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1. Introduction 

The research community from both academia and industry started studying various 

issues related to modeling and optimization of communication networks at the same 

time when the progress of communication networks was noticeable. The main 

motivation behind this fact was to provide efficient optimization tools to enable 

development of various kinds of communication networks satisfying clients’ needs in a 

cost effective manner. At the beginning, the research was quite narrow and limited to 

telephone networks. However, the advent of the Internet and next other kinds of 

communication networks (e.g., mobile networks) as well as the process of network 

convergence triggered much faster and wider research in the field of modeling and 

optimization of computer networks. Consequently, nowadays we can witness numerous 

scientific journals and conferences devoted to this topic. Moreover, large vendors of 

network equipment and telecoms develop R&D centers to make research on these 

issues. The prognosis for the future is that – due to very fast development of new 

technologies, protocols, services and growing popularity of computer networks all over 

the world – emerging problems related to modeling and optimization of computer 

networks will focus the attention of researchers for a long time.  

The main purpose of this book is to present basic information related to 

modeling and optimization of computer networks. We present models and algorithms 

for optimization of various elements of computer networks including routing, link 

capacity and resource location. An important novelty of this textbook – comparing to 

earlier books – is that we consider various kinds of network flows. Most of previous 

research in the field of modeling and optimization of computer networks is restricted to 

unicast flows. We extend this scope to other kinds of network flows including anycast, 

multicast and Peer-to-Peer. Moreover, we present information related to optimization of 

network oriented distributed computing systems. The idea behind the extended range of 

the book is to present classical models and methods related to the research conducted in 

the field of computer network optimization for many years as well as to show latest 

topics that have been attracting considerable attention from researchers recently. 

It is assumed that the reader of this book has some basic knowledge regarding 

computer networks, technologies and protocols as well optimization methods and 

algorithms. However, if some parts and information presented in the remainder of this 

book are not understandable, the reader is referred to books and other works presenting: 
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• basic issues of computer networks (e.g., [PER05], [Tan03], [RVC01]);  

• various concepts of distributed computing systems including Peer-to-Peer 

networks, content delivery, multicasting, distributed computing, (e.g., [BYL09], 

[HB05], [Min08], [NSW04], [SYB09], [Pen04], [SW05], [Tar10]);  

• issues of network survivability, (e.g., [Gro04], [PM04], [VPD04]);  

• optimization methods and modeling (e.g., [Gro04], [Kas01], [Kle64], [KT05], 

[PM04], [Tal09], [Wal08a]). 

The remaining part of the book is divided into nine sections. Chapter 2 presents 

several technology related examples showing how to model problems following from 

real network technologies. In Chapter 3, we introduce the multicommodity flow 

modeling, which is the main tool used in research on optimization of various kinds of 

computer networks. Chapter 4 focuses on optimization of flows in existing networks – 

we consider various kinds of flows (bifurcated and non-bifurcated) and different 

objective functions (linear and convex). In Chapter 5, we address a broad range of 

network design problems related to joint optimization of link capacity and network 

flows. Starting from Chapter 6, we concentrate on very recent issues related to 

optimization of various distributed systems and network survivability. Chapter 6 

presents models of multicast flows currently applied inter alia to streaming services like 

IPTV, Internet radio, Video on Demand. In Chapter 7, we concentrate on anycast flows 

that are used in various replication and caching systems including Content Delivery 

Networks (CDNs). Chapter 8 addresses the problems of modeling and optimization of 

Peer-to-Peer flows – popular network concept broadly used in many latest network 

services. In Chapter 9, we focus on distributed computing systems developed to answer 

the growing need for computational power in both academia and industry. 

There are two important topics related to the current research on modeling and 

optimization of computer networks that this book presents only in a brief way: network 

survivability and multi-layer networks. Issues related to network survivability have been 

gaining large attention corresponding to the growing role of computer networks and the 

fact that a network failure could cause a lot of damages including economic loses, 

political conflicts, human health problems. We mention this problem in Section 8.5 in 

the context of P2P multicasting. For further information on the research related to 

modeling and optimization of survivable networks see [Gro04], [PM04], [Wal07a], 

[Wal08a], [Wal09b], [VPD04]. The majority of optimization models presented in this 
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book assume that the network consists of a single layer. While most existing networks 

uses many various technologies and protocols and the real network structured must be 

modeled as a set of different layers (e.g., MPLS over DWDM) with specific constraints 

connecting the adjacent layers. The issues of multi-layer networks are presented in the 

context of anycast flows in Chapter 7. For a good survey on multilayer networks refer to 

[PM04] and other works on this topic in recent proceedings and journals. 
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2. Technology Related Examples 

In this chapter we present several modeling examples related to existing network 

technologies. The motivation is to show the whole process of the model construction 

starting from analysis of the technology in order to write the problem as an optimization 

model with variables, constants, objective function and constraints. To model network 

traffic various versions of multicommodity flows are used. For more details of 

multicommodity flows refer to Chapter 3. Note that the modeling is usually a tradeoff 

between size/complexity of the model and the level of technological details. 

2.1. Tunnels Optimization in MPLS Networks 

First, we present model of tunnels optimization in MPLS networks [PM04]. The 

MultiProtocol Label Switching (MPLS) approach proposed by the Internet Engineering 

Task Force (IETF) [RVC01] is a networking technology that enables delivering of 

traffic engineering capability and QoS performance for carrier networks. The MPLS 

network consists of two types of devices: 

• Label Edge Router (LER) located on the entry and exit points of the MPLS 

network.  

• Label Switch Routers (LSR) located inside the MPLS network. 

In the MPLS network packets are sent along LSP (Label Switch Path) between 

LERs and LSRs. The LER pushes an MPLS label onto an incoming packet and pop it 

off the outgoing packet according to the FEC (Forwarding Equivalence Class). To 

classify a packet to a FEC class an IP address or other element of the header (e.g., 

DSCP) can be applied. Different FEC classes can have various QoS parameters, thus we 

can send in the network a variety types of traffic. Consequently, packets (included in 

different FEC classes) between the same pair of nodes can use different paths (routes). 

This enables effective traffic engineering. For more information on MPLS refer to 

[Gro04], [PER05], [PM04], [RVC01], [VPD04]. 

The objective of the considered optimization problem is to carry different traffic 

classes in an MPLS network through the creation of tunnels in such a way that the 

number of tunnels on each MPLS router/link is minimized and load balanced. We are 

given with the network topology, link capacity, demands and candidate paths.  

Now we introduce a mathematical model of the problem. We use the notation as 

in [PM04]. Let identifier d = 1,2,…,D denote a demand defined by source and 
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destination nodes and volume (bandwidth) hd. The volume hd of demand d can be 

carried over multiple tunnels (paths) from ingress to egress MPLS LERs. We use index 

p = 1,2,…,Pd to denote candidate paths for demand d. Each candidate path of demand d 

starts at the source node of demand d and terminates in the destination node of d. 

Constant δedp denotes the path p of demand d and is 1, if link e belongs to path p 

realizing demand d and 0 otherwise. 

The fraction of the demand volume for demand d to be carried on tunnel p is 

denoted as xdp. Note that xdp is a continuous decision variable. Since the whole demand 

volume is to be transmitted in the network for each demand, we have the demand 

constraint, which guarantees that the sum of all fractional flows xdp over all candidate 

paths p = 1,2,…,Pd must add up to the whole demand volume hd 

∑p xdp = 1,   d = 1,2,…,D.      (2.1.1) 

Since a flow can have very small fraction, we propose to set a lower bound on 

the fraction of a flow on a path. We use a positive quantity ε to be the lower bound on 

fraction of flow on a tunnel (path). We use the binary variable udp = 1 to denote 

selection of a tunnel, if the lower bound is satisfied (and 0, otherwise). We introduce the 

following two constraints: 

εudp ≤ xdphd,   d = 1,2,…,D   p = 1,2,…,Pd    (2.1.2) 

xdp ≤ udp,   d = 1,2,…,D   p = 1,2,…,Pd.    (2.1.3) 

Condition (2.1.2) assures that if a tunnel is selected, then the tunnel must have at 

least the fraction of allocated flow which is set to ε. Constraint (2.1.3) guarantees that if 

a tunnel is not selected, then the flow fraction associated with this tunnel should be 

forced to be equal to 0. Since the network is given and link capacity is known, we must 

assure the physical link capacity ce of link e is not exceeded. Thus, we formulate the 

capacity constraint: 

∑d hd∑p δedpxdp ≤ ce,   e = 1,2,…,E.     (2.1.4) 

Notice that the left-hand side of (2.1.4) is the flow on link e calculated taking 

into account all demands d = 1,2,…,D and candidate paths p = 1,2,…,Pd and checking if 

the given demand d uses path p (δedp = 1) and considering the flow fraction xdp. The 

number of tunnels on link e is given by formula ∑d∑p δedpudp. Let r denote the maximum 

number of tunnels on a link. Therefore, we write the following constraint: 

∑d∑p δedpudp ≤ r,   e = 1,2,…,E.     (2.1.5) 
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Since the goal of optimization is to minimize the total number of tunnels, the 

objective minimizes a number r that represents the maximum number of tunnels over all 

links. The whole model can be written in the following way. 

 

Tunnels Optimization in MPLS �etworks Model 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

ε  lower bound on fraction of flow on a tunnel (path) 

variables 

xdp fractional flow allocated to path p of demand d (continuous non-

negative) 

udp   =1, if path p is selected to carry part of demand d; 0, otherwise 

r  maximum number of tunnels on a link 

objective 

minimize F = r 

subject to 

∑p xdp = 1,   d = 1,2,…,D 

∑d hd∑p δedpxdp ≤ ce,   e = 1,2,…,E 

εudp ≤ xdphd,   d = 1,2,…,D   p = 1,2,…,Pd 

xdp ≤ udp,   d = 1,2,…,D   p = 1,2,…,Pd 

∑d∑p δedpudp ≤ r,   e = 1,2,…,E. 

 

For more details on tunnels optimization in MPLS networks see [PM04]. 

2.2. Routing and Wavelength Assignment in Optical Networks 

WDM (Wavelength Division Multiplexing) is an optical technology, which multiplexes 

multiple optical signals on a single optical fiber by using different wavelengths (colors) 
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of laser light to carry different signals. Note that the WDM is a connection-oriented 

technique, since the whole signal is transmitted along one path. Optical devices mostly 

cannot covert the wavelength, therefore the whole connection must use the same color 

(no wavelength conversion). For more information on optical networks refer to [Gro04], 

[PER05], [VPD04]. 

In the Routing and Wavelength Assignment (RWA) problem the capacity of 

each link is given [JMT06]. It has been proven to be a NP-complete problem. Two 

possible objective functions can be used in the RWA: 

• Given maximal capacity, i.e., maximize routed traffic (throughput). 

• Offered traffic given, i.e., minimize wavelength requirement. 

We consider the latter function, i.e., the objective of our problem is to minimize 

the number of wavelengths. We are given: network topology, link capacity, demands 

(lightpaths). Moreover, we assume that the wavelength conversion is not possible in the 

network.  

Let d = 1,2,…,D denote a demand defined as a node pair sd and td. Demand d 

requires hd connections (lightpaths) to be routed in the network. Let aev is 1, if link e 

originates at node v and 0, otherwise. Analogously, let bev = 1, if link e terminates in 

node v; 0, otherwise. Λ denotes the number of wavelengths per fiber and λ is a 

wavelength index (λ = 1,2,…,Λ). Since we consider the WDM network, single path 

routing is applied (non-bifurcated multicommodity flows). Binary variable xdλ is 1, if 

demand d uses wavelength λ; 0, otherwise. Another binary variable xedλ is 1, if demand 

d uses wavelength λ on link e; 0, otherwise. The model uses classical multicommodity 

flow formulation, however an additional layer of each wavelength  λ is considered. 

Therefore, we formulate the following flow conservation constraints: 

∑e aevxedλ – ∑e bevxedλ = xdλ,   if v = sd   v = 1,2,…,V   d = 1,2,…,D    

λ = 1,2,…,Λ        (2.2.1) 

∑e aevxedλ – ∑e bevxedλ = –xdλ,   if v = td   v = 1,2,…,V   d = 1,2,…,D    

λ = 1,2,…,Λ        (2.2.2) 

∑e aevxedλ – ∑e bevxedλ = 0,   if v ≠ sd,td   v = 1,2,…,V   d = 1,2,…,D    

λ = 1,2,…,Λ.        (2.2.3) 

Notice that the left-hand side of above constraints is the number of links used by 

demand d and allocated to wavelength λ leaving node v minus the number of links used 

by demand d and allocated to wavelength λ entering node v. If the node v is the source 
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node of demand d (v = sd), the right-hand side is equal to xdλ, i.e., if wavelength λ is used 

by demand d, the value is 1 (constraint (2.2.1)). Similarly, if the node v is the 

destination node of demand d (v = td), the right-hand side is equal to –xdλ, i.e., if 

wavelength λ is used by demand d, the value is –1 (constraint (2.2.2)). Finally, for all 

remaining (transit) nodes (v ≠ sd,td), the right-hand side is 0 (constraint (2.2.3)). 

The next constraint states that the whole demand hd must be satisfied, i.e., there 

must be provided hd lightpaths for each demand: 

∑λ xdλ = hd,   d = 1,2,…,D.      (2.2.4) 

We introduce another binary variable xλ which denotes if wavelength λ is used in 

the network. Variable xλ is defined by the following constraint: 

xdλ ≤ xλ,   d = 1,2,…,D   λ = 1,2,…,Λ.    (2.2.5) 

The following clash constraint expresses that no two lightpaths going through 

the same fiber link can use the same wavelength: 

∑d xedλ ≤ xλ,   e = 1,2,…,E   λ = 1,2,…,Λ.    (2.2.6) 

The number of wavelengths used in the network is given by ∑λ xλ. Note that in 

the model we do not include the capacity constraint as in the previous example (2.1.4). 

This follows from the fact that we are given a set of possible wavelengths, and in this 

way we set an upper limit on the link capacity. The whole model is formulated as 

follows. 

 

Routing and Wavelength Assignment Problem 

indices  

v = 1,2,…,V  network nodes 

d = 1,2,…,D  demands 

e = 1,2,…,E  network links 

λ = 1,2,…,Λ  lambdas (wavelengths) 

constants  

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

sd  source node of demand d 

td  destination node of demand d 

hd  volume of unicast demand d 

variables 

12



 

xλ  = 1, if wavelength λ is used; 0, otherwise 

xdλ  = 1, if demand d uses wavelength λ; 0, otherwise 

xedλ  = 1, if demand d uses wavelength λ on link e; 0, otherwise 

objective 

minimize F = ∑λ xλ 

subject to 

∑e aevxedλ – ∑e bevxedλ = xdλ,   if v = sd   v = 1,2,…,V   d = 1,2,…,D   λ = 1,2,…,Λ 

∑e aevxedλ – ∑e bevxedλ = –xdλ,   if v = td   v = 1,2,…,V   d = 1,2,…,D   λ = 1,2,…,Λ 

∑e aevxedλ – ∑e bevxedλ = 0,   if v ≠ sd,td   v = 1,2,…,V   d = 1,2,…,D   λ = 1,2,…,Λ 

∑λ xdλ = hd,   d = 1,2,…,D 

xdλ ≤ xλ,   d = 1,2,…,D   λ = 1,2,…,Λ 

∑d xedλ ≤ xλ,   e = 1,2,…,E   λ = 1,2,…,Λ. 

 

2.3. MPLS over GE Network Design 

The network design problems include optimization of both routing and capacity, 

therefore there are called CFA (Capacity and Flow Assignment) problems [Kas01]. 

Such problems are encountered by telecoms during dimensioning the network according 

to given/predicted traffic. The network design must conform technological constraints 

following from the technologies used by the telecom (e.g., WDM, Ethernet, MPLS) as 

well as business drivers (flexibility, cost, scalability, etc.). Incremental network design 

(network extension) problems are addressed when the telecom is to extend the existing 

network to meet growing clients’ demands considered. Objectives of the optimization 

can be: cost, survivability, QoS parameters, etc. 

In this section we consider a problem with the objective to minimize the network 

cost defined by link capacity. Demands (traffic) are sent using MPLS connections. 

However, different to Section 2.1 we assume single path routing of MPLS connections 

and the non-bifurcated multicommodity flow is considered. Link capacity is in modular 

units such as 1 Gbps links (e.g., Gigabit Ethernet). We are given: network topology, 

demands, link module cost.  

We use the link-path formulation, i.e., for each demand d = 1,2,…,D a set of  

candidate paths p = 1,2,…,Pd. A binary variable xdp is 1, if demand d uses path p; 0, 
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otherwise. Since the non-bifurcated flow is used and only one path can be selected for 

demand d, we formulate the demand constraint as follows: 

∑p xdp = 1,   d = 1,2,…,D.      (2.3.1) 

Constant δedp denotes that path p of demand d and is 1, if link e belongs to path p 

realizing demand d; 0, otherwise. The demand volume is given by hd (bps). The flow on 

each link e is given by formula ∑d∑p δedpxdphd, which is similar to (2.1.4). However, 

since the decision variable is binary, we also introduce to the formula the demand 

volume hd.  

Integer variable ye denotes the number of capacity modules installed on link e, M 

is the size of one module (e.g., 1 Gbps). Moreover, we assume that ξe is a cost of one 

module in link e (e.g., given in Euro). Consequently, the total network cost is given by 

∑e yeξe. The capacity constraint saying that the flow on each link e cannot exceed the 

link capacity is formulated in the following way: 

∑d∑p δedpxdphd ≤ yeM,   e = 1,2,…,E.     (2.3.2) 

 

MPLS over GE �etwork Design Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ξe  unit (marginal) cost of link e 

M  size of one capacity module (e.g., 1 Gbps) 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

ye capacity of link e as the number of modules (non-negative 

integer) 

objective 

minimize F = ∑e ξeye 
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subject to 

∑p xdp = 1,   d = 1,2,…,D 

∑d∑p δedpxdphd ≤ Mye,   e = 1,2,…,E. 

 

2.4. SONET/SDH Protection 

In this section we show the problem of SONET/SDH protection including capacity 

dimensioning in a network protected by an APS (automatic protection switching) 

method. Similar example related to SONET/SDH networks is shown in [PM04]. 

Synchronous Optical Networking (SONET) or Synchronous Digital Hierarchy (SDH) 

are multiplexing protocols that transmit multiple streams over fibers. Lower rates can 

also be transferred using an electrical interface. SONET is used in the USA and Canada, 

SDH is used in the rest of the world. SONET/SDH provides essential protocol neutrality 

and transport-oriented features. SONET/SDH can be used with various technologies, 

e.g., ATM (Asynchronous Transfer Mode), Ethernet. APS (automatic protection 

switching), also known as 1+1 is one of protection method used in SDH/SONET. The 

traffic is transported along both the working and backup lightpath, then the signal 

quality is compared at the destination node and the receiver selects the better one. The 

most desirable goal of survivable networks is to keep any interruption of carrier signal 

flows to 50 ms or less – the APS method can assure the duration of outage time below 

50 ms. For more information on SDH/SONET and protection methods refer to [Gro04], 

[PER05], [PM04], [VPD04] and references therein. 

The considered optimization problem is to determine the SDH/SONET network 

cost defined by link capacity so that the total cost of installed links is minimized. 

Moreover, we assume that the network is protected by the APS method. We are given: 

network topology, demands, candidate pairs of disjoint paths, link module cost. We use 

the link-path formulation of multicommodity flows. For each demand d = 1,2,…,D 

there are candidate pairs of failure-disjoint paths p = 1,2,…,Pd connecting the origin and 

destination nodes of the demand. The example failure scenario can be a single link 

failure. Then, the paths for each demand must be link-disjoint. Working path p for 

demand d is denoted as wdp, the corresponding backup path is given by bdp. Constant 

δedp is 1, if link e belongs to working path wdp and 0 otherwise. Analogously, constant 

βedp is 1, if link e belongs to backup path bdp and 0 otherwise. Integer decision variable 

xdp indicates the number of demand d circuit modules (e.g., STM-4) that use path p. The 
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volume of demand d is given by hd (given in circuit modules). Therefore, the demand 

constraint is as follows: 

∑p xdp = hd,   d = 1,2,…,D.      (2.4.1) 

The flow on link e related to working paths is ∑d∑p xdpδedp. The corresponding 

flow on link e related to backup paths is ∑d∑p xdpβedp, i.e., the backup paths have a 

reserved capacity of the case of a network failure. The variable ye denotes the number of 

capacity modules installed on link e. Constant M denotes the size of one module (e.g., 

STM-4) and ξe is cost of one module in link e. Thus, the network cost is given by 

∑e yeξe. Capacity constraint stating that flow on each link cannot exceed the link 

capacity is formulated in the following way: 

∑d∑p xdp(δedp + βedp) ≤ yeM,   e = 1,2,…,E.    (2.4.2) 

Note that the left-hand side of (2.4.2) denotes the total flow on link e related to 

both working and backup paths. The left-hand side of (2.4.2) is the dimensioned 

capacity of link e. The whole model is formulated as follows. 

 

SO�ET/SDH Protection Design Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate pair of disjoint paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp = 1, if link e belongs to working path p realizing demand d; 0, 

otherwise 

βedp = 1, if link e belongs to working path p realizing demand d; 0, 

otherwise 

hd  volume of demand d (number of capacity modules, e.g., STM-4) 

ξe  unit (marginal) cost of link e 

M  size of one capacity module (e.g., in STM-4) 

variables 

xdp  number of demand d circuit modules allocated to path p (integer) 

ye capacity of link e as the number of modules (non-negative 

integer) 
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objective 

minimize F = ∑e ξeye 

subject to 

∑p xdp = hd,   d = 1,2,…,D 

∑d∑p xdp(δedp + βedp) ≤ yeM,   e = 1,2,…,E. 

 

2.5. Dimensioning of Overlay Networks for P2P Multicasting 

Now we present a model related to dimensioning of overlay networks for P2P 

multicasting [Wal10c]. Overlay networks are perceived as an effective approach to 

provide streaming of various content over the Internet. In this example we assume that 

the overlay network is used to provide streaming of live content through the use of 

system based on the P2P multicasting approach. Assumptions of the optimization model 

are based on previous papers and the architecture of real overlay systems [ARG08], 

[BY08], [BYL09], [CXN06], [HB05], [PM08], [SW05], [Wal10c], [WL05], [WL07], 

[WL08], [ZL08]. 

Overlay P2P multicasting uses a multicast delivery tree constructed among peers 

(end hosts). Different to traditional IP multicast, the uploading (non-leaf) nodes in the 

tree are normal end hosts. We assume that the overlay network consists of peers indexed 

by v = 1,2,…,V. Each peer is connected to the network using an access link with a 

download and upload capacity. According to [ZL08], nodes’ capacity constraints are in 

general satisfactory in overlay networks. Furthermore, the approach of overlay networks 

usually assumes that the underlay core network is considered as overprovisioned and 

the only bottlenecks are access links [ARG08]. Therefore, we assume that the only 

capacity constraints are on access links, there is not any bottleneck in other network 

links located inside the physical network underlying the overlay. We assume that peers 

– besides participating in overlay trees – can also use other the network services and 

resources generating additional background traffic. Consequently, for each peer we are 

given constants av and bv denoting download and upload background traffic given in bps 

(bits per second), respectively. The objective is to decide on the access link for each 

peer from the pool of link types offered by the ISP and to minimize the overall cost 

guaranteeing all constraints (described below). For each node v we are given a set of 

access link proposals denoted as k = 1,2,…,Kv. Let yvk denote a binary decision variable 

which is 1, if peer (node) v is connected to the overlay network by a link of type k; 0, 
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otherwise. For each access link type k of node v we know the download capacity 

(denoted as dvk), the upload capacity (denoted as uvk) and the cost (denoted as ξvk). For 

the easy of notation let dv = ∑k yvk dvk and uv = ∑k yvk uvk denote the selected (according to 

optimization) download and upload, respectively, capacity of node v. For each peer v 

we must select exactly one access link, thus we formulate the following constraint: 

∑k yvk = 1,   v = 1,2,…,V.      (2.5.1) 

Each peer must be provided with sufficient access link capacity to download the 

background traffic plus the streaming traffic denoted by Q and to upload the 

background traffic. Therefore, we formulate the following capacity constraints: 

dv ≥ (av + Q),   v = 1,2,…,V      (2.5.2) 

uv ≥ bv,   v = 1,2,…,V.       (2.5.3) 

Additionally, the overlay network must guarantee enough overall upload 

capacity to enable the streaming. According to formulas given in [PM08], the maximum 

upload capacity of the system available for streaming (taking into account the 

background traffic) is ∑v (uv – bv). To send the streaming content to each peer except the 

root, we must provide at least (V – 1)Q capacity. To enable scaling of the network we 

formulate the streaming upload capacity constraint in the following way: 

∑v (uv – bv) ≥ α(V – 1)Q      (2.5.4) 

where α denotes the dimensioning scaling factor. Note that the role of α is to tune the 

network upload capacity to enable the construct of P2P multicast tree(s) connecting all 

peers. The model is as follows. 

 

Dimensioning of Overlay �etworks for P2P Multicasting Problem 

indices 

v,w = 1,2,…,V  overlay nodes (peers) 

k = 1,2,…,Kv  access link types for node v 

constants 

av download background transfer of node v  

bv upload background transfer of node v  

ξvk cost of link type k for node v 

dvk download capacity of link type k for node v (bps) 

uvk upload capacity of link type k for node v (bps) 

rv = 1, if node v is the root of the tree; 0, otherwise 
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Q the overall streaming rate (bps) 

α dimensioning scaling factor 

M large number 

variables 

yvk = 1, if node v is connected to the overlay network by a link of 

type k; 0, otherwise (binary)  

dv  download capacity of node v (continuous, non-negative)  

uv  upload capacity of node v (continuous, non-negative) 

objective 

minimize   F = ∑v∑k yvk ξvk 

constraints 

∑k yvk = 1,   v = 1,2,…,V 

dv = ∑k yvk dvk,   v = 1,2,…,V 

uv = ∑k yvk uvk,   v = 1,2,…,V 

dv ≥ (av + Q),   v = 1,2,…,V 

uv ≥ bv,   v = 1,2,…,V 

∑v (uv – bv) ≥ α(V – 1)Q. 

 

For more details on the Dimensioning of Overlay Networks for P2P Multicasting 

Problem refer to [Wal10c]. 

2.6. Access Point Location in WLANs 

The last example refers to wireless networks and was proposed in [BEG10]. The WiFi 

(Wireless Fidelity) technology uses standard proposed by IEEE 802.11. WiFi can be 

used in the following modes: 

• IBSS (Independent Basic Service Set) ad hoc network. 

• BSS (ang. Basic Service Set) infrastructure network with one access point. 

• ESS (ang. Extended Service Set) infrastructure network with multiple access 

point. 

WiFi uses two frequency ranges: 

• 2.4 Ghz, ISM (Industry, Science, Medicine). 

• 5 GHz, UNII (Unlicensed National Information Infrastucture). 
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WiFi clients (laptops, smart phones, desktops) are connected to an access point that 

provides the radio connectivity. The most popular versions of WiFi are IEEE 802.11g, 

802.11a, 802.11n. For more details on WiFi refer to IEEE standards and [Tan03]. 

The objective of the considered example is to select location of WiFi access 

points over candidate locations to maximize the total single-user throughput overall all 

test points. We are given: candidate locations of access points, test points, throughput 

for each pair of test point and location. Let identifier a = 1,2,…,A denote a set of 

candidate AP (access point) locations. The next index t = 1,2,…,T denotes a set of TP 

(test point), denoting potential users. For each a we define a serving range, so that TPs 

(test point) within the serving range of an AP – let s = 1,2,…,Sa be a set of APs for 

which TP t is within serving range. Constant αat denotes the throughput (quality of 

signal) of TP t connected to AP a. Binary variable za is 1, if AP is installed in location a; 

and 0 otherwise. There is a limit M on the maximum number of installed APs 

formulated as follows: 

∑a za ≤ M.        (2.6.1) 

Binary variable xat is 1, if TP t is assigned to AP installed in location a (0 

otherwise). The TP can be assigned only to an installed AP, thus we write: 

xat ≤ za,   a = 1,2,…,A   t = 1,2,…,T.     (2.6.2) 

Note that the above constraint guarantees that if in location a there is not AP 

installed (za = 0), then any user (test point) t cannot be connected to a, i.e., xat must be 0. 

Since each TP can be assigned to maximum one AP, we formulate the following 

constraint: 

∑a xat ≤ 1,   t = 1,2,…,T.      (2.6.3) 

The system throughput is calculated as ∑a∑t xatαat, i.e., we sum over all possible 

locations a and test points t to obtain the overall throughput.  

 

Access Point Location in WLA�s Problem 

indices 

a = 1,2,…,A  candidate access point (AP) locations 

t = 1,2,…,T  test points (TP) denoting potential users 

s = 1,2,…,Sa  APs for which TP t is within serving range 

constants 

αat throughput (quality of signal) of TP t connected to AP a. 
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M maximum number of installed APs 

variables 

xat = 1, if TP t is assigned to AP installed in location a; 0, otherwise 

(binary) 

za  = 1, if AP is installed in location a; 0, otherwise (binary) 

objective 

maximize   F = ∑a∑t xatαat 

constraints 

xat ≤ za,   a = 1,2,…,A   t = 1,2,…,T. 

∑a za ≤ M, 

∑a xat ≤ 1,   t = 1,2,…,T. 

 

For more information on this example see [BEG10]. 

2.7. Exercises  

2.1. What other objective functions may be applicable in MPLS networks? 

2.2. Write an RWA problem with the additional full conversion capability. 

2.3. Modify the MPLS over GE Network Design Problem to use the ATM technology 

in the place of MPLS. 

2.4. Propose a method to generate candidate pairs of disjoint paths for the SONET/SDH 

Protection Design Problem. 

2.5. Modify the Access Point Location in WLANs Problem to consider the WiMAX 

technology instead of WiFi. 

2.6. Write the Access Point Location in WLANs Problem using the APs installation cost 

as the objective. For each possible location there is given the cost of installation. 

Moreover, each AP can serve only a limited number of users. 

2.7. Propose another technology related problem and formulate the optimization model. 
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3. Multicommodity Flows 

The topology of a computer network can be modeled as a graph with possible additional 

constraints (e.g., link capacity constraint). However, to construct a computer network 

model that takes into account the flow of data between network nodes (e.g., packets, 

bits), the pure graph approach is not sufficient. Therefore, in this chapter we introduce 

multicommodity flows that are broadly used to model various kinds of network flows. 

Note that the theory of multicommodity flows was developed in the half of XX century 

in the context of transport networks. 

The main feature of multicommodity flows modeling is the assumption that the 

bit or packet rate expressed in bps (bits per second) or pps (packets per second) is 

constant. In the context of a transport (backbone) network carrying the aggregated 

traffic consisting of numerous single sessions we can assume that the demand has a 

constant rate. However, the traffic network with single transmissions between 

individual users usually characterizes with flow demand volume changing over the 

time. But modeling of such traffic is very challenging. 

3.1. One Commodity Flow 

First, we introduce a basic concept of one commodity flow. We consider a graph 

G = (V, E), where V is a set of nodes (vertices) and E is a set of edges (directed links). 

Let A(x) = {v: v∈V and <x,v>∈E} be a set of destination nodes of links that originate at 

node x. Similarly, let B(x) = {v: v∈V, <v,x>∈E} be a set of all source nodes of links that 

terminate in node x. The commodity flow of demand volume h from node s to node t is 

defined as a function f : E → R1: 
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f(x,y) ≥ 0 for each <x,y>∈E.      (3.1.2) 

Function f(x,y) denotes the flow of the commodity on link <x,y>. Notice that the left 

hand side of (3.1.1) is a difference of flow from node s to node t leaving and entering a 

particular node x. If x is the source node (x = s), this value must be h (demand volume of 

the commodity), since flow of value h must leave node s taking into account all links 

leaving and entering node s. In the case of the destination node (x = t), the same value 
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must be –h, since the flow of demand volume h must enter the considered node x (again 

summing over all links leaving and entering node x). Finally, if the node x is neither the 

source nor the destination node of the commodity (x ≠ s, t), the balance of flow in node 

x (left-hand side of (3.1.1)) must be 0 and such nodes are called transit nodes. Note that 

the constraint (3.1.1) is called a flow conservation law [Kas01], [PM04], [Wal08a].  

Since in computer networks we consider links with limited capacity following 

from technology related constraints, usually to the definition of one commodity the 

following constraint is incorporated: 

f(x,y) ≤ c(x,y) for each <x,y>∈E     (3.1.3) 

where c(x,y) denotes the capacity of link <x,y> expressed in the same quantity (e.g., bps, 

pps) as the link flow. 

Now we show an alternative formulation of the one commodity flow. Network 

links are indexed e = 1,2,…,E, while network nodes use indices v = 1,2,…,V. Let aev be 

1, if link e originates at node v and 0 otherwise. Analogously, let bev is 1, if link e 

terminates in node v and 0 otherwise. Constant ce denotes the capacity of link e. The 

flow on link e is described by a vector x = [x1, x2,…,xE]. The commodity originating in 

node s and terminating in node t of volume h can be defined in the following way: 

∑e aevxe – ∑e bevxe = h,   if v = s   v = 1,2,…,V   (3.1.4) 

∑e aevxe – ∑e bevxe = –h,   if v = t   v = 1,2,…,V   (3.1.5) 

∑e aevxe – ∑e bevxe = 0,   if v ≠ s,t   v = 1,2,…,V   (3.1.6) 

xe ≥ 0,   e = 1,2,…,E       (3.1.7) 

xe ≤ ce   e = 1,2,…,E.        (3.1.8) 

Constraints (3.1.4)-(3.1.6) define the flow conservation laws for the source, destination 

and transit nodes, respectively. Condition (3.1.7) assures that the flows are nonnegative. 

Finally, (3.1.8) is the capacity constraint. 

3.2. Multicommodity Flows 

Now we will present the definition of multicommodity flows with multiple 

commodities. The multicommodity flow is defined as the average flow of information 

in a computer network in a particular slot of time, e.g., one second. The commodity 

(also referred to as demand) is defined as a set of information (bits, packets) having the 

same source node and destination node. Let hij be the demand volume of traffic from 

node i do node j. For the sake of simplicity we assume that all commodities (demands) 

23



 

are numbered from 1 to D. Let sd and td denote the source and destination of demand d, 

respectively. Let hd be the volume of demand d, i.e., hd = hij for i = sd and j = td. There 

are two ways to formulate multicommodity flow: node-link notation and link-path 

notation. The multicommodity flow formulated using the node-link notation is defined 

as functions fd : E → R1   d = 1,2,...,D in the following way: 
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fd(x,y) ≥ 0 for each <x,y>∈E.      (3.2.2) 

Notice that the flow conservation law (3.2.1) is very similar to (3.1.1). The only 

difference is the additional lower index d related to demands. fd(x,y) denotes the flow of 

commodity d in link <x,y>. For every demand d we check the balance of flow in each 

node x (left-hand side of (3.2.1)). In the case of the source node of the particular 

demand d (x = sd), the value must be equal to the demand volume hd. In the case of the 

destination node (x = td), the right-hand side of (3.2.1) must be –hd. Finally, for all 

transit nodes (x ≠ sd, td) the flow balance is 0. Let f(x,y) denote the summary flow in link 

<x,y>: 

∑=
=

D

d
d yxfyxf

1
),(),( .       (3.2.3) 

Notice that f(x,y) is calculated as a sum of the link flow over all demands. Using the link 

flow definition (3.2.3) we can formulate the capacity constraint (i.e., the link flow 

cannot exceed the link capacity): 

f(x,y) ≤ c(x,y) for each <x,y>∈E.     (3.2.4) 

Now we present the node-link formulation of multicommodity flows using the 

notation proposed in [PM04] that can be also used in this book. We assume that 

demands are indexed as d = 1,2,…,D. Variable xed denotes the flow of demand d 

allocated to link e. 

 

�ode-Link Formulation 

indices 

v = 1,2,…,V  network nodes 

d = 1,2,…,D  demands 

e = 1,2,…,E  network links 
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constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

hd  volume of unicast demand d 

sd  source node of demand d 

td  destination node of demand d 

ce  capacity of link e 

variables 

xed  flow of demand  d sent on link e (continuous non-negative) 

subject to 

∑e aevxed – ∑e bevxed = hd,   if v = sd,   d = 1,2,…,D   v = 1,2,…,V (3.2.5) 

∑e aevxed – ∑e bevxed = –hd,   if v = td,   d = 1,2,…,D   v = 1,2,…,V (3.2.6) 

∑e aevxed – ∑e bevxed = 0,   if v ≠ sd,td,   d = 1,2,…,D   v = 1,2,…,V (3.2.7) 

∑d xed ≤ ce,   e = 1,2,…,E.      (3.2.8) 

 

Constraints (3.2.5)-(3.2.7) formulate the flow conservation law for each demand d and 

node v. The left-hand side of each constraint denotes the total outgoing flow minus the 

total incoming flow. The capacity constraint is formulated in (3.2.8). 

Multicommodity flows can be also defined using the link-path formulation. 

First, we define the notation of a path. Let v1, v2,...,va, (a > 1) be a sequence of various 

nodes that <vi ,vi+1> is an oriented link for each i = 1,...,(a – 1). Sequence of nodes and 

links v1, <v1,v2>, v2,..., va-1, <va-1, va>, va is called a path. Each demand d = 1,2,…,D is 

defined by the source node sd, destination node td and demand volume hd. For each 

commodity (demand) there is a set of candidate paths connecting nodes sd and td (end 

nodes of the commodity). Let p = 1,2, ...,Pd be an index of candidate paths for demand 

d. Note that the set of candidate paths can include all possible paths or a selected subset 

of paths. For each demand and path there is a decision variable xdp (0 ≤ xdp ≤ hd) that 

denotes the flow of demand d allocated to path p. Variables xdp must satisfy the 

following constraint: 

∑p xdp = hd,   d = 1,2,…,D.      (3.2.9) 

Constant δedp defines the path p for demand d and is 1, if link e belongs to path p 

realizing demand d and 0 otherwise. The summary flow on link e can be calculated as 

25



 

fe = ∑d∑p δedpxdp. Consequently, the capacity constraint for link-path notation is 

formulated in the following way: 

∑d∑p δedpxdp ≤ ce,   e = 1,2,…,E.     (3.2.10) 

Constraints (3.2.9)-(3.2.10) define multicommodity flows using the link-path notation. 

Condition (3.2.9) assures that the whole demand d is sent in the network, i.e., the whole 

demand volume hd must be allocated to various candidate paths p = 1,2, ...,Pd. Note that 

constraint (3.2.9) is equivalent to the flow conservation law used in the node-link 

notation.  

Another link-path formulation can be as follows. Let decision variable xdp 

(0 ≤ xdp ≤ 1) denote the fraction of demand d flow allocated to path p (not the part of 

demand d flow allocated to path p as above). In this case, the formulation is as follows: 

∑p xdp = 1,   d = 1,2,…,D      (3.2.11) 

∑d∑p δedpxdphd ≤ ce,   e = 1,2,…,E.     (3.2.12) 

 

Notice that in this formulation the right-hand side of (3.2.11) is 1. Moreover, the link 

flow is calculated as ∑d∑p δedpxdphd (left-hand side of (3.2.12)). For examples related to 

modeling of multicommodity flows refer to [PM04]. 

3.3. Types of Multicommodity Flows 

There are two types of multicommodity flows: 

• Bifurcated flows. The commodity (demand) can be split and sent using many 

different paths, e.g., IP protocol. 

• Non-bifurcated (unsplittable, single-path) flows. The whole commodity (demand) 

is sent along one path, e.g., connection oriented network techniques (MPLS, 

ATM, Frame Relay, WDM).  

Now we show how the two types of flows can be formulated using both notations 

introduced above. First, we use the link-path formulation. To define bifurcated 

multicommodity flows we assume that xdp is a continuous and non-negative variable. 

The following two constraints formulate bifurcated multicommodity flows: 

∑p xdp = hd,   d = 1,2,…,D      (3.3.1) 

0 ≤ xdp ≤ hd,   d = 1,2,…,D   p = 1,2,…,Pd.    (3.3.2) 

In the context of non-bifurcated flows xdp is a binary variable satisfying the 

following constraints: 
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∑p xdp = 1,   d = 1,2,…,D      (3.3.3) 

xdp∈{0,1},   d = 1,2,…,D   p = 1,2,…,Pd.    (3.3.4) 

For the node-link formulation bifurcated flows use a continuous and non-

negative variable xed satisfying the following constraints: 

∑e aevxed – ∑e bevxed = hd,   if v = sd,   d = 1,2,…,D   v = 1,2,…,V (3.3.5) 

∑e aevxed – ∑e bevxed = –hd,   if v = td,   d = 1,2,…,D   v = 1,2,…,V (3.3.6) 

∑e aevxed – ∑e bevxed = 0,   if v ≠ sd,td,   d = 1,2,…,D   v = 1,2,…,V (3.3.7) 

0 ≤ xed ≤ hd,   d = 1,2,…,D   e = 1,2,…,E.    (3.3.8) 

Constraints (3.3.5)-(3.3.7) formulate the flow conservation law. We use notation as in 

previous section. Analogously, in the context of non-bifurcated flows xed is a binary 

(integer) variable satisfying the following constraints: 

∑e aevxed – ∑e bevxed = 1,   if v = sd,   d = 1,2,…,D   v = 1,2,…,V (3.3.9) 

∑e aevxed – ∑e bevxed = –1,   if v = td,   d = 1,2,…,D   v = 1,2,…,V (3.3.10) 

∑e aevxed – ∑e bevxed = 0,   if v ≠ sd,td,   d = 1,2,…,D   v = 1,2,…,V (3.3.11) 

xed∈{0,1},   d = 1,2,…,D   e = 1,2,…,E.    (3.3.12) 

The formulations of multicommodity flows presented above in this section can 

be used in context of various objective functions and additional constraints following 

from requirements arising in real network technologies. Some examples can be found in 

further sections of this book. For more details on multicommodity flows refer to 

[Ass78], [PM04], [Kas01]. 
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4. Flow Optimization 

In this chapter we will focus on flow optimization problems also called flow assignment 

(FA) problems. We consider an existing network, which is in an operational phase and 

augmenting of its resources (links, capacity) is not possible in a short time perspective. 

However, there is a need to improve the network performance and the only possible 

way is to change the network routing. Various performance metrics can be considered, 

e.g., cost, delay, survivability, etc. Details of the optimization model (e.g., kind of 

multicommodity flows, constraints, performance metric) are formulated according to 

the considered network technology and customer’s requirements.  

In the flow optimization problem, for the given set of demands (described by: 

demand volume, origin node, destination node and optionally candidate paths) we want 

to select the routing, i.e., determine network paths used for transmission of demands. 

The most important constraint is related to the limited link capacity. Since the network 

is fixed, the total flow on each link cannot exceed the given physical link capacity.  

4.1. Bifurcated Flows with Linear Objective Function 

Now we focus on optimization of bifurcated multicommodity flows with linear 

objective function. Recall that bifurcated multicommodity flows assume that the 

demand between a pair of nodes can be split and sent using multiple paths connecting 

this pair of nodes for instance like in IP protocol.  

We start with a classical flow allocation problem formulated using the link-path 

notation [PM04]. We are given a set of demands denoted by an index d = 1,2,…,D. 

Demand volume is given by hd. For each demand d we know a set of candidate paths 

p = 1,2,…,Pd connecting the origin and destination node of the demand. The network is 

described by a set of links (directed edges) indexed e = 1,2,…,E and link capacity given 

by ce. Note that values of demand volume (hd) and link capacity (ce) are expressed in the 

same unit, e.g., bits per seconds (bps) or packets per second (pps). Every candidate path 

p realizing demand d is defined by a constant δedp which is 1, if link e belongs to path p 

of demand d and 0, otherwise. The objective of the bifurcated flow allocation problem 

is to find a feasible set of paths to send all demands in the network according the 

capacity constraint of each link. The decision variable xdp denotes a flow of demand d 

allocated to path p and is continuous and non-negative. 
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Bifurcated Flow Allocation Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (4.1.1) 

∑d∑p δedpxdp ≤ ce,   e = 1,2,…,E.     (4.1.2) 

 

Since problem (4.1.1)-(4.1.2) is an allocation problem, there is no objective function. 

The problem includes only two constraints. The former one (4.1.1) assures that the 

whole volume of each demand d is realized in the network. The latter condition (4.1.2) 

is a capacity constraint to meet the technological constraint that flow of each link 

(called also link load) given as a sum of all demands that uses this link (i.e., ∑d∑p δedp 

xdp) cannot exceed the link capacity. Note that it is possible that in some case no feasible 

solution exists. The problem is a linear with continuous variables, so the Simplex 

method can be used to find optimal solution. If the problem is feasible, then there is a 

solution with at most D + E non-zero flows [PM04].  

The next example of a bifurcated flow problem has the goal to allocate network 

flows in order to minimize the additional link capacity that is required in the network to 

allocate flows for all demands. An additional variable z denotes the link additional 

capacity. 

 

Modified Bifurcated Flow Allocation Problem 

variables (additional) 

z  additional link capacity (continuous non-negative) 

objective 
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minimize z        (4.1.3) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (4.1.4) 

∑d∑p δedpxdp ≤ ce + z,   e = 1,2,…,E.     (4.1.5) 

 

Comparing to the previous problem, there is an objective function (4.1.3). Moreover, 

the capacity constraint (4.1.5) is changed, since on the right-hand side we add the 

variable z. Note that the problem (4.1.1)-(4.1.2) in some case can be not feasible, while 

the problem (4.1.3)-(4.1.5) is always feasible. However, if the optimal objective of 

(4.1.3)-(4.1.5), z, is non-positive then the corresponding optimal flows xdp determine a 

feasible solution for the allocation problem given by (4.1.1)-(4.1.2). 

An important challenge of the link-path formulation is the size of optimization 

problem, which is a function of the number of candidate paths. Since the number of 

candidate paths increases exponentially with the network size, it is almost impossible to 

consider all candidate paths in the formulation, even for relatively small networks. 

Thus, usually a small subset of all possible candidate paths is considered. However, this 

approach does not guarantee to find a global optimum of the flow assignment problem, 

since some possible paths are excluded from the pool of candidate paths. One of popular 

methods to reduce the number of candidate paths is a hop-limit approach proposed in 

[HBU95] for spare capacity assignment. Under this method, the process of reducing the 

size of the optimization problem is achieved by taking into account all networks eligible 

routes, which do not violate a predetermined hop-limit value. In particular, if for a given 

demand the length of the shortest route is n hops and the hop limit is hl, then we 

consider all routes which are not longer than (n + hl) hops. 

To illustrate the hop-limit approach we demonstrate a simple example [Wal04d]. 

We calculate the number of routes generated according to the given hop limit for two 

families of networks: 10-node (Fig. 4.1) and 36-node (Fig. 4.2). Connectivity of tested 

networks is denoted by the average node degree parameter (avnd) calculated as the 

number of links divided by the number of nodes. In the case of 10-node topologies, we 

consider 4 networks with 34, 38, 42 and 46 links, consequently the corresponding 

values of the anvd parameter are 3.4, 3.8, 4.2 and 4.6. In the case of 36-node topologies, 

we examine 7 networks having 104, 114, 128, 144, 162, 180 and 200 links and 

connectivity expressed by avnd is in the range from 2.88 to 5.56. The y-axis of figures 
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showing the number of routes uses the logarithmical scale. The x-axis represents the 

hop limit. 

Notice that in the case of 36-node topologies the network with low connectivity 

(avnd=2.88) the number of routes with hl=6 is 1.33E+05. For a dense network 

(avnd=5.56) the corresponding number of routes is 7.90E+07. Since in the link-path 

formulation the number of variables and size of the flow assignment problem depends 

on the number of possible routes, even for low-connected networks considering hop 

limit greater than 5 is not reasonable for 36-nodes networks. Another important 

observation is that the number of routes grows exponentially with the hop limit. 
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Fig. 4.1. The average path number as a function of the hop limit and network connectivity  

for 10-node network 
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Fig. 4.2. The average path number as a function of the hop limit and network connectivity  

for 36-node network 
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Another approach to tackle the issues of the candidate paths number and make 

the flow optimization problem manageable is a Column Generation Technique using 

Lagrangian relaxation. For more details see [PM04].  

4.2. Bifurcated Flows with Convex Objective Function 

Flow allocation problems beside linear objective function use also convex functions. 

The most important example of a convex function is network delay objective [Kle64], 

[FGK73], [Kas01]. The network delay function was formulated by Kleinrock in 1964 

[Kle64] in the following way: 

∑
−

= e
ee

e

fc

f
F

γ
1

,      (4.2.1) 

where γ is the network throughput, fe denotes the flow on link e and ce is the capacity of 

link e. The delay function was formulated for store-and-forward networks according to 

several assumptions. The most significant is the independence assumption, i.e., each 

time that a message is received at a node within the net, a new length is chosen for this 

message independently from an exponential distribution. Moreover, each link behaves 

as independent M/M/1 queue system regardless of traffic interaction of various 

demands. For more details on the network delay function refer to [Kle64], [FGK73], 

[Kas01]. Below we formulate a bifurcated flow assignment problem with the delay 

objective. 

 

Bifurcated Flow Allocation Delay Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

γ  throughput 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

fe  flow on link e (continuous non-negative) 

32



 

objective 

minimize F = 1 / γ ∑e  fe / (fe – ce)     (4.2.2) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (4.2.3) 

fe = ∑d∑p δedpxdp,   e = 1,2,…,E.     (4.2.4) 

fe ≤ ce,   e = 1,2,…,E.       (4.2.5) 

 

The objective (4.2.2) is the network delay function. Comparing to previous models 

formulated above, we introduce an auxiliary variable fe that denotes the flow (load) on 

link e (4.2.4). fe is calculated as sum over all demands d = 1,2,…,D and all candidate 

paths p = 1,2,…,Pd taking into account the amount of demand d allocated to path p (xdp) 

and checking if a particular path uses link e (δedp = 1). Since the objective (4.2.2) is 

nonlinear (convex) the problem cannot be solved using the Simplex method. The 

possible solution methods include: direct methods (FD (Flow Deviation) [FGK73] GP 

(Gradient Projection) [PM04], EF (Extremal Flows) [CG74]); linear approximation of 

the convex function using a set of linear functions and next the application of linear 

programming algorithms, e.g., Simplex; other heuristics (e.g., evolutionary algorithm). 

Now we introduce the Flow Deviation algorithm proposed in [FGK73]. Let 

f = [f1,f2,…,fE] denote a vector of feasible bifurcated multicommodity flows in all links 

e = 1,2,…,E. Let us assume that P(f) is a convex objective function (e.g., network delay 

function (4.2.1). The FD operator which maps a flow f into another flow is defined in 

the following way: 

FD(v,λ) � f = (1 – λ)f + λv      (4.2.6) 

where v is a shortest route flow under metric le = ∂P / ∂fe, which is partial derivative of 

function P. λ is a step size that minimizes P[(1 – λ)f + λv], where (0 ≤ λ ≤ 1). Note that 

the goal of the FD operator (4.2.6) is to deviate a part of the flows (given by λ) to 

shortest paths.  

In the context of the delay function the link metric (partial derivative of delay 

function (4.2.1) is calculated as: 
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1

ee

e
e

fc

f
l

−
=

γ
       (4.2.7) 
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Algorithm Flow Deviation for Bifurcated Flows [FGK73] 

Phase 1: 

Step 0. With RE0 = 1, let f
0 be the shortest flow computed at f = 0. Let n = 0. 

Step 1. Let 
e

n
e

Ee
n

c

f

,...,2,1
max

=
=σ . If σn / REn < 1, let f

0 = fn / REn and go to Phase 2. 

Otherwise, let REn+1 = REn(1 – ε |1 – σn|) / σn, where ε is a proper tolerance, 

0 < ε < 1. Let gn+1 = fn(REn+1 / REn). Go to 2. 

Step 2. Let fn+1 = FD � gn+1. 

Step 3. If n = 0, go to 5. 

Step 4.  If |∑e le(ve – ge
n+1)| < θ  and |REn+1 – REn| < δ, where θ and δ are proper positive 

tolerances, v is the shortest route computed at gn+1, stop: the problem is 

infeasible within tolerances θ and δ. Otherwise go to 5. 

Step 5. Let n = n + 1 and go to 1. 

Phase 2: 

Step 0. Let n = 0.  

Step 1.  fn+1 = FD � fn.  

Step 2.  If |∑e le(ve – fe
n)| < θ, where θ is a proper positive tolerances, stop: fn is optimal 

within tolerance θ. Otherwise, let n = n + 1 and go to 1. 

 

The FD algorithm consists of two phases. The main objective of Phase 1 is to find a 

feasible solution that satisfies the capacity constraint (4.2.5). Therefore, if for a current 

solution fn the capacity constraint is exceeded, link flows are reduced to find a flow 

vector that can satisfy the capacity constraint (step 1). The phase 1 of the FD algorithm 

stops in two situations: either a feasible solution is obtained (step 2) or the problem is 

infeasible (step 4). The Phase 2 of the FD method tries to improve the solution using the 

flow deviation operator. Since the initial solution yielded by the phase 1 is feasible, the 

phase 2 always provides a feasible solution.  

The FD algorithm described above gives only the value of the objective 

function. To find complete information about the selected paths by each demand, a 

simple updating of routing tables at each iteration is required [FGK73]. Note that if the 

objective function is strictly convex the FD method converges to an optimal solution. 

For a formal proof see [FGK73]. 
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Another solution method for convex flow assignment problems is linear 

approximation of the convex function, i.e., the convex function is approximated by a 

piecewise linear function. Let us formulate a set of functions that establish a linear 

approximation of a convex function f(z) in the following way: 

fk(z) = akz + bk,   sk-1 ≤ z < sk.   k = 1,2,…,K    (4.2.8) 

Note that the function f(z) is approximated using k = 1,2,…,K ranges of the 

argument z. Due to convexity of the f(z) function, the following condition holds: 

f(z) = max k = 1,2,…,K {akz + bk}. 

Therefore, the convex function optimization problem can be substituted by a 

following problem. 

 

Linear Approximation Convex Function Problem 

objective 

minimize r = f(y) 

constraints 

r ≥ aky + bk,   k = 1,2,…,K. 

 

For more details on the linear approximation of convex functions refer to [PM04]. 

4.3. Non-bifurcated Flows 

Many network protocols and technologies are connection oriented, e.g., MPLS, 

DWDM, ATM [PER05]. To model connection flows the non-bifurcated 

multicommodity flows must be applied, i.e., each demand uses only a single path. First, 

we formulate a non-bifurcated flow allocation problem equivalent to (4.1.1)-(4.1.2). 

 

�on-bifurcated Flow Allocation Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 
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variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (4.3.1) 

∑d∑p δedpxdphd ≤ ce,   e = 1,2,…,E.     (4.3.2) 

 

Comparing the non-bifurcated problem (4.3.1)-(4.3.2) to the bifurcated version (4.1.1)-

(4.1.2), we can notice the following differences. For every demand d the sum over p of 

binary variables xdp must be 1. In this way, the single path routing is guaranteed. Since 

the decision variable xdp is binary, the left-hand side of (4.3.2) includes the demand 

volume hd. The above problem is integer (binary), linear and NP-complete [PM04]. 

Therefore, to find an optimal solution a branch and bound or branch and cut algorithm 

must be applied. But, due to complexity of the problem, only for relatively small 

networks (10-20 nodes) the optimal solution can be found in reasonable time. The 

heuristic algorithms can be applied to obtain a suboptimal solution for larger networks. 

Note that non-bifurcated flow assignment problems face the same problem of candidate 

paths number as bifurcated flow problems, for more details see Section 4.1.  

The network delay problem in the context of non-bifurcated flows is formulated 

as follows. 

 

�on-bifurcated Flow Allocation Delay Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

γ  throughput 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

fe  flow on link e (continuous non-negative) 
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objective 

minimize F = 1 / γ ∑e  fe / (fe – ce)     (4.3.3) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (4.3.4) 

fe = ∑d∑p δedpxdphd,   e = 1,2,…,E.     (4.3.5) 

fe ≤ ce,   e = 1,2,…,E.       (4.3.6) 

 

The above problem is integer (binary), linear and NP-complete [PM04]. Below we 

present several algorithms for this problem.  

We start with a FD method for non-bifurcated flows [FGK73]. To find a 

feasible, initial solution algorithm similar to the phase 1 of bifurcated FD (see the 

previous section) can be used. Let set X (called selection) include all variables xdp that 

are equal to 1. Selection X determines the unique set of currently selected paths for each 

demand and in consequence the link flow defined in (4.3.5). Operator first(B) returns 

the index of the first demand in set B. G and H are selections. Let F(H) denote the delay 

function (4.3.3) for a feasible selection H. 

 

Algorithm Flow Deviation for �on-bifurcated Flows [FGK73] 

Step 1. Find feasible selection X1. Set r = 1, and go to 2. 

Step 2. Compute SR(Xr), defined as the set of shortest routes under metric le (4.2.7) for 

each demand d. 

Step 3. Set H = Xr and let K be a set of all demands. 

a) Find d = first(K). Set G = (H – {xdk}) ∪ {xdi}, where xdk∈H and xdi∈SR(Xr).  

b) If F is a feasible selection and F(G) < F(H), let H = G. 

c) Set K = K – {d}. If K = ∅, go to 4. Otherwise, go to 3a. 

Step 4. If H = Xr, stop. The algorithm cannot improve the solution any further. 

Otherwise, let Xr+1 = H, r = r + 1 and go to 2. 

 

The main idea of the non-bifurcated FD algorithm is as follows. We start with a feasible 

(in terms of the capacity constraint and single path routing) solution X1 and the 

algorithm tries to improve the solution. For each considered selection Xr of path 

variables, we calculate a selection SR(Xr) containing the shortest paths according to the 

le metric (4.2.7), which is the partial derivative of the delay function (4.3.3). Next, we 
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try to improve the solution by deviation of one selected connection to another route 

(Step 3). If the switch to a shortest path of the considered demand d (Step 3a) provides a 

feasible solution (i.e., the capacity constraint (4.3.6) is satisfied) and reduces the 

objective function (4.3.3), the new selection is saved (step 3b). The algorithm converges 

in a finite number of steps, since there are a finite number of non-bifurcated flows. 

Repetitions of the same flow are impossible due to the stopping condition (Step 4). Note 

that the non-bifurcated FD algorithm can be modified to be applied in the context of 

other objective functions, e.g., see [BOK03], [Wal03d], [Wal04a], [Wal06a]. 

Computational intelligence provides a wide range of effective algorithms that 

can be applied to various optimization problems. Now we focus on evolutionary 

algorithms (EA) that are search procedures, which try to simulate mechanics of natural 

selection and natural genetics. A variety of problems can be coded into a chromosome 

that together with a fitness function makes individual, which are organized into 

populations. From the current population, the population is evolved to a new population 

using three operators: reproduction, crossover, mutation. For more details on 

evolutionary algorithms refer to [Gol89], [MIT98]. 

We show how to use an evolutionary algorithm (EA) to solve problem (4.3.3)-

(4.3.6). The initial step to design an evolutionary algorithm is to code the considered 

problem into chromosomes. In our approach the chromosome has as many alleles as 

demands in the network. Each allele represents the index of a selected path (variables 

xdp). For example, the following chromosome cr=213 means that demand d = 1 uses 

path p = 2, demand d = 2 selects path p = 1 and demand d = 3 applies path p = 3. Thus, 

the following variables are equal to 1: x12, x21 and x33. All remaining variables are equal 

to 0. Consequently, each chromosome is equivalent to the selection and enables to 

calculate link flow (4.3.5) and objective function (4.3.3). Another important issue that 

must be addressed to develop an evolutionary algorithm is the fitness function, which 

should return a non-negative value that is to be maximized. Moreover, the EA algorithm 

solves problems without constraints. If the considered optimization problem has 

constraints (as in the case of the (4.3.3)-(4.3.6) problem), there are two ways to 

construct the evolutionary algorithm. First, the selected chromosome coding can include 

the constraints. For instance, in our case constraint (4.3.4) is included in the 

chromosome. Second, a penalty function approach can be applied, i.e., the fitness 

function contains not only the objective function, but also a special term including a 

measure of violation of the constraints scaled by a penalty parameter. It is assumed that 

38



 

the measure of violation is nonzero, if the constraint is violated and is zero in the region 

where the constraint is not exceeded. Let F(cr) return the value the objective function 

(4.3.3) of solution coded in the chromosome cr. Let FPEN(cr) denote the value of the 

delay function (4.3.3) with additional penalty function for chromosome cr: 

F
PEN(cr) = F(cr) + P6∑eH(cr,e)     (4.3.7) 

where H(cr,e) denotes the violation of capacity constraint (4.3.6) according to network 

flows given by cr. If the capacity constraint is not violated (i.e., fe ≤ ce), then 

H(cr,e) = 0. Otherwise, we set H(cr,e) = fe – ce. P6 is a penalty parameter that scales the 

penalty function. Fitness function is defined as follows: 

Fitness(cr) = M(FMAX – FPEN(cr) )     (4.3.8) 

where F
MAX denotes the maximum value the F

PEN(cr) taking into account all 

chromosomes cr in a given population. M is a scaling parameter that enables to make 

additional tuning of the algorithm.  

For the proposed coding and fitness function formulation, classical crossover 

and mutation operators can be used. The only required modification is to assure that the 

operator yields a feasible solution, i.e., the value of the new allele for demand d cannot 

exceed the number of candidate paths given by Pd [Wal01a]. 

Also other computational intelligence and stochastic methods can be applied to 

flow optimization, e.g., ant algorithm [Wal01b], [Wal04c]; tabu search [PM04]; local 

search [PM04]; simulated annealing [PM04].  

To find an optimal solution of a non-bifurcated flow assignment problem, a 

branch and bound algorithm must be applied. Below we present a framework of an 

algorithm that can be applied to a wide range of non-bifurcated flow problems [BK83], 

[Wal04b]. Let Ur and Tr be sets of decision variables xdp constantly and momentarily 

fixed in the r-th iteration, respectively. Let F(Xr) denote the value of the objective 

function (e.g., network delay) for the selection Xr. F* denotes the best already found 

solution, LBr is a lower bound of a selection Xr. Let X1 include the initial, feasible 

solution. Let U1 = ∅, T1 = ∅, F* = ∞ and r = 1.  

 

Algorithm Branch and Bound for �on-bifurcated Flows [BK83] 

Step 1.  If for at least one link e, the fixed flow exceeds the capacity, go to 5. 

Otherwise, find the lower bound LBr. If LBr ≥ F* go to 5. Otherwise, go to 2.  
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Step 2. If there is at least one link e that fe > ce, go to 4. Otherwise, find F(Xr). If 

F(Xr) < F*, then set  F* = F(Xr).  

Step 3. If there are not any variables for the choice operation go to 5. Otherwise, choose 

the normal variable xdk and a reverse variable xdi. Next generate selection 

Xs = (Xr – {xdk}) ∪ {xdi}, Us = Ur ∪ {xdi}, Ts = Tr. Go to 1. 

Step 4. If there are not any variables for the choice operation go to 5. Otherwise, choose 

the normal variable xdk and a reverse variable xdi. Next generate selection 

Xs = (Xr – {xdk}) ∪ {xdi}, Us = Ur ∪ {xdi}, Ts = Tr. Go to 1. 

Step 5. Backtrack to the predecessor Xp of the selection Xr. If Xr has no predecessor, 

then stop the algorithm. The selection X* associated with the current solution F* 

is optimal. Otherwise, update the current selection Xp in the following way. If Xr 

has been generated by the reverse variable xdi, set Tp = Tp ∪ {xdi}. If the 

backtracking is performed for (Pd – 1) time by a reverse variable of the normal 

variable xdk, then Up = Up ∪ {xdk}, Tp = Tp – {xdp : p = 1,2,…,Pd}. Go to 1. 

 

In the proposed branch and bound algorithm we start with a selection X1 and generate a 

sequence of selections Xr. In order to obtain the initial selection X1, we must solve the 

problem using heuristic algorithms, e.g. FD. Each new selection Xs is obtained from a 

certain selection Xr of the sequence by complementing a normal variable xdk by a 

reverse variable xdi in the following way Xs = (Xr – {xdk}) ∪ {xdi}. Both variables 

(normal and reverse) must be associated with the same demand d in order to satisfy the 

condition (4.3.4). The generating process can be represented as a branch and bound 

decision tree. Each node of the decision tree represents one selection. Each arc of the 

tree represents a pair of selections (Xr, Xs) such that Xs is obtained from Xr. We say that 

the selection Xs is a successor of the selection Xr, if there is a path from Xr to Xs. For 

every selection Xr we constantly fix a subset Ur∈Xr and momentarily fix a set Tr. The 

variables in Ur are constantly fixed and denote the path from the initial selection X1 to 

the current selection Xr in the branch and bound decision tree. Each momentarily fixed 

variable in Tr is the variable abandoned during the backtracking process. There are two 

important elements of the branch and bound algorithm that are calculated for each 

selection Xr: the lower bound of the criterion function and the branching rules. The 

lower bound is calculated to check if a better solution (with lower objective function 

value) may be found. If the testing is negative we abandon the considered selection Xr 

40



 

and backtrack to the selection Xp from which the selection Xr was generated. The basic 

task of the branching rules is to find the variables for complementing to generate a new 

selection with the least possible value of the criterion function [Wal04b].  

In the context of the (4.3.3)-(4.3.6) problem to find the lower bound we can 

apply the bifurcated FD algorithm for each current selection taking into account 

constantly and momentarily fixed variables. To relax the problem, we drop the single 

routing constraint and assume bifurcated flows. Since the objective is strictly convex, 

the bifurcated FD provides an optimal solution. Another method to obtain lower bound 

is to use Kuhn-Tucker conditions [BK83]. 

Now we present a proposal of a choice operation to select normal and reverse 

variables. Let lr(d,p) denote the length of path p for demand d calculated using le metric 

defined in (4.2.7) under selection Xr: 

lr(d,p) = ∑e δedple,   d = 1,2,…,D   p = 1,2,…,Pd.   (4.3.9) 

 

Theorem 4.1 [BK83] 

If selection Xs is a successor of Xr obtained in following way Xs = (Xr – {xdk}) ∪ {xdi}, 

then: 

F(Xs) ≥ F(Xr) – ∆rdki       (4.3.10) 

Where: 

∆rdki = hd(l(d,i) – l(d,k)).      (4.3.11) 

 

Note that a formal proof of the Theorem 4.1 can be found in [BK83]. According to 

Theorem 4.1, ∆rdki estimates the value of the objective function reduction obtained by 

generating a new selection. Therefore, if in the current selection Xr we select normal 

variable xdk and reverse variable xdi with maximum value of ∆rdki we can guarantee the 

largest decrease of the delay function in the successor of the current selection Xr 

[BK83]. 

4.4. Non-bifurcated Congestion Problem 

The congestion problem arises in many practical applications encountered in computer 

networks. In this section we address a special version of the congestion problem for 

non-bifurcated flows. The goal is to maximize the minimum residual capacity of 

network links. The residual capacity is defined as the difference between link capacity 
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and link flow and denotes the link capacity, which is not currently used. Another 

objective – comparable to the congestion – is the relative congestion defined as 

maximum value of the (residual capacity)/capacity ratio over all links in the network. 

The congestion problem is also referred in the literature as unsplittable flow problem 

(UFP) [BG95], [Bie02], [CFZ94], [DVM94], [KS97], [KS02], [Wal05e]. We formulate 

the congestion problem in the following way. 

 

�on-bifurcated Congestion Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

z congestion, i.e., link residual capacity (continuous non-negative) 

objective 

maximize F = z       (4.4.1) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (4.4.2) 

fe = ∑d∑p δedpxdphd,   e = 1,2,…,E     (4.4.3) 

z ≤ ce – fe,   e = 1,2,…,E.      (4.4.4) 

 

Constraint (4.4.4) defines the additional variable z as a minimum value of the link 

residual capacity over all links e = 1,2,…,E. Note that condition (4.4.4.) is a link 

capacity constraint formulation and if z ≥ 0, the problem  is feasible, i.e., link capacity 

constraint is satisfied.  

To solve the (4.4.1)-(4.4.4) we present a heuristic algorithm proposed in 

[Wal05e]. For the sake of simplicity we define the residual capacity of link e in the 

following way: 
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ze = ce – fe,   e = 1,2,…,E.      (4.4.5) 

As in previous section, we assume that X is a set (selection) of variables xdp, 

which are equal to one. Let X1 denote a feasible initial solution for instance calculated 

by the phase 1 of the Non-bifurcated FD algorithm [FGK73]. Let z(H) denote a value of 

the link residual capacity obtained for selected paths included selection H. In the 

algorithm we use two tuning parameters. First parameter α, is used to define α-

congested links that satisfy the following condition: 

ze ≤ (zmin + α(zmax – zmin))      (4.4.6) 

where zmin = mine ze is the minimum value of residual capacity and zmax = maxe ze  is the 

maximal value of residual capacity calculated according to the current selection. All α-

congested links included in set Cong(α). The α parameter enables us to calibrate the 

size of Cong(α) set. Note that if α = 1, all links are included in the set Cong(α). If 

α = 0.1, only link for which the residual capacity is between zmin and (0.9zmin + 0.1zmax) 

are included in Cong(α). The second tuning parameter rmax denotes the number of 

algorithms’ iterations. 

 

Algorithm Congestion Avoidance (CA) [Wal05e] 

Step 0. Find feasible selection X1. Set r = 1, and go to 1. 

Step 1. For a selection Xr find set Cong(α) that includes all α-congested links e that 

satisfy condition (4.4.6). Next, let Dcong be a set that includes all demands for 

which the selected path uses at least one link included in Cong(α). 

Step 2. Find a selection SWP(Xr) of variables xdp associated with the widest-shortest 

route p for a selection Xr. To find a widest-shortest route for each demand d first 

prune the demand from the network, and next using the SWP algorithm calculate 

the path. Set d = 1 and go to 3.  

Step 3. Let H = Xr. 

a) If d∈Dcong then calculate a selection G from the selection H in the following 

way G = (H – {xdk}) ∪ {xdi}, where xdk∈H and xdi∈SWP(Xr). Paths of other 

demands except d remain unchanged. Otherwise if, d∉Dcong go to 3c.  

b) If z(G) ≥ z(H), then set H = G. 

c) If d = D, go to 4. Otherwise, set d = d + 1 and go to 3a. 

Step 4. If r ≥ rmax, stop the algorithm. Otherwise, set r = r + 1, Xr = H and go to 1.  
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The idea behind the algorithm is as follows. We start with a feasible solution X1, which 

defines all paths used by demands. Consequently, having these paths and demand 

volume, the flow and residual capacity of each link can be calculated. To find all α-

congested links we first find the minimal and maximal values of the residual capacity 

denoted as zmin and zmax, respectively. In step 1 the Cong(α) set is applied to calculate 

set Dcong that includes all demands for which the selected path uses at least one α-

congested link. The motivation behind parameter α is to concentrate on the most 

congested arcs and try to increase the residual capacity of arcs included in Cong(α) by 

changing paths for demands included in Pcong. To improve the solution, we find a set 

SWP(Xr) that comprises new paths for each demand d∈Dcong using the shortest-widest 

path (SWP) algorithm (step 2). For more information on the SWP algorithm refer to 

[MS97], [WC96]. In particular, for each d∈Dcong we remove the demand d from the 

network (i.e., decrease the flow on each link used by the demand d by the demand 

volume) and calculate a new path using the SWP algorithm. Next, we try to improve the 

solution by deviation of one selected demand d∈Dcong to the widest route (step 3a). In 

step 3b we evaluate the new solution denoted as G. If the solution is improved (i.e., the 

minimal residual capacity of G is greater or equal to the minimal residual capacity of 

the previous selection), we accept the new path for demand d. Note that in Non-

bifurcated FD (Section 4.3) the algorithm solution is compared using condition “less” 

(“less” because the problem is to minimize objective function, in our case we want to 

maximize the objective function). We use the “greater or equal” condition to enlarge the 

solution space analyzed by the algorithm. Moreover, another difference between FD and 

CA is the stopping condition. The FD stops if the solution (flow) is not changed after 

the deviation. Since we apply the “greater or equal”, we have to change the stopping 

condition and repeat the main loop of CA rmax times. For more details and result see 

[Wal05e] and [Wal08a]. 

4.5. Example  

In the example we consider the Modified Bifurcated Flow Allocation Problem defined 

by (4.1.3)-(4.1.5). We will show how to construct to whole model for an example 

network presented in Fig. 4.3. The network has four nodes located in Polish cities: 

Szczecin (node 1), Gdańsk (node 2), Wrocław (node 3) and Warszawa (node 4). There 

are 5 connections between the cities what gives 10 links (directed edges) in total. To 
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make the example more clear we do not use the index e to number the links, but each 

link is described by indices of the two connecting nodes, e.g., link connecting nodes 1 

(Szczecin) and node 2 (Gdańsk) has the index 12. 
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Fig. 4.3. Topology of the example network 

 

The link capacity is as follows:  

• Szczecin – Gdańsk: c12 = 3 Mbps, c21 = 3 Mbps; 

• Szczecin – Wrocław: c13 = 5 Mbps, c31 = 5 Mbps; 

• Gdańsk – Wrocław: c23 = 2 Mbps, c32 = 2 Mbps; 

• Gdańsk – Warszawa: c24 = 5 Mbps, c42
 = 5 Mbps; 

• Wrocław – Warszawa: c34 = 4 Mbps, c43 = 4 Mbps. 

We assume that the following three demands are to be established in the 

network. Again for the sake of simplicity we use three letters x, y and v to describe the 

demands:  

• Demand x from Szczecin (node 1) to Warszawa (node 4), demand volume hx; 

• Demand y from Gdańsk (node 2) to Wrocław (node 3), demand volume hy; 

• Demand v from Wrocław (node 3) to Warszawa (node 4), demand volume hv. 

First we will present the modeling using the link-path notation. For each demand we are 

given the following candidate paths described as a list of nodes included in the path: 
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• Demand x has four paths:  

o {1,2,4} variable x1;  

o {1,3,4} variable x2;  

o {1,2,3,4} variable x3;  

o {1,3,2,4} variable x4; 

• Demand y has three paths:  

o {2,3} variable y1;  

o {2,1,3} variable y2;  

o {2,4,3} variable y3; 

• Demand v has three paths:  

o {3,4} variable v1;  

o {3,2,4} variable v2;  

o {3,1,2,4} variable v3. 

Now we can write the demand constraints (4.1.4) for all three demands: 

• Demand x: x1 + x2 + x3 + x4 = hx ; 

• Demand y: y1 + y2 + y3 = hy; 

• Demand v: v1 + v2 + v3 = hv. 

Recall that in the considered model there is also the objective variable z denoting 

the additional link capacity (4.1.3). Next we formulate the capacity constraints for all 10 

links taking into account the candidate paths presented above: 

• Link 12: x1 + x3 + v3 – z ≤ 3; 

• Link 21: y2 – z ≤ 3; 

• Link 13: x2 + x4 + y2 – z ≤ 5; 

• Link 31: v3 – z ≤ 5; 

• Link 23: x3 + y1 – z ≤ 2; 

• Link 32: x4 + v2 – z ≤ 2; 

• Link 24: x1 + x4 + y3 + v2 + v3 – z ≤ 5; 

• Link 42: – z ≤ 5; 

• Link 34: x2 + x3 + v1 – z ≤ 4; 

• Link 43: y3 – z ≤ 4. 

Let assume bifurcated flows and the following values of demands: hx = 3 Mbps, 

hy = 3 Mbps, hv = 3 Mbps. The CPLEX code of the example for these assumptions is 
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presented in Fig. 4.4. Note that the bounds constraints are presented in a short way, to 

run the example in the CPLEX solver add all required constraints. 

The obtained solution is as follows: 

• x1 = 2, x2 = 1, x3 = 0, x4 = 0; 

• y1 = 1, y2 = 2, y3 = 0; 

• v1 = 2, v2 = 1, v3 = 0; 

• z = –1. 

what means that: 

• demand x uses two paths: path number 1 transmits 2 Mbps, path 2 transmits 1 

Mpbs; 

• demand y uses two paths: path number 1 transmits 1 Mbps, path 2 transmits 2 

Mpbs; 

• demand v uses two paths: path number 1 transmits 2 Mbps, path 2 transmits 1 

Mpbs. 

 

Minimize obj: 

z 
Subject To 

x: x1 + x2 + x3 +x4 = 3 
y: y1 + y2 + y3 = 3 
v: v1 + v2 + v3 = 3 

c12: x1 + x3 + v3 - z <= 3 
c21: y2 - z <= 3 

c13: x2 + x4 + y2 - z <= 5 
c31: v3 - z <= 5 
c23: x3 + y1 - z <= 2 

c32: x4 + v2 - z <= 2 
c24: x1 + x4 + y3 + v2 + v3 - z <= 5 

c42: - z <= 5 
c34: x2 + x3 + v1 - z <= 4 
c43: y3 - z <= 4 

Bounds 
0 <= x1 <= 3 

... 
0 <= v3 <= 3 
-inf <= z <= +inf  

End 

Fig. 4.4. CPLEX code of the example for link-path notation 

 

If we assume non-bifurcated flows (path variables are binary) in the considered 

example we will obtain the following solution: 

• x1 = 1, x2 = 0, x3 = 0, x4 = 0; 

• y1 = 0, y2 = 1, y3 = 0; 
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• v1 = 1, v2 = 0, v3 = 0; 

• z = 0. 

what means that: 

• demand x is sent along path number 1; 

• demand y is sent along path number 2; 

• demand v is sent along path number 3. 

Now we show how to model the example problem using the node-link 

formulation (see Chapter 3 for more details on this kind of notation). Let xab, yab and vab 

denote the flow of demand x, y and v, respectively for a link between nodes a and b. The 

flow conservation law for demand x and each node in the network is written as follows: 

• Node 1: x12 + x13 – x21 – x31 = hx; 

• Node 2: x21 + x23 + x24 – x12 – x32 – x42 = 0; 

• Node 3: x31 + x32 + x34 – x13 – x23 – x43 = 0; 

• Node 4: x42 + x43 – x24 – x34 = –hx. 

Let consider the first constraint. The flow of demand x leaving the node 1 

(x12 + x13) minus the flow entering this node (x21 + x31) must be equal to hx, since the 

node 1 is the origin node of demand x. In analogous way we formulate the flow 

conservation constraints in the context of demand y 

• Node 1: y12 + y13 – y21 – y31 = 0; 

• Node 2: y21 + y23 + y24 – y12 – y32 – y42 = hy; 

• Node 3: y31 + y32 + y34 – y13 – y23 – y43 = –hy; 

• Node 4: y42 + y43 – y24 – y34 = 0. 

and demand v: 

• Node 1: v12 + v13 – v21 – v31 = 0; 

• Node 2: v21 + v23 + v24 – v12 – v32 – v42 = 0; 

• Node 3: v31 + v32 + v34 – v13 – v23 – v43 = hv; 

• Node 4: v42 + v43 – v24 – v34 = –hv. 

The capacity constraint for each link between nodes a and b with capacity cab 

looks as follows: 

• Link ab: xab + yab + vab – z ≤ cab 

The detailed CPLEX code of the node-link formulation is presented in Fig. 4.6. Note 

that the bounds constraints are presented in a short way, to run the example in the 

CPLEX solver add all required constraints.  
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Minimize obj: 

z 
Subject To 

x_1: x12 + x13 - x21 - x31 = 3 
x_2: x21 + x23 + x24 - x12 - x32 - x42 = 0 
x_3: x31 + x32 + x34 - x13 - x23 - x43 = 0 

x_4: x42 + x43 - x24 - x34 = -3 
y_1: y12 + y13 - y21 - y31 = 0 

y_2: y21 + y23 + y24 - y12 - y32 - y42 = 3 
y_3: y31 + y32 + y34 - y13 - y23 - y43 = -3 
y_4: y42 + y43 - y24 - y34 = 0 

v_1: v12 + v13 - v21 - v31 = 0 
v_2: v21 + v23 + v24 - v12 - v32 - v42 = 0 

v_3: v31 + v32 + v34 - v13 - v23 - v43 = 3 
v_3: v42 + v43 - v24 - v34 = -3 
c12: x12 + y12 + v12 - z <= 3 

c21: x21 + y21 + v21 - z <= 3 
c13: x13 + y13 + v13 - z <= 5 

c31: x31 + y31 + v31 - z <= 5 
c23: x23 + y23 + v23 - z <= 2 
c32: x32 + y32 + v32 - z <= 2 

c24: x24 + y24 + v24 - z <= 5 
c42: x42 + y42 + v42 - z <= 5 

c34: x34 + y34 + v34 - z <= 4 
c43: x43 + y43 + v43 - z <= 4 
Bounds 

0 <= x12 <= 3 
... 

0 <= v43 <= 3 
-inf <= z <= +inf  
End 

Fig. 4.6. CPLEX code of the example for node-link notation 

 

4.6. Exercises  

4.1. Formulate the Flow Allocation Problem (4.1.1)-(4.1.2) using the link-node notation. 

4.2. Formulate the Flow Allocation Problem (4.1.1)-(4.1.2) using the link-node notation 

with a additional hop-limit approach set for each demand. 

4.3. Formulate the Flow Allocation Problem (4.1.1)-(4.1.2) with an additional constraint 

to limit the number of used paths for each demand. 

4.4. Modify the FD method for bifurcated flows in such a way that the complete 

information of selected paths (routing) is available.  

4.5. Modify the phase 1 of the bifurcated FD method for non-bifurcated flows.  

4.6. Construct a computational intelligence algorithm for a selected flow optimization 

problem. 

4.7. Write a formal proof of Theorem 4.1. 

4.8. Formulate a Non-bifurcated Relative Congestion problem. 
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4.9. Propose a method to calculate a lower bound for the Non-bifurcated Congestion 

Problem. 
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5. Capacity and Flow Optimization 

In this section we will introduce and examine several capacity and flow optimization 

problems (CFA) also called network design problems. CFA problems are one of the 

most frequently encountered problems in network optimization. They are used in the 

case when a new network is designed or an existing network is incremented. The main 

goal of the optimization is to determine the capacity of network links in order to 

transmit all demands in the network. The most common objective function used in 

network design problems is the cost defined as the cost of network links. However, 

other network performance metrics (e.g., delay, survivability) can be applied. The 

capacity constraint guaranteeing that the total flow on each link cannot exceed the 

selected link capacity is present in all CFA problems. As in previous section, the 

modeling details (e.g., various kinds of multicommodity flows, link cost modeling) are 

selected according to a particular network technology and other requirements.  

5.1. Bifurcated Flows with Linear Objective Function 

In this section we concentrate on network design problems assuming bifurcated 

multicommodity flows and linear objective function. In the bifurcated multicommodity 

flows each demand can use multiple paths. First, we will formulate a basic network 

design problem using the link-path notation [PM04]. We use analogous notation as in 

previous section, i.e., for each demand d = 1,2,…,D the demand volume hd and a set of 

candidate paths p = 1,2,…,Pd. are defined. Continuous variable xdp is used to denote the 

demand routing. There is a set of network links (directed edges) e = 1,2,…,E for which 

we must determine the capacity. We assume that the capacity is continuous and variable 

ye denotes the amount of capacity allocated to link e. Obviously, link capacity ye and 

demand volume use the same unit, e.g., bits per seconds (bps) or packets per second 

(pps). The network is designed from the scratch, i.e., there is no capacity allocated to 

network links. 

 

Simple Design Problem Link-Path �otation 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 
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constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ξe  unit (marginal) cost of link e 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

ye  capacity of link e (continuous non-negative) 

objective 

minimize F = ∑e ξeye       (5.1.1) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.1.2) 

∑d∑p δedpxdp ≤ ye,   e = 1,2,…,E.     (5.1.3) 

 

The objective (5.1.1) is to minimize the total network cost that includes the cost of each 

link given by the capacity ye allocated to link e multiplied by the unit cost of link e. 

Constraint (5.1.2) is in the model to guarantee that the whole volume of each demand d 

is sent in the network. (5.1.3) is a link capacity constraint. The problem is linear with 

continuous variables. Since the link capacity variable ye is continuous, for optimal 

solution the constraint (5.1.3) is binding, i.e., the link flow must be equal to the link 

capacities (otherwise, the objective includes cost of an unused capacity). Therefore, we 

can write the objective function (5.1.1) as follows: 

F = ∑e ξe ∑d∑p δedpxdp = ∑d∑p xdp∑e ξeδedp = ∑d∑p xdpζdp  (5.1.4) 

where ζdp = ∑e ξeδedp denotes the length of path p for demand d. Consequently, we can 

formulate the following rule [PM04]. 

 

Shortest-Path Allocation Rule 

For each demand, allocate its entire demand volume to its shortest path, with respect to 

links unit costs and candidate path. If there is more than one shortest path for a demand 

then the demand volume can be split among the shortest paths in an arbitrary way. 

 

Using the above observation, we can write the Simple Design Problem as 

follows. 
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Decoupled Simple Design Problem Link-Path �otation 

constants (additional) 

ζdp  length of path p for demand d 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

objective 

minimize F = ∑d∑p xdpζdp      (5.1.5) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.1.6) 

 

The above problem can be solved as a set of independent D subproblems, i.e., for each 

demand d we find the shortest path from the candidate list. If there is more then 1 

shortest path, the demand can be split and use many such paths. 

The next model is equivalent to (5.1.1)-(5.1.3), however we use the node-link 

notation. Therefore, we take into account all possible paths (not only candidate paths) 

and thus the globally optimal solution can be found. 

 

Simple Design Problem �ode-Link �otation 

indices (additional) 

v = 1,2,…,V  network nodes 

constants (additional) 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

sd  source node of demand d 

td  destination node of demand d 

variables 

xed  flow of demand  d sent on link e (continuous non-negative) 

ye  capacity of link e (continuous non-negative) 

objective 

minimize F = ∑e ξeye       (5.1.7) 

subject to 

∑e aevxed – ∑e bevxed = hd,   if v = sd,   d = 1,2,…,D   v = 1,2,…,V (5.1.8) 

∑e aevxed – ∑e bevxed = -hd,   if v = td,   d = 1,2,…,D   v = 1,2,…,V (5.1.9) 
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∑e aevxed – ∑e bevxed = 0,   if v ≠ sd,td,   d = 1,2,…,D   v = 1,2,…,V (5.1.10) 

∑d xed ≤ ye,   e = 1,2,…,E.      (5.1.11) 

 

Constraints (5.1.8)-(5.1.9.10) are used to define the multicommodity flows in the node-

link notation. Note that the Shortest-Path Allocation Rule can be also formulated in the 

context of the above problem. However, since all possible paths are considered (not 

only a limited set of candidate paths) the shortest path algorithm (e.g., Dijkstra) must be 

used to solve the decoupled subproblem.  

In Table 5.1 we report the comparison between link-path and node-link 

formulations in terms of the number of variables and number of constraints. Note that V 

denote number of nodes, P average number of candidate paths, k average number of 

adjacent nodes, V′ (≤V) number of demand origin nodes. We can easily notice that the 

node-link model requires more variables and constraints. But on the other hand, the 

link-path node-link formulation does not provide a global optimum. Moreover, the link-

path model requires additional preprocessing to generate the set of candidate paths 

[PM04]. 

 

Table 5.1. Model comparison 

Formulation Number of variables Number of constraints 

Link-path PxV′(V′−1) + 0.5kxV=O(V2) PxV′(V′−1)+0.5kxV=O(V2) 

Node-link 0.5kxVxV′(V′−1)x=O(V3) VxV′(V′−1)+0.5kxV=O(V3) 

 

In many cases the existing network needs to be incremented in order to address 

to increasing network traffic. Therefore, additional capacity is added to the already 

allocated capacity. Below we formulate an example of such problem [PM04]. 

 

Incremental Design Problem  

constants (additional) 

ce  capacity of link e 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 
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ye  additional capacity of link e (continuous non-negative) 

objective 

minimize F = ∑e ξeye       (5.1.12) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.1.13) 

∑d∑p δedpxdp ≤ ce + ye,   e = 1,2,…,E.     (5.1.14) 

 

The only modification comparing against model (5.1.1)-(5.1.3) is the link capacity 

constraint (5.1.14). The right-hand side of (5.1.14) includes the existing capacity ce as 

well as the additional capacity ye. Notice that the value cost of a network designed in 

several phases using the incremental approach in most cases is greater than the 

corresponding cost of from scratch design. This follows from the obvious observation 

that if we design a network from scratch the already invested budget (ξece) can be better 

allocated [PM04]. 

5.2. Routing Restrictions 

In the previous section we introduced basic formulations of the network design problem 

with the bifurcated flows. Now we enhance the models with additional constraints 

related to routing of demands and following from network technologies and other 

requirements (e.g., financial, reliability, etc.). First, we present a model where each 

demand must be provided with path diversity and the flow is sent using more than one 

path [PM04]. This constraint may be a consequence of reliability constraints, to 

minimize the results of a network failure that in this case affects not the whole demand 

but only a part. The diversity factor nd is used to define the maximum portion of the 

demand volume (i.e., hd / nd) that can be sent on one path. We use the link-path notation 

and bifurcated flows. 

 

Path Diversity Design Problem 

indices 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 
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δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ξe  unit (marginal) cost of link e 

nd  diversity factor for demand d 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

ye  capacity of link e (continuous non-negative) 

objective 

minimize F = ∑e ξeye       (5.2.1) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.2.2) 

∑d∑p δedpxdp ≤ ye,   e = 1,2,…,E.     (5.2.3) 

xdp ≤ hd / nd,   d = 1,2,...,D   p = 1,2,...,Pd.    (5.2.4) 

 

The new constraint (5.2.4) sets an upper bound in the amount of demand flow allocated 

to one path. Note that the path diversity requirement increases the network cost (5.2.1) 

comparing to the basic network design problem. The constraint (5.2.4) can lead to a 

situation when some part of the demand is not allocated to the shortest path calculated 

according to the link unit cost. The above problem is a continuous and linear, therefore 

the simplex method can be applied to find optimal solution. Note that the link-path 

formulation used in network design problems faces the same problem as in flow 

allocation problems described in Chapter 4. Consequently, the same methods can be 

applied to facilitate the number of candidate paths, e.g., hop-limit approach [HBU95] 

and Column Generation Technique [PM04]. 

The next model applies the non-bifurcated flows – each demand can use only 

one path [PM04]. We use the link-path notation. 

 

Single Path Design Problem 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

udp binary variable corresponding to the flow allocated to path p of 

demand d 

ye  capacity of link e (continuous non-negative) 
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objective 

minimize F = ∑e ξeye       (5.2.5) 

subject to 

∑p xdp = udphd,   d = 1,2,…,D      (5.2.6) 

∑p udp = 1,   d = 1,2,…,D      (5.2.7) 

∑d∑p δedpxdp ≤ ye,   e = 1,2,…,E.     (5.2.8) 

 

Constraints (5.2.6) and (5.2.7) ensure the single path. Problem (5.2.5)-(5.2.8) is a MIP 

and NP-hard problem and to find an optimal solution branch and bound methods must 

be used [PM04]. For larger networks this method is not effective, thus heuristics 

including computational intelligence methods may be used. 

5.3. Link Modularity 

Link modularity is a common way to model link capacity in communications networks, 

i.e., link capacity must be a multiple of particular module of capacity. The link 

modularity follows from technological constraints – in many network technologies like 

SDH/SONET and WDM the link capacity is modular (Fig. 5.1). The most significant 

consequence of link modularity is that the link capacity variable must be integer and 

therefore the whole optimization problem becomes integer. In the following model we 

use link-path notation and bifurcated flows [PM04]. 

 

Link load

Link cost

M 2M 3M 4M 5M

Continuous 

link capacity

Modular

link capacity

 
Fig. 5.1. Modular link cost modeling 

 

Modular Link Design Problem 

indices 
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d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

constants 

δedp  = 1 if link e belongs to path p realizing demand d, 0 otherwise 

hd  volume of unicast demand d 

ξe  cost of one capacity module on link e 

M  size of the link capacity module 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

ye capacity of link e as the number of modules (non-negative 

integer) 

objective 

minimize F = ∑e ξeye       (5.3.1) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.3.2) 

∑d∑p δedpxdp ≤ Mye,   e = 1,2,…,E.     (5.3.3) 

 

The only modification – compared to the basic model (5.1.1)-(5.1.3) – is the right-hand 

side of the capacity constraint (5.3.3). Now it is the number of allocated modules (ye) 

multiplied by the module size (M). Due to link modularity, the above problem is MIP 

and NP-hard [PM04].  

 

Link load

Link cost

M 2M 3M 4M 5M  
Fig. 5.2. Candidate link cost modeling 
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Another way to model link capacity is the candidate link approach – for each 

link there is a set of possible link capacities and one of them is to be selected (Fig. 5.2). 

This approach is included in regulations of ITU-T as well as many telecoms construct 

their offer in similar way [GN89], [Kas89], [Kas01]. An important business issue is that 

unit capacity cost decreases with the increase of candidate link capacity. Thus, the 

cost/capacity function can be approximated by a concave function. For each link e there 

is a set of candidate link proposals indexed k = 1,2,…,Ke and each candidate link is 

described by the cost ξek and capacity cek. A binary variable yek is 1, if the type k is 

selected for link e. 

 

Candidate Link Design Problem 

indices (additional) 

k = 1,2,…,Ke  candidate link types for link e 

constants (additional) 

ξek  cost of candidate link type k on link e 

cek  capacity of candidate link type k on link e 

variables 

xdp  flow allocated to path p of demand d (continuous non-negative) 

yek = 1, if link type k is selected for link e; 0, otherwise 

objective 

minimize F = ∑e∑k ξekyek      (5.3.4) 

subject to 

∑p xdp = hd,   d = 1,2,…,D      (5.3.5) 

∑k yek = 1,   e = 1,2,…,E      (5.3.6) 

∑d∑p δedpxdp ≤ ∑k cekyek,   e = 1,2,…,E.    (5.3.7) 

 

The objective function is the cost of selected candidate links. Constraint (5.3.6) assures 

that for each link exactly one candidate link is selected. Notice that ∑k cekyek denotes the 

capacity of e capacity, therefore this formula is used in right-hand side of (5.3.7). The 

above problem is MIP and NP-complete. 
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5.4. Convex Problems  

In this section we will focus on network design problem with a convex objective 

function presented in [GN89]. The problem uses non-bifurcated flows, link-path 

formulation and candidate link modeling. The objective is to minimize the cost 

including both capacity and delay components. Moreover, we will show how to apply 

Lagrangean relaxation and subgradient optimization techniques to this problem. 

 

Convex Design Problem 

indices (additional) 

d = 1,2,…,D  demands 

p = 1,2,…,Pd  candidate paths for demand d 

e = 1,2,…,E  network links 

k = 1,2,…,Ke  candidate link types for link e 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ξe  cost of one capacity module on link e 

ξek  cost of candidate link type k on link e 

cek  capacity of candidate link type k on link e 

variables 

xdp  1, if path p is used to realize demand d; 0, otherwise 

yek = 1, if link type k is selected for link e; 0, otherwise 

fe flow on link e (non-negative, continuous) 

objective 

minimize F = ∑e fe / (∑k cekyek – fe) + ∑e ∑k ξekyek   (5.4.1) 

subject to 

∑d∑p δedpxdphd = fe,   e = 1,2,…,E     (5.4.2) 

∑p xdp = 1,   d = 1,2,…,D      (5.4.3) 

∑k yek = 1,   e = 1,2,…,E      (5.4.4) 

fe ≤ ∑k cekyek,   e = 1,2,…,E.      (5.4.5) 
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Since the objective function is increasing in fe, the problem can be reformulated as: 

 

Modified Convex Design Problem 

objective 

minimize F = ∑e fe / (∑k cekyek – fe) + ∑e ∑k ξekyek   (5.4.6) 

subject to 

∑d∑p δedpxdphd ≤ fe,   e = 1,2,…,E     (5.4.7) 

∑p xdp = 1,   d = 1,2,…,D      (5.4.8) 

∑k yek = 1,   e = 1,2,…,E      (5.4.9) 

0 ≤ fe ≤ ∑k cekyek,   e = 1,2,…,E.     (5.4.10) 

 

Let λλλλ = [λ1, λ2,…,λE] be a vector of Lagrangian multipliers. Constraint (5.4.7) is relaxed 

and the corresponding Lagrangian function is as follows: 

L(λλλλ) = (∑e fe/(∑k cekyek – fe) + ∑e∑k ξekyek) + ∑eλe (∑d∑p δedphdxdp – fe). (5.4.11) 

After simple calcualation we obtain: 

L(λλλλ) = ∑e fe/(∑k cekyek – fe) + ∑e∑k ξekyek – ∑e λefe + ∑e∑d∑p δedpλexdudp. (5.4.12) 

Recall, that the main idea of Lagrangean relaxation is to formulate the dual 

problem by relaxing some constraints of the primal problem and next solving the dual 

by a subgradient algorithm. The solutions to the Lagrangean problem yielded at each of 

the iterations of the subgradient algorithm can be used as an initial solution for 

generating feasible solutions to the considered network design problem. Since the value 

of the optimal solution is between the lower bound and the value of the best feasible 

solution available found by any heuristic algorithm, the quality of the heuristic solution 

can thus be evaluated [GN89].  

As variables fe and xdp are not linked (there are no constraints that includes both 

kinds of variables), we receive D + E subproblems, that can be solved independently. 

The first subproblem includes the part of Lagrangean function (5.4.12) related variables 

xdp and constraints including variables xdp. There is one subproblem for each link 

d = 1,2,…,D. 

 

Subproblem 1 

objective  

minimize Ld(λλλλ) = ∑e∑p δedpλehdudp      (5.4.13) 
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constraints 

∑p xdp = 1.         (5.4.14) 

 

To solve the above subproblem, we must find the shortest path p = 1,2,…,Pd under the 

metric λe , so it is quite easy to find the solution. 

The second subproblem includes the part of Lagrangean function related 

variables yek and fe as well as constraints including variables yek and fe. The subproblem 

is formulated for each link e = 1,2,…,E. 

 

Subproblem 2 

objective  

minimize Le(λλλλ) = fe/(∑k cekyek – fe) + ∑k ξekyek – λefe   (5.4.15) 

constraints 

∑k yek = 1,        (5.4.16) 

0 ≤ fe ≤ ∑kcek yek.       (5.4.17) 

 

Since the number of candidate link proposals Ke is relatively small for each link, we can 

solve the Subproblem 2 for each k = 1,2,…,Ke separately. 

 

Decoupled Subproblem 2 

objective  

minimize Le(λ,k) = fe/(cek – fe) + ξek – λe fe    (5.4.18) 

constraints 

0 ≤ fe ≤ cek.        (5.4.19) 

 

The solution of the Decoupled Subproblem 2 (5.4.18)-(5.4.19) is: 



 >−

=
otherwise0

/1when)/(
)( ekeeekek

e

ccc
kf

λλ
.   (5.4.19) 

Futher details on the Subgradient procedure can be found in [GN89]. 

5.5. Example  

In the example we consider various variants of network design problems presented 

above in the context of the network (Fig. 4.3) considered in Section 4.5. To recall, the 
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network has 4 nodes number  as{1, 2, 3, 4} and representing Polish cities. There are 10 

directed links {12, 21, 13, 31, 23, 32, 24, 42, 34, 43}. Three demands are to be sent in 

the network: x (between nodes 1 and 4), y (between nodes 2 and 3) and v (between 

nodes 3 and 4). All demands have the same volume 3 Mbps. The identical candidate 

paths as in Section 4.5 are considered for each demand, consequently the flow variables 

and demand constraints are the same. We assume that the capacity module is 2 Mbps, 

only for links 34 and 43 it is 1 Mbps. Link costs are defined as follows: 

• Links 12 and 21: 700 euro/month for 2 Mbps; 

• Links 13 and 31: 900 euro/month for 2 Mbps; 

• Links 23 and 32: 800 euro/month for 2 Mbps; 

• Links 24 and 42: 500 euro/month for 2 Mbps; 

• Links 34 and 43: 400 euro/month for 1 Mbps. 

We introduce integer (modular) link capacity variables cab for each link from 

node a to node b. The objective (network cost) looks as follows: 

700c12+700c21+900c13+900c31+800c23+800c32+500c24+500c42+400c34+400c43 

The link capacity constraints are formulated as: 

• Link 12: x1 + x3 + v3 – 2c12 ≤ 0; 

• Link 21: y2 – 2c21 ≤ 0; 

• Link 13: x2 + x4 + y2 – 2c13 ≤ 0; 

• Link 31: v3 – 2c31 ≤ 0; 

• Link 23: x3 + y1 – 2c23 ≤ 0; 

• Link 32: x4 + v2 – 2c32 ≤ 0; 

• Link 24: x1 + x4 + y3 + v2 + v3 – 2c24 ≤ 0; 

• Link 42: – 2c42 ≤ 0; 

• Link 34: x2 + x3 + v1 – c34 ≤ 0; 

• Link 43: y3 – c43 ≤ 0. 

Moreover, we assume that for each link the maximum number of installed 

modules is 3, so for each link ab formulate the following constraint: 

• Link ab: 0 ≤ cab ≤ 3. 

The CPLEX code of the example for these assumptions is presented in Fig. 5.3. 

Note that the bounds constraints are presented in a short way, to run the example in the 

CPLEX solver add all required constraints. 
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The obtained solution of link capacities is as follows: c12 = 2; c21 = 0; c13 = 0; 

c31 = 0; c23 = 1; c32 = 0; c24 = 2; c42 = 0; c34 = 3; c43 = 1. This yields the total network 

cost equal to 4800 euro/month. 

 

Minimize obj: 
700c12 + 700c21 + 900c13 + 900c31 + 800c23 + 800c32 + 500c24 

+ 500c42 + 400c34 + 400c43 
Subject To 
x: x1 + x2 + x3 +x4 = 3 

y: y1 + y2 + y3 = 3 
v: v1 + v2 + v3 = 3 

c12: x1 + x3 + v3 - 2c12 <= 0 
c21: y2 - 2c21 <= 0 
c13: x2 + x4 + y2 - 2c13 <= 0 

c31: v3 - 2c31 <= 0 
c23: x3 + y1 - 2c23 <= 0 

c32: x4 + v2 - 2c32 <= 0 
c24: x1 + x4 + y3 + v2 + v3 - 2c24 <= 0 
c42: -2c42 <= 0 

c34: x2 + x3 + v1 - c34 <= 0 
c43: y3 - c43 <= 0 

Bounds 
0 <= x1 <= 3 
... 

0 <= v3 <= 3 
0 <= c12 <= 3 

... 
0 <= c43 <= 3 
Integers 

c12 c21 c13 c31 c23 c32 c24 c42 c34 c43 
End 

Fig. 5.3. CPLEX code of the example for link-path notation 

 

Now we report other examples. First, we set the maximum number of installed 

capacity modules to 4, i.e. the following constraint is added to the model: 

• Link ab: 0 ≤ cab ≤ 4. 

In this case the solution is the same as in previous case (4800 euro/month). 

However, when we set the maximum number of installed capacity modules to 2, we 

obtain the network cost equal to 5600 euro/month. This follows from the fact that 

limited number of capacity modules enforces to route the demands on more expensive 

paths that include links with higher unit costs. Note that if we let the capacity variables 

to be continuous, we obtain for the previous case (limit of 2 modules) the network cost 

of 4450 euro/month. 

In further experiments we assume non-bifurcated flows, i.e., demand flow 

variables are binary. The link capacity can be continuous, i.e., the link modularity is not 

considered. If the maximum number of capacity modules is set to 2, there is no any 
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feasible solution. In the case when the maximum number of capacity modules is 3, the 

obtained cost is 4200 euro/month. If we assume for this case integer capacity variables 

(modular links) we obtain cost 5200 euro/month. Recall that in the same case, but for 

bifurcated flows the cost was 4800 euro/month. So the profit of using bifurcated flows 

is 400 euro/month. 

5.6. Exercises  

5.1. Can we use the Shortest-Path Allocation Rule for the Incremental Design Problem 

(5.1.12)-(5.1.24)? 

5.2. Can we use the Shortest-Path Allocation Rule for the Path Diversity Design 

Problem (5.2.1)-(5.2.4)? 

5.3. Rewrite the path diversity (5.2.1)-(5.2.4) to enforce that each demand uses exactly 

two paths. 

5.4. Can we use the Shortest-Path Allocation Rule for the Modular Link Design 

Problem (5.3.1)-(5.3.3)? 

5.5. Write the Modular Link Design Problem assuming that there are several possible 

sizes of the capacity module. 

5.6. Propose a method to calculate a lower bound for the Modular Link Design Problem. 

5.7. Construct a computational intelligence algorithm for a selected network design 

problem. 

5.8. Write and solve the Lagrangean relaxation for the Convex Design Problem with 

bifurcated flows. 

5.9. Propose a method to calculate a lower bound for the Convex Design Problem. 

5.10. Write the CPLEX code for all examples considered in Section 5.5. 
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6. Multicast Flows 

This chapter centers around modeling and optimization of computer networks with 

multicast flows. In traditional networks two basic techniques are used for routing: 

unicast (one-to-one) and broadcast (one-to-all). However, these methods are not 

effective when information is to be delivered to a relatively large group of users, 

geographically separated and with similar interest on content. The multicast – defined as 

one-to-many transmission from one node (called root) to a group of receiving nodes 

(terminals) – is perceived as an efficient method to realize the group transmission. 

Instead of using multiple unicast transmissions from the root node to each receiver, a 

special tree topology is constructed to minimize the network traffic. The same data is 

sent on each link only once, even if multiple receivers use this link to connect to the 

root. In recent years we can observe a growing popularity of multicasting due to the 

development of many new services including: IPTV, Video on Demand (VoD), radio 

streaming, Content Delivery Networks (CDN), distance learning, software updates, 

monitoring, result distribution in computing systems [BYL09], [HB05], [Min08], 

[SYB09], [Pen04], [SW05], [Tar10]. An example multicast tree is shown in Fig. 6.1. 

The node a is the root of the tree. There are four receivers: e, f, i and j. The constructed 

tree includes links (a, d), (d, e), (d, g), (d, h), (g, i), (g, j), (h, f).  

 

x root

d

a

c

e

b

h

g

f

i

j

x receiver

multicast tree
 

Fig. 6.1. Multicasting example 
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Multicast modeling can use two classical network problems: 

• Steiner tree problem. Given a set V of points (network nodes), interconnect them 

by a subgraph of shortest length (sum of the lengths of all edges). 

• Minimum Spanning Tree (MST) problem is a subgraph of the orginal graph 

(network), which is a tree (no loops) and connects all the vertices together. 

The difference between both problems is that in the Steiner tree problem extra 

intermediate vertices (Steiner vertices) and edges may be added to the graph in order to 

reduce the length of the spanning tree. 

Multicasting can be divided into two categories: 

• Traditional IP multicast – is a method to send packets to a group of interested 

receivers in a single transmission. The multicasting is applied in layer 3 and IP 

routers are responsible for creating the delivery tree. End hosts (receivers) are 

leafs of the tree. IP multicast uses the following protocols: 

o Protocol-Independent Multicast (PIM) – is a family of IP multicast 

protocols that provide one-to-many and many-to-many distribution of 

data over an IP network. PIM is protocol-independent, since it does not 

include its own topology discovery mechanism, but instead uses routing 

information supplied by other traditional routing protocols (e.g., BGP). 

o Internet Group Management Protocol (IGMP) – is a protocol used to 

manage the membership of IP multicast groups. IGMP is used by hosts 

and adjacent multicast routers to establish multicast group memberships. 

• Overlay multicast (Peer-to-Peer multicast, application-layer multicast) – is 

realized in the application layer. End hosts (receivers) can also upload the 

multicast stream to other nodes (peers).  

For more information on various aspects of multicasting refer to [Min08]. 

6.1. Modeling of Multicast Flows 

Multicast flows can be modeled in several ways. In this section we present four 

proposals of multicast formulations: 

• Canonical Formulation. 

• Flow Formulation. 

• Level Formulation. 
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• Candidate Tree Formulation. 

All formulations will be presented in the context of the flow allocation problem, i.e., an 

existing network with fixed link capacity is considered. However, the formulation can 

be used in other types of network optimization problems, e.g., capacity and flow 

optimization or resource location problems. 

The first presented formulation is called canonical [KM98]. The multicast 

transmission is modeled using the Steiner tree problem. For each network link (edge) e, 

there is a variable xe indicating whether e is in the Steiner tree (xe = 1) or not (xe = 0). 

The formulation uses cuts of the original network graph G = (V, E), where V denotes set 

of nodes and E set of links. Set T denotes set of terminals (receivers of the 

multicasting). We assume that δ(W) defines a graph cut induced by W⊆V, i.e., δ(W) 

includes a set of edges with the source node in set W and the destination node in its 

complement set (V \ W).  

 

Canonical Multicast Formulation 

sets 

V  network nodes 

E  links (directed edges) 

T  terminals (receivers) 

indices 

e  links (edges) 

constants 

δ(W) cut induced by W⊆V, including edges with the source node in W 

and the destination node in its complement (V \ W) 

s  root node of multicast tree 

hd  volume (bandwidth requirement) of multicasting 

ce  capacity of link e 

variables 

xe  = 1, if multicast tree uses link e; 0, otherwise (binary) 

subject to 

x(δ(W)) ≥ 1,   for all W⊂V,   s∈W,   (V \ W)∩T ≠ 0   (6.1.1) 

x(W) = ∑e∈W xe,       (6.1.2) 

xeh ≤ ce,   e ∈ E.       (6.1.3) 
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The most important element of the model is defined in (6.1.1) and (6.1.2), i.e., for every 

cut x(δ(W)) in the network between a subset of nodes W including the root node s and 

the complement set of nodes (V \ W) including at least one terminal node (receiver of 

the multicasting) must be at least one link (defined by x(δ(W))). This formulation 

assures that there is a path from the root node to every terminal node and consequently, 

each receiver is connected to the multicasting. Condition (6.1.3) is the capacity 

constraint that guarantees that the link flow (given by xeh) cannot exceed the link 

capacity. The main drawback of the canonical formulation is that the number of 

possible cuts grows exponentially with the network size (number of nodes). Note that 

the above problem does not include an objective function. However, various criterion 

functions defined on the multicast flows can be used, for more details see following 

subsections. Further information on the canonical formulation of multicasting refer to 

[KM98].  

To illustrate the canonical example we analyze the network presented in Fig. 6.1. 

For instance, set W = {a, b, c} induces a correct cut δ(W) = {(a, d), (b, f), (b, h), (c, e)}. 

Since link (a, d) is in the multicast tree, the condition (6.1.1) is satisfied, i.e., 

x(δ(W) ) = 1. Notice that if W = {a, b, c, d}, then x(δ(W) ) = 3. That is why the (6.1.1) 

condition is greater or equal 1. On the contrary, W = {c, e, i} is not feasible, since it 

does not include the root node a. Another example of incorrect set is 

W = {a, c, e, f, i, j}, as the complement set of nodes (V \ W) does not contain any 

receiving nodes. 

The next formulation – referred to as flow formulation – is based on the 

multicommodity flow formulation developed for unicast flows [DGR06], [LLJ05], 

[OPR06], [WL05], [WL07]. It is easy to notice that the node-link formulation 

developed for unicast flows can be modified for the use in the context of multicast 

flows. The network graph is defined by links indexed e = 1,2,…,E. The multicast 

demand is defined by a source node s and a set of terminal nodes (receivers) indexed by 

k = 1,2,…,K. The general idea underlying this approach is to define for every terminal 

node a unicast path connecting the root node and the terminal node. For this purpose we 

use a binary variable xek, which is 1, if multicast flow from the root to receiver k uses 

link e and 0 otherwise. However, this can lead to the fact that on some network links the 

same data issued by the root node is sent several times and consumes the network 
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bandwidth in an excessive way. Therefore, an additional binary variable xe associated 

with each link e is incorporated in the model to assure that the multicast flow goes 

through a link at most once. Variable xe equals 1, if multicast tree uses link e; 0, 

otherwise. 

 

Flow Multicast Formulation 

indices 

v = 1,2,…,V  network nodes 

e = 1,2,…,E  links 

k = 1,2,…,K  terminals (receivers) 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

s  root node of multicast tree 

h  volume (bandwidth requirement) of multicast 

ce  capacity of link e 

variables 

xek = 1, if multicast flow to receiver k uses link e; 0, otherwise  

xe  = 1, if multicast tree uses link e; 0, otherwise (binary) 

subject to 

∑e aevxek – ∑e bevxek = 1,   v = s   v = 1,2,…,V   k = 1,2,…,K  (6.1.4) 

∑e aevxek – ∑e bevxek = –1,   v = k   v = 1,2,…,V   k = 1,2,…,K (6.1.5) 

∑e aevxek – ∑e bevxek = 0,   v ≠ s,k    v = 1,2,…,V   k = 1,2,…,K (6.1.6) 

xek ≤ xe,   e = 1,2,…,E    k = 1,2,…,K     (6.1.7) 

xeh ≤ ce,   e = 1,2,…,E.      (6.1.8) 

 

Constraints (6.1.4)-(6.1.6) define unicast paths connecting the root node s and each 

terminal using the node-link formulation of multicommodity flows. Recall that the left-

hand side of constraints (6.1.4)-(6.1.6) is the total number of outgoing links minus the 

total number of incoming links of the unicast path defined for each network node v and 

each receiver k. Thus, if the considered node v is the root node s (6.1.4), the right-hand 

side must be 1. If the node v is a terminal node, it must be –1. Ale remaining nodes are 

transit nodes, and the flow balance must be 0. Constraint (6.1.7) is in the model to 
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assure that each link is used in the multicast at most one time. The variable xe is 

switched on, only if the particular link e is in the unicast path to at least one receiver k. 

Finally, (6.1.8) is a capacity constraint. 

To exemplify the flow formulation we use the network in Fig. 6.1. First, we 

analyze the flow conservation law (6.1.4)-(6.1.6). Let’s focus on a path between nodes a 

and e including links (a, d) and (d, e). Node a has one leaving multicast link (a, d), 

therefore constraint (6.1.4) is satisfied. The receiving node e contains one incoming 

multicast link (d, e), so constraint (6.1.5) holds. All other remaining nodes – according 

to condition (6.1.6) – has the same number of outgoing and incoming links. Next, notice 

that link (a, d) carries 4 unicast paths to receiving nodes e, f, i and j. However, the 

definition of binary variable xe (6.1.7) guarantees that the (a, d) link sends only one 

copy of the multicast flow and in the capacity constraint (6.1.8) the link (a, d) flow is 

equal to the volume of multicasting given by h. A similar situation is in the case of link 

(d, g) that carries two unicast paths to receivers i and j. 

The next formulation called level assumes that the multicast tree is divided into 

subsequent levels [Wal09a]. We assume that the root of the tree is located on level 1. 

All children of the root (nodes that have a direct link from the root) are located on level 

2. Summarizing, we assume that if a father node of v is on level l, then the v is located 

on level (l + 1). Comparing to the flow formulation, we denote network links in a 

different way, i.e., a pair of nodes (w,v) defines a network link from node w to node v. 

Additional binary constant e(w,v) denotes, if there is a direct link (w,v) in the network 

graph. To model the multicast tree we use a binary variable xwvl that is 1 only, if the link 

(w,v) is used in multicast tree and w is located on level l of the tree. As in the flow 

formulation, we use a variable xwv to denote if a link (w,v) is in the multicast tree. Note 

that this formulation is also referred to as layered graphs [GLU09]. 

The level formulation is used in the hop-constrained multicasting, i.e., there is an 

upper limit L on the number of hops between the root node and any other node 

[DGR06]. The motivation of this additional constraint to limit hop count is to improve 

the QoS (Quality of Service) parameters of the P2P multicasting including network 

reliability and transmission delay. 

 

Level Multicast Formulation 

indices 

v,w,b = 1,2,…,V network nodes 
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k = 1,2,…,K  terminals (receivers) 

l = 1,2,…,L  levels 

constants 

s  root node of multicast tree 

h  volume (bandwidth requirement) of multicast 

e(w,v)  =1, if there is a direct link (w,v) in graph; 0, otherwise 

cwv  capacity of link (w,v) 

variables 

xwvl = 1, if the link (w,v) is used in multicast tree and w is located on 

level l of the tree; 0, otherwise (binary) 

xwv  = 1, if multicast tree uses link e; (w,v), otherwise (binary) 

subject to 

∑w:e(w,v)=1 ∑l xwvl = 0,   v = s   v = 1,2,…,V    (6.1.9) 

∑w:e(w,k)=1 ∑l xwkl = 1,   k = 1,2,…,K     (6.1.10) 

∑v:e(w,v)=1 xwv1 = 0,   w ≠ s   w = 1,2,…,V    (6.1.11) 

xwv(l+1) ≤ ∑b xbwl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

l = 1,2,…,L – 1       (6.1.12) 

∑l xwvl ≤ xwv,    e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V  (6.1.13) 

xwv ≤ ∑l xwvl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V  (6.1.14) 

xwvh ≤ cwv,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V.   (6.1.15) 

 

Condition (6.1.9) assures that the root node s cannot download and multicast flow, i.e., 

the total flow on all links (w,v) (defined as e(w,v) = 1) entering node v = s must be zero. 

Constraint (6.1.10) guarantees that each receiving node k = 1,2,…,K must be connected 

to the multicast tree. To meet the requirement that a node w cannot be the parent of the 

first level link, if w is not the root node (w ≠ s) we add constraint (6.1.11). Condition 

(6.1.12) is in the model to assure that each node w cannot upload multicast flow to any 

other node v on level (l + 1), if w is not located on level l of the multicast tree. Notice 

that the right-hand side of (6.1.12) denotes the number of multicast links entering node 

w on level l. If there is none such link, the left-hand side of (6.1.12) must be 0. 

Constraints (6.1.13) and (6.1.14) are used to bind variables xwvl and xwv. (6.1.13) 

guarantees that if for any level l there is link between nodes w and v in the multicast tree 

(∑l xwv = 1), then xwv must be 1. (6.1.14) assures that if there is no link between nodes w 
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and v on any level l (∑l xwv = 1), consequently xwv is 1. Condition (6.1.15) is the capacity 

constraint. 

Now we analyze the level formulation in the context of the example network 

shown in Fig. 6.1. The root node a is located on level 1. Nodes b, d and f are on level 2. 

The next level 3 includes nodes e, g and h. Finally, remaining nodes f, i and j are on 

level 4. The multicast tree shown in Fig. 6.1 is defined by the following variables xwvl 

equal to 1: xad1, xde2, xdg2, xdh2, xgi3, xgj3, xhf3. All remaining xwvl variables are equal to 0. 

It is easy to check that these variables satisfy all constraints of the level formulation.  

The main advantage of the level formulation comparing to the flow formulation, 

is lower complexity expressed by the number of variables. Recall that the level 

formulation uses (EL + E) variables while the flow formulation includes (EK + E) 

variables (E is the number of links, K number of receivers, L number of levels). Usually 

the level number L is much lower than the number of receivers. 

The last formulation called candidate tree takes inspiration from the link-path 

modeling of unicast flows. We assume that there is a set candidate tree topologies 

connecting the same root node and all terminals (receivers) indexed p = 1,2,…,P. 

Continuous decision variable xp denotes the amount of multicast flow allocated to tree 

topology p.  

 

Candidate Tree Formulation 

indices 

e = 1,2,…,E links 

p = 1,2,…,P candidate trees 

constants 

δep = 1, if link e belongs to tree p; 0, otherwise 

h volume (bandwidth requirement) of multicast 

variables 

xp flow allocated to tree p (continuous non-negative) 

constraints 

∑p xp = h,       (6.1.16) 

∑p δepxph ≤ ce,   e = 1,2,…,E.     (6.1.17) 
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The model is very simple and includes only two conditions. The former constraint 

(6.1.16) assures that the whole volume of multicasting should be sent in the network. 

The latter one (6.1.1.7) is the capacity constraint. Note that in the above model we let 

the multicast flow to be split to many trees, however a nonsplitable version of the 

formulation can be easily written. The candidate tree formulation has the same 

shortcomings as analogous unicast link-path modeling. First, if the set of candidate trees 

is not selected in a proper way, the obtained solution has no guarantee to be optimal in a 

global way. Second, since the number of all possible trees can be enormous, some 

methods to limit the set of candidate trees are required. 

6.2. Cost Problem 

The first problem we will formulate has the objective to minimize the routing cost of 

multicasting. For each link between nodes w and v a constant ζwv denotes the cost of 

using this link in the multicasting. The criterion function is defined as the total cost of 

all links included in the multicast tree scaled by the amount of flow carried on the link. 

We assume that the multicast flow can be split to multiple trees indexed t = 1,2,…,T, 

however the number of used trees is upper bounded. Moreover, the volume of 

multicasting on each tree denoted by ht is given. In the model the level formulation is 

applied. 

 

Multicast Cost Problem 

indices 

v,w,b = 1,2,…,V network nodes 

k = 1,2,…,K  terminals (receivers) 

l = 1,2,…,L  levels 

t = 1,2,…,T  trees 

constants 

s  root node of multicast tree 

ht  volume (bandwidth requirement) of multicast tree t 

e(w,v)  =1, if there is a direct link (w,v) in graph; 0, otherwise 

cwv  capacity of link (w,v) 

ζwv  routing cost of link (w,v) 
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variables 

xwvtl = 1, if the link (w,v) is used in multicast tree t and w is located on 

level l of the tree; 0, otherwise (binary) 

xwvt  = 1, if multicast tree t uses link (w,v), 0, otherwise (binary) 

objective 

minimize F = ∑w ∑v ∑  xwvthtζwv     (6.2.1) 

subject to 

∑w:e(w,v)=1 ∑l xwvtl = 0,   v = s   v = 1,2,…,V   t = 1,2,…,T  (6.2.2) 

∑w:e(w,k)=1 ∑l xwktl = 1,   k = 1,2,…,K   t = 1,2,…,T   (6.2.3) 

∑v:e(w,v)=1 xwvt1 = 0,   w ≠ s   w = 1,2,…,V   t = 1,2,…,T  (6.2.4) 

xwvt(l+1) ≤ ∑b xbwtl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

l = 1,2,…,L – 1   t = 1,2,…,T      (6.2.5) 

∑l xwvtl ≤ xwvt,    e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

t = 1,2,…,T        (6.2.6)  

xwvt ≤ ∑l xwvtl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

t = 1,2,…,T        (6.2.7) 

∑t xwvtht ≤ cwv,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V.   (6.2.8) 

 

The objective function (6.2.1) denotes the multicast routing cost. Constraints (6.2.2)-

(6.2.8) are equivalent to the level formulation (6.1.9)-(6.1.15). The only modification 

follows from the fact that multiple trees can be used. Therefore, constraints (6.2.2)-

(6.2.7) are repeated for each tree. In the capacity constraint, the left-hand side includes 

the sum over all trees. Note that the above problem is linear, integer (binary) and NP-

complete (equivalent to the Steiner tree problem).  

6.3. Network Design Problem 

In this section we show a multicast version of the network design problem. Both link 

capacity and multicast flows are to be optimized in order to minimize the network cost 

defined as cost of selected links. We assume that several multicast demands 

d = 1,2,…,D are to be served in the network. Each demand d is defined by the root node 

sd, set of receivers indexed k = 1,2,…,Kd and volume hd. We use the flow formulation 

and modular link modeling. 
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Multicast �etwork Design Problem 

indices 

d = 1,2,…,D  multicast demands  

v = 1,2,…,V  network nodes 

e = 1,2,…,E  links 

k = 1,2,…,Kd  terminals (receivers) of demand d 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

sd  root node of multicast demand d 

hd  volume (bandwidth requirement) of multicast demand d 

ξe  cost of one capacity module on link e 

M  size of the link capacity module 

variables 

xedk = 1, if multicast flow of multicast demand d to receiver k uses link 

e; 0, otherwise (binary) 

xed  = 1, if multicast demand d uses link e; 0, otherwise (binary) 

ye capacity of link e as the number of modules (non-negative 

integer) 

objective 

minimize F = ∑e ξeye       (6.3.1) 

subject to 

∑e aevxedk – ∑e bevxedk = 1,   v = sd   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.3.2)  

∑e aevxedk – ∑e bevxedk = –1,   v = k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.3.3)  

∑e aevxedk – ∑e bevxedk = 0,   v ≠ sd,k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.3.4)  

xedk ≤ xed,   e = 1,2,…,E   d = 1,2,…,D    k = 1,2,…,Kd  (6.3.5) 

∑d xedh ≤ Mye,   e = 1,2,…,E.       (6.3.6) 

 

The objective is the cost of link capacity. Constraints (6.3.2)-(6.3.5) are equivalent to 

the flow formulation (6.1.4)-(6.1.7), however additional demand index d is included. 
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The capacity constraint is modified on both sides. The left-hand side defines the link 

flow as a sum over all multicast demands that use the particular link. The right-hand 

side of the capacity constraint is calculated according to the selected number of modules 

to be installed on this link. The problem belongs to the class of linear integer programs. 

Moreover, since it is NP-complete (equivalent to the Steiner tree problem). 

6.4. Maximum Delay Problem 

The next problem has the objective to minimize the maximum delivery delay taking into 

account all receivers of the multicasting. We apply the flow formulation, since it is 

impossible to define the maximum delay function in the level formulation. We assume 

that each link e = 1,2,…,E is associated with a communication delay ζe given in 

milliseconds. For each receiving node k = 1,2,…,K we can calculate the arrival latency 

of k taking into account the whole path from the root of tree t to k using formula 

∑e xekζe. Recall that variable xek is 1, if multicast flow to receiver k uses link e and 0 

otherwise. The overall goal is to minimize the maximum value of this delay over all 

receiving nodes.  

 

Multicast Maximum Delay Problem 

indices 

v = 1,2,…,V  network nodes 

e = 1,2,…,E  links 

k = 1,2,…,K  terminals (receivers) 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

s  root node of multicast tree 

h  volume (bandwidth requirement) of multicast 

ce  capacity of link e 

ζe  delay of link e 

variables 

xek = 1, if multicast flow to receiver k uses link e; 0, otherwise  

xe  = 1, if multicast tree uses link e; 0, otherwise (binary) 

x  maximum delay (non-negative continuous) 

objective 
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minimize x        (6.4.1) 

subject to 

∑e aevxek – ∑e bevxek = 1,   v = s   v = 1,2,…,V   k = 1,2,…,K  (6.4.2) 

∑e aevxek – ∑e bevxek = –1,   v = k   v = 1,2,…,V   k = 1,2,…,K (6.4.3) 

∑e aevxek – ∑e bevxek = 0,   v ≠ s,k    v = 1,2,…,V   k = 1,2,…,K (6.4.4) 

xek ≤ xe,   e = 1,2,…,E    k = 1,2,…,K     (6.4.5) 

xeh ≤ ce,   e = 1,2,…,E      (6.4.6) 

∑e ζexek ≤ x,   k = 1,2,…,K.      (6.4.7) 

 

The novelty of the above model comparing against the flow formulation presented in 

Section 6.1 is a new variable x that denotes the maximum delay. A new condition 

(6.4.7) is formulated to define x as the upper bound of delays over all receivers 

k = 1,2,…,K. As previous problems, the maximum delay problem is linear, integer 

(binary) and NP-complete (equivalent to the Steiner tree problem). 

6.5. Throughput Problem 

The next objective function we consider is the system throughput, i.e., we want to 

maximize the aggregate receiving rate at each participating node [WL07]. We assume 

as in Section 6.2 that the multicast flow is transmitted using several trees t = 1,2,…,T. 

For each tree t we have an additional variable qt denoting the volume (throughput) of 

the tree. The objective is to maximize the overall throughput defined by ∑t qt. To 

formulate the problem we use a modified version of the level formulation. However, 

note also that the flow formulation can be applied in this case, but some extra flow 

variables will be required what additionally complicates the model. The main 

modification of the level formulation presented in Section 6.1 is that the xwvtl variable 

denotes the streaming rate on an link (w,v) in multicast tree t and w is located on level l 

of tree t. Consequently, the variable xwvtl is in this case continuous.  

 

Multicast Throughput Problem 

indices 

v,w,b = 1,2,…,V network nodes 

k = 1,2,…,K  terminals (receivers) 

l = 1,2,…,L  levels 
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t = 1,2,…,T  trees 

constants 

s  root node of multicast tree 

e(w,v)  =1, if there is a direct link (w,v) in graph; 0, otherwise 

cwv  capacity of link (w,v) 

M  large number 

variables 

xwvtl streaming rate on an overlay link (w,v) (no other nodes in 

between) in multicast tree t and w is located on level l of tree t; 

(continuous, non-negative) 

xwvt = 1, if multicast tree t uses link (w,v); 0, otherwise (binary) 

qt throughput (bandwidth requirement) of tree t (continuous, non-

negative) 

objective 

maximize F = ∑t qt       (6.5.1) 

subject to 

∑w:e(w,v)=1 ∑l xwvtl = 0,   v = s   v = 1,2,…,V   t = 1,2,…,T  (6.5.2) 

∑w:e(w,k)=1 ∑l xwktl = qt,   k = 1,2,…,K   t = 1,2,…,T   (6.5.3) 

∑v:e(w,v)=1 xwvt1 = 0,   w ≠ s   w = 1,2,…,V   t = 1,2,…,T  (6.5.4) 

xwvt(l+1) ≤ ∑b xbwtl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

l = 1,2,…,L – 1   t = 1,2,…,T      (6.5.5) 

∑l xwvtl ≤ Mxwvt,    e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

t = 1,2,…,T        (6.5.6)  

xwvt ≤ ∑l xwvtl,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V    

t = 1,2,…,T        (6.5.7) 

∑t∑l xwvtl ≤ cwv,   e(w,v) = 1   w = 1,2,…,V   v = 1,2,…,V.  (6.5.8) 

 

The objective (6.5.1) is the system throughput. The modification of the model can be 

observed in (6.5.3). Note that the right-hand side of constraint (6.5.3) is the throughput 

of tree t, i.e., the amount of flow that must receive each receiver. The next change is in 

(6.5.6) – the large number M is used to bind variables xwvtl and xwvt. Finally, in the 

capacity constraint (6.5.8) we calculate the link flow (right-hand side) as the sum over 
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all trees t and levels l. The above problem is linear, mixed integer (binary) and NP-

complete (equivalent to the Steiner tree problem). 

6.6. Multicast Packing Problem 

In this section we address the problem of capacity planning in a network with multicast 

flows. The idea is to minimize the maximum network congestion defined as the 

maximum link load. As in Section 6.3, there are several multicast demands d = 1,2,…,D 

in the network, described by the root node sd, set of receivers indexed k = 1,2,…,Kd and 

volume hd. The considered problem – called multicast packing problem – has attracted 

considerable attention from researchers in the area of multicast [OPR06]. In the 

formulation we apply the flow modeling of multicast flows. 

 

Multicast Packing Problem 

indices 

d = 1,2,…,D  multicast demands  

v = 1,2,…,V  network nodes 

e = 1,2,…,E  links 

k = 1,2,…,Kd  terminals (receivers) of demand d 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

sd  root node of multicast demand d 

hd  volume (bandwidth requirement) of multicast demand d 

M  size of the link capacity module 

variables 

xedk = 1, if multicast flow of multicast demand d to receiver k uses link 

e; 0, otherwise (binary) 

xed  = 1, if multicast demand d uses link e; 0, otherwise (binary) 

λ maximum link congestion (continuous, non-negative) 

objective 

minimize λ        (6.6.1) 

subject to 

∑e aevxedk – ∑e bevxedk = 1,   v = sd   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.6.2)  
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∑e aevxedk – ∑e bevxedk = –1,   v = k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.6.3)  

∑e aevxedk – ∑e bevxedk = 0,   v ≠ sd,k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.6.4)  

xedk ≤ xed,   e = 1,2,…,E   d = 1,2,…,D    k = 1,2,…,Kd  (6.6.5) 

∑d xedh ≤ λ,   e = 1,2,…,E.       (6.6.6) 

 

The above formulation is analogous to Multicast Network Problem (6.3.1)-(6.3.6). Note 

that the capacity constraint (6.6.6) is used to define the maximum link congestion 

considering all links e. The multicast packing problem belongs to the class of linear 

MIP problems and is NP-complete. For more details on this problem see [OPR06] and 

references therein. 

6.7. Root Location Problem 

Previous multicast tasks formulated above belong to flow allocation or capacity and 

flow allocation problems. Now we show a location, capacity and flow allocation 

problem related to multicast flows called Root Location Problem. The overall 

formulation is an extension of the Multicast Network Design Problem presented in 

Section 6.3. We are given a set multicast demands d = 1,2,…,D . Each demand is 

defined by a set of receivers k = 1,2,…,Kd and volume hd. For each demand we are to 

select the location of the root node. Thus, we define a binary variable zdv, which is 1, if 

node v is the root of multicast demand d; 0, otherwise. Moreover, we optimize multicast 

transmission using the flow notation (variables xedk and xdk) and the link capacity 

(variable ye). We use modular modeling of links.  

 

Multicast Root Location Problem 

indices 

d = 1,2,…,D  multicast demands  

v = 1,2,…,V  network nodes 

e = 1,2,…,E  links 

k = 1,2,…,Kd  terminals (receivers) of demand d 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 
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hd  volume (bandwidth requirement) of multicast demand d 

ξe  cost of one capacity module on link e 

M  size of the link capacity module 

variables 

xedk = 1, if multicast flow of multicast demand d to receiver k uses link 

e; 0, otherwise (binary) 

xed  = 1, if multicast demand d uses link e; 0, otherwise (binary) 

ye capacity of link e as the number of modules (non-negative 

integer) 

zdv = 1, if node v is the root of multicast demand d; 0, otherwise 

(binary) 

objective 

minimize F = ∑e ξeye       (6.7.1) 

subject to 

∑e aevxedk – ∑e bevxedk = zdv,   v ≠ k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.7.2)  

∑e aevxedk – ∑e bevxedk = –1,   v = k   v = 1,2,…,V   d = 1,2,…,D 

k = 1,2,…,Kd        (6.7.3)  

xedk ≤ xed,   e = 1,2,…,E   d = 1,2,…,D    k = 1,2,…,Kd  (6.7.4) 

∑d xedh ≤ Mye,   e = 1,2,…,E       (6.7.5) 

∑v zdv = 1,   d = 1,2,…,D.      (6.7.6) 

 

Comparing the above formulation against the Multicast Network Design Problem 

(6.3.1)-(6.3.6), we modified the flow conservation constraint. In the case when the 

considered node is the receiving node (v = k), then the left-hand side must be –1 

(constraint (6.7.3)). If the considered node is not the receiving node (v ≠ k), then the 

left-hand side is equal to zdv. Note that if node v is selected as the root node (zdv = 1), 

then the left-hand side of (6.7.2) is 1, and it is equivalent to constraint (6.3.2). 

Otherwise, if node v is not selected as the root node (zdv = 0), we obtain the same 

constraint as (6.3.4). We assume that the root node cannot be located in any receiver 

node, i.e. zdv = 0 for each v = k, k = 1,2,…,Kd. The additional condition (6.7.6) assures 

that for each demand d exactly one root node is selected. 
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6.8. Exercises  

6.1. Add to the flow formulation constraint to limit the number of levels (hop count) of 

the tree. 

6.2. Compare the flow and level formulations in terms of the constraint number. 

6.3. Reformulate the candidate tree formulation (6.1.16)-(6.1.17) to limit the maximum 

portion of the multicast flow sent on one tree. 

6.4. Write the Network Design Problem to optimize jointly unicast and anycast flows. 

6.5. Write the Multicast Network Design Problem using the level formulation. 

6.6. Write the Multicast Throughput Problem using the flow formulation. 

6.7. Write the Root Location Problem as a location and flow assignment problem with 

fixed link capacity. Moreover, the root of each demand is selected among a given subset 

of candidate location. 

6.8. Construct a computational intelligence algorithm for a selected multicast problem. 
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7. Anycast Flows 

Anycast is a one-to-one-of-many technique to deliver a packet to one of many hosts and 

it is considered as a natural transmission technique for the case when some content is 

replicated in many various locations of the network. Therefore, concurrently to robust 

development of the Internet, anycast paradigm has been becoming popular. Anycasting 

– as a whole – is a complicated approach and successful implementation of anycasting 

requires solving of many problems, e.g. replica location, replica ranking, replica 

consistency, redirection of requests, accounting, security, routing [HB05], [Rab98]. In 

this chapter we focus mainly on one aspects of anycast approach, i.e., optimization of 

anycast flows. Moreover, a connection-oriented network is considered, since currently 

computer networks apply connection-oriented technologies like MPLS and DWDM.  

Anycasting is mainly associated with caching and replication systems. One of 

the most famous caching technology that applies anycast traffic is Content Delivery 

Network (CDN). CDN is defined as mechanisms to deliver a range of content to end 

users on behalf of origin Web servers. The original information is offloaded from 

source sites to other content servers located in different locations in the network. For 

each request, the CDN tries to find the closest server offering the requested Web page. 

The CDN delivers the content from the origin server to the replicas that are much closer 

to end-users. The set of content stored in CDNs’ servers is selected carefully. Thus, the 

CDNs’ servers can approach the hit ratio of 100%. It means that almost all request to 

replicated servers are satisfied [HB05], [Pen04], [Wal10a]. Another examples of 

techniques that apply anycasting are Domain Name Service (DNS), Peer-to-Peer (P2P) 

systems, grids, web service, distributed database systems, host auto-configuration, 

overlay networks, wireless sensor networks, video streaming, telemedicine, etc. 

[ABS03], [BY08], [HB05], [SW05], [SW05]. 

The anycast demand (request) in connection-oriented networks can be modeled 

in two ways: reduced and standard [Wal10a]. In the former case, we make use of the 

important feature of many anycast systems, i.e., asymmetry of flow [HB05]. Since 

anycasting is strongly related to caching and replication of content in the network, in 

most cases access to this content is asymmetric. More precisely, a typical user usually 

fetches much more data from the replica, than sends to the replica. This phenomenon 

can be observed in everyday use of the Internet – most of ISPs’ clients use asymmetric 

access lines (e.g. ADSL). Consequently, the reduced model of anycast demand includes 
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only one connection – the downstream one (from the replica server to the client). For 

the sake of simplicity we assume that the network node to which the replica server is 

connected is equivalent with this server, i.e., we do not take into account the physical 

connection between the server and backbone network router. The same case is in the 

context of the client – our model includes only backbone network node to which the 

client is connected. The upstream connection (from the client to the replica server) 

applied to carry client’s requests is ignored, due to the fact that bandwidth requirement 

of upstream connection is much smaller than of the downstream connection. Therefore, 

in the reduced model, an anycast demand is defined by the following triple: client node, 

set of admissible replica servers and downstream bandwidth requirement (demand 

volume). In contrast, recall that the unicast demand is defined by a following triple: 

origin node, destination node and bandwidth requirement. To illustrate the anycast 

modeling we present a simple example shown in Fig. 7.1. There are two replica servers 

located in (connected to) nodes a and f. Two clients are in nodes e and j. In the case of 

the reduced model, client node e uses only downstream path (a, c, e). Correspondingly, 

client node j is connected to replica node f using downstream path (f, b, h, j). 

In the standard model the anycast request consists of two demands: one from the 

client to the server (upstream) and the second one in the opposite direction 

(downstream). Thus, each anycast request is defined by a following quartet: client node, 

set of admissible replica servers, demand volume and the index of the associated 

demand. If the considered anycast demand d is a downstream (upstream), then the 

associated demand τ(d) is upstream (downstream). Both associated demands d and τ(d) 

of the same request must connect the same pair of nodes: the client node and the 

selected replica node. For ease of reference, in the remainder of this chapter we will call 

this requirement as anycast constraint. To establish an anycast demand two phases can 

be applied. The first step is the server selection process – the client must choose among 

one replica server that will provide the requested content. Next, when the replica node is 

selected, paths for both associated demands (upstream and downstream) can be 

calculated analogously to the unicast approach. Recall that to establish a unicast demand 

in connection-oriented networks, a path satisfying the requested volume and connecting 

origin and destination nodes must be found. Looking at the Fig. 7.1, we can see that 

client node e uses upstream path (e, d, a), while client node j uses upstream path (j, f). 

 

85



 

d

a

c

e

b

h

g

f

i

j
x

replica
node

x
client 
node

downstream path
upstream path

 
Fig. 7.1. Anycasting example 

 

The main advantage of the reduced model is – comparing to the standard model 

– lower complexity, since for each anycast demand only one connection is to be set. 

However, the standard model enables more accurate modeling and next optimization of 

anycast flows [Wal10a].  

7.1. Modeling of Anycast Flows 

Anycast flows can be modeled in different ways. In this section we show three 

proposals of anycast formulations [Wal10a]: 

• Link-path formulation reduced model. 

• Link-path formulation standard model. 

• Node-link formulation standard model. 

All these formulations will be presented as the flow allocation problem, i.e., it is 

assumed that the network is an operational state with fixed link capacity. Nevertheless, 

each formulation can be easily modified to other network optimization problems, e.g., 

capacity and flow optimization or resource location problems. 

The first formulation uses the link-path notation and reduced modeling of 

anycast flows. Since the reduced model is applied, only demands from the replica server 
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node to the client node are considered. Anycast demand d = 1,2,…,D is defined by: the 

client node, set of candidate paths p = 1,2,…,Pd and volume hd. Since we use the 

reduced model and only downstream connection are considered, each candidate path 

originates at the replica node and terminates at the client node. Note that any of replica 

nodes can be used as the origin node. In this way we model the anycast flow – the 

selection of one of candidate paths also determines the selection of the replica node. 

Thus, the anycast demand can be assigned to any replica servers. Recall that in the 

context of unicast flows, candidate paths connect always the same pair of nodes 

defining the particular unicast demand. 

To illustrate the candidate path set for the reduced model we consider the 

example network shown in Fig. 7.1. In the context of the client node e the following 

candidate paths can be feasible: (a, c, e), (a, d, e), (a, d, g, i, e), (f, h, d, e), (f, j, i, e). 

Note that three first paths are connected to replica node a, two other paths uses replica 

node f. 

 

Link-Path Reduced Anycast Formulation 

indices 

d = 1,2,…,D  anycast demands (from replica to client) 

p = 1,2,…,Pd candidate paths for flows realizing demand d connecting 

the replica server node and the client node 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (7.1.1) 

∑d∑p δedpxdphd ≤ ce,   e = 1,2,…,E.     (7.1.2) 

 

Note that the above formulation is very similar to the unicast link-path formulation. The 

constraints (7.1.1)-(7.1.2) are the same: the former one defines the non-bifurcated 
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multicommodity flows, the latter one is the capacity constraint. However, the 

construction of the candidate path set is different comparing to the unicast formulation. 

This follows from the fact that one of the end nodes of the anycast demand (in this case 

the origin node) is to be selected among a set of possible nodes. In the link-path 

formulation, the candidate path set includes paths connecting the client node and 

different replica nodes. In contrast, the candidate path for a unicast path always 

connects the same pair of nodes.  

Next two formulations refer to the standard model and include anycast 

connection in both directions (downstream and upstream). First, we will show the link-

path formulation of the standard model. Anycast demands d = 1,2,…,D are of two 

types: downstream and upstream. For each downstream (upstream) demand d there is an 

associated upstream (downstream) demand τ(d). For each demand d we are given a set 

of candidate paths. If d is an upstream demand, candidate paths p = 1,2,…,Pd origin at 

one of the replica nodes and terminate at the client node. On the other hand, if d is an 

downstream demand, candidate paths p = 1,2,…,Pd connect the client node and one of 

the replica nodes.  

 

Link-Path Standard Anycast Formulation 

indices 

d = 1,2,…,D anycast demands. A demand can be of two types: 

upstream (from the client to a replica) or downstream 

(from a replica to the client)  

p = 1,2,…,Pd candidate paths for flows realizing demand d. If d is an 

upstream demand, path p connects the client node and the 

replica node. If d is a downstream demand, candidate 

paths connect the replica node and the client node 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 
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τ(d) index of a demand associated with demand d. If d is a 

downstream demand, thenτ(d) must be an upstream connection 

and vice versa 

s(p)  source (origin) node of path p 

t(p)  destination node of path p 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (7.1.3) 

∑d∑p δedpxdphd ≤ ce,   e = 1,2,…,E     (7.1.4) 

∑p xdps(p) = ∑p xdτ(p)t(p),   d = 1,2,…,D.    (7.1.5) 

 

Note that constraints (7.1.3) and (7.1.4) are the same as in the reduced formulation. The 

novelty is that the set of anycast demands include both upstream and downstream 

demands and analogously sets of candidate paths are constructed. Moreover, the anycast 

constraint (7.1.5) assures that both associated demands d and τ(d) connect the same pair 

of nodes, i.e., both associated anycast demands use the same replica server. The left-

hand side of (7.1.5) is equal to the index of the source (origin) node selected for demand 

d. Similarly, the right-hand side of (7.1.5) is equal to the index of the destination node 

chosen for demand τ(d).  

The next formulation of the standard model uses the link-node notation. For each 

demand one of the end nodes is fixed, i.e., the client node. In the context of the 

downstream demand d, the client node is the destination node denoted as td. In the case 

of the upstream demand d, the client node equals the source node sd. Note that constant 

ds(d) (us(d)) is 1, if demand d is downstream (upstream). Moreover, r(v) is 1, if node v 

hosts the replica server. Binary variable xed denotes the non-bifurcated anycast flow and 

is 1, if demand d uses link e. Additional binary variable zvd equals 1, if node v is selected 

as the replica node of demand d. 

 

�ode-Link Standard Anycast Formulation 

indices  
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d = 1,2,…,D anycast demands. A demand can be of two types: 

upstream (from the client to a replica) or downstream 

(from a replica to the client)  

e = 1,2,…,E  network links 

v = 1,2,…,V  network nodes 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

r(v)  = 1, if v is a replica node; 0, otherwise 

sd  source node of demand d (client node for upstream demand) 

td destination node of demand d (client node for downstream 

demand) 

τ(d) index of a demand associated with demand d. If d is a 

downstream demand, thenτ(d) must be an upstream connection 

and vice versa 

ds(d)  = 1, if d is a downstream demand; 0, otherwise 

up(d)  = 1, if d is an upstream demand; 0, otherwise 

variables 

xed  = 1, if link e is used to realize demand d; 0, otherwise (binary) 

zvd  = 1, if replica v is selected for demand d; 0, otherwise (binary) 

subject to 

∑e aevxed – ∑e bevxed = zvd,   if r(v) = 1, ds(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.1.6) 

∑e aevxed – ∑e bevxed = –1,   if v = td, ds(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.1.7) 

∑e aevxed  ∑e bevxed = 0,   if v ≠ td, r(v) = 0, ds(d) = 1,    

d = 1,2,…,D   v = 1,2,…,V      (7.1.8) 

∑e aevxed – ∑e bevxed = 1,   if v = sd, us(d) = 1,    

d = 1,2,…,D   v = 1,2,…,V      (7.1.9) 

∑e aevxed – ∑e bevxed = –zvd,   if r(v) = 1, us(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.1.10) 

∑e aevxed – ∑e bevxed = 0,   if v ≠ sd, r(v) = 0, us(d) = 1, 

                                                          d = 1,2,…,D   v = 1,2,…,V (7.1.11) 
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∑d xed ≤ ce,   e = 1,2,…,E.      (7.1.12) 

zvd = zvτ(d),   d = 1,2,…,D   v = 1,2,…,V    (7.1.13) 

∑v:r(v)=1 zvd = 1,   d = 1,2,…,D.     (7.1.14) 

 

Notice that the flow conservation constraints are formulated separately for downstream 

and upstream demands. Conditions (7.1.6)-(7.1.8) relate to downstream demands. 

(7.1.6) is defined for nodes that host the replica server (r(v) = 1). If the current node v is 

selected as the replica node for demand d (zvd = 1), then node v is the source node of 

demand d and the left-hand side of (7.1.6) is 1. Otherwise, if node v is not chosen as the 

replica node of demand d (zvd = 0), the node v is a transit node and the left-hand side of 

(7.1.6) is 0. (7.1.7) defines the flow conservation law for the destination node of the 

downstream demand d (i.e., the client node). For all other nodes, constraint (7.1.8) is 

applied. Notice that there are no clients located in replica nodes, more precisely, such 

clients are connected to the replica by a local connection and this flow is not to be sent 

in the backbone network. In analogous way, we define the constraints in the context of 

upstream demands (7.1.9)-(7.1.11). However, if v is the source node (i.e., client node) 

of demand d (v = sd), then the left-hand side is 1. In (7.1.10) we consider a replica node 

(r(v) = 1), and the left-hand side is 1, if the current node v is the selected replica node 

(zvd = 1) or it is 0, if the current node v is only a transit node (zvd = 0). Finally, constraint 

(7.1.11) is formulated for all nodes that are neither the source nor the replica node. 

(7.1.12) is the capacity constraint. Condition (7.1.13) is in the model to assure that both 

associated demands d and τ(d) use the same replica server. The last constraint (7.1.14) 

guarantees that each demand is assigned to exactly one replica server. 

To exemplify the flow formulation we use the network in Fig. 7.1. For the sake 

of simplicity, we assume that the downstream demand of client node e is indexed d = 1 

and the upstream demand of client node e is indexed d = 2. Note that both associated 

demands d = 1 and d = 2 are connected to replica node a, consequently ze1 = 1 and 

ze2 = 1, according to constraints (7.1.13)-(7.1.14). Now we analyze the flow 

conservation constraints for downstream demands. Constraint (7.1.6) is formulated for 

replica nodes a and f. Note that in the case of node a the left hand side of (7.1.6) is 1, 

since node a is the source (replica) node of demand d = 1. Condition (7.1.7) is defined 

for the client node e (destination node of the demand d = 1). Finally, constraint (7.1.8) 
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holds for all other remaining nodes, i.e., b, c, d, g, h, i, j. In analogous way we can 

analyze the upstream constraints (7.1.9)-(7.1.11). 

7.2. Flow Allocation Problem 

First, we formulate a flow allocation problem, however we assume joint optimization of 

unicast and anycast flows. The motivation behind such assumption is that we want to 

make our analysis more realistic - in real networks usually various types of network 

flows (e.g., unicast and anycast) are transmitted simultaneously. The network we 

consider is an existing backbone network. In many cases the network is in an 

operational phase and augmenting of its resources (links, capacity, replica servers) or 

changing location of replica servers is not possible in a short time perspective. 

Therefore, only network flows are optimized. We use the standard model and link-path 

formulation. Since both unicast and anycast flows are considered, the demand 

d = 1,2,…,D can be of three types: unicast, downstream anycast and upstream anycast. 

For ease of notation anycast demands are indexed d = 1,2,…,A, while unicast demands 

use indices d = A+1,…,D. If d is a unicast demand, candidate paths p = 1,2,…,Pd 

connect the origin and destination node of the demand. In the case of anycast upstream 

connection, candidate paths origin at the client node and terminate at the server. Finally, 

for anycast downstream connection, candidate paths connect the server and the client 

node. Since, there can be many replica servers located in the network, the set of 

candidate paths of anycast connections includes routes to all replica servers. To connect 

both demands associated with the same anycast request (client node) we introduce a 

constant τ(d), which denotes index of the demand associated with demand d. If d is a 

downstream demand τ(d) must be an upstream demand and vice versa. The objective 

function is the network delay introduced in Section 4.2.  

 

Unicast and Anycast Delay Problem 

indices 

d = 1,2,…,D  demands 

d = 1,2,…,A  anycast demands (upstream and downstream)  

d = A+1,…,D  unicast demands 

p = 1,2,…,Pd candidate paths for flows realizing demand d. If d is an 

upstream demand, path p connects the client node and the 

replica node. If d is a downstream demand, candidate 
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paths connect the replica node and the client node. If d is a 

unicast demand, candidate paths connect the origin and 

destination nodes of the demand 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

τ(d) index of a demand associated with demand d. If d is a 

downstream demand, thenτ(d) must be an upstream connection 

and vice versa 

s(p)  source (origin) node of path p 

t(p)  destination node of path p 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

fe  flow on link e (continuous non-negative) 

objective 

minimize F = ∑e  fe / (fe – ce)      (7.2.1) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (7.2.2) 

fe = ∑d∑p δedpxdphd,   e = 1,2,…,E.     (7.2.3) 

fe ≤ ce,   e = 1,2,…,E       (7.2.4) 

∑p xdps(p) = ∑p xdτ(p)t(p),   d = 1,2,…,A.    (7.2.5) 

 

The general formulation of the above problem is analogous to the Non-bifurcated Flow 

Allocation Delay Problem (4.3.3)-(4.3.6) presented in Section 4.3. However, note that 

the demand set includes both unicast and anycast demands. Consequently, the candidate 

path sets contain appropriate paths. The main modification is an additional anycast 

constraint (7.2.5) defined only for anycast demands d = 1,2,…,A and assuring that a pair 

of associated demands d and τ(d) use the same replica node. 

Now we will present a heuristic algorithm based on the flow deviation approach 

for the Unicast and Anycast Delay Problem [Wal08a], [Wal08b], [Wal10a]. First, we 

introduce necessary notation. Selection X is a set of all variables xdp that are equal to 1. 
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X determines the unique set of currently selected paths. Let DEL(H) denotes the delay 

function for a feasible selection H. le is a link metric calculated as partial derivative of 

the delay function and formulated in (4.2.7). Operator first(B) returns the index of first 

connection in set B. F and H are selections. DU6 is a set of all unicast demands, DDS is a 

set of all downstream anycast demands and D
UP is a set of all upstream anycast 

demands. 

 

Algorithm CFA_DEL (uniCast and anyCast Flow Deviation for DEL function) 

Step 1. Find feasible selection X1. Set r = 1, and go to 2. 

Step 2. Compute SR(Xr), defined as the set of shortest routes under metric le (4.2.7) for 

each demand d. For each unicast demand d∈D
U6 find the shortest route pU6(d) 

under metric le. For each anycast downstream demand d∈D
DS find the shortest 

route pDS(d) under metric le. Next for each anycast upstream demand d∈D
US find 

the shortest route pUS(d) under metric le for which the following condition is 

satisfied s(pUS(d)) = t(pDS(τ(d))). 

Step 3. Set H = Xr and let K be a set of all demands. 

a) Find d = first(K). If d∈D
U6, set F = (H – {xdj}) ∪ {xdk}, where xdj∈H and 

xdk∈SR(Xr). Otherwise, if d∈P
A6 set F = (H – {xdj}) ∪ {xdk}, where xdj∈H and 

xdk∈SR(Xr) and next set F = (H – {xτ(d)j’}) ∪ {xτ(d)k’}, where xτ(d)j’∈H and 

xτ(d)k’∈SR(Xr). 

b) If F is a feasible selection and DEL(G) < DEL(H), let H = G. 

c) Set K = K – {d}. If K = ∅, go to 4. Otherwise, go to 3a. 

Step 4. If H = Xr, stop. The algorithm cannot improve the solution any further. 

Otherwise, let Xr+1 = H, r = r + 1 and go to 2. 

 

Algorithm CFD_DEL is related to FD algorithm for non-bifurcated flows described in 

Section 4.3. However, CFD_DEL can assign jointly unicast and anycast demands, while 

the unicast FD optimizes only unicast demands. To find a feasible initial solution a 

CFD_INI algorithm can be applied [Wal08a], [Wal08b], [Wal10a]. Notice that 

CFD_DEL processes unicast connections analogously as in non-bifurcated version of 

FD, but anycast connections are processed in a different way. This follows from our 

model of the anycast request, which consists of two demands: upstream and 

downstream. Since both associated anycast demands must connect the same pair of 
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nodes (constraint (7.2.5)), there must be considered jointly. However, due to the 

asymmetry of anycast flows mentioned above, first the shortest route of the downstream 

demand is calculated taking into account all replica nodes. In consequence, the 

upstream demand can select among paths between the client node and the server node 

already assigned for the downstream demand. As the algorithm starts with a feasible 

initial selection and repetitions of the same flow are impossible, the maximum number 

of CFD_DEL iterations is limited. For more details on the CFD_DEL algorithm and 

results refer to [Wal08a], [Wal08b], [Wal10a]. Note that in [Wal10a] a Lagrangean 

relaxation algorithm for the problem (7.2.1)-(7.2.5) is proposed and evaluated.  

7.3. Network Design Problem 

In this section we formulate a network design problem for anycast flows. As in previous 

section, we assume that both unicast and anycast demands are to be established in the 

network. The standard anycast model with link-path notation and modular link 

modeling is used. The location of replica servers is given and candidate paths of anycast 

demands terminate or originate in these nodes.  

 

Unicast and Anycast Design Problem 

indices 

d = 1,2,…,D  demands 

d = 1,2,…,A  anycast demands (upstream and downstream)  

d = A+1,…,D  unicast demands 

p = 1,2,…,Pd candidate paths for flows realizing demand d. If d is an 

upstream demand, path p connects the client node and the 

replica node. If d is a downstream demand, candidate 

paths connect the replica node and the client node. If d is a 

unicast demand, candidate paths connect the origin and 

destination nodes of the demand 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 
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τ(d) index of a demand associated with demand d. If d is a 

downstream demand, then τ(d) must be an upstream connection 

and vice versa 

s(p)  source (origin) node of path p 

t(p)  destination node of path p 

ξe  cost of one capacity module on link e 

M  size of the link capacity module 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

ye capacity of link e as the number of modules (non-negative 

integer) 

objective 

minimize F = ∑e ξeye       (7.2.1) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (7.2.2) 

∑d∑p δedpxdphd ≤ Mye,   e = 1,2,…,E.     (7.2.3) 

∑p xdps(p) = ∑p xdτ(p)t(p),   d = 1,2,…,A.    (7.2.4) 

 

The objective is to minimize network cost defined as the cost of link capacity (7.2.1). 

Constraint (7.2.2) assures that each demand is established. To meet the requirement that 

the link flow cannot exceed the link capacity, we add to the mode condition (7.2.3). 

Finally, the last constraint (7.2.4) guarantees that associated anycast demands are 

connected to the same replica node. Due to link modularity and single path routing, the 

above problem is integer and NP-hard [PM04]. Algorithms (branch and bound methods, 

heuristics) developed for unicast network design problems in most cases can be easily 

modified to solve problem (7.2.1)-(7.2.4). 

7.4. Lost Flow Problem 

Now we focus on the lost flow problem in the context of joint optimization of unicast 

and anycast flow. We are given an existing network with replica servers and a set of 

demands (unicast and anycast) to be established in the network. The consider problem is 

an enhanced version of the UFP (Unsplittable Flow Problem) – well known 

optimization problem of connection-oriented networks [Kle96], [KS02]. The UFP is 

96



 

formulated as follows. We are given a directed network with link capacities and a set of 

demands defined by the triple: origin node, destination node and bandwidth 

requirement. The objective is to find a subset of the demands of maximum total volume 

with additional constraints: each demand can use only one path and the sum of demands 

crossing the link cannot exceed its capacity. The main novelty of our approach is that 

we consider joint optimization of unicast and anycast flows, while the classical UFP 

addresses only unicast flows. Note that the formulated model is equivalent to the 

problem of joint unicast and anycast flows restoration in connection-oriented networks 

[Wal07a], [Wal08a]. The pure anycast version of UFP was formulated in [Wal06b]. We 

use the link-path notation, i.e., binary variable xdp denotes if path p is selected for 

demand d. Since, we admit that some demands can be not established due to limited 

resource of network capacity, we introduce variable xd which is 1, if demand d is not 

established.  

 

Unicast and Anycast Lost Flow Problem 

indices 

d = 1,2,…,D  demands 

d = 1,2,…,A  anycast demands (upstream and downstream)  

d = A+1,…,D  unicast demands 

p = 1,2,…,Pd candidate paths for flows realizing demand d. If d is an 

upstream demand, path p connects the client node and the 

replica node. If d is a downstream demand, candidate 

paths connect the replica node and the client node. If d is a 

unicast demand, candidate paths connect the origin and 

destination nodes of the demand 

e = 1,2,…,E  network links 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

hd  volume of unicast demand d 

ce  capacity of link e 

τ(d) index of a demand associated with demand d. If d is a 

downstream demand, then τ(d) must be an upstream connection 

and vice versa 
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s(p)  source (origin) node of path p 

t(p)  destination node of path p 

variables 

xdp  = 1, if path p is used to realize demand d; 0, otherwise (binary) 

xd  = 1, if demand d is not established; 0, otherwise (binary) 

objective 

minimize F = ∑d xdhd       (7.3.1) 

subject to 

xd + ∑p xdp = 1,   d = 1,2,…,D      (7.3.2) 

∑d∑p δedpxdphd ≤ ce,   e = 1,2,…,E     (7.3.3) 

∑p xdps(p) = ∑p xdτ(p)t(p),   d = 1,2,…,A.    (7.3.4) 

 

The objective is to minimize the lost flow expressed as the volume of not established 

demands (7.3.1). Constraint (7.4.2) states that the each demand either uses only one 

path (∑p xdp = 1) or is not established (xd = 1). Condition (7.3.3) assures the capacity 

constraint. Finally, anycast constraint (7.3.4) guarantees that both associated anycast 

demands connect the same pair of nodes. The above model is integer and NP-complete 

(equivalent to the UFP problem). 

Now we show a constructive heuristic algorithm to solve the problem (7.3.1)-

(7.3.4). Algorithm CGA (uniCast and anyCast Greedy Algorithm) [Wal07a] is based on 

unicast greedy method. The CGA method process all demands (unicast and anycast) in 

a one pass. Set H is a selection including decision variables x equal to 1. Operator 

sort(H) returns indices of demands included in H ordered according to their paths’ 

length given by the metric CSPF [CNJ98]. Set B includes indices of demands. Operator 

first(B) returns the index of first connection in set B. DU6 is a set of all unicast demands, 

D
DS is a set of all downstream anycast demands and DUP is a set of all upstream anycast 

demands. Operator USP(H,d) returns either the index of the shortest path calculated 

according to selected metric or the index of xd variable, if a feasible route does not exist 

for demand d. Operator ASP(H,d) returns either the pair of indices of shortest paths for 

downstream and upstream demands d and τ(d) or a pair of xd and xτ(d) variables, if a pair 

of feasible routes does not exist for theses demands.  
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Algorithm CGA (uniCast and anyCast Greedy Algorithm) 

Step 1. Let H denote an initial solution, in which none connection is established. Let 

B = sort(DU6∪D
DS). 

Step 2. Set d = first(B) and calculate the metric of each link e. If d∈D
U6, find the 

shortest route k = USP(H,d) of demand d according to selected metric. Set 

H = (H – {xd})∪{xdk}. Go to 3. If d∈D
A6, find the pair of shortest routes 

{k,j} = ASP(H,d) of demands d and τ(d) according to selected metric. Set 

H = (H – {xd})∪{xdk} and F = (H – {xτ(d)}) ∪ {xτ(d)j}. Go to 3. 

Step 3. Set B = B – {d}. If B = ∅, then stop the algorithm. Otherwise, go to 2. 

 

The CGA algorithm is a modification of the classical greedy algorithm developed for 

unicast flows. Complexity of the algorithm depends on the number of demands. The 

most time consuming operations is calculation of shortest path in operator USP and 

ASP. Therefore, the algorithm is relatively simple. This is motivated by the fact that the 

restoration process must be performed robustly and quickly. Therefore, relatively low 

complexity of the algorithm can enable the application of CGA algorithm in online 

restoration. For more details and results of the CGA algorithm see [Wal07a]. 

7.5. Replica Location Problem 

All anycast problems formulated above assume that location of replica servers is fixed. 

In this section we address the replica location problem that belongs to the group of LFA 

(Location and Flow Allocation) problems. We are given an existing network with 

predetermined link capacity. Each of anycast demands d = 1,2,…,D is defined by the 

client node (denoted as sd in the case of an upstream demand and td for a downstream 

demand) and the demand volume hd. The location of R replica nodes is to be selected. 

Therefore, we use a binary variable zv, which is 1 node v hosts a replica server and 0 

otherwise. We use node-link notation, i.e., binary variable xed denotes if demand d uses 

link e. Moreover, binary variable yvd is used to assign demand d to a replica located in 

node v. 

 

Replica Location Problem 

indices  
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d = 1,2,…,D anycast demands. A demand can be of two types: 

upstream (from the client to a replica) or downstream 

(from a replica to the client)  

e = 1,2,…,E  network links 

v = 1,2,…,V  network nodes 

constants 

aev  = 1, if link e originates at node v; 0, otherwise  

bev  = 1, if link e terminates in node v; 0, otherwise 

R  number of replica servers 

ζe  routing cost of link e 

sd  source node of demand d (client node for upstream demand) 

td destination node of demand d (client node for downstream 

demand) 

τ(d) index of a demand associated with demand d. If d is a 

downstream demand, then τ(d) must be an upstream connection 

and vice versa 

ds(d)  = 1, if d is a downstream demand; 0, otherwise 

up(d)  = 1, if d is an upstream demand; 0, otherwise 

variables 

xed  = 1, if link e is used to realize demand d; 0, otherwise (binary) 

zvd  = 1, if replica v is selected for demand d; 0, otherwise (binary) 

zv = 1, if node v is selected to host a replica server; 0,  otherwise 

(binary) 

objective 

minimize F = ∑e∑d xedhdζe      (7.5.1) 

subject to 

∑e aevxed – ∑e bevxed = zvd,   if v ≠ td, ds(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.5.2) 

∑e aevxed – ∑e bevxed = –1,   if v = td, ds(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.5.3) 

∑e aevxed – ∑e bevxed = 1,   if v = sd, us(d) = 1,    

d = 1,2,…,D   v = 1,2,…,V      (7.5.4) 
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∑e aevxed – ∑e bevxed = –zvd,   if v ≠ sd, us(d) = 1, 

d = 1,2,…,D   v = 1,2,…,V      (7.5.5) 

∑d xed ≤ ce,   e = 1,2,…,E.      (7.5.6) 

zvd = zvτ(d),   d = 1,2,…,D   v = 1,2,…,V    (7.5.7) 

∑v zvd = 1,   d = 1,2,…,D.      (7.5.8) 

∑v zv = R,        (7.5.9) 

zvd ≤ zv,   d = 1,2,…,D   v = 1,2,…,V.     (7.5.10) 

 

The objective is the total routing cost. Constraints (7.5.2)-(7.5.3) define the flow 

conservation for downstream demands. If the particular node v is not the destination 

(client) node of the downstream demand d (v ≠ td), the left-hand side of (7.5.2) is zvd. 

Consequently, if the node v is not the replica of demand d (zvd = 0), the left-hand side is 

0 and the node v is a transit node. On the other node, if the node v is selected as the 

replica of demand d (zvd = 1), the left-hand side of (7.5.2) is 0 and the node v is the 

source node of the demand. Constraint (7.5.3) is defined for the destination node of 

demand d (v = td), thus the left-hand side is –1. We assume that the replica node can be 

located only in nodes that are not the client nodes. In analogous way we formulate the 

flow conservation law for downstream demands (7.5.4)-(7.5.5). The capacity constraint 

is formulated in (7.5.6). Constraint (7.5.7) assures that the associated demands d and 

τ(d) use the same replica node. To meet the requirement that each demand is assigned to 

exactly one replica node, we add to the model condition (7.5.8). Constraint (7.5.9) 

guarantees that R nodes are selected to host replica servers. Finally, (7.5.10) binds 

variables zvd and zv, i.e., node v can be selected as the replica node for any demand d 

(variable zvd), only if node v is assigned with a replica node (zv = 1). Model (7.5.1)-

(7.5.10) is an integer and NP-complete problem (equivalent to non-bifurcated routing 

problem).  

7.6. Multi-Layer Networks  

Until now all optimization problems presented in this book were related to single-layer 

networks. However, multi-layer concept of network modeling has been gaining much 

focus in recent years. Thus, in this section we present a two-layer network design 

problem with simultaneous unicast and anycast flows in the upper layer [GW09].  
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The main idea of multi-layer network modeling is as follows. The links of an 

upper layer are constructed using paths of the lower layer, and this approach repeats 

going down the resources hierarchy. Logical links given by paths allocated to demands 

of the upper layer represent the demand pattern of the lower layer. The multi-layer 

network approach enables optimization of the whole network in much more effective 

way comparing to the single-layer method, where each layer is optimized separately 

what cannot guarantee the global optimality of the solution. However, optimization of 

multi-layer networks creates some additional challenges. Since more layers are 

considered, size of the optimization problem grows what implies the need to develop 

new effective heuristics, since exact solutions given by branch-and-bound and branch-

and-cut methods can be obtained only for small networks. Also modeling of multilayer 

networks is more complex comparing to single-layer approach. For a good survey on 

modeling and optimization of multi-layer networks refer to [PM04]. 
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Fig. 7.2. MPLS over WDM architecture 

 

The network model addressed in this section is a two-layer model: MPLS over 

WDM. The lower layer – optical transport layer applying WDM – consists of nodes 

represented by optical cross-connects (OXCs) that perform wavelength routing 

operations and optical links - fibers. The upper layer – MPLS layer – includes nodes 

represented by MPLS routers, namely label switching routers. A set of lightpaths 

(wavelengths) provisioned by WDM layer forms a logical topology for the MPLS 

routers. In Fig. 7.2 we show a simple example to illustrate the MPLS over WDM 

architecture. The logical link between LSR3 and LSR4 consists of two lightpaths 
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(wavelengths). However, these two lightpaths are routed in two various paths in the 

WDM layer: OXC3-OXC5-OXC4 and OXC3-OXC2-OXC4.  

The network is modeled as two graphs consisting of nodes and links. Nodes 

represent MPLS devices like routers, switches in the upper layer or optical cross-

connects in the lower layer. Links e = 1,2,…,E denote logical links of the MPLS 

network. Links g = 1,2,…,G denote physical links of the lower WDM layer, e.g., fibers. 

We are given cost of one capacity module on link e in the upper layer ξe, cost of one 

module capacity on link g in the lower layer κg and set of connections (unicast and 

anycast) denoted by index d = 1,2,…,D. We use the link-path notation in both layers. 

We assume that the network topology of both layers, localization of replica servers, 

unicast and anycast demand, candidate paths in the upper layer and set of light-paths for 

each MPLS logical links are given. Both layers are dimensioned for modular capacity of 

links with integral link capacity variables. 

 

Multilayer Unicast and Anycast Design Problem 

indices 

d = 1,2,…,D  demands 

d = 1,2,…,A  anycast demands (upstream and downstream)  

d = A+1,…,D  unicast demands 

p = 1,2,…,Pd candidate paths for flows realizing demand d. If d is an 

upstream demand, path p connects the client node and the 

replica node. If d is a downstream demand, candidate 

paths connect the replica node and the client node. If d is a 

unicast demand, candidate paths connect the origin and 

destination nodes of the demand 

e = 1,2,…,E  network links 

q = 1,2,…,Qe  candidate paths for link e in lower layer 

g = 1,2,…,G  network links in lower layer 

constants 

δedp  = 1, if link e belongs to path p realizing demand d; 0, otherwise 

ξe  cost of one capacity module on link e 

M  size of the link capacity module in the upper layer 
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γgeq = 1, if link g belongs to path q realizing capacity of link e; 0, 

otherwise 

κg  cost of one capacity module on link e 

6  size of the link capacity module in the lower layer 

hd  volume of unicast demand d 

τ(d) index of a demand associated with demand d. If d is a 

downstream demand, thenτ(d) must be an upstream connection 

and vice versa 

s(p)  source (origin) node of path p 

t(p)  destination node of path p 

variables 

xdp = 1, if path p is used to realize demand d; 0, otherwise (binary)  

zeq number of paths q selected to realize capacity of link e 

ye capacity of link e as the number of modules (non-negative 

integer) 

ug number of modules 6 to be installed on link g in the lower layer 

(integer, non-negative) 

objective 

minimize F = ∑e ξeye + ∑g κgug     (7.6.1) 

subject to 

∑p xdp = 1,   d = 1,2,…,D      (7.6.2) 

∑d∑p δedpxdphd ≤ Mye,   e = 1,2,…,E     (7.6.3) 

∑p xdps(p) = ∑p xdτ(p)t(p),   d = 1,2,…,A    (7.6.4) 

∑q zeq = ye,   e = 1,2,…,E      (7.6.5) 

∑e∑q γgeq zeq ≤ 6ug,   g = 1,2,…,G.     (7.6.6) 

 

The objective (7.6.1) is to minimize the cost of both network layers. Constraint (7.6.2) 

assures that only one path can be chosen for each demand (both unicast and anycast) 

Condition (7.6.3) states that flow in each link of the upper layer cannot exceed capacity. 

Equation (7.6.4) guarantees that paths of two associated anycast demands must connect 

the same pair of nodes. Constraint (7.6.5) assures that each upper layer link is realized 

by a set of lower layer paths. Finally, condition (7.6.6) states that flow in each link of 
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the lower layer cannot exceed its capacity. For more details on the model and results see 

[GW09]. 

7.7. Exercises  

7.1. Write the reduced formulation of anycast flows using the node-link notation. 

7.2. Create a branch and bound algorithm for the Unicast and Anycast Delay Problem 

(7.2.1)-(7.2.5). 

7.3. Write a selected flow allocation problem taking into account unicast, anycast and 

multicast flows. 

7.4. Write a location, link capacity and flow assignment problem for anycast flows. 

7.5. Consider the use of bifurcated multicommodity flows in modeling of anycast flows. 

7.6. Write an anycast flow allocation problem with additional traffic required to deliver 

the content to replica servers from source sites. 

7.7. Write the Multilayer Unicast and Anycast Design Problem using the node-link 

notation. 

7.8. Construct a computational intelligence algorithm for a selected anycast problem. 
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8. Peer-to-Peer Flows 

The concept of Peer-to-Peer (P2P) systems has gained much attention recently. Many 

network services including file-sharing, distributed computing, Internet based telephony 

(e.g. Skype), Internet television, have been successfully developed using various P2P 

mechanisms. According to many statistics, BitTorrent and other P2P systems generate 

more than 50% of consumer Internet IP traffic. A great number of research challenges 

in the area of P2P is still open, however in this book we focus on modeling and 

optimizing of network flows in P2P systems. This challenge follows naturally from the 

need to optimize performance of P2P systems from the network perspective. 

A P2P system can be defined as a system, in which each node acts both as a 

server (producer that provides data to other nodes) and as a client (consumer that 

retrieves data from other nodes). Therefore, nodes of P2P systems can be named 

“servent”, according to the first syllable of the term Server and the second syllable of 

the term Client. P2P systems can be divided to unstructured and structured. Historically, 

the first generation of P2P-based systems applied the unstructured approache. The term 

“unstructured” follows from the fact that the content stored on a given peer are 

unrelated and do not have any specific structure. Unstructured P2P systems can be 

categorized as: centralized P2P, pure P2P and hybrid P2P. A centralized P2P system 

(e.g., Napster) uses a kind of a central server that stores only information (e.g., IP 

addresses) of peers where some content is available. The next category – a pure P2P 

system – contains no central server and relies on flooding the information on desired 

content over the network (e.g. Gnutella 0.4 and Freenet). A hybrid P2P system employs 

a hierarchy of superpeers – servers that store content available to the connected peers 

together with their IP address (e.g. Gnutella 0.6 and JXTA). Structured P2P systems are 

based on Digital Hash Tables (DHT) that provide a global view of data distributed 

among many peers independent of actual location. Each DHT node stores a small of 

amount of content that is mapped into nodes by using a special mechanism based on 

hashing [BYL09], [SW05], [Tar10]. 

An interesting example of a P2P-based file distribution system is the BitTorrent 

protocol [BYL09], [Coh03], [SW05]. The BitTorrent uses centralized software called 

tracker that stores information, which peers have a particular file. To facilitate the 

downloading, each file is divided to smaller pieces (e.g., 256 KB). A peer that wants to 

download a file can receive from the tracker a random list of peers that contain the file. 
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Then, the downloader requests pieces from all the peers it is connected to. Next, when a 

peer downloads some pieces, it can upload them to other peers. Since the main objective 

of the system is effective file sharing, peers are encouraged not only to download but 

also to upload files. This is achieved by the tit-for-tat strategy. For more information on 

P2P systems refer to [BYL09], [SW05], [Tar10] and reference therein. 

8.1. Modeling of P2P Flows 

P2P flows can be modeled in several ways. In the following section we present two 

models of P2P flows: 

• Synchronous P2P 

• P2P multicast. 

Both presented models assume that the P2P system works on the top of an overlay 

network and the underlying network is overprovisoned, i.e., the only potential 

bottlenecks are access links [ARG08], [MW04]. Furthermore, according to the analysis 

presented in [ZL08], nodes’ capacity constraints are typically sufficient in overlay 

networks. Nodes (peers) denoted as v = 1,2,…,V are connected to the overlay by an 

access links with download capacity dv and upload capacity uv. We consider the access 

link as two directed links (download and upload) since in many cases the access link to 

the Internet is asymmetric with different capacities in both directions. 

The main distinction between both models is related to the time scale. In the 

asynchronous modeling the time scale of the P2P system is divided into time slots 

t = 1,2,…,T that can be interpreted also as subsequent iterations of the system. We 

assume that each time slot has the same length. Moreover, all actions of the P2P system 

completed in the previous time slot are updated in such a way that in the beginning of 

the next time slots this information is available to all elements of the system. This 

follows from the fact that there is an index storing detailed information on current 

availability of blocks in the system. Our model is not limited to one exact 

implementation of the index, which can be organized in a centralized manner (e.g. 

similar to BitTorrent) or decentralized manner (e.g. DHT). Such a P2P system can be 

called synchronous [WL08]. Obviously, in real P2P systems peers are mostly 

asynchronous, with different processing times and messaging latencies. However, the 

assumption on synchronous mode of P2P systems is a common approach in many 

research works on P2P modeling [GS05], [KVS05], [MW04], [WL08], [Wal08c], 

[Wal08d]. This follows from the fact that modeling and next optimization of 
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asynchronous P2P systems is very difficult in a deterministic way. Data to be sent is 

divided into blocks (pieces) indexed b = 1,2,…,B. Transfer of one block is completed 

within one time slot. At the end of each time slot (iteration) the indexing service updates 

the information on location and availability of blocks. For instance, if block b was 

transferred to peer v in time slot t, then all other peers can try to get this block from v in 

time slot (t+1). However, the model presented below can be easily modified to include 

also more heterogeneous scenarios, e.g. transfer of one block takes more than one slot. 

We assume the each block is initially located in a node called seed, and a binary 

constant gbv denotes whether or not block b is located in node v before the P2P transfer 

starts. A binary variable ybwvt is 1, if block b is transferred to node v from node w in 

iteration t and 0 otherwise. In order to meet the requirement that block b can be sent 

from node w to node v in time slot t only if node w keeps block b in time slot t we 

formulate the following constraint: 

∑v ybwvt ≤ M(gbw + ∑i < t∑s ybswi),   b = 1,2,…,B   w = 1,2,…,V    

t = 1,2,…,T.        (8.1.1) 

where M denotes a large number. Note that the right-hand side of (8.1.1) is a sum of 

constant gbw and ∑i < t∑s ybswi (= 1 if block b is transferred to node w from any node s in 

any iteration preceding the current time slot t). Consequently, the right-hand side of 

(8.1.1) is greater than 0 only if node w holds block b in time slot t. Constraint (8.1.1) 

enables the peer-to-peer transfer of blocks. Note that M must be larger than V. As in 

[KVS05] we refer to (x.1.1) as possession constraint. Note that the constraint (8.1.1) 

defines the P2P flow. The next condition indispensable in model of a P2P system must 

guarantee that each peer will receive requesting blocks within all time slots. This can be 

written as: 

gbv + ∑w∑t ybwvt = 1,   b = 1,2,…,B   v = 1,2,…,V.   (8.1.2) 

Notice that since v must posses b either v is the seed of block b (gbv = 1) or block 

b is transferred to node v in one of iterations (∑w∑t ybwvt = 1). In (8.1.2) we assume that 

each peer v = 1,2,…,V requests all blocks, however it can be easily modify to denote 

that a peer wants to download only selected blocks. 

As mentioned above, it is a common assumption in modeling and optimization 

of overlay network that each node (peer) has a limited capacity of access link to the 

network. Let uv denote the maximum upload rate of node v and analogously let dv 
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denote the maximum download rate of node v. If uv and dv are given in bps, constraints 

are as follows: 

∑b∑v ybwvthb ≤ uw,   w = 1,2,…,V  t = 1,2,…,T   (8.1.3) 

∑b∑w ybwvthb ≤ dv,   v = 1,2,…,V  t = 1,2,…,T.   (8.1.4) 

where hb denotes the bandwidth required to transfer one block in one time slot given in 

bps. For instance, if the block size is 256KB and the duration of one time slot is 16 

seconds, then hb = 128Kbps. If we assume that uv and dv are expressed as the number 

blocks to be transferred in one time slot, constraints are written in the following way: 

∑b∑v ybwvt ≤ uw   w = 1,2,…,V  t = 1,2,…,T    (8.1.5) 

∑b∑w ybwvt ≤ dv   v = 1,2,…,V  t = 1,2,…,T    (8.1.6) 

For the sake of simplicity in the remainder of this section paper we will assume 

that uv and dv are expressed as the number of blocks to be transferred in one time slot. 

However, all constraints given below can be easily rewritten according to the approach 

presented in (8.1.3)-(8.1.4). The basic version of the synchronous model of P2P systems 

can be summarized in the following way. 

 

Synchronous P2P Formulation 

indices 

b = 1,2,…,B  blocks to be transferred 

t = 1,2,…,T  time slots (iterations) 

v,w,s = 1,2,…,V vertices (network nodes, peers) 

constants 

dv  maximum download rate of node v (number of blocks) 

uv  maximum upload rate of node v (number of blocks) 

gbv = 1, if block b is located in node v before the P2P transfer starts; 

0, otherwise 

M  large number 

variables 

ybwvt = 1, if block b is transferred to node v from node w in iteration t; 

0, otherwise (binary)  

subject to 

gbv + ∑w∑t ybwvt = 1,   b = 1,2,…,B   v = 1,2,…,V   (8.1.7) 
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∑b∑v ybwvt ≤ uw,   w = 1,2,…,V  t = 1,2,…,T    (8.1.8) 

∑b∑w ybwvt ≤ dv,   v = 1,2,…,V  t = 1,2,…,T    (8.1.9) 

∑v ybwvt ≤ M(gbw + ∑i < t∑s ybswi),   b = 1,2,…,B   w = 1,2,…,V    

t = 1,2,…,T.        (8.1.10) 

 

Now we present the P2P multicast formulation. The time scale is modeled as in 

traditional multicommodity flow models, i.e., the streaming has a defined rate, constant 

in time and given in bps. The term P2P refers in this case to the fact that all peers 

(network nodes) are involved in the multicasting. The P2P multicasting (called also 

application-layer multicast) uses a multicast delivery tree constructed among peers (end 

hosts) using an overlay network. In contrast to the traditional IP multicast (addressed in 

Chapter 6), the uploading (non-leaf) nodes in the tree are normal end hosts. Again we 

assume that peers are connected to the overlay network, which is considered as an 

overprovisioned cloud - capacity constraints are set only on access links. Moreover, the 

graph is fully connected, i.e., each peer can connect to any other peer. However, the 

model can be modified to introduce some P2P substrate. Various multicast formulations 

can be used, e.g., flow formulation or level formulation presented in Section 6.1. The 

main modification – comparing to formulation of traditional multicasting presented in 

Section 6.1 – is different modeling of capacity constraints and network links. In the 

former case, we consider only the capacity of access links (the overlay network is 

assumed to be overprovisioned). The latter case means that since the overlay graph is 

fully connected, we define the links by origin and destination nodes.  

We present the P2P multicast model using the flow formulation. According to 

the modification mentioned above, we use a binary variable xwvk to denote if in multicast 

tree the streaming path from the root to node k includes an overlay link from node w to 

node v (no other peer nodes in between). In analogous way, we assume that xwv is 1, if 

the link from node w to node v (no other peer nodes in between) is in multicast tree and 

0 otherwise. 

 

P2P Multicast Flow Formulation 

indices 

v,w = 1,2,…,V  network nodes 

k = 1,2,…,K  terminals (receivers) 
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constants 

dv  download capacity of node v access link (bps) 

uv  upload capacity of node v access link (bps) 

rv  = 1, if link v is the root of streaming; 0, otherwise 

h  streaming rate 

variables 

xwvk  = 1, if in multicast tree the streaming path from the root to node k 

includes an overlay link from node w to node v (no other peer 

nodes in between); 0, otherwise (binary) 

xwv = 1, if the link from node w to node v (no other peer nodes in 

between) is in multicast tree; 0, otherwise (binary) 

subject to 

∑w xwvk – ∑w xvwk = 1,   v = k   v = 1,2,…,V   k = 1,2,…,K  (8.1.11) 

∑w xwvk – ∑w xvwk = –1,   rv = 1   v = 1,2,…,V   k = 1,2,…,K  (8.1.12) 

∑w xwvk – ∑w xvwk = 0,   v ≠ k, rv ≠ 1   v = 1,2,…,V   k = 1,2,…,K (8.1.13) 

xwvk ≤ xwv,   v = 1,2,…,V   w = 1,2,…,V    k = 1,2,…,K  (8.1.14) 

∑w xwvh ≤ dv,   v = 1,2,…,V      (8.1.15) 

∑v xwvh ≤ uw,   w = 1,2,…,V      (8.1.16) 

∑v∑t xvvt = 0.        (8.1.17) 

 

Constraints (8.1.11)-(8.1.13) define the unicast paths connecting the root node and each 

receiver using the node-link formulation of multicommodity flows. Note that in the 

above formulation the left-hand side of constraints (8.1.11)-(8.1.13) is the total number 

of links entering node v minus the total number of links leaving node v on the unicast 

path leading to receiver k. Thus, if the considered node v is the considered receiver node 

(v = k), the right-hand side must be 1 (8.1.11). On the other hand, if the node v is the 

root node (rv = 1), the right-hand side must be –1 (8.1.12). Ale remaining nodes are 

transit nodes, and the flow balance must be 0 (8.1.13). Constraint (8.1.14) assures that 

each overlay link (w,v) is used in the multicast at most one time. (8.1.15) and (8.1.16) 

are the download and upload constraints, respectively. Note that the left-hand side of 

(8.1.15) is the sum of the multicast flow entering node v (from any other node w). 

Analogously, the left-hand side of (8.1.16) is the total flow leaving node w to any other 
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node v. Finally, the last constraint (8.1.17) guarantees that there is no internal flow 

inside each node. 

8.2. Synchronous P2P Cost Problem 

Now we present a synchronous P2P model with the objective to minimize the transfer 

cost. Currently used P2P systems mostly ignore the underlying Internet topology and 

ISP link costs, since they are designed to randomly choose logical neighbors. Thus, 

there are many cross-continental downloads that can congest backbone networks. In 

order to estimate the transfer cost, it is necessary to provide an effective mechanism for 

localization of peers by using for instance: IP location databases, IP prefix, traceroute 

records, hop number and RTT (round-trip time). In the model we introduce a universal 

constant ζwv that is defined as the cost of one block transfer between peers w and v. It 

can be interpreted arbitrarily according to our needs, e.g. number of hops between w and 

v, number of ISPs between w and v, RTT between w and v, distance in kilometers 

between w and v, cost of cross-ISP transfers, etc. Consequently, the objective (to be 

minimized) is formulated as F = ∑b∑w∑v∑t ybwvt ζwv, i.e., all possible transfers are 

considered taking into account of node pairs, time slots and blocks [Wal08c], [Wal08d]. 

An important characteristic of P2P systems is dynamics – peers can frequently 

join or leave the network. To model this phenomenon in our approach we use constants 

avt, which equals 1 if peer v in time slot t is connected to the network (is available) and 0 

otherwise. Consequently, although our model is deterministic, the stochastic nature of 

P2P system can be incorporated into our considerations [Wal08c], [Wal08d]. 

 

Synchronous P2P Cost Problem 

indices 

b = 1,2,…,B  blocks to be transferred 

t = 1,2,…,T  time slots (iterations) 

v,w,s = 1,2,…,V vertices (network nodes, peers) 

constants 

dv  maximum download rate of node v (number of blocks) 

uv  maximum upload rate of node v (number of blocks) 

gbv = 1, if block b is located in node v before the P2P transfer starts; 

0, otherwise 
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avt  = 1, if node v is available in time slot t; 0, otherwise 

M  large number 

variables 

ybwvt = 1, if block b is transferred to node v from node w in iteration t; 

0, otherwise (binary) 

objective 

minimize F = ∑b∑w∑v∑t ybwvt ζwv     (8.2.1) 

subject to 

gbv + ∑w∑t ybwvt = 1,   b = 1,2,…,B   v = 1,2,…,V   (8.2.2) 

∑b∑v ybwvt ≤ awtuw,   w = 1,2,…,V  t = 1,2,…,T   (8.2.3) 

∑b∑w ybwvt ≤ avtdv,   v = 1,2,…,V  t = 1,2,…,T   (8.2.4) 

∑v ybwvt ≤ M(gbw + ∑i < t∑s ybswi),   b = 1,2,…,B   w = 1,2,…,V    

t = 1,2,…,T.        (8.2.5) 

 

The objective function (8.2.1) is the cost of block transfer using the P2P approach. To 

meet the requirement that each block must be transported to each network node we 

introduce the condition (8.2.2). Constraint (8.2.3) assures that the number of blocks 

uploaded by node w can not exceed a given threshold. Analogously, (8.2.4) bounds the 

download rate of node v. The constant avt used on the right-hand side of (8.2.3) and 

(8.2.4) enables to incorporate to the model stochastic nature of P2P clients that can 

frequently join and leave the network. Construction of (8.2.3) and (8.2.4) guarantees 

that if a peer v is not connected to the P2P network in iteration t (avt = 0) then v cannot 

upload and download any blocks in this time slot. Possession constraint (8.2.5) is in the 

model to meet the requirement that block b can be sent from node w to node v only if 

node w keeps block b in time slot t. The problem (8.2.1)-(8.2.5) is linear, integer 

(binary) and NP-complete (equivalent to MBT (Minimum Broadcast Time) problem).  

To solve the Synchronous P2P Cost Problem we propose a heuristic algorithm 

that we developed in [Wal08d] to simulate a real BitTorrent-like P2P system. Our 

approach follows mainly from the BitTorrent protocol [Coh03], [SW05] and ideas 

included in [GS05], [WLH07] and [YTM07]. However, some simplifications had to be 

made in order to adjust the heuristic to the considered optimization model. Since the 

goal of our research is to examine transfer cost aspects of P2P systems, we do not 

simulate all details – it is sufficient to mirror only the major characteristics of the 
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BitTorrent-like P2P system. Fig. 8.1 presents the outline of the algorithm in 

pseudocode.  

 
         1  for t=0 to T 
         2   begin 

         3    while (IsPossibleTranfer(t)) 
         4     begin 
         5      v=RandomDownloadPeer(t) 

         6      b=SelectBlock(v,t) 
         7      w=SelectUploadPeer(b,v,t) 

         8      TransferBlock(b,w,v,t) 
         9     end (if) 
        10   end (for) 

 
Fig. 8.1. Pseudocode of the P2P transfer algorithm 

 
Since our model is synchronous, i.e., the system works in iterations, the main 

loop of the algorithm (lines 1-10) is repeated for each time slot t. Function 

IsPossibleTranfer(t) (line 3) returns 1, if there is a possible transfer in the P2P 

system, i.e., at least one block b can be transferred from a node w possessing block b to 

node v requesting block b not violating the constraints of the system (i.e. limits on 

upload and download capacity, possession of the block, availability of peers, etc.). 

Otherwise function IsPossibleTranfer(t) returns 0. The inner loop (lines 3-9) is 

repeated until there is at least one possible block transfer.  

To model the stochastic nature of BitTorrent-like P2P system, we randomly 

select the download peer among all feasible peers (line 5). A download peer v is feasible 

if it can upload at least one block from other peer satisfying all constraints of the 

system. Next, a block to be transferred is chosen among all feasible blocks (line 6). A 

block b is feasible if at least one node can upload this block to v satisfying all 

constraints of the system. Finally, the uploading peer is selected among all feasible 

upload peers (line 7). As previously, upload node w is feasible if it can upload block b 

to v satisfying all constraints of the system. Function TransferBlock(b,w,v,t) 

(line 8) transfers block b from w to v and updates state of the P2P system (upload and 

download limits, possession of the block, etc.).  

We consider 4 versions of the algorithm. Thus, functions 

SelectBlock(b,v) and SelectUploadPeer(b,v,t) have different versions 

according to a particular strategy. The first algorithm – Random Strategy (RS) – selects 

the block (line 6) and upload peer (7) at random among all feasible blocks and upload 

nodes. To model the second strategy named Rarest First Strategy (RFS) function 
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SelectBlock (line 6) returns the rarest feasible block in the network. Next, the 

upload peer is chosen at random. The third approach – Cost Selection Strategy (CSS) – 

takes into account transfer costs. The block to be transferred is selected at random (line 

6), but the closest (in terms of the cost), feasible peer is chosen for upload. Finally, we 

also model the Weighty Piece Selection Strategy (WPSS) as in [WLH07]. For results of 

the proposed algorithm and comparison to optimal solutions refer to [Wal08c] and 

[Wal08d].  

8.3. Other Formulations of Synchronous P2P Problems 

The synchronous P2P model (8.1.7)-(8.1.10) can use also other objective functions. 

First, we address the problem to minimize the overall download time, i.e., the time in 

which all requesting peers receive requested blocks [GS05], [MW04], [SW05], 

[WLH07], [Wal08c]. In the synchronous P2P model the download time is represented 

by T – a constant denoting the number of time slots. Note that if T is used as the 

objective function, the problem becomes a Non-linear Integer Problem, which cannot be 

solved by classical branch and bound algorithms included in optimizers like CPLEX. 

However, the following procedure can be employed to find the minimal value of T. 

First, set T to some value. Solve the optimization problem consisting of P2P system 

constraints. If the problem has a feasible solution, then decrease T by 1; otherwise 

increase T by 1.  

Another approach to minimize the number of time slots required to transfer all 

blocks is as follows. Let us introduce an additional binary variable xt, which is 1 if in 

time slot t there is at least one transfer; 0 otherwise (binary). To find variables xt we use 

the following condition: 

∑b∑w∑v ybwvt ≤ M xt,   t = 1,2,…,T.     (8.3.1) 

Notice that the left-hand side of (8.3.1) is larger then 0, if there is at least one 

transfer in time slot t, thus variable xt must be 1. Finally, we can write the objective to 

be minimized as ∑t xt. 

Another possible objective function is throughput of the P2P system, which is 

defined as the number of blocks (which can be interpreted as the size of a file) that can 

be transferred to every peer within given time (number of time slots). The procedure to 

solve the problem with the throughput objective can be the same as in the case of the 

download time. 
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Many P2P systems try to avoid the selfishness of the users, thus mechanisms to 

provide the fairness are required [SW05], [Wal08c]. The idea is to ensure that the 

number of blocks downloaded by each peer is comparable to the number of uploads. Of 

course peers acting as seed can have got asymmetries. Fairness can be viewed as a kind 

of an incentive for nodes to participate, especially in situations where ISPs charge based 

on uplink usage or uplink bandwidth is scarce. To enforce fairness in the P2P system we 

add the following constraints for each node v: 

∑b∑w∑t ybvwt ≤ Ψ ∑b∑w∑t ybwvt,   v = 1,2,…,V.   (8.3.2) 

The left-hand side of (8.3.2) denotes the number of blocks uploaded by v in all 

considered time slots. Analogously, the right-hand side is the number of blocks 

downloaded by v in all considered time slots. Constant Ψ denotes the fairness of the 

system that must be accomplished. Peers acting as the seed can be excluded from 

constraint (8.3.2). Note that condition (8.3.2) assures that the level of fairness is 

completed for each peer. Another possible formulation assumes that the average 

fairness of all peers must be under a particular level given by Ψ: 

∑b∑v∑w∑t ybvwt ≤ Ψ ∑b∑w∑v∑t ybvwt,   v = 1,2,…,V.  (8.3.3) 

In the BitTorrent protocol a new peer joining the system asks the tracker for a 

list of peers to connect to and cooperate with (exchange blocks). Such peers are called 

neighbors [Coh03], [SW05], [Wal08c]. To model this we introduce a constant ewv which 

equals 1 if peers w and v are neighbors, 0 otherwise. Next a following condition can be 

formulated: 

∑b∑t ybwvt ≤ Mewv,   w = 1,2,…,V   v = 1,2,…,V.   (x.3.4) 

Note that the left-hand side of (8.3.4) denotes the number of block transfers in 

all time slots between peers w and v. Objective functions and additional constraints 

presented in this section can be added to the basic synchronous model P2P to construct 

a more sophisticated problem. 

8.4. P2P Multicast Network Design Problem 

In this section we address a network design problem for P2P multicasting [Wal09a], 

[Wal10b]. Simply put, for the given streaming rate we want to determine how much 

resource capacity is needed for each peer and how to economically distribute the 

streaming content in the overlay network using P2P multicasting. The former goal 

consists in selection of one access link type among options proposed by the ISP selected 
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by a given peer. The latter goal is to construct the P2P multicast trees in the overlay 

topology subject to capacity constraints. The overall objective of the proposed problem 

is to minimize the cost of the network. i.e., the sum of all access link costs expressed 

e.g. in euro/month. It should be noted that since overlay multicast networks are built on 

top of a general Internet unicast infrastructure rather than point-to-point links, the 

problem of overlay network design for P2P multicasting is somewhat different than in 

networks that do have their own links.  

As mentioned above, nodes’ capacity constraints are typically sufficient in 

overlay networks. Furthermore, in the concept of overlay networks the underlay core 

network is usually considered as overprovisioned and the only bottlenecks are access 

links. Therefore, the objective of the problem is to select the access link for each peer 

from the pool of link types offered by Internet Service Provider (ISP). Let yvk denote a 

binary decision variable which is 1, if node v = 1,2,…,V is connected to the overlay 

network by a link of type k = 1,2,…,Kv; 0, otherwise. For each access link type offered 

by a given ISP we know download capacity (denoted as dvk), upload capacity (denoted 

as uvk) and cost (denoted as ξvk). The second type of decision variables is necessary to 

construct multicast trees. We apply the level formulation of multicast flows (see Section 

6.1). Binary variable xwvtl is 1, if there is a link from node (peer) w to node v is in 

multicast tree t and v is located on level l of tree t; 0 otherwise (binary). Index t is 

associated with multicast trees, but if there is only one tree in the network we can ignore 

this index. 

 

�etwork Design for P2P Multicasting Problem 

indices 

v,w = 1,2,…,V  overlay nodes (peers)  

k = 1,2,…,Kv  access link types for node v 

t = 1,2,…,T  multicast trees  

l = 1,2,…,L  levels of the multicast tree 

constants 

av  download background transfer of node v  

bv  upload background transfer of node v  

ξvk  lease cost of link of type k for node v (euro/month) 

dvk  download capacity of link of type k for node v (bps) 

uvk  upload capacity of link of type k for node v (bps) 
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rv  = 1, if node v is the root of all trees; 0, otherwise 

qt  streaming rate of tree t (bps) 

M  large number 

variables 

xvwtl = 1, if in the multicast tree t there is a link from the node v to the 

node w and v is located on the level l of tree t; 0, otherwise 

(binary) 

yvk = 1, if the node v is connected to the overlay network by a link of 

type k; 0, otherwise (binary) 

objective 

minimize   F = ∑v∑k yvk ξvk      (8.4.1) 

subject to 

∑v≠w∑l xvwtl = (1 – rw),   w = 1,2,…,V   t = 1,2,…,T   (8.4.2) 

∑w≠v∑t xvwt1 ≤ M rv,   v = 1,2,…,V     (8.4.3) 

∑w≠v xvwt(l+1) ≤ M ∑w≠v xwvtl,   v = 1,2,…,V   t = 1,2,…,T    

l = 1,2,…,L – 1       (8.4.4) 

∑k yvk = 1,   v = 1,2,…,V      (8.4.5) 

av + ∑t qt ≤ ∑k yvk dvk,   v = 1,2,…,V     (8.4.6) 

bv + ∑w≠v∑t∑l xvwtl qt ≤ ∑k yvk uvk,   v = 1,2,…,V.   (8.4.7) 

 

The objective function (8.4.1) is the overall cost of access links of the overlay network. 

Since for each tree t = 1,2,…,T each node w = 1,2,…,V – except the source node of the 

tree (rw = 1) – must have exactly one parent node, we use constraint (8.4.2). Condition 

(8.4.3) guarantees that node v can be the parent of the first level link, only if it is the 

root node. Constraint (8.4.4) is in the model to meet the requirement that each node 

v = 1,2,…,V cannot be a parent on level (l + 1) if it is not a child on the level l. 

Constraint (8.4.5) assures that one access link is selected for each overlay node. 

Condition (8.4.6) is a download capacity constraint, i.e. the streaming rate of all trees 

and the download background traffic cannot exceed the download capacity of each 

node. Correspondingly, (8.4.7) is the upload capacity constraint. 

Now we show a heuristic algorithm for the problem (8.4.1)-(8.4.7) proposed in 

[Wal10b]. Without loss of generality we assume that for each node v = 1,2,…,V the 

access link types are sorted according to the increasing values of upload capacity and 
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cost. All functions and operators presented below are executed using the current state of 

the problem, i.e. the current values of decision variables, which in effect yield current 

network flows and access links’ capacity. To formulate the algorithm we introduce the 

following definitions: 

• Transfer between node v and node w is possible in tree t on level l if node v is 

located in tree t on level l; node w is not yet connected to tree t; node v has enough 

upload residual capacity to stream the rate of tree t.  

• Tree t is feasible on level l if there is at least one possible transfer from node v 

(located on level l of tree t) to node w.  

• Let ftree(l) return an index of a feasible tree on level l. If there is more than one 

feasible tree, we select the tree with the lowest number of nodes connected to the 

tree.  

• Node v is a feasible parent node on level l of tree t if there is at least one possible 

transfer in tree t on level l between v and any other node.  

• Let fpnode(t, l) return an index of a feasible parent node located on level l of tree 

t. If there is more than one feasible parent node, the algorithm chooses the node 

with the largest value of residual upload capacity. Notice that if l = 1, fpnode(t, l) 

returns always the index of the root node.  

• Let fcnode(v, t, l) return an index of a feasible child node of node v located on 

level l of tree t . If there is more than one feasible child node, again the residual 

upload capacity is the additional criterion.  

• Let istrasnfer(l) return 1 if there is at least one possible transfer on level l of any 

tree, 0 otherwise. 

• If each node v = 1,2,…,V is connected to each tree t = 1,2,…,T, i.e. all necessary 

transfers are completed, function istree() returns 1; otherwise it returns 0.  

• Function isupdate() returns 1 if incrementing of the access link upload capacity is 

possible for at least one node; 0 otherwise.  

• Let function updatenode() return an index of a node v, for which the upload 

capacity can be augmented. If there is more than one such a node, an additional 

criterion is applied. In the algorithm we use several combinations of two values: 

node level and relative cost of upload capacity increase given by the formula 

(uv(k+1) – uvk) / (ξv(k+1) – ξvk). 
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• We assume that first(A) returns the first element of table A. Let q = ∑t qt  denote 

the overall streaming tree rate of all trees. 

 

Algorithm CreateTree 

Step 0. Set xvwtl = 0 for each v = 1,2,…,V, w = 1,2,…,V, t = 1,2,…,T, l = 1,2,…,L, v ≠ w. 

Set yvk as the minimal values that guarantee sufficient download capacity for 

each node v expect the root node (i.e. dvk ≥ av + q) and the sufficient upload 

capacity for the root node r (i.e. urj ≥ br + q).  

Step 1. Set l = 1. Create table A containing all trees sorted in decreasing order of 

streaming rate qt. Create table B containing all nodes except the root node sorted 

in decreasing order of residual upload capacity of each node.  

a) If A = ∅ go to Step 2. Otherwise, go to Step 1b.  

b) Calculate t = first(A), w = first(B) and xrwtl = 1. Next, set A = A – {t} and 

B = B – {w}. Go to Step 1a.  

Step 2. If l > L go to step 3.  

a) If istrasnfer(l) = 0 set l = l + 1 and go to Step 2. Otherwise go to Step 2b. 

b) Set t = ftree(l), v = fpnode(t, l), w = fcnode(v, t, l) and xvwtl = 1. Go to Step 2a.  

Step 3. If istree() = 1 stop the algorithm, a feasible solution exists. Otherwise, go to 

Step 4.  

Step 4. If isupdate() = 0, stop the algorithm, there is not feasible solution. Otherwise, go 

to Step 5.  

Step 5. Set v = updatenode(). Find k, for which yvk = 1. Set yvk = 0, k = k + 1, yvk = 1, 

l = 1 and go to Step 2.  

 

We start with an initialization of all variables xvwtl and yvk (Step 0). The idea behind the 

selection of variables yvk is to find for each node a link that has sufficient download 

capacity to transmit the background traffic and the overall streaming rate of all multicast 

trees. Only for the root node additional procedure is run to ensure satisfactory upload 

capacity. Next, in Step 1 we ensure that in each tree t = 1,2,…,T there is at least one link 

from the root node to another node with possible large residual upload capacity. Step 2 

creates multicast trees denoted by variables xvwtl. The main loop of Step 2 is repeated for 

subsequent tree levels to allocate resources of upload capacity proportionally to all 

trees. If after Step 2 all nodes are connected to each tree, the algorithm exits (Step 3). 
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Otherwise, there is an attempt to increase capacity of the access link of a selected node 

(Step 4 and 5). For results of the Create Tree algorithm refer to [Wal10b]. Note that in 

[Wal09a] we developed a Lagrangean relaxation algorithm for the above problem. 

8.5. Survivable P2P Multicasting  

Network survivability is significant research topic in recent years, since a network 

failure could cause a lot of damages including economic loses, political conflicts, 

human health problems. Most of previous research has been focusing on networks using 

unicast flows (e.g., see [Gro04], [PM04]). Now we want to address the problem of 

survivability in the context of P2P multicasting system. The model presented below was 

formulated and evaluated in [Wal09b]. To protect the P2P multicasting system we 

propose to use an approach similar to 1:1 protection [Gro04] and establish two (or 

more) failure disjoint P2P multicast trees streaming the same content. We take into 

account three kinds of network failures: overlay link failure, uploading node failure and 

ISP link failure. For the overlay link failure, a pair of peers is disconnected. If there was 

a transfer on this link, some downstream nodes are affected by the failure. The overlay 

link failure comprises failure of both directed links. This follows from the fact that 

usually a network failure influences the transfer in both directions. The second failure – 

uploading node failure – impacts all successors of the failed peer in the tree. Therefore, 

we focus only on failure of nodes that have some children. Leaf node failure affects 

only this one node. The P2P multicasting is usually used in the Internet, which consists 

of many ISP operators. Each peer is connected to a particular ISP. A failure of cross ISP 

link means, that all overlay links between peers of one ISP and peers of the second ISP 

are not available.  

In Fig. 8.2a we present a simple example to illustrate our concept. Two trees A 

and B are established in the overlay network connecting 8 nodes a, b, c, d, e, f, g, h. Peer 

a is the root of tree A and peer b is the root of tree B. Other nodes c, d, e, f, g, h are 

receivers of the signal. In the case of tree A nodes a, c and f are uploading (non-leaf) 

nodes, while the remaining nodes d, e, g, h are leafs. Nodes a, c, d and e belong to ISP 

1. Nodes b, f, g and h are assigned to ISP 2. We use the term of level to describe the 

nodes. For instance, the node a is on level 1 of tree A, nodes c and f are on level 2 of 

tree A, nodes d, e, g and h are on level 3. The tree A has 3 levels of nodes and the tree B 

is of 4 levels. Notice that the overlay link (c,d) belongs to both trees, so in the 

consequence of link (c,d) failure, the node d will be connected to none tree. Peer c is an 
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uploading node in both trees. Therefore, the failure of c will disconnect all successors of 

c. Finally, the link between ISP 1 and ISP 2 is shared by both trees – in tree A link (a,f) 

and in tree B link (b,c). Fig. 8.2b shows survivable configuration of trees. 

 

    
(a)                                                                  (b) 

 

Fig. 8.2. Examples of P2P mulitcast trees [Wal09b] 
 

The objective is to minimize P2P multicasting streaming cost with the additional 

constraints to provide disjoint trees constructed according to selected failure scenario. 

We use the level formulation of P2P multicasting.  

 

Survivable P2P Multicasting Problem 

indices 

v,w = 1,2,…,V  overlay nodes (peers) 

k = 1,2,…,K  receiving nodes (peers) 

t = 1,2,…,T  multicast trees 

l = 1,2,…,L  tree levels of uploading nodes 

constants 

dv  download capacity of node v (kbps) 

uv  upload capacity of node v (kbps) 

rvt  = 1, if node v is the root (streaming node) of tree t; 0, otherwise 

q  streaming rate (kbps) 

cwv  streaming cost on overlay link (w,v) 

L  number of levels 

variables 
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xwvtl streaming rate on an overlay link (w,v) (no other peer nodes in 

between) in multicast tree t and w is located on level l of tree t; 

(continuous, non-negative) 

ywvt  = 1, if the link from node w to node v (no other peer nodes in 

between) is in multicast tree t; 0, otherwise; (binary) 

objective 

minimize   ∑w∑v∑t ywvtcwv      (8.5.1) 

constraints 

∑w∑t∑l xwvtl = 0,   v = 1,2,…,V   t = 1,2,…,T   rvt = 1  (8.5.2) 

∑w∑l xwktl = q,   k = 1,2,…,K   t = 1,2,…,T    (8.5.3) 

∑v xwvt1 ≤ uw rwt,   w = 1,2,…,V   t = 1,2,…,T    (8.5.4) 

xwvt(l+1) ≤ ∑b xbwtl,   v = 1,2,…,V   w = 1,2,…,v    

t = 1,2,…,T  l = 1,2,…,L – 1      (8.5.5) 

∑w∑t∑l xwvtl ≤ dv,   v = 1,2,…,V     (8.5.6) 

∑v∑t∑l xwvtl ≤ uv,   w = 1,2,…,V     (8.5.7) 

∑v∑t∑l xvvtl =0,       (8.5.8) 

∑l xwvtl ≤ qywvt,   v = 1,2,…,V   w = 1,2,…,v   t = 1,2,…,T  (8.5.9) 

ywvt ≤ ∑l xwvtl,   v = 1,2,…,V   w = 1,2,…,v   t = 1,2,…,T  (8.5.10) 

∑w ywkt = 1,   k = 1,2,…,K   t = 1,2,…,T.    (8.5.11) 

 

The criterion function (8.5.1) is the streaming cost. Condition (8.5.2) assures the 

download flow to be zero for the root node of each tree. Constraint (8.5.3) guarantees 

that each receiving node k = 1,2,…,K must be connected to each streaming tree. To 

meet the requirement that a node w can be the parent of the first level link in tree t, only 

if it is the root node (rwt = 1) we add constraint (8.5.4). Condition (8.5.5) is in the model 

to assure that each node w cannot upload to any other peer v on level (l + 1) more than it 

downloads on level l. (8.5.6) and (8.5.7) are download and upload capacity constraints, 

respectively. Constraint (8.5.8) guarantees that the node internal flow is zero. To bind 

variable xwvtl and ywvt we use constraints (8.5.9) and (8.5.10). Finally, condition (8.5.11) 

assures that each receiving peer has exactly one parent node. 

Now we formulate additional constraints that are related to survivability of P2P 

multicasting. Using the basic formulation (8.5.1)-(8.5.11) we show how to model the 
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following three scenarios: overlay link failure, uploading node failure and ISP link 

failure. We use the same notation as in the previous section.  

The first model protects the P2P multicasting against the single overlay link 

failure. 

 

Link Disjoint (LD) 

constraints (additional) 

∑t (ywvt + yvwt) ≤ 1,   v = 1,2,…,V   w = 1,2,…,V   v < w.  (8.5.12) 

 

Notice that in the case of the overlay link failure both directed links ((w,v) and (v,w)) 

are broken. This follows from the fact that usually a network failure influences the 

transfer in both directions.  

Next we formulate additional constraints for the uploading node failure. We use 

additional binary variable yvt denoting if a particular node is uploading in tree t. 

 

�ode Disjoint (�D) 

variables (additional) 

yvt  =1, if node v is uploading in multicast tree t; 0, otherwise (binary) 

constraints (additional) 

∑v ywvt ≤ Mywt,   w = 1,2,…,V   t = 1,2,…,T    (8.5.13) 

ywt ≤ ∑v ywvt,   w = 1,2,…,V   t = 1,2,…,T    (8.5.14) 

∑t yvt ≤ 1,   v = 1,2,…,V.      (8.5.15) 

 

Finally, we present a model related to the ISP link failure. A new binary variable zpmt is 

1, if in tree t there is at least one link from a peer located in ISP p to a peer located in 

ISP m or in opposite direction; 0, otherwise. 

 

ISP Link Disjoint (ID) 

indices (additional) 

p,m = 1,2,…,P Internet Service Providers (ISPs) 

constants (additional) 

α(v,p) = 1, if node v belongs to ISP p; 0, otherwise 

variables (additional) 
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zpmt  = 1, if in multicast tree t there is at least one link from a node located in 

ISP p to a node located in ISP m or in opposite direction; 0, otherwise (binary) 

constraints (additional) 

∑w:α(w,p)=1∑v:α(v,m)=1 (ywvt + yvwt) ≤ Mzpmt,   p = 1,2,…,P    

m = 1,2,…,P   p ≠ m   t = 1,2,…,T     (8.5.16) 

zpmt ≤ ∑w:α(w,p)=1∑v:α(v,m)=1 (ywvt + yvwt),   p = 1,2,…,P    

m = 1,2,…,P   p ≠ m   t = 1,2,…,T     (8.5.17) 

∑t zpmt ≤ 1,   p = 1,2,…,P   m = 1,2,…,P.    (8.5.18) 

 

Note that analogous to the overlay link failure case, the ISP link failure includes the 

failure of both directed ISP links, i.e., (p,m) and (m,p). For more details on the model 

and results see [Wal09b]. 

8.6. Exercises  

8.1. How to modify constraint (8.1.2) to denote that a peer wants to download only 

selected blocks? 

8.2. Calculate the complexity (number of variables and constraints) of the synchronous 

P2P formulation. 

8.3. Write the P2P multicasting model using the level formulation. 

8.4. Propose an additional constraint for a P2P system following from real systems. Use 

the synchronous P2P modeling. 

8.5. Write the root location problem for the P2P synchronous modeling. 

8.6. Write the root location problem for the P2P multicasting modeling. 

8.7. Write the Survivable P2P Multicasting Problem using the flow notation. Compare 

the model size (number of variables and constraints) between both formulations. 

8.8. Construct a computational intelligence algorithm for a selected P2P problem. 
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9. Distributed Computing Systems 

Distributed computing systems have been becoming very important and popular in both 

academia and industry, due to the growing need for various kinds of excessive 

computations related for instance to: financial modeling, medical data analysis, 

experimental data acquisition, earthquake simulation, and climate/weather modeling, 

astrophysics and many others [MKL02], [NSW04]. Therefore, the approach of grid 

computing appeared in mid-1990s partially replacing previously dominating 

supercomputers. Distributed computing systems contain many computers connected to 

one computational system, which is considered as one virtual machine with a large 

computation power. Thus, such systems can be used to process tasks requiring huge 

computation power not available on a single machine (even on a super-computer). 

Distributed computing systems are mainly divided into two categories:  

• Grid computing systems. According to [FI03] the grid is defined as a sharing 

environment implemented by the deployment of a persistent, standards-based 

service infrastructure that enables creation and resource sharing within 

distributed communities. Grids can include the following resources: computers, 

storage space, sensors, software applications and data. All elements of the grid 

are connected through the Internet. One of the primary goals of grids was to 

enable resource sharing within scientific collaboration, currently there are some 

efforts towards grid resource commercialization [FI03], [NSW04]. 

• P2P (Peer-to-Peer) computing systems called also public resource or global 

computing systems are focused mainly on the application of personal 

computers (e.g., PC or Macintosh) and other relatively simple electronic 

equipment instead of supercomputers and clusters [AB04], [MKL02]. The 

well-known example of public-resource computing project is SETI@home 

started in the 1999 [ACK02]. SETI@home has been developed using BOINC 

(Berkeley Open Infrastructure for Network Computing) software.  

Although public-resource computing and Grid computing systems are designed to the 

same goal of better utilizing various computing resources, there are differences in many 

aspects between these two approaches. First, grids assume more formal organization – 

elements of the grid (supercomputers, clusters, research labs, companies) are centrally 

managed, permanently available online, connected by high bandwidth network links. In 

contrast, participants of public-resource computing projects are individuals with PCs 
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connected to the Internet by DSL access links. Computers can be powered off or 

disconnected from the Internet [Wal08e], [AB04].  

Since Grids and public-resource computing systems are mostly implemented in a 

distributed manner, networks – especially the Internet – have been always indispensable 

to both computing approaches. According to [NSW04] communication-intensive Grid 

applications require networks for transferring large amount of input and output data. 

Characteristics of the generated network traffic depend on particular applications and 

workflow of the computational projects. Usually an overlay network model is used – the 

underlying physical network is assumed to be a cloud that provides network services 

and connectivity. Another example of distributed computing system that gains much 

attention recently is the concept of cloud computing – a dynamically scalable and 

usually virtualized environment that provides various services over the Internet. 

9.1. Overlay Cost Problem 

First, we consider an optimization problem related to a distributed computing system 

working in the overlay mode with the objective to minimize the operating cost 

[WW09], [KWW10]. The network computing system consists of clusters – represented 

as nodes v = 1,2,…,V – connected to the overlay network. Each node is described by the 

download and upload capacity denoted as dv and uv, respectively. The maximum 

processing rate of node v, i.e., the number of uniform computational tasks that node v 

can calculate in one second is denoted as pv. Furthermore, we are given ψv – the 

processing cost of one computational uniform task in node v. The transfer cost between 

nodes w and v is denoted by ζwv. In the network computing systems a set of 

computational projects r = 1,2,…,R are to be computed. Each project is described by the 

following parameters. The number of uniform computational tasks in project r is 

denoted by nr. Each project has a source node that produces the input data and one or 

more destination nodes that want to receive the output data, i.e. results of computations. 

For simplicity we assume that the uniform task for each project has the same 

computational requirement expressed in FLOPS. However, the values of the input and 

the output data transmit rate are specific for each computational project following from 

particular features of the project. Constants ar and br denote the transmit rate of input 

data and output data, respectively, per one task in project r and are given in bps.  

The workflow of computational tasks is as follows. The input data is transferred 

from the source node to one or more computing nodes that process the data. Next, the 
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output data is sent from the computing node to one or more destination nodes. We 

assume that the computational project is long-lived, i.e., it is established for a relatively 

long time (days, weeks). As a result, the input and the output data associated with the 

project is continuously generated and transmitted. Consequently, computational and 

network resources can be reserved in the system according to offline optimization. The 

decision variable xrv is integer and denotes the number of project r tasks computed on 

node v. The objective cost function includes two elements: the processing cost of tasks 

the transmit cost. The processing cost can include all aspects of IT infrastructure 

(energy, maintaining, hardware amortization etc.). The second element of the cost 

function is the transmission cost ζwv between nodes w and v. We propose several 

interpretations of this value. Firstly, let ζwv denote the distance (in kilometers) between 

w and v. In the concept of overlay network usually the underlay core network is 

considered as overprovisioned and the only bottlenecks are access links. But, selfish use 

of the network resources can lead in some cases to network congestion. Therefore, we 

propose to minimize the network traffic generated in the overlay network. The second 

explanation is also network related – let ζwv denote the network latency between vertices 

w and v. The motivation is comparable to the previous case, i.e., a network path with 

lower latency is usually less overloaded and minimization of the overall network 

latency should decrease network congestion. The last explanation of ζwv is an 

economical one. For instance, if ζw and ζv are unit costs of access links of node w and v, 

respectively, we can compute ζwv = (ζw + ζv)/2. The ζv can be related to the service 

charge of the access link per month or maintenance costs.  

 

Overlay Cost Problem 

indices 

v,w = 1,2,…,V  overlay nodes (peers) 

r = 1,2,…,R  projects 

constants 

pv maximum processing rate of node v (number of computational 

tasks that node v can calculate in one second)  

dv  download capacity of node v (bps) 

uv  upload capacity of node v (bps) 

nr  number of tasks in project r 
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ar  transmit rate of input data per one task in project r (bps) 

br  transmit rate of output data per one task in project r (bps) 

s(r,v)  = 1, if v is the source node of project r; 0, otherwise 

t(r,v)  = 1, if v is the destination node of project r; 0, otherwise 

ψv  processing cost of one computational task in node v 

ζwv  transfer cost of 1 bps from node w to node v 

M  large number 

variables 

xrv   the number of tasks of project r calculated on node v (integer) 

objective 

minimize F = ∑r∑v xrvψv + ∑r∑w:s(r,w)=1 ∑v:v≠w arxrvζwv + 

 ∑r∑w:t(r,w)=1 ∑v:v≠w brxrvζvw     (9.1.1) 

subject to 

∑r xrv ≤ pv,   v = 1,2,…,V      (9.1.2) 

∑r (1 – s(r,v))arxrv + ∑r:t(r,v)=1 br(nr – xrv) ≤ dv,   v = 1,2,…,V  (9.1.3) 

∑r:s(r,v)=1 ar(nr – xrv) + ∑r (tr – t(r,v))brxrv ≤ uv,   v = 1,2,…,V  (9.1.4) 

∑v xrv = nr,   r = 1,2,…,R.      (9.1.5) 

 

The objective (9.1.1) is the cost of the system compromising the computing cost and the 

transfer cost. The first term ∑r∑v xrvψv is the cost related to processing. Since, the term 

∑w:s(r,w)=1 ∑v:v≠w xrv defines the number of project r tasks transmitted from node w to 

node v, the second term of (9.1.1) denotes the overall cost of input data transfer. Notice 

that we check only transfers from the source node w of project (s(r,w) = 1) to the other 

computing node v (v≠w, xrv > 0). Analogously, the last term of (9.1.1) is the overall cost 

of output data transfer. Since each node has a limited processing speed (power) 

dedicated to computations of the considered job, we add the constraint (9.1.2), which 

assures that each node cannot be assigned with more tasks to calculate that it can 

process. (9.1.3) is the download capacity constraint. Similarly to (9.1.1), we have to 

check all input data (the first term of the left-hand side of (9.1.3)) and output data (the 

second term of the left-hand side of (9.1.3)) entering the node. Constraint (9.1.4) 

formulated in analogous way is the upload capacity constraint. (9.1.5) assures that for 

each project r = 1,2,…,R all tasks are assigned for computing. The above problem is an 

NP-complete Integer Programming problem, since it can be reduced to the knapsack 
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problem. For a proposal of a heuristic algorithm based on the GRASP method refer to 

[KWW10]. 

9.2. Network Cost Problem 

In this section we present a problem similar to the previous one (9.1.1)-(9.1.5). The 

main difference is that the considered network computing system does not work in the 

overlay mode but in a full network mode. Consequently, we optimize also the routing of 

flows related to the transfer of input and output data. Additionaly to notation introduced 

in the previous section, index p = 1,2,…,Pwv denote the set of candidate paths between 

nodes w and v. The network graph is given by a set of links indexed e = 1,2,…,E . 

Constant δewvp is 1, if the candidate path p between nodes w and v includes link e and 0, 

otherwise. Moreover, we modify the network cost and ζwvp denotes transfer cost of 1 

bps from node w to node v on path p. We use two integer decision variables. First, xwvp 

denotes the number of input tasks transmitted from source node w to computing node v 

using path p. The second one, ywvp defines the number of output tasks transmitted from 

computing node w to destination node v using path p. To reduce complexity of the 

model, we assume that there is only one computational project, i.e., we remove the 

index r (see previous section). Other assumptions (workflow, notation) are analogous to 

the model shown in previous section. 

 

�etwork Cost Problem 

indices 

v,w = 1,2,…,V  overlay nodes (peers) 

e = 1,2,…,E  network links 

p = 1,2,…,Pwv  candidate paths between nodes w and v 

constants 

pv maximum processing rate of node v (number of computational 

tasks that node v can calculate in one second)  

ce  capacity of link e (bps) 

n  number of tasks in the project 

a  transmit rate of input data per one task in the project (bps) 

b  transmit rate of output data per one task in the project (bps) 

s(v)  = 1, if v is the source node of the project; 0, otherwise 

t(v)  = 1, if v is the destination node of the project; 0, otherwise 
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ψv  processing cost of one computational task in node v 

ζwvp  transfer cost of 1 bps from node w to node v on path p 

M  large number 

variables 

xwvp the number of input tasks transmitted from source node w to 

computing node v using path p (integer) 

ywvp the number of output tasks transmitted from computing node w to 

destination node v using path p (integer) 

objective 

minimize F = ∑w∑v∑pxwvpψv + ∑w∑v∑paxwvpζwvp + ∑w∑v∑pbywvpζw (9.2.1) 

subject to 

∑w∑p xwvp ≤ pv,   v = 1,2,…,V      (9.2.2) 

∑w∑v∑pδewvp xwvpa + ∑w∑v∑pδewvpywvpb ≤ ce,   e = 1,2,…,E  (9.2.3) 

∑v∑p xwvp = s(w)n,   w = 1,2,…,V     (9.2.4) 

∑w∑p ywvp = t(v)n,   v = 1,2,…,V     (9.2.5) 

∑w∑p xwvp ≥ ∑pyvzp,   v = 1,2,…,V   z = 1,2,…,V.   (9.2.6) 

 

The objective (9.2.1) is the cost of the system compromising the computing cost and the 

transfer cost. The first term ∑w∑v∑pxwvpψv is the cost related to processing, since 

∑w∑v∑pxwvp denotes the number of tasks assigned to node v for processing. The second 

element of (9.2.1) defines the overall cost of input data transfer. Finally, the last term of 

(9.2.1) is the cost of output data transfer. Each node v cannot process more than its 

processing limit pv, thus we add to the model condition (9.2.2). Constraint (9.2.3) 

assures that the link flow (left-hand side) cannot exceed the link capacity (right-hand 

side). Notice that the link flow includes the input data transfer (first term) and the output 

data transfer (second term). Condition (9.2.4) is in the model to meet the requirement 

that only the source node of the project can send the input data. Similarly, in (9.2.5) we 

assure that all destination nodes of the project receive the output data. Finally, the last 

constraint (9.2.6) guarantees that node v cannot send to any node z more results than it 

processed. 
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9.3. Response Time Problem 

In this section we focus on the problem of processing tasks allocation in order to 

optimize the system performance expressed as the response time including time 

required to send the data through the network and processing time related to 

computational nodes. The problem was introduced in [PWW10]. We assume that 

computational projects are indexed r = 1,2,…,R. Each project can denote a database 

including classification data (training samples) used in the k-nearest neighbors method. 

Each project is divided into units (partitions) of the same size including a particular 

number of individual training samples. Let nr denote the number of units in project 

r = 1,2,…,R. The computing system consists of computing nodes indexed v = 1,2,…,V. 

Each computing node represents a single machine or a cluster located in the same 

physical location. There is a limit on the maximum number of units that each node can 

process denoted by cv, i.e., the number of units of all possible projects assigned to node 

v cannot exceed cv. This limit includes capacity constraints of each computing node 

related to the processing power, storage space, link capacity and others. For each node 

we are given the processing rate pv given in units/millisecond. This limit denotes the 

number of project’s units that node v can process in one millisecond. We assume also 

that there is a split limit denoted by S. This constraint enables us to limit the overall 

number of computing nodes involved in a given project. For instance, if S = 4 each 

project can be split to maximum 4 nodes. 

In the system there is a central node that is responsible for management and 

scheduling. This is a typical architecture of Grids and other computing systems 

[MKL02], [NSW04]. Each request from the client related to a particular project r is first 

transferred to the central node, which next queries all computing nodes involved in 

project r for necessary information. Finally, the central node sends the decision 

information to the requesting client node. All nodes are connected by an overlay 

network, e.g., using the Internet. We are given network delays between each computing 

node v and the central node denoted as tv and given in milliseconds. The network delays 

can be measured using the ping command. We assume that in both directions the delay 

is the same. Moreover, we assume that clients using the computing system are also 

spread over the network. Thus, there is also some delay between each client and the 

central node. However, we do not consider individual clients but only use aggregate 
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information related to each project r denoting the maximum client delay given by dr and 

the average client delay given by dr. 

The goal of the optimization is to minimize the response time of the computing 

system, which includes (i) the overall time required to send all requests and replies 

through the network and (ii) the processing time. The main decision variable is xrv 

denoting the number of project r units located in node v, i.e., the part of project r 

assigned to node v. Consequently, the processing time of project r in node v is xrv / pv. 

Moreover, we introduce an auxiliary binary variable yrv which is 1, if at least one unit of 

project r is located at node v; 0 otherwise.  

 
 

 
Fig. 9.1. Model of the Grid system [PWW10] 

 

The workflow of the system is shown in Fig. 9.1. The step 1 (number of steps 

are shown on the figure in circles) is issued by the client, which sends to the central 

node a query related to a particular project r. The maximum delay of this operation is dr 

and the average delay is dr. Next, the central node sends this query to all nodes 

participating in the project r (step 2), which produces delay tv for a particular processing 

node v. Subsequently, each computing node processes the query (step 3) what takes 

xrv / pv  and returns to the central node the decision (step 4 and delay tv). When the 

central node collects all answers from computing nodes, it makes the final processing in 

a very small time which is a constant, so it is not considered in the model (step 5). 

Finally, the central node sends back the final decision to the client node (step 6, 

maximum delay dr or average delay is dr). 
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Minimization of Maximum Response Time (MMRT) 

indices 

v = 1,2,…,V  computing (processing) nodes  

r = 1,2,…,R  projects 

constants 

cv capacity of node v (the overall number of project’s units that node 

v can store and process)  

pv processing rate of node v denoting the number of units that node v 

can process in one millisecond, (units/millisecond) 

dr maximum network delay between client node and the central node 

in project r (milliseconds) 

tv network delay between the central node and computing node v 

(milliseconds) 

nr size of the project r (number of database units) 

S split ratio, the maximum number of computing in any project 

M large number 

variables 

xrv the part of project r (number of units) located on node v (integer)  

yrv  =1, if the part of project r is located on node v; 0, otherwise 

(binary) 

zrv decision time in project r for node v 

zr decision time for project r 

z maximum response time of the system 

objective 

min z         (9.3.1) 

constraints 

∑v xrv = nr,   r = 1,2,…,R      (9.3.2) 

∑r xrv ≤ cv,   v = 1,2,…,V      (9.3.3) 

yrv ≤ xrv,   r = 1,2,…,R   v = 1,2,…,V     (9.3.4) 

xrv ≤ Myrv,   r = 1,2,…,R   v = 1,2,…,V    (9.3.5) 

∑v yrv ≤ S,   r = 1,2,…,R      (9.3.6) 

zrv = 2yrvtv + xrv / pv,   r = 1,2,…,R   v = 1,2,…,V   (9.3.7) 
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zrv ≤ zr,   r = 1,2,…,R   v = 1,2,…,V     (9.3.8) 

zr + 2dr ≤ z,   r = 1,2,…,R.      (9.3.9) 

 

The objective (9.3.1) is to minimize the maximum response time. Constraint (9.3.2) is 

in the model to meet the requirement that for each project r = 1,2,…,R all units are 

assigned for processing. Condition (9.3.3) assures that each node v = 1,2,…,V does not 

exceed the given processing limit cv. Constraints (9.3.4) and (9.3.5) are to bind variables 

xrv and yrv. To introduce the split limit we introduce condition (9.3.6). Constraints 

(9.3.7)-(9.3.9) are used to define the variable z denoting the objective function. First 

condition (9.3.7) defines the decision time in project r for node v including the transfer 

time between central node and node v (2yrvtv) and the processing time (xrv / pv). Next 

constraint (9.3.8) denotes the decision time for project r as the maximum value over all 

zrv taking into account all computing nodes. Finally, the last condition (9.3.9) defines 

the maximum response time z.  

The second problem has the goal to minimize the average response time. Therefore, we 

introduce additional notation. Constant dr denotes the average network delay between 

client node and the central node in project r given in milliseconds. Kr defines the 

number of clients of project r. The average response time of the system is denoted by z. 

 

Minimization of Average Response Time (MART) 

constants (additional) 

dr average network delay between client node and the central node 

in project r (milliseconds)  

Kr number of clients of project r 

variables (additional) 

z average response time of the system 

objective 

min z          (9.3.10) 

constraints (9.3.2)-(9.3.8) and 

z = ∑r (zr + 2dr) / R       (9.3.11) 

 

135



 

Both above problems are strongly NP-hard problems since they are equivalent to the 

Multidimensional Knapsack Problem. For more details on the problems, evolutionary 

algorithm and results refer to [PWW10]. 

9.4. Synchronous P2P System 

Now we present a model of a P2P computing system using the synchronous modeling 

of P2P flows (see Section 8.1). The model was first time defined in [WC08]. Our 

assumptions follow mainly from the construct of BOINC system [AB04] and 

recommendations of earlier authors included in [MKL02], [NSW04], [WC08]. The 

objective of the optimization is to minimize the cost of distributed computing system 

compromising the computation cost and data distribution cost. The following terms are 

used to describe the considered model.  

Network node (peer) – denoted as v = 1,2,…,V – is a PC or other computer, that 

is able to process data blocks, send them and fetch to/from other nodes. Each node v has 

a limited processing power pv that denotes how many uniform jobs (blocks) can be 

calculated on v. Each node v is connected to the overlay network via a bidirectional 

access links with limits on download rate (dv) and upload rate (uv).  

Block – denoted as b = 1,2,…,B – represents data fragment that can be processed 

on network node and transferred between network nodes. The whole computational 

project is divided into individual uniform jobs (blocks) having the same requirements of 

computational power for processing and the same size of the result block. For the sake 

of simplicity we use the same index b to denote both: individual job submitted to 

computation and the result data block that must be sent to vertices interested in 

analyzing obtained results. Processing of block b on vertex v has cost cbv. Resulting data 

replaces original (source) data within block b. Each block must be assigned to exactly 

one node for processing. We use the decision binary variable xbv to denote the 

assignment of block b to node v for processing. We assume that each node participating 

in the project must be assigned with at least one block for processing. This is an 

obligatory fairness condition that must be fulfilled by each vertex that wants to receive 

results of the computations. In our approach – for the sake of simplicity – we do not 

model the problem of input data distribution. Source data is delivered prior to initiation 

of the computing system. In other words, the time scale our system begins when all 

source blocks are assigned (delivered) to nodes. This assumption is motivated by the 

fact that usually source data is offloaded from one network site. Cost of source data 
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delivery is included in the cost of processing block b on node v. However, models 

presented below can be easily modified to incorporate also source data delivery.  

Time slot (iteration) are denoted as t = 1,2,…,T and have the same interpretation 

as in Section 8.2. In each iteration nodes may transfer blocks between them, but 

information about assignment of blocks to nodes is updated at the beginning of the next 

iteration. This causes a fact that block b may be fetched in iteration t only from nodes, 

which posses that block at the start of iteration t. The network transfer must be 

completed within a given number of time slots. All time slots have the same duration.  

The transfer of a block from source node w to destination node v has cost kwv. 

When a block is transferred to a node, then it is stored and available for analysis or 

future transfers to other nodes. Since all nodes participating in the project are interested 

in the result data, every node must download all blocks. The block transfer can be 

accomplished in several ways using the following network techniques: unicast, anycast, 

P2P. The decision binary variable ybwvt is 1, if block b is transferred to node v from node 

w in iteration t; 0, otherwise. 

Now we briefly motivate major assumptions of the model. First, we assume that 

all results must be transferred to each node. This follows from the fact that the 

computational project is collaborative – each participant (represented by the node) 

wants to receive the output data. In similar way we motivate the requirement that each 

vertex must process at least one block. Additionally, the public-resource computing 

system resembles P2P systems, in which a common approach is the “tit for tat” strategy 

(e.g., BitTorrent) [BYL09]. Thus, if a participant of the project wants to receive output 

data she/he should collaborate in the project. The approach of modeling the time scale 

of the system as time slots was taken from papers concerning P2P systems (see Section 

8.2). 

 

Synchronous P2P Computing System Problem – P2P Flows 

indices 

v = 1,2,…,V  computing (processing) nodes  

b = 1,2,…,B  blocks to be transferred 

t = 1,2,…,T  time slots (iterations) 

constants 

cbv  cost of processing block b in node v 

kwv  cost of block transfer from node w to node v 
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pv  maximum processing rate of node v 

dv  maximum download rate of node v 

uv  maximum upload rate of node v 

M  large number 

variables 

xbv = 1, if block with index b is processed (calculated) in node v; 0, 

otherwise (binary)  

ybwvt = 1, if block b is transferred to node v from node w in iteration t; 

0, otherwise (binary)  

objective 

minimize   F = ∑b∑v xbv cbv + ∑b∑v∑w∑t ybwvt kwv   (9.4.1) 

subject to 

∑b xbv ≥ 1,   v = 1,2,…,V      (9.4.2) 

∑v xbv = 1,   b = 1,2,…,B      (9.4.3) 

∑b xbv ≤ pv,   v = 1,2,…,V      (9.4.4) 

xbv + ∑w∑t ybwvt = 1,   b = 1,2,…,B   v = 1,2,…,V   (9.4.5) 

∑b∑v ybwvt ≤ uw,   w = 1,2,…,V   t = 1,2,…,T    (9.4.6) 

∑b∑w ybwvt ≤ dv,   v = 1,2,…,V   t = 1,2,…,T    (9.4.7) 

∑v ybwvt ≤ M(xbw + ∑i < t∑s ybswi),   b = 1,2,…,B    

w = 1,2,…,V   t = 1,2,…,T.      (9.4.8) 

 

The objective function (9.4.1) is the cost of processing of all blocks (∑b∑v xbv cbv) and 

the cost of blocks’ transfer using the peer-to-peer approach (∑b∑v∑w∑t ybwvt kwv). 

Condition (9.4.2) assures that each node must process at least one block. Constraint 

(9.4.3) states that each block is assigned for processing to only one node. Each node v 

has a limited processing power pv, thus we add to the model constraint (9.4.4). To meet 

the requirement that each processed block must be transported to each network node we 

introduce the condition (9.4.5). Notice that block b can be assigned to node v for 

processing (variable xbv=1) or block b is transferred to node v in one of iterations 

(variable ybwvt = 1). Constraint (9.4.6) guarantees that the number of blocks uploaded by 

node w can not exceed a upload capacity. In similar way, constraint (9.4.7) bounds the 
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download rate of node v. Constraint (9.4.8) assures that block b can be sent from node w 

to node v only if node w keeps block b in time slot t. Note that the right-hand side of 

(9.4.8) is a sum of variable xbw (= 1, if block b is computed in node w) and ∑i < t∑s ybswi 

(= 1, if block b is transferred to node w from any node s in any iteration preceding the 

current time slot t). Consequently, the right-hand side of (9.4.8) equals 1 only if node w 

holds block b in time slot t. Note that constraint (9.4.8) enables the peer-to-peer transfer 

of blocks. Constant M must be larger than V. The above model can be easily changed to 

use other than P2P flows. First, we show the unicast model.  

 

Synchronous P2P Computing System Problem – Unicast Flows 

objective 

minimize   F = ∑b∑v xbv cbv + ∑b∑v∑w∑t ybwvt kwv   (9.4.9) 

subject to (9.4.2)-(9.4.7) and 

∑v ∑t ybwvt ≤ M xbw,   b = 1,2,…,B   w = 1,2,…,V.   (9.4.10) 

 

The only modification comparing the P2P flows is to remove constraint (9.4.8) and use 

(9.4.10) assuring that block b can be sent from node w to node v in any time slot only if 

node w computes block b. In this case the constant M should be larger than VB to 

guarantee that if node w stores block b (variable xbv=1), then other vertices can 

download this block. The next model uses anycast flows, i.e., some nodes (peers) are 

selected as replica nodes and other nodes can fetch the blocks (results of computations) 

from the replica servers.  

 

Synchronous P2P Computing System Problem – Anycast Flows 

constants (additional) 

R number of replica servers in the network 

variables (additional) 

zv = 1, if vertex v is a replica server and provides blocks to other 

vertices; 0, otherwise (binary)  

objective 

minimize   F = ∑b∑v xbv cbv + ∑b∑v∑w∑t ybwvt kwv   (9.4.11) 

subject to (9.4.2)-(9.4.8) and 

∑b∑t ybwvt ≤ M(zw + zv),   v,w = 1,2…,V   v ≠ w   (9.4.12) 
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xbw + zv – 1≤ ∑t ybwvt,   b = 1,2,…,B   v,w = 1,2,…,V   v ≠ w  (9.4.13) 

∑v zv = R.        (9.4.14) 

 

Comparing to the P2P model three new constraints are added. Constraint (9.4.12) 

assures that if none of nodes v and w is selected as a replica (zw = 0  and zv = 0) there 

cannot be transfer between these nodes. Condition (9.4.13) together with (9.4.2) and 

(9.4.5) state that vertices hosting a replica can download block b only from nodes 

processing block b. In particular, if node v is a replica (zv = 1) and node w calculates 

block b (xbw = 1) node v must download block b in one of time slots, because block b is 

processed only in node w (constraint (9.4.2)) and block b must be downloaded by node 

v (constraint (9.4.5)). Finally, to meet the requirement that the number of replicas is R 

we add constraint (9.4.14). Note that in the model being a replica does not generate any 

additional costs – as mentioned above all nodes participating in the system assign their 

resources (computational and network) which are limited according to maximum 

processing rate, downloading rate and uploading rate. Cost of data transfer between 

nodes v and w given by kvw incorporates – as in P2P model – also costs of uploading 

blocks from replicas. For more information on the models, algorithms and results refer 

to [WC08], [Chm10]. 

9.5. Exercises 

9.1. Propose other than cost objective function for problem (9.1.1)-(9.1.5) and write a 

corresponding formulation. 

9.2. To problem problem (9.1.1)-(9.1.5) add additional resource of storage space, i.e., 

each project has some storage requirement required to processing of computational 

tasks.  

9.3. Rewrite problem (9.1.1)-(9.1.5) to consider computational tasks of various types. It 

is assumed that each project has a particular type. Moreover, each computing node can 

process tasks only of some types. 

9.4. Rewrite problem (9.2.1)-(9.2.6) to consider more than 1 computational project, i.e., 

add to the model index r. 

9.5. Rewrite problem (9.3.1)-(9.3.9.) to consider assymetric delays in the network. 

9.6. Reformulate problem (9.4.1)-(9.4.8.) to consider the situation when some peers can 

be not available in a particular time slot (see Section 8.2). 
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9.7. Construct a computational intelligence algorithm for a selected distributed 

computing system optimization problem. 
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