use ofiatfon-theoretic criterion
like AIC, together with high-resolution parametric esttina method, like ESPRIT or
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Figure 10.12. Waveform of the A-phase current during svinglof the capacitor banks in the
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Figure 10.13. Short-Time Fourier Transform of the A-phaseent during switching of the capacitor
banks in the transmission line
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MUSIC, allows precise on-line estimation of the signal paegers by using the sliding
window approach in the case where the parameters of the cwnfmoare time-varying.

10.4. Power quality indices

In this section, the waveforms obtained from a power supplg typical DC arc
furnace plant are analyzed. The IEC groups and subgroupsstineated by using FFT
and the results are compared with advanced methods: the [ ESRR the root-MUSIC
methods.

10.4.1. Experimental setup and preprocessing

The simulated DC arc furnace plant consists of a DC arc f@rrannected to a
medium voltage ac busbar with two parallel thyristor reet#ithat are fed by trans-
former secondary windings with and Y connections, respectively, it is shown in Fig-
ure (10.16). The power supply of arc furnace is modelledgiBiower System Blockset
in Matlab®. The electric arc was simulated with a Chua’s cirguithich shows good
similarity with real measurements [8].

[ 10

firing
circuit

l
DY

>

HV

Figure 10.16. Simulated DC arc furnace plant

2 Chua’s circuit is a simple electronic circuit that exhihitassic chaos theory behaviour. Introduced
in 1983 by Leon O. Chua.
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Figure 10.17. Voltage waveform of the arc furnace supply dioma voltage AC busbar

The medium voltage busbar is connected to the high voltagbaruwith a HV/MV

transformer whose windings afe-Y connected. The power of the furnace is 80 MW.
The other parameters are: Transformer—T80 MVA, 220kV/21kV; Transformer T —

87 MVA, 21kV/0.638kV/0.638kV. Examples of waveforms at #ire furnace supply on
the MV side are shown in Figures 10.17 and 10.18.

The evaluation of harmonic and interharmonic subgroups been made us-
ing the following assumptions: window length — 200 ms noertapping. For
each window, then® harmonic subgroup includes all spectral components in-
side the frequency intervdh - f; — 7.5,n - fi + 7.5] Hz. The interharmonic
subgroup includes all the spectral components inside thquéncy interval
In-fi+75,(n+1)- f; — 7.5[ Hz [9]. When applying parametric methods filters
have been applied for preprocessing of data. In particaléandstop Butterworth
lIR filter blocking the main (50Hz) component; a lowpass (4£) Butterworth 1IR
filter applied for analyzing interharmonics groupings #oe 0.5 and bandpass But-
terworth IIR filters for other subgroups.

The evaluation of Total Harmonic Distortion (THD) has beemel with following
assumptions: The window length is assumed to be 200 ms arglittiessive win-
dows until 3 s non-overlapping. For each window, the THDuels all harmonic
and interharmonic components up to 1000 Hz.
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Figure 10.18. Current waveform of the arc furnace supply diome voltage T2 input

10.4.2. Results and discussion

From the analysis of subsequent Figures 10.20-10.36, heaoted that the results
obtained by using "Ideal IEC" give a very high value of thegressive average referred
to the IEC interharmonic subgroups. This difference candptaied by the problem of
spectral leakage present in the DFT based algorithms (Saikd }herefore the high en-
ergy content leaking into the neighborhood of the fundaalea@mponent of the voltage
waveform. As shown below, the high resolution methods gigeiits closer to the "Ideal
IEC" than the ones obtained with STFT for the evaluation ef pnogressive average
related to the 1% in Figure 10.25 and 3 in Figure 10.26 for harmonic subgroups.

Figure 10.19 reports the THD values obtained with the diffietechniques. It should
be noted that there is no visible advantage of using advaspectral methods for esti-
mation of THD.

When analyzing current as well as voltage waveforms, a p@ofopnance of
root-MUSIC (shown in Figures 10.20 and 10.29) can be obsefiis can be attributed
to spurious roots (see Section 3.3) which in rare cases éarthe results. STFT and
ESPRIT methods give comparable results.

In some rare cases parametric methods give less accurates igsgure 10.23) or
almost identical when comparing to non-parametric STF@ufé 10.24).
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The advantage of using parametric methods becomes evidhemt analyzing higher
harmonic groups of the currents (Figures 10.25 and 10.26) \aitages (Figures
10.33-10.36).

14 T

=9~ rootMUSIC
-0~ STFT
== ESPRIT

THD [%]

0 I I I I I I I I I
1 12 14 16 1.8 2 22 24 26 2.8 3

time [s]

Figure 10.19. Total Harmonic Distortion of the current erzaied with parametric spectral methods
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In the case of voltage harmonic subgroups estimation (Efgy0.29-10.32) the re-
sults are comparable to those obtained using STFT. AgattMJSIC performs poorly
in first harmonic subgroup estimation (Figure 10.29).
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Figure 10.21. Progressive average of the third harmonigrsuip of the current
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Figure 10.22. Progressive average of the fifth harmonicreutpyof the current
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Table 10.1. Mean square error (MSE) of the progressive geavhthe current harmonic subgroups
estimation. Value of Ideal IEC [A]

Method || NN
STFT 338] 1.23] 023 085[ 16.00] 2.23
ESPRIT 596| 1.33| 022 005| 2.83| 2.08
MUSIC 5.80| 137| 022 007 1.26| 2.24
Ideal IEC[A] || 1757.90| 17.00 | 13.85 | 23.64 | 95.50 | 46.76

Table 10.2. Mean square error (MSE) of the progressive geashthe current interharmonics subgroups
estimation. Value of Ideal IEC [A]

Method | 1] 29[ 11" [ 127 |
STFT 34.88] 52.47 | 24.93| 4.60
ESPRIT 9.22| 3.02] 267| 814
MUSIC 8.40| 6.19| 457 5.35
Ideal IEC[A] || 61.13 | 43.56 | 29.26 | 29.58

Table 10.3. Mean square error (MSE) of the progressive geashthe voltage harmonics subgroups
estimation. Value of Ideal IEC [V]

Method || N
STFT 221.29] 106.37| 6.30] 227 9253] 28.74
ESPRIT 202.17] 201.79| 2.37| 6.33] 14.18| 27.36
MUSIC 1085.90| 21050| 3.08| 5.14| 1214 2801
Ideal IEC [V] || 11718.00] 124.80] 26.17 | 19.63 | 242.57 | 158.60

Tables 10.1-10.4 show values of the mean square error (M3B¢ @stimation of
interharmonic subgroups and allow comparison with theevaluldeal IEC. Values of
MSE show excellent performance of parametric methods wbeipating interharmonic
subgroups and slightly decreased accuracy in the caserabhar subgroups, especially
of voltage waveforms.

For all results presented previously, it can be seen (Tablg) that the ESPRIT
method offers reduction of the average relative MSE of eion of harmonic sub-
groups by 54% and MUSIC method by 50%, compared to FFT-bastaloth.
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Table 10.4. Mean square error (MSE) of the progressive geavshthe voltage interharmonics subgroups
estimation. Value of Ideal IEC [V]

Method [ 1| 29[ nu®| 12" 13" |
STFT 367.48| 205.84] 116.20] 26.29 | 55.41
ESPRIT || 107.87| 2324| 7.76| 11.81] 15.90
MUSIC 118.49| 9.42| 20.08]| 13.21] 17.78
Ideal IEC[V] || 70.20| 75.20| 72.69| 82.87]| 75.70

Table 10.5. Relative mean square error (MSE) of the proiyesaserage of harmonic and interharmonic
subgroups estimation

Method Error of current Error of voltage Total error
harmonics| interharm. || harmonics| interharm.

STFT 0.057 1.271 1.419 4.480 1.731

ESPRIT 0.029 0.180 2.193 0.531 0.796

MUSIC 0.027 0.231 2.364 0.563 0.861

10.5. Classification of events

10.5.1. Introduction

The problem of classifyingsignals obtained from the indakpower frequency con-
verters, using a new method (presented in Chapter 9) isdenesl in this section. The
object of signal classification can be control or optimizatof the modern frequency
power converters, which generate a wide spectrum of hagmamponents. Especially,
the task of fault detection is difficult. A subset of faultshieh are usually not detected
by the protections (in underload conditions), is partidyldard to classify. In large
converter systems, which generate not only charactehsatimonics typical of the ideal
converter operation, but also a considerable amount ofchanacteristic harmonics and
interharmonics, the task of fault detection is particyiatifficult [28], [58]. The char-
acteristics of the signal can be better analyzed and umaetst the correct represen-
tation is chosen. In case of heavily distorted signals, whamstents change with time,
it can be expected that the time and frequency charactsriate the most important.
The parametric time-frequency transformation can progideantages when analyzing
non-stationary signals due to its better temporal resmiyxcellent performance in the
presence of noise, and no phase dependence as with cldasic@r-based spectra. In
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Figure 10.37. Simplified scheme of the simulated convedafiguration. R — resistance of the
short-circuit

the case of time-frequency representation of a signal ibssiple to study simultane-
ously the time and frequency characteristics of the signthl best possible resolution
non-parametric time-frequency transformations than. digeal classification is the as-
signment of the time-series to a specific class with givemattiaristics.

10.5.2. Numerical simulations

The signals under investigation are short-circuit cugestitained from a 3 kVA
PWM converter simulated with the Power System Blockset ofmuAs ® (Figures
10.37 and 10.38). Simulation system contains inverter agdaronous machine mod-
els, as well as fault simulation circuit and space-phastinerwomputation modules.

Parameters of the simulated converter drive include:

e six-pulse (three-arm bridge) PWM inverter with ideal sWwis, carrier frequency
1000 Hz,

e three-phase supply with 25 kV/600 V 50 kVA transformer,
lowpass filter with L = 0.2 mH, C = aF to 10uF,

e squirrel-cage type asynchronous maching2 220V, B, = 2.2 kW, 50 Hz.

For classification purposes, all investigated three-phaseforms were transformed
to the complex space-phasor (see Equation (6.1)). Thebsslae value (example in
Figure 10.39 for short-circuit resistance R %2} is transformed to its time-frequency
representation using parametric ESPRIT method with the dielemporal sliding win-
dow as shown in Figure 10.40.

Taken the representation of the waveform in time-frequeplape, as the next step,
the areas in this plane can be chosen, either manually (loasgloservation) or automat-
ically (based on some optimization algorithm, which, enginimizes the classification
error). Optimization approach is not developed in this work
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amplitude of space —phasor

Figure 10.39. Absolute value of the space phasor of theteweutput currents. Short-circuit resistance R

frequency [Hz]

Figure 10.40. Time-frequency representation (ESPRIEdgsf the modulus of the space-phasor
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Figure 10.41. Corresponding amplitudes of components Biyire 10.40

In Figure 10.40, the time-frequency representation (ESHRRked) of the modu-
lus of the space-phasor of inverter output currents is ptede Three components are
shown here and the fundamental component is removed. @orrding amplitudes of
components are shown in Figure 10.41. Selected areas feegubnt reconstruction are
outlined as rectangular areas in time-frequency plane ametr&rized below:

time interval: 0.27-0.3 s; frequency band: 92-108 Hz,

time interval: 0.27-0.3 s; frequency band: 143-165 Hz,
time interval: 0.3-0.35 s; frequency band: 112-138 Hz,
time interval: 0.3-0.35 s; frequency band: 165-200 Hz.

There follows a classification procedure. As already shawFRigure 9.1, the pa-
rameters of the signal and pattern are extracted from timé-frequency representa-
tions, by taking only those parts of the signal which are aimetd within the selected
"regions of interest" (examples shown in Figures 10.42)rdeted parameters (compo-
nents’ frequencies, amplitudes, duration in time, etéoyalreconstitution” (incomplete
reconstruction) of preprocessed signals and patternspioedure is then followed by
computation of classical, time-domain correlation segeeihe result of classification
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Figure 10.42. Reconstructed signal from components asrsiroigure 10.40

depends on the highest value of the correlation coefficidntlwshows, to some ex-
tent, the degree of similarity between signal under clasdifin and previously selected
pattern.

Result of application of the classification scheme desdrifae presented in Table
10.6. Over 500 waveforms were simulated using differentedparameters (parameters
of LC filter (from 5uF to 1QuF), value of short-circuit resistance (from{lto 1002),
value of the shaft mechanical torque applied to the asymcu® machine (from 50 to
100 Nm — see Figure 10.38) in order to validate this classifinaapproach.

From the analysis of Table 10.6 it should be noted that theofi$ggh-resolution
ESPRIT method and selection of areas of obtained time-fegy representation al-
lows highest sensitivity of detection of a pattern (herarshkircuit waveform) hidden
in the current waveform at the converter output (precisiedydignal is composed of all
three currents in the form of space-phasor). Classical-tioreain correlation is almost
useless for this classification task.

Table 10.6. Average of the highest correlation coefficientsr 500 trials using ESPRIT, STFT and
time—domain correlation

Method Classification| Classification| Time—domain
ESPRIT-based STFT-based Correlation

Signal contains patterlH 0.63 0.57 0.35
No pattern 0.15 0.22 0.33
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In this section, a new method of classification of electrimals has been presented,
based on the time-frequency representation and autonmgtial £lassification with the
help of a standard correlation technique. The investigatioroved the validity of the
proposed approach, however this method can lead to funty@rovements which can
additionally increase its performance. Further work caruide the design of the clas-
sification system with many classes, optimized and/or aatimnthoice of "areas of
interest" in the time-frequency plane, application of ottiassification algorithms, etc.



Conclusions

The main goal of this work was to present a new approach to/sisah spectral
domain of power systems using parametric spectrum estmatethods. After detailed
theoretical treatment of many aspects of the approach peaphdncluding preprocessing
using bandpass filters or filter banks (Chapter 5), estimatfahe model order (Chapter
7), and analysis of non-stationary waveforms (Chapter @l|ting classification of
events, Chapter 9), the second part is presented, devoietynrapractical aspects and
numerical analysis (Chapter 10).

In practical applications, one of the most important questiconcerns the optimal
choice of analysis methods when taking into account knowamaters of the signal and
limitations of the chosen analysis technique. These pnobleere addressed in section
10.2. Testing signals were chosen that correspond to miest ehcountered waveforms
in power systems. Most important results show that an opti#iza of the correlation
matrix can be chosen. Further increase of the size of thelation matrix or the use of
forward—backward technique does not improve the accuratich a conclusion contra-
dicts the established widespread opinions. In generadnpatric methods show similar
values of accuracy (with slight advantage of ESPRIT methddih greatly outperform
the accuracy of FFT-based non-parametric method. Morepaesimetric methods show
almost complete immunity to masking effect (see Figure Ylth&ariable initial phase
of harmonic components and to many other deficiencies offtb&SEd techniques, as
shown in [32]). Interestingly, when comparing strongly plified theoretical expres-
sions related to performance of ESPRIT and MUSIC (see emg&a{3.51) and (3.56)),
the main result is confirmed in numerical simulations (ESPRImore accurate than
MUSIC), although the difference of performance is not aslag sixfold.

Results of estimation of the model order concern the proldpetific to parametric
methods. It is necessary to obtain the exact number of coemtercontained within
the analyzed signal. Wrong estimation of the number of corapts leads to errors,
although ESPRIT seems to be less affected [35]. The analgsisermed by the author
shows the possibility of application of known statisticafarmation criteria (Section
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10.3). It should be noted that the on-line estimation of thaber of components works
well for few components only, but this shortcoming can berceme by narrow-band
local analysis of the signal. This approach limits the nundfecomponents to be de-
termined, improves the SNR and increases the spacing betilese spectral lines (im-
proves resolution), as shown in Chapter 5). However, in nappfications there is no
need for estimation of the number of components becausénthisnation is known in
advance.

Chapter 8 and section 10.4 are devoted to the assessmentadler quality. Most
power quality indices use FFT-based techniques. It was sibat application of para-
metric methods allows approximately 50% reduction of thevetion error (page 92).
This result was obtained despite the fact that for compars@rocedure was chosen
where the minimum error is expected for FFT-based techn{gae analysis window
length equal to one period of the fundamental harmonic)nEhigher gains in accu-
racy were achieved when analyzing waveforms with high istdr-harmonic contents
[58, 60].

The proposed classification approach, presented in Chaptises the space-phasor
for representation of three-phase signal, its paramétnie-frequency representation and
subsequent selection of most significant areas in the tiggiéncy plane.

The author proved that for the analysis of narrow-band {dipectra) it is sufficient
to analyze narrow band- and time-limited areas of their firequency representations
plane (see Chapter 4). Such approach not only provides isuffimformation for sub-
sequent analysis (see Section 4.2). It also improves ifenpesince by enhancing the
signal-to-noise ratio, improving the resolution (see Gbap) and improving the clas-
sification rate of correlation-based classification apgihd@ee Theorem 13). The use of
high-resolution methods significantly improves the accyia many parameter estima-
tion techniques. Both approaches combined allow furth@ravements (in Chapter 10
numerous examples are shown).

There exist in the recent literature a large group of methaidsng at reduction
of the computational burden associated with the estimatiotihe correlation matrix.
These methods include subspace tracking, projection gippation, partial update of
the correlation matrix and many others, not consideredigwtiork. From preliminary
investigations the author concluded that the expectedigaiomputation time is not a
justification for significant increase of the error of paréenestimation, especially for
non-stationary signals. With the constant increase of egatipnal power of modern
processors the calculation time becomes less troubleshametiie accuracy of results
achieved. Moreover, the results presented in Figure 1@& shat optimal accuracy is
practically achieved when using quite small correlatioririn@s which can be computed
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in little time (see Figures 10.2 and 10.3). The complete HSRRIT procedure includ-
ing correlation matrix computation takes 0.01-0.1 s onlyaonaverage PC running
Matlab® 3.

In the light of precedent considerations the main thesis e 9) of this work
appears to be proven.

Outlook

The approaches to signal analysis in power systems, pegsanthis work, will be
extended in the future in many ways.

Sliding window approach, used for non-stationary signallysis, can be modified
by using variable length windows, where the window length ba determined on the
basis of optimization of a chosen output parameter. Suchpproach is quite widely
applied (e.g., in [63]), although the advantages seem nbetgery important for the
applications considered in this work.

Classification procedure can be improved by applying thavépation procedure to
the choice of "areas of interest", by applying other clasaiion algorithms [40], other
time-frequency representations. It is foreseeable thelh smprovements could bring
about some inhancement in sensitivity and specificity ottassification procedure.

One important problem is the reliable estimation of wauwefgarameters when the
signals under investigation have a strong stochastic edfor example, electric arc
furnace). It is often desirable to get representative tesalko for such signals which
present impulse disturbances. In such cases robustistdtisiethods can be efficiently
applied and allow elimination of stochastic (non-repetitipart of the signal [36].

3 PC with 2.8 GHz processor clock , 1 GB of RAM, Matfalver. 7.0.1.
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Parametrycznemetody analizy
czasowo-czestotliwsciowej sygnatow elektrycznych

Praca niniejsza jest kontynuacja i rozwinieciem cyklu publikacji autora (Literatura
strony 103-108 pozycje literaturowe [4]-[10], [29], [32]-[53], [55]-[62]), majaca na
celu ich usystematyzowanie i uzupetnienie. Autor proponuje nowa metodologie analizy
widmowej sygnatow elektrycznych (w tym tréjfazowych) i wiele metod pochodnych
przy pomocy metod podprzestrzeni (metod o wysokiej rozdziékizparametrycznych
metod estymacji widma, takich jak MUSIC i ESPRIT), azakpoddaje analizie wiai-
wosci réenych metod analizy widmowej, zastosowanych w praktyce.

W pracy przestawiono kilka nowych koncepciji, ktére wzajemnie sie uzupetniajac,
tworza ramy nowego podsgia do analizy widmowej sygnatéw elektrycznych. Kon-
cepcje te obejmuja zagadnienie wykorzystania wigkszej dok&mimoetod parame-
trycznych w poréwnaniu do klasycznych metod wykorzystujacych transformate Fouri-
era, koncepcje analizy i identyfikacji na podstawie wybranych obszaréw reprezentaciji
czasowo—czestotlivéziowej sygnatu, wykorzystania wektora przestrzennego do trans-
formacji sygnatow tréjfazowych, wykorzystania filtréw pasmowych (banki filtrow) do
poprawy doktadnsci wyznaczania parametrow.

Praca obejmuje szczeg6towa analize teoretyczna prezentowanych zagétinia
jest jednak &cisle podporzadkowana praktycznym aspektom zastosowania metod
parametrycznych do analizy sygnatéw elektrycznych. Przedstawiono w prapg tak
wyniki badah symulacyjnych obejmujacych poréwnanie doktaglriometod parame-
trycznych, wyznaczania rzedu modelu, wskaznikéw §kaenergii i klasyfikacji za-
kiocen.
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