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Abstract: In this paper, a simple generalization of Darcy’s law is proposed for the description of hydraulic
properties of anisotropic porous materials. The coefficient of permeability is defined as a scalar-
valued function of orientation. The principal directions of permeability are determined from a fabric
descriptor specifying the distribution of average pore size. An example is provided for identification
of material parameters, which is based on an idealized “pipe network model”. A procedure for de-
fining the anisotropy in strength properties, which incorporates a conceptually similar approach, is
also reviewed and an illustrative example is provided.

1. INTRODUCTION

Many naturally occurring geomaterials are anisotropic at the macroscale. The ani-
sotropy manifests itself in the directional dependence of both hydraulic as well as
mechanical properties. In granular materials, the anisotropy may stem from the shape
of the grains. It is well known, for example, that the strength properties of sand with
elongated angular-shaped aggregates are strongly affected by the direction of loading
in relation to the direction of deposition (cf. Oda et al. [8]). But even if the skeleton
itself may be considered as isotropic, e.g., sand with nearly spherical particles, there is
usually a bias in the distribution of void space, due to initial compaction, which also
triggers the anisotropy that may evolve during the deformation process. In sedimen-
tary rocks (like shales) there is typically a strong inherent anisotropy, which is the
result of the presence of bedding planes (cf. Niandou et al. [7]); the latter clearly visi-
ble at the macroscale. Whether inherent, induced or a combination of both, the anisot-
ropy in microstructure may have a significant effect in the context of analysis and
design of geotechnical structures.

This paper addresses the issue of mathematical description of anisotropy in hy-
draulic as well as strength properties of geomaterials. A common framework is
adopted for both these cases, which incorporates some scalar-valued functions defined
over a unit sphere and represented in terms of a traceless second-order tensor. The
parameters appearing in this representation are identified either from a computational
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procedure or the experimental data. Section 2 deals with description of anisotropy of
permeability. The material fabric is defined by incorporating the notion of “areal pore
size”. The definition of this descriptor is based on linear intercept measurements.
A pipe network model, in which the porosity is represented by a cubic lattice of pipes
of average pore diameters, is used to identify coefficients appearing in the function
defining the permeability distribution. Section 3 deals with anisotropy of strength
parameters. The methodology employed there incorporates the “critical plane” ap-
proach. The latter, once again, invokes a spatial distribution of strength parameters
and the orientation of the critical plane is determined by maximizing the failure func-
tion with respect to the orientation. A numerical example is provided illustrating the
procedure for identification of material parameters. Section 4 gives final remarks and
offers some brief comments on future research.

2. HYDRAULIC PROPERTIES; DARCY’S LAW FOR ANISOTROPIC
POROUS MATERIALS

It is postulated that for porous materials, which display anisotropy in terms of void
space distribution, Darcy’s law may be generalized to
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where vi is the apparent velocity of fluid, h is the total hydraulic head and the coeffi-
cient of permeability (often referred to as hydraulic conductivity) k is taken as a func-
tion of the orientation of the sample relative to the direction of flow, i.e.,
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Here, the coefficients a1, a2, ... as well as the parameter k0 are constants, while Ωij is
a symmetric traceless tensor that describes the bias in the directional distribution of
permeability.

In order to define the principal directions of permeability a measure of material
microstructure is required. Since the hydraulic properties depend on both the size and
the distribution of void space, the specific descriptor adopted here is the “areal pore
size” ρA, which is analogous to that introduced in earlier work by Pietruszczak and
Krucinski [10] and Inglis and Pietruszczak [5]. The definition is based on principles of
stereology and employs linear intercept measurements. Consider first an arbitrary
plane with unit normal vi passing through REV that is perceived as a sphere with
a radius R. Introduce now a set of uniformly distributed parallel lines aligned in an
arbitrary direction ω i (i.e. viω i = 0) that covers a range of orientations C ⊂ (0, 2π ). The
areal pore size on this plane is defined as



Description of hydraulic and strength properties of anisotropic geomaterials 5

)(
)()(;)(

2
1

)( i

i
ii

vC
A N

IgdCg
i

ω
ωωω

π
ρ ∑∫ == . (3)

Here, ∑ )( iI ω  is the sum of intercept lengths of all segments contained within the

pore space, N(ω i) is the number of intercepts, dC is the differential angle measured in
this plane and g(ω i) = –g(ω i) is taken as symmetric with respect to the origin.

Given equation (3), the “areal pore size” descriptor ρA associated with the direction
vi is now defined by averaging Aρ  along vi, i.e.,
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where dL is the differential distance measured along vi. Note that the integration in
equation (4) can be replaced by a discrete summation. For this purpose, consider a set
of equally spaced parallel test lines on any set of m equally spaced parallel planes. The
test lines are rotated in-plane k times around a pole defined by vi. Then ρA can be de-
fined in terms of discrete quantities I and N, as
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The distribution (5) can be approximated using a representation similar to that of
equation (2), i.e.,
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Given now a discrete set of data generated for an REV, the components of Dij as well
as the coefficients c0, c1, c2, ... can be identified from the best-fit approximation em-
ploying representation (6). The principal directions of fabric are then obtained by
solving the eigenvalue problem
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where λ’s are the eigenvalues of Dij. Note that for granular materials ( ) ( 1, 2,3)k
ie k =

are the same for both operators Ωij and Dij. Furthermore, the eigenvalues of Ωij and Dij

may be related by employing some micromechanical estimates, as for an isotropic
material k = k(ρA).
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2.1. NUMERICAL EXAMPLES

The identification of the permeability function (2) requires first the specification of
principal axes of anisotropy, viz. equation (7). It is noted that these are not necessarily
coaxial with those for anisotropy of strength, though there is likely to be a strong cor-
relation between the two. Once the principal directions of permeability have been de-
fined, the spatial distribution can be determined experimentally by performing tests on
samples with different orientation with respect to the direction of flow. For granular
materials, for example, this would entail a series of constant/falling head permeability
tests. In the absence of the experimental data, the distribution of permeability may be
assessed by means of some approximate numerical techniques. In order to provide an
illustration, a simple “pipe network” representation of pore-structure, as used in other
fields of engineering (cf. Chatzis and Dullien [2]; Diaz et al. [3], Kralj and Pande [6]),
is employed here. Within the pipe network model, a single or multiphase flow is visu-
alised as taking place through a network of inter-connected miniature pipes. Obviously,
in practical terms, it is hardly possible to capture pore architecture and tortuosity in de-
tail and drastic simplifications are required. Here, the pipes representing the pore
space are arranged in a cubic lattice in such a way that their volume fraction corre-
sponds to the porosity of the material and variations in diameter correspond to the pore
size distribution. Figure 1 shows a typical network formed by a cubic lattice having
a grid of 12 × 12 × 12 with six pipes, of the same length, connecting at each node. It is
obvious that as the grid size is increased a more accurate representation of flow and
permeability will be achieved.

Fig. 1. Pipe network model representation

The variation in diameters of pipes in the network is represented by a log-normal
distribution having a certain mean diameter d  and an assigned standard deviation σ.
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Pipe diameters are allocated randomly. A fluid pressure is applied on a face of the
cube and the infiltration of the fluid to the opposite face is traced layer by layer until
a steady state flow is established through the sample. The lateral sides of the cube are
assumed to be impermeable so that fluid flow out of the network is only achieved
through the opposite face. Depending on the diameter and the characteristics of the
permeating fluid, a specific pipe may or may not be penetrated. Percolation through
the network is carried out in a series of iterations; in each cycle a pipe adjacent to
a node with a pipe filled with fluid, may or may not allow fluid to pass depending on
the pipe diameter. The smallest diameter necessary for percolation is calculated from
the Washburn [12] equation

d
Tppp Afc

θcos4
=−= (9)

where pc is the capillary pressure, pf is the pressure at the node filled with fluid (wa-
ter), pA is the pressure at an empty node (air), T is the surface tension, θ is the contact
angle and d is the pipe diameter. Note that the latter may be identified here with the
average “areal pore size” as defined viz. equation (6), i.e., d ≡ ρA. If the fluid is unable
to penetrate the pipe, then a “dead-end” condition is reached along that particular flow
path. The flow is considered to be purely laminar and therefore the Hagen–Poiseuille
equation (cf. Sutera and Skalak [11]) can be used for the calculations of pressure, i.e.,
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where ΔH is the head loss along the pipe, μ is the viscosity of the fluid, l is the length
of the pipe, Q is the flow rate through the pipe and γ  is the unit weight of fluid.

Once equilibrium has been reached and a constant flow through the sample has
been established, then Darcy’s law is used to compute the coefficient of permeability.
As an example, Fig. 2 shows the variation of permeability with weighted average pore
diameter along the direction of flow. Here, the coefficient of variation (cv = σ / d ) of
pore diameters has been kept constant at 1.45, while the coefficient of permeability
has been normalized with respect to the value computed for the weighted mean pore
diameter of 27.5 µm, i.e., k j 4*10–6 m/s.

Another study was carried out to assess the sensitivity of permeability to a more
variable pore size distribution whilst keeping mean pore diameter as constant at
25.15 µm. Figure 3 shows the change in permeability with the coefficient of varia-
tion, the latter within the range between zero and 2.0. Permeability has been nor-
malized here with respect to the value corresponding to coefficient of variation
equal to zero. It is evident that increasing the coefficient of variation from zero
to 2.0 leads to an 80% reduction in permeability demonstrating that this is a very
sensitive parameter.
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Fig. 2. Variation of permeability (normalized with respect to that corresponding to d = 27.5 µm)
with the average pore size (cv = 1.45)
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Fig. 3. Change in permeability with increasing coefficient of variation

Consider now a sample whose “areal pore size” distribution is defined by a linear
form of representation (6), i.e., c1 = c2 = ... = 0. Referring the problem to the principal
material axes {x1, x2, x3}, as shown in Fig. 4, assume that the microstructure displays
a transverse isotropy, so that D1 = D3. In this case, since Dij is traceless, there is
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Let the “areal pore size” in the vertical direction (α = 0) be ρA(α = 0) = ρ⊥ =
15 μm, while that in the horizontal direction be ρA(α = 90°) = ρ⊥ = 27.5 μm. Substi-
tuting these values in equation (11) gives
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so that c0 = 23.33 μm, D1 = 0.1786. The second plot in Fig. 4 shows the distribution of
“areal pore size” normalized with respect to the value at α = 90°.

Given the information on the directional pore size distribution, the corresponding
variation in permeability may now be established. For a vertical steady-state flow
through an inclined sample, given the “areal pore size” in the direction of flow, the
coefficient of permeability may be estimated directly from the distribution in Fig. 2.
The results, for different orientations α , are shown as black squares in Fig. 4. The
same plot gives the best-fit approximations based on representation (2). The broken
line corresponds to linear form of equation (2), i.e., a1 = a2 = ... = 0, while the solid
line represents the approximation in which the second order term has been retained.
The latter gives the coefficients of approximation as

203.0,203.0,697.0 110 =Ω== ak .

Finally, Fig. 5 shows a rose diagram of normalized permeability associated with
“areal pore size diameter” varying from 27.5 microns in the horizontal direction to
15 microns in the vertical direction. It is clear from this that, in a boundary value
problem, the porosity of the material as well as the average pore size and its direc-
tional variation will both play a crucial role in determining the hydraulic characteris-
tics of a porous medium.
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Fig. 5. Polar plot showing the spatial distribution of normalized permeability

3. STRENGTH PROPERTIES; CRITICAL PLANE APPROACH

The primary factor governing the mechanical response of inherently anisotropic
media is the directional-dependence of strength properties. A proper description re-
quires a specification of conditions at failure for an arbitrary orientation of micro-
structure under any given stress state. Over the last few decades, numerous failure
criteria have been proposed and a review of different methodologies can be found, for
example, in Duveau et al. [4] and/or Pietruszczak [9]. The methodology reviewed here
incorporates the so-called “critical plane” approach. Within this framework, the failure
criterion is defined in terms of traction components acting on the critical/localization
plane. The approach employs a spatial distribution of strength parameters and the ori-
entation of the critical plane is determined by maximizing the failure function with
respect to the orientation. In order to illustrate the methodology, assume that the con-
ditions at failure are governed by Coulomb criterion

)(),(;0 ii nccncF ===−−= μμμστ . (13)

In the equation above

0,1|,|, ==== iiiiijijjiij snnnsnnn στσσ (14)

where τ, σ represent the shear and normal components of the traction vector on
a plane with unit normal ni and μ and c are both said to be orientation dependent. The
distribution of strength parameters μ = tanφ and c can be described by employing
a representation similar to that in equation (2), i.e.,
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where Ω’s are again symmetric second-order traceless tensors while the coefficients
b’s and c’s, as well as the parameters ,ˆ,ˆ cμ  are constants.

The problem of onset of failure and specification of the orientation of the critical
plane can be formulated as a constrained optimization problem, i.e.,
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The latter can be solved by Lagrange multipliers or any other suitable optimization
technique. The solution provides the orientation of the critical/localization plane and
defines the conditions at which the failure occurs under an arbitrary stress state.

For geomaterials with a strong inherent anisotropy (e.g., sedimentary rocks, sand
with elongated angular-shaped particles, etc.), the principal material directions will not
be significantly affected by the deformation process. On the other hand, if the initial
anisotropy of fabric is weak (e.g., sand with nearly spherical particles), the preferred
directions of the material, and thus the eigenvectors of Ωij’s will evolve in the course
of the deformation process. In the latter case, one could argue that the microstructure
is linked with the spatial distribution of voids. Since the rearrangement of void space
is triggered by strain, one could postulate a simple evolution law that assumes a coaxi-
ality of Ωij and eij, where eij is the strain deviator. In this case, the spectral decomposi-
tion of Ωij takes the form
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where the eigenvalues are constant, while the principal directions )(k
im  (k = 1, 2, 3) are

obtained from the solution to an eigenvalue problem, as stated in equation (17). Obvi-
ously, this simple evolution law requires an appropriate verification. The latter would,
in general, entail invoking the principles of stereology, via linear intercept measure-
ments, similar to those discussed in the previous section. Note that the representation
(17) implies that in standard material tests (such as those under biaxial/triaxial condi-
tions), the principal directions of Ωij’s remain fixed, while under more complex strain
trajectories, like those encountered in a boundary-value problem, they will progres-
sively evolve.

3.1. NUMERICAL EXAMPLES

In order to illustrate the above framework consider the results of a series of di-
rect shear tests performed on crushed limestone sand with elongated angular-shaped
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particles, as reported in the article by Azami et al. [1]. The samples were prepared
by the sand rain method to void ratio of approx. 0.6, and were tested at different
deposition angles α ranging from 0° (horizontally aligned particles) to 90° (verti-
cally aligned). Typical results are presented in Figs. 6 and 7, which show the me-
chanical response at normal stress of 25 kPa and 50 kPa. Clearly, the material ex-
hibits a significant degree of anisotropy in terms of strength. Figure 8a shows the
best-fit approximations of Coulomb failure envelopes, equation (13), for samples
prepared at α = 0° and α = 90°. It is interesting to note that the material develops
a residual cohesion, and thus a residual resistance to tension, due to interlocking of
particles. A complete set of experimental data, in terms of variation of μ and c with
the deposition angle α, is given in Figs. 8b and 8c. The identification of the critical
plane framework requires the specification of coefficients appearing in representa-
tion (15), which in turn involves establishing the best fit approximations to experi-
mental data.
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Fig. 6. Results of direct shear tests on crushed limestone sand
(after ref. [1]) at normal stress of 25 kPa
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Fig. 7. Results of direct shear tests on crushed limestone sand
(after ref. [1]) at normal stress of 50 kPa
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Fig. 8.  (a) Best-fit approximations of Coulomb failure envelopes at α = 0, α = 90°;
(b, c) variation of friction coefficient μ and cohesion c with the deposition angle

Apparently, if the higher order terms in the distribution of μ (ni) and c(ni) are ne-
glected, i.e., b1 = b2 = ... = 0 and d1 = d2 = ... = 0 in equations (15), the identification
entails only the results for samples tested in the directions along and normal to the
plane of material symmetry. Refer the problem to the coordinate system shown in
Fig. 8. Here, by analogy to Fig. 4, {x, y, z} is the global frame of reference, while the
base vectors )1(

ie , )2(
ie , )3(

ie , associated with the coordinate axes {x1, x2, x3}, define the
principal material triad. In this case, Ω1 = Ω3 and since Ωij is a traceless operator (i.e.,
Ω1 + Ω2 + Ω3 = 0), the following representation is obtained
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with a similar representation holding for c(ni). Let the values of μ  for samples tested
at α = 0° and α = 90°, be μ0 and μ⊥, respectively. Then, according to equation (18)

α = 0°
α = 90°

α (degrees) α (degrees)

μ
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Thus, given the experimental data in Fig. 8b, there is
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μμμμ .

The above approximation is not accurate, Fig. 8b, and better results are obtained by
incorporating the higher order terms. Including, for example, the second degree term,
i.e., approximating μ(ni) as

)))cos31(()cos31(1(ˆ)( 22
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yields
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and gives a much better representation. A similar conclusion is reached in the context
of the bias in the spatial variation of cohesion, c(ni), Fig. 8c. In this case, the second-
order approximation corresponds to

82.0,22.0,kPa51.3 110 ==Ω= bc .

Given the coefficients of approximation (15), the framework defined viz. equation
(16) can now be used in a predictive mode to define the conditions at failure under any
possible combination of stress. Figure 9 shows the variation of axial compressive
strength with the deposition angle β. The results of numerical simulations correspond to
a series of “triaxial” tests conducted at the confinement of 10 kPa. The experimental
data, which is taken again from ref. [1], gives the values corresponding to tests carried
out at α = 0° and α = 90°. It is quite evident that the effect of anisotropy is very signifi-
cant as the compressive strength is reduced here from approx. 115 kPa to 70 kPa.
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4. FINAL REMARKS

A conceptually similar approach has been used here for describing the anisotropy
in hydraulic and strength properties of porous media. It entails the specification of
principal material directions. For certain geomaterials, e.g. sedimentary rocks, these
are known a priori. On the other hand, for a more complex microstructural arrange-
ment a specific fabric descriptor needs to be employed. For granular materials the
inherent anisotropy is, in general, weak and may be altered in the course of deforma-
tion process. In this case, an appropriate relation is needed to define the evolution of
the principal axes of microstructure. Specification of such an evolution law requires
a continuous monitoring of the changes in structural arrangement, e.g., via computed
tomography (CT) measurements, which is quite complex.

The scalar-valued functions describing the spatial variation of strength/hydraulic
properties should ideally be identified from the experimental data. In the absence of
such data, an implicit approach may be employed in which the relevant information is
generated via a computational approach. Here, an illustrative example has been pro-
vided for specification of the distribution of permeability via a pipe network model.
The pipe network model with cubic structure as used here may seem to be simplistic to
represent the spatial variation of the pore space structure. However, it should be noted
that three orthogonal directions chosen in the cubic network correspond to a point
integration rule with an equal weight coefficient of 1/3. This is the lowest order inte-
gration rule for a function varying over the surface of unit sphere. Higher order inte-
gration schemes will indeed lead to more complex pipe network and hopefully more
accurate assessment of anisotropic permeability.
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