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INTRODUCTION 

 
 
 
 
 
 
 
 
 
 
This book presents the theory of Single-Degree-Of-Freedom (SDOF) and Multi-
Degree-Of-Freedom (MDOF) Systems, which corresponds to the educational program 
for students of Structural Dynamics at the Faculty of Civil Engineering . Theories of 
free and forced steady-state vibration of undamped and viscously damped systems are 
presented and discussed. The equation of motion is derived in two ways: firstly – 
according to the d’Alembert’s Principle, and secondly – according to the Mechanical 
Energy Balance method with use of Lagrange’s equation. Particularly, the 
comprehensive analysis of single-degree-of-freedom systems is carried out. Multiple 
degree-of-freedom systems are discussed, including the normal-mode theory of linear 
elastic structures and Lagrange’s equation. The free and forced vibration are analyzed 
with the use of either the modal transformation approach or the direct method for 
harmonically excited systems. The finite-number-of-degrees-of-freedom systems are 
obtained from the ones whose parameters are distributed. This is achieved by lumping 
parameters for certain regions into equivalent masses, springs, and dampers; each of 
these is assumed to have only a single function. The plane beams, trusses and 
foundations subject to the action of dynamic forces are analyzed from the point of view 
of such discretized systems.  
 A detailed list of literature is placed at the end of the book. As the authors were 
once professor Jan Langer’s students, the present handbook is mainly based on his 
book [5].  
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a

SYMBOLS AND ACRONYMS 
   acceleration magnitude 

qa am,    amplitude 

beata    amplitude of beat 
a    vector of amplitudes, vector of acceleration 

zyx ,a,aa    acceleration components along the coordinate axes x, y and z 
A    area 

kA , mA , dA , fA , ∆A  transformation matrices from generalized to local coordinates 
b    number of rigid bodies in the 3D system 
B , {m}    mass (inertia) matrix, diagonal inertia matrix 

ecc ,    damping coefficient, equivalent damping coefficient 

crc    critical damping coefficient 
C    constant 
C , 1C , 2C {c}   damping matrix, diagonal damping matrix 
d    number of degrees of freedom 
∆d    number of translational degrees of freedom 

ϕd    number of rotational degrees of freedom 
D    flexibility matrix 
D̂    flexibility matrix in expanded base of coordinates 
e    eccentricity radius, the number of constraints in the system 
E    Young’s modulus 

*
dE    energy dissipated during a cycle of vibration 

kE    kinetic energy 

pE    potential energy 
*
pE    potential strain energy 

f    frequency 

kF    vector of spring force 

mF    inertia force 

dF    damping force 

rF    vector of static restoring force 

exF    vector of external force  

TF    value of transmitted to foundation force 

zyx ,F,FF   force components along the coordinate axes x, y and z 

CS FF ,    sinusoidal and cosinusoidal component of force 

CS FF ,    vectors of sinusoidal and cosinusoidal components of force 
   vector 

)(tF∆    additional moment of force 
G    shear modulus 
G    weight, gravity force vector 
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I    second moment of area or second moment of volume  
J    moment of mass inertia of the body 

AO JJJ ,,ξ   moment of mass inertia of the body around the fixed axis ξ , 
   or rotation in plane around the point O or A  

ekk ,    spring constant, stiffness, equivalent spring constant, equivalent  
   stiffness 
K ,{ }k    stiffness matrix, diagonal stiffness matrix  

}{k o    principle stiffnesses matrix 

K̂    stiffness matrix in expanded base of coordinates 
O,, LLL   moment of momentum value, moment of momentum vector 

Mm ,,m   mass 
M   matrix 

}{mo    principle masses matrix 

rm    rotating mass 

mM    inertia moment 

OM    moments of force with respect to an axis through O 

exM    vector of external moment 

SM , CM , M   bending moments, 

gn    degree of geometric indeterminacy  

gdn    degree of kinematic (geometric) indeterminacy in a dynamic  
   sense 

hn    degree of static indeterminacy 

Mn     number of unknown member forces 

Nn    number of independent, non-trivial equilibrium equations 

ϕn    number of rotational constraints  

∆n    number of translational constraints  

SN , CN , N   axial (normal) forces 

SN , CN , N   forces vector in the set of members 
p    number of members in a kinematic chain 
p    vector of momentum 
P    excitation forces vector in a local base of coordinates 

qqqqqq  ~,,~,,~,   displacement, velocity, acceleration in generalized coordinates 

qqqqqq  ~,,~,,~,   vector of displacements, velocities, accelerations in generalized  
   coordinates 

mq    maximum amplitude of displacement 

oo qq ,    initial displacement, initial velocity  

CS qq ,    sinusoidal and cosinusoidal component of displacement,  
   constants of integration 

CS qq ,    sinusoidal and cosinusoidal component of displacements vector,  
   vectors of constants of integration 
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stq    static deflection 
q̂    expanded base of kinematic coordinates vector 
Q , iQ    vector of unknown internal forces, dynamic force 

Q̂    dynamic forces vector in expanded base of coordinates 
r    number of supporting constraints (links) in a kinematic chain 

r,rr,     displacement, velocity, acceleration in principal coordinates 
r,rr,     displacement, velocity and acceleration vectors in principal  

   coordinates 
rδ    virtual displacement 

ijRR,    matrix, element of the matrix 

R~ , r~    semi-major axis and semi-minor axis of ellipse 
cs,    vectors of sine and cosine functions 

yx SS ,    static moment of mass about the axis x  and y  
t    time, number of rigid bodies in the 2D system, 
T    period 

dT    period of damped vibration 

ST , CT , T   shear forces 
u,uu,     displacement, velocity, acceleration in local coordinates 
u,uu,     vector of displacements, velocities and accelerations in local  

   coordinates 
uuo am,   amplitude of foundation motion 

v    velocity magnitude 
v , Ov    vector of velocity 
V    volume 
w    number of truss hinges in a kinematic chain 
W    work 

Wδ    virtual work 
w    eigenvector 
W    modal matrix  
w    norm of vector w  

jiw    absolute value of jiw , module of jiw  
zyx ,,    cartesian coordinates 

x    kinematic coordinates vector in the dynamic sense 
X    hyperstatic forces vector 
α    damping ratio (fraction of critical damping) 

eqα    equivalent (viscous) damping ratio 
γ    non-dimensional damping coefficient 
δ    flexibility, compliance 
Δ    extensions of the members vector 
ε    magnitude of angular acceleration 
ε    vector of angular acceleration 
η    frequency ratio 
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ϑ    logarithmic decrement 
κ    dimensional parameter – retardation time 
λ    root of characteristic equation, eigenvalue 
µ    dimensional damping parameter 

aν    acceleration response factor 

mdd ννν ,, max   dynamic magnification factor, maximum value of dynamic  
   amplification factor 

rν    resonant dynamic magnification factor, 

Tν , Tν ′    response factor, transmissibility 

vν    velocity response factor 
ρ    density of the body or density of the area 

Sσ , Cσ , σ   values of stresses 
ϕ    initial phase 

   Rayleigh dissipation function 
φ,φφ,     angular displacements, angular velocities, angular accelerations 
φφφ  ,,    vector of angular displacements, velocities and accelerations 

ω    vector of angular velocity  
ω ,Ω    angular frequency, magnitude of angular velocity, angular  

   frequency of excitation  

nω    natural frequency 

dω    (angular) frequency of damped vibration, damping frequency 
ϕω +t    phase 

ψ    phase angle delay  
2Ω    spectral matrix 
oℑ    moment of unbalance 
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1. Basic Ideas  

1.1. Important Concepts and Definitions 

 

 

 

 

 

 

 

 

 

Dynamics  

 Dynamics is the branch of mechanics that deals with the 
motion of a system of material particles under the influence 
of forces, especially ones originating outside of the system  

Oscillation  

 Oscillation is the variation, usually with time, of the 
magnitude of a quantity with respect to a specified 
reference. The magnitude alternately becomes smaller and 
greater than the reference. 

 

Vibration  

 Vibration is a type of oscillation in which the quantity is a 
parameter that defines the motion of a mechanical system. 

Degrees of Freedom  

 Degrees of freedom are the ways in which the space 
configuration of a mechanical system may change, i.e. the 
independent movements the system can possibly undergo. 

Generalized coordinate 

 Generalized coordinates uniquely define any possible 
configuration of the system relative to the reference 
configuration. In this book the generalized coordinates are 
chosen to be independent of one another. 
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1.2. Harmonic and Quasi-Harmonic Motion 

Harmonic functions are often used to analyze shock and vibration. The following 
equation describes the displacement pattern followed by a body moving harmonically 
in time 

)sin()2sin()( ϕωϕπ +=+= tatfatq      (1.1) 
 
where f  is the frequency, fπω 2=  is the corresponding angular frequency, 0>a  is 
the amplitude of the displacement, )( ϕω +t  is the phase and ϕ  is the initial phase of 
the harmonic displacement function. 
 The velocity )(tq  and acceleration )(tq  of the body are found by differentiating 
the displacement once and twice, respectively: 
 

)cos()2cos()2()( ϕωωϕππ +=+= tatffatq              (1.2) 
 

)()sin()2sin()2()( 222 tqtatffatq ωϕωωϕππ −=+−=+−=          (1.3) 
 
Displacement, velocity and acceleration amplitudes are defined as follows: 
 

aqaqaq 2am,am,am ωω ===       (1.4) 
 
A harmonic motion described by Eq. (1.1) can be written down in form  
 

tqtqtq CS ωω cossin)( +=            (1.5) 
where  

taqtaq CS ωω sin,cos ==              (1.6) 
or 

)tg(arc
am 22

SC

CS

qq
qqqa

=

+==

ϕ
        (1.7) 

 
The velocity and acceleration can be obtained  by differentiating Eq. (1.5) with respect 
to time twice. After the first differentiation the equation of velocity is achieved in a 
form equivalent to Eq. (1.2) 
 

tqtqtq cs ωωωω sincos)( −=             (1.8) 
 
After the second differentiation the equation of acceleration is achieved in a form 
equivalent to Eq. (1.3) 
 

tqtqtq cs ωωωω cossin)( 22 −−=               (1.9) 
 
The quasi-harmonic motion with amplitude modulation 0)( >ta  can be written in form 
 

ttqttqttatq CS ωωϕω cos)(sin)()sin()()( +=+=          (1.10) 
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1.3. Characteristics of Harmonic Motion 

 

 
 

 
 

 
 

 
 

 
 

 

Amplitude qa am=  [m] 
The amplitude is the maximum absolute value of the displacement of 
a body undergoing harmonic motion. 

Period T [s] 
The period of a periodic quantity is the smallest increment of the 
independent variable for which the function repeats itself i.e. 

)()(
0

tftTf
tT

=+∀∃
≠ .  

Frequency Tf 1=  [1/s=Hz] 
The frequency of the function periodic in time is the reciprocal of the 
period. The unit is a cycle per unit time and must be specified.  
The unit per cycle per second is called hertz. 

Angular frequency (circular frequency) fT ππω 22 ==  [rad/s] 
The angular frequency of a periodic quantity, in radians per unit time, 
is the frequency multiplied by 2π. 

Phase angle   )( ϕω +t  [rad] 
The phase of a periodic quantity, for a periodic value of the 
independent variable, is the fractional part of a period through which 
the independent variable has advanced, measured from an arbitrary 
reference. 

Initial phase angle 
0

)(
=

+=
t

t ϕωϕ  [rad] 
The phase of a periodic quantity, for a periodic value of the 
independent variable, is the fractional part of a period through which 
the independent variable has advanced, measured from an arbitrary 
reference, in time point equal to zero. 
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1.4. Superposition of Harmonic Moves 

A point which undergoes simultaneous excitation from two independent sources  
exhibits vibration that is a sum of two vibrations. This phenomenon is referred to as 
superposition of vibration. While superposition may be applied to vibration whose 
function in time takes on any shape, only the case of harmonic vibration will be 
considered here. There are two possibilities that should be taken into account: 
 

• superposition of parallel vibration - both movements occur in the same 
direction. This situation may result in the phenomenon of beats. 

• superposition of perpendicular vibration – the movements occur 
perpendicularly to one another. Under the influence of the resultant vibration 
the point moves along a complicated trajectory. The least complicated of the 
curves that reflect those trajectories graphically are called Lissajous curves.  

1.4.1. Superposition of Synchronous Moves 

Let us consider a movement of the point described by the function )(tq  which is a 
combination of the collinear harmonic movements )(tq j , each of which is described 
by 

)sin()( jjjj tatq ϕω +=         (1.11) 
 
where constj ==ωω , constj == ϕϕ . Such movements are called synchronous. Then 
 

)sin()sin()( ϕωϕω +=+







= ∑ tatatq jj

j
j          (1.12) 

 
The amplitude of resultant movement is a sum of component amplitudes, i.e. 
 

∑=
j

jaa .          (1.13) 

 

 

1.4.2. Superposition of Isochronous Moves 

Let us consider a movement of the point described by the function )(tq j , Eq. (1.11), 
where constj == ωω , but the phase angles are different, i.e. ij ϕϕ ≠ . Such movements 
are called isochronous. Then 
 

tatatatq jjjjjjj ωϕωϕϕω cossinsincos)sin()( +=+=      (1.14) 

Conclusion: 
 

The resultant movement is harmonic and synchronous with component 
movements. 

13



The resultant movement can be expressed by formula 
 

tatatq
j

jj
j

jj ωϕωϕ cossinsincos)( 







+








= ∑∑   (1.15) 

 
By introducing new vectors, which can be defined 
 

T
321 ][ aaa=a         (1.16) 

 
T

321 ]coscoscos[ ϕϕϕ=c    (1.17) 
 

T
321 ]sinsinsin[ ϕϕϕ=s    (1.18) 

 
the formula Eq. (1.15) can be written in form 
 

)sin(sinsin)( TT ϕωωω +=+= tatttq saca            (1.19) 
where 
 









=

ca
sa

T

T

tgarcϕ      (1.20) 

and 
 

( ) aRaassccaassaacca TTTTTTTT2 =+=+=a   (1.21) 
 
The elements of matrix R can be calculated according to formulas 
 

jijijiij ϕϕϕϕϕϕ −=+= cossinsincoscosR             (1.22) 
 

1, == iijiij RRR            (1.23) 
 

( ) aRaassccaassaacca TTTTTTTT =+=+=a .     (1.24) 
 
 
 
 

 

Conclusion: 

• The resultant movement is harmonic with an angular frequency ω.  
• The amplitude of this movement can be calculated from formula  

 

0T >= aRaa  
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Illustrative Example 1.1 
 
In the case of two movements 
 













−
−

=
1cos

cos1

21

12

ϕϕ
ϕϕ

R           (1.25) 

thus 

2121
2
2

2
1 cos2 ϕϕ −++= aaaaa            (1.26) 

 
For example, when 
 
   021 =−ϕϕ   then     21 aaa +=  
 

 
221
πϕϕ =−   then   2

2
2
1 aaa +=            (1.27) 

 
 πϕϕ =− 21   then     21 aaa −=  

1.4.3. Superposition of Asynchronous Moves 

 Let us consider a movement of the point as a superposition of movements 
described by Eq. (1.11), where angular frequencies jω  are different – asynchronous 
moves . The resultant movement )(tq  is not a harmonic one. This movement is 
periodic if the proportion of the angular frequencies of component movements is a 
rational number, i.e. 
 
 

 :::::: 321321 nnn=ωωω            (1.28) 
 
 
where jn  are relatively prime natural numbers (i.e. their set does not have a common 
divisor). Then, it can be written constn jj =ω , and from here 
 
 

constTTn jj ==               (1.29) 
 
 
 Period T of the resultant movement is the lowest common multiple of the 
component movements periods. If jn  are small numbers, period T is comparable to 
periods of component movements. In the opposite situation, period T can be many 
times greater than the periods of component movements. If any of the jn  is not a 

rational number (for example 2,1 21 == ωω ), the period  achieves infinity. The 
maximum absolute value of resultant movement is described by formula 
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∑≤

j
jt

atq )(maxmax      (1.30) 

 
 
 In the case of superposition of two harmonic movements for which 21 ωω ≈  and 

21 aa =  or 21 aa ≈ , the superposition of these asynchronous moves leads to a 
phenomenon which is called beats. 
 

 
 
Illustrative Example 1.2 
Superposition of Parallel Vibrations – Beats 
 
Let us consider a periodic vibration which appears as a result of a superposition of two 
simple harmonic quantities (vibrations) occurring in the same direction but with 
different frequencies, 1f  and 2f . The amplitudes of component functions are the same 

aaa == 21  or almost the same 21 aa ≈ .  
 As a result of the superposition of these parallel vibrations, the phenomenon of 
beats appears, Fig. 1.1. A periodic increase and decrease of amplitude at the beat 
frequency )( 21 ff −  can be observed. 
 

f1

f2

 
 

Fig. 1.1 Superposition of parallel vibrations – Beats 

Conclusion: 

• Generally, the resultant movement is not a harmonic one.  

• This movement is periodic only if the proportion of the angular 
frequencies of component movements is a rational number 
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One can assume, according to Eq. (1.11), that the components of vibration have a form 
 

)sin()( 111 ϕω += tatq          (1.31) 
 

)sin()( 222 ϕω += tatq          (1.32) 
 
Since the functions Eqs. (1.31) and (1.32) have different frequencies, in any given 
frame of reference such points in time exist, in which both functions are in phase. If we 
then assume one of these points in time to be the beginning of a new frame of 
reference, we can simplify the mathematical notation of the phenomenon without 
changing the degree of the generality of notation. In the end, the following forms of 
functions describing movement are assumed:  
 

tatq 11 sin)( ω=      (1.33) 
 

tatq 22 sin)( ω=      (1.34) 
 
The resultant move can be calculated by summing Eq.(1.33) and (1.34), namely 
 

tatatqtqtq 2121 sinsin)()()( ωω +=+=       (1.35) 
 
Since 
 

2
cos

2
sin2sinsin βαβαβα −+

=+      (1.36) 

 
therefore formula Eq. (1.35) can be written in form 
 

( )[ ] 







=

=





 +















 −

=

=





 +















 −

=

tftfa

tfftffa

ttatq

am

_

2121

2121

2sin2cos2

2
2sin

2
2cos2

2
sin

2
cos2)(

ππ

ππ

ωωωω

           (1.37) 

 
Resultant movement (resultant vibrations) can be thought of as the movement with 
frequency  
 

2
21

_ fff +
=              (1.38) 

 
which is an arithmetic mean of two movement frequencies. The amplitude describes 
the formula in square bracket in Eq. (1.37). It can be seen that amplitude of the 
resultant movement )(tq  changes in time with frequency  
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2
21 fffam

−
=              (1.39) 

 
Since frequencies 21 ff ≈  are almost the same, the value of frequency amf ,  Eq. (1.39), 
is small and the amplitude (expression in square brackets in formula Eq. (1.37)) 
changes slowly. This phenomenon is called amplitude modulation. The amplitude of 
the beats is up to two times greater than the amplitudes of movement components, and 
its maximum appears when 
 

1
2

2cos 21 ±=





 − tff
π       (1.40) 

 
Since these values occur twice in one period, the frequency of beats is equal to doubled 
frequency amf  i.e. is equal to  
 

21 fffbeat −=               (1.41) 
 
 Fig. 1.2 shows a graph of the beats phenomena when the amplitudes of component 
functions are the same aaa == 21  or almost the same 21 aa ≈ .  
 Fig. 1.3 shows a graph of the beats phenomena when the amplitudes of component 
functions are not the same 21 aa ≠  and amplitude of beat is now described by 
expression 
 

taaaaabeat )cos(2 1221
22
21

ωω −++=    (1.42) 
 
 

 
 

Fig. 1.2 Beats – the amplitudes of component functions are the same aaa == 21   
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Fig. 1.3 Beats – the amplitudes of component functions are not the same 21 aa ≠  
 
 

Illustrative Example 1.3  
Superposition of Perpendicular Vibrations – Lissajous Curves 
 
 Let us consider a periodic vibration which appears as a result of a superposition of 
two simple harmonic quantities (vibrations) occurring in directions perpendicular to 
one another, and with different frequencies, xff =1  and yff =2 , Fig. 1.4. 
 

f y

fx

 
 

Fig. 1.4 Superposition of perpendicular vibrations – Lissajous curve 
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 Such a situation is referred to as superposition of perpendicular vibration. The 
trajectories of the resultant motion are often very complex curves. The least 
complicated of these are called Lissajous curves. 
 In mathematics, a Lissajous curve is the graph of a system of  two parametric 
equations  
 

)sin()( tatx xx ω=               (1.43) 
 

)sin()( ϕω += taty yy    (1.44) 
 
which describe complex harmonic motion. The equation of the point’s trajectory can 
be obtained from equations of vibration by eliminating the parameter t (time).  
 The trajectory of the point is a plane curve, whose shape depends on the ratio of 
both angular frequencies yx ωω and on the phase shift ϕ  between the vibrations. The 
shape of the figure is highly sensitive to the ratio yx ωω , Fig. 1.5.  
 The problem of establishing the trajectory of the point can be divided into two 
main cases: the frequencies are the same or they are not the same. 
 
Frequencies are the same ωωω == yx  
From the Eq. (1.43) it can be obtained  
 

xa
xt =)sin(ω              (1.45) 

then 

2

2

1)cos(
xa

xt −±=ω .     (1.46) 

 
After taking into consideration Eq. (1.44) and the trigonometric formula  
 

( ) βαβαβα sincoscossinsin +=+    (1.47) 
 
the Eq. (1.44) can, with the use of Eqs. (1.45), (1.46) and (1.47), be written in the form  
 

ϕϕ sin1cos 2

2

xxy a
x

a
x

a
y

−±=          (1.48) 

 
After squaring and transforming the Eq. (1.48), one can write finally 
 

ϕϕ 2
2

2

2

2

sincos2
=−+

yxyx aa
xy

a
y

a
x

         (1.49) 

 
This is an equation of an ellipse tilted under the angle ϕ  to the axis of a frame of 
reference. 
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Special cases of an ellipse (the first column in Fig. 1.5): 

• For 0=ϕ  the trajectory is described by the equation  

x
a
a

y
x

y=          (1.50) 

 
It means that the Lissajous curve is a line segment.  
• For yx aa ≠ , 2πϕ ±=  the trajectory is described by the equation  

 

12

2

2

2

=+
yx a

y
a
x

           (1.51) 

 
It means that the Lissajous curve is an ellipse whose axes are in accordance with the 
axes of a frame of reference. 
• For aaa yx == , 2πϕ =  the trajectory is described by the equation 

 
222 ayx =+          (1.52) 

 
It means that the Lissajous curve becomes a circle. 

Fig. 1.5 Lissajous figures – periodic vibration 
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Frequencies are not the same yx ωω ≠  
• For ratio 21=yx ωω , 2πϕ =  the figure is a parabola.  
• For ratio yx ωω  which is rational, these curves are closed. It means that 

resultant movement is periodic, though often very complex. 
• Lissajous figures where 1=xω , Ny =ω  (N is a natural number) and 

 

2
1 πϕ

N
N −

=           (1.53) 

 
 

are Chebyshev polynomials of the first kind of degree N. 
 

• For other ratios yx ωω  the curves are more complicated. The more complex 
curves are often similar in appearance to three-dimensional knots. In this 
sense, Lissajous curves are the projections of these knots onto a plane. 

• Under continuous change of phase ϕ  the Lissajous curves change shape, 
giving the impression of dancing in three-dimensional space. In such cases the 
movement may be very complex – the trajectory may not even be a closed 
curve, which means that the movement is not periodic, Fig. 1.6.  

Fig. 1.6 Lissajous figures – non-periodic vibration 
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1.5. Translational and Rotational Motion 

In this chapter the most important definitions of physical quantities describing motion are 
presented. The same physical quantity can be defined in different ways. The definitions are 
generally formulated with the use of [1,2,3].  

 

 
 

 
 

 
 

 
 

 
 

 

Displacement vector q  [m]  
• A vector quantity that specifies the change of position of a body or particle. It is 

usually measured from the mean position or position of rest. It is a vector quantity 
having direction as well as magnitude. 

• A linear distance from the initial to the final position of an object moved from one 
place to another (regardless of the length of path followed). 

• A distance vector of an oscillating particle from its equilibrium position. 

Displacement q  [m] – the magnitude of the displacement 

Velocity vector v , q  [m/s] 
• A vector quantity that specifies the time rate of change of displacement vector with 

respect to a reference frame. If the reference frame is not inertial, the velocity is 
often designated “relative velocity”. 

• A time rate of change of position of a body; it is a vector quantity having direction 
as well as magnitude. 

• A first derivative of the displacement vector q  with respect to time qqv == dtd . 

Speed or velocity  v , q  [m/s] – the magnitude of velocity  

Acceleration vector    a , q  [m/s2] 
• A vector quantity that specifies the time rate of velocity of a body; it is a vector 

quantity having direction as well as magnitude. 
• A first derivative of the velocity vector v  with respect to time vva == dtd . 
• A second derivative of displacement vector q  with respect to time qqa == 22 dtd . 

An inertial frame of reference  
• An inertial frame of reference is one in which Newton’s First Law of Motion is true.  
• A frame of reference is inertial if it remains at rest or moves uniformly in a straight 

line, neither rotating nor accelerating in relation to the stars. 
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Acceleration magnitude a  or q [m/s2] – the magnitude of acceleration 

Angular displacement vector  φ, q  [rad] 
• A direction of the displacement vector is the same as the direction of the axis of 

rotation and perpendicular to the plane of the angle. The length (magnitude) of the 
vector is equal to the angle, and the sense is determined by the “right hand rule”. 

• An angular distance of an oscillating body from its equilibrium position. 

Angular displacement or angle  ϕ , q  [rad] 
• A magnitude of the angular displacement vector φ. 
• The angle is the measure of the inclination of one line or surface with respect to 

another, equal to the amount that one would have to be turned in order to have the 
same inclination as the other. 

Angular velocity vector  ω , φ , q  [rad/s] 
• A time rate of change of position of angular displacement; it is a vector quantity 

having direction as well as magnitude. 
• A first derivative of the angular displacement vector φ  with respect to time 

dtdφω =  

Angular velocity  ω  [rad/s] ] – the magnitude of angular velocity 

Angular acceleration vector   ε , ω , φ , q  [rad/s2] 
• A time rate of change of angular velocity; it is a vector quantity having direction as 

well as magnitude. 
• A first derivative of the angular velocity vector ω  with respect to time 

ωωε == dtd . 
• A second derivative of angular displacement vector φ  with respect to time 

φφε == 22 dtd . 

Angular acceleration ε , ω ,ϕ , q [rad/s2] – the magnitude of angular 
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1.6. Newton’s Laws of Motion 

 Newton’s Laws of Motion (called Newton’s First, Second and Third Laws) are 
fundamental to classical mechanics. These laws have been proven to be valid for all 
mechanical problems in an inertial reference frame. They are directly applicable to 
bodies idealized as particles, that is, bodies assumed to possess mass but no volume. In 
elementary mechanics, however, it is proven that Newton’s Laws of Motion can also 
be directly applied to bodies of finite dimensions. 
 

1.6.1. First Law  

In an inertial frame of reference a particle not subjected to external forces remains at 
rest or moves with constant speed in a straight line. 
 

1.6.2. Second Law 

 The objective of study in this chapter is to describe motion (displacement q  or 
velocity qqv == dtd ) of the mass particle m  at any time t , for a given set of initial 
conditions at time 0=t . The analytical relation between the displacement q  and time 
t  in an inertial frame of reference is given by Newton’s Second Law of Motion 
 

dt
dmm

dt
dm

dt
dm

dt
md

dt
d

ex vavvvpF +=+===
)(

         (1.54) 

 
where p  is the vector momentum of the particle (as a product of its mass m and 
velocity v , vp m= ), exF  is the resultant vector (net force) of external forces acting on 
the particle with mass m  and a is its acceleration vector defined as the first derivative 
of the velocity vector with respect to time or the second derivative of displacement 
with respect to time i.e. qqa == 22 dtd .  
 If the mass particle is not changing in time ( constm = ) the second term on the 
right side of Eq. (1.54) is equal to zero and Newton’s Second Law of Motion can be 
written in classical form 
 

aF mex =          (1.55) 
 
 Eq. (1.55) is a vector relation and as such it can be written in equivalent form in 
terms of its components along the coordinate axes x, y and z, namely, 
 

xx amF =∑            (1.56) 
 

yy amF =∑            (1.57) 
 

zz amF =∑            (1.58) 
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 The general motion of a rigid body is described by two vector equations:  
the first one describes the translational motion with the velocity of its mass center O 
 

exm
dt
d Fv =)( O             (1.59) 

 
the second one describes the rotational motion of the body around its mass center O 
 

exdt
d ML

=O          (1.60) 

 
In above equations: 
 
m  is the mass of the rigid body 

Ov  is the velocity of center of mass of the body , 

exF  is the resultant of external forces (net force) acting on the body,  

exM  is the resultant moment vector of external forces acting on the body with 
respect to the point O, which is the center of mass of the body,  

OL  is the resultant moment of momentum vector with respect to center of mass  
of the body. 

 

 Although this last equation expressed in its scalar components is quite 
complicated, it is not usually needed in structural dynamics.  
 Let us consider the special case of a movement – the rigid body rotation around a 
fixed axis. In this case, Newton’s Second Law of Motion can now be written in form 
 

dt
JdJ

dt
Jd

dt
dJ

dt
)d(J

dt
d

ex ωεωωωLM +=+===        (1.61) 

 
where: 
 
ω  is the angular velocity vector ( ααω == tdd ), 

α  is the angular displacement vector (rotation around the fixed axis), whose 
direction is the same as the axis, 

J  is the moment of mass inertia of the body around the fixed axis of rotation, 

exM  is the resultant moment vector of external forces determined with respect to 
the same axis of rotation, 

L  is the resultant moment of momentum vector ( JωL = ), 

ε  is the angular acceleration vector defined as ααε == 22 dtd . 
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 If the mass moment of inertia of the body is not changing in time ( constJ = ) the 
second term on the right side of Eq. (1.61) is equal to zero and Newton’s Second Law 
of Motion for rigid body rotation around a fixed axis can be written in classical form 
 

εM Jex =        (1.62) 
or 

ξξξ εJM =∑             (1.63) 
 
where 

ξε  is the angular acceleration vector around the fixed axis ξ ,  

ξJ  is the moment of mass inertia of the body with respect to the fixed axis ξ ,  

∑ ξM  is the sum of the moments of all the external forces acting on the body with 
respect to the fixed axis ξ .  

 
 Newton’s Second Law of Motion yields the following equations for plane motion 
of a rigid body: 
 

xx amF =∑             (1.64) 
 

yy amF =∑             (1.65) 
 

εJM OO =∑             (1.66) 
  
In above equations: 
 

xa , ya  are the acceleration component, along the x and y axes, of the point O (center 
of mass of the body); 

ε    is the angular acceleration around the mass centre point O,  

OJ   is the mass moment of inertia of the body with respect to an axis through the 
mass center O, perpendicular to the x–y plane,  

∑ OM  is the sum of the moments of all the external forces acting on the body with 
respect to an axis through O, perpendicular to the x-y plane.  

 

1.6.3. Third Law (Law of Action and Reaction) 

 If in an inertial frame of reference two particles interact, the force F  exerted by 
the first particle on the second particle (called the action force) is equal in magnitude 
and opposite in direction to the force ( F− ) exerted by the second particle on the first 
particle (called the reaction force). The action and reaction forces both act along the 
same line but in the opposite directions. Each of them acts on a different particle, 
however. 
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1.7. Elementary Parts of Vibratory Systems 

A real vibratory system is able to store both kinds of mechanical energy, potential and 
kinetic, and to dissipate them. This is achieved with the means of springs for storing 
potential energy, mass or inertia for storing kinetic energy, and damping for dissipating 
energy. In an undamped system, the vibration is characterized by mechanical energy 
only, i.e. it is a continual shift from one to the other kind of mechanical energy (from 
potential to kinetic and back again). In a damped system, part of the energy is 
dissipated, i.e. is transferred to non-mechanical forms of energy (for instance to heat). 
A damped system, on the other hand, requires external sources of energy for the 
vibration to be maintained, as each cycle of oscillation causes some energy to be lost 
from the system. While it is possible for one structure to perform all the above 
functions (storing both kinds of energy and dissipating it), only discrete and lumped 
parameter systems composed of ideal springs, masses, and dampers will be considered 
here. In such systems, each element performs one function only. In translational 
motion, displacements are defined as linear distances; in rotational motion, 
displacements are defined as angular motions. 
 

1.7.1. Springs  

Springs are shown: in Fig. 1.7 linear (translational motion) and in Fig. 1.8 rotational 
(rotational motion).  
 

k

Q
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u =02 F

 
 

Fig. 1.7 Linear spring. 
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Fig. 1.8 Rotational spring. 
 

1.7.1.1. Spring Law 
 
 In the linear spring shown in Fig. 1.7 and the rotational one shown in Fig. 1.8 the 
change in the length of the spring is proportional to the external generalized force Q  
acting on the spring (or moment of force for rotational spring). According to Hooke’s 
Law of Elasticity the restoring force (elastic reaction, spring force) QF −=k  exerted 
by the spring material is described by the formula  
 

)( 21 uuuF −−=∆⋅−= kkk                (1.67) 
 
where the minus sign means that the force vector is oppositely directed to the 
displacement vector 21 uuu −=∆  (the difference of the displacement vectors of both 
ends of the spring along the spring axis, see also Chapter 1.9.1). If displacement 

qu =1  and 0u =2 , the Spring Law can be written in form 
 

qF kk −=             (1.68) 
 
 There are negative signs on the right hand sides of the Eqs. (1.67), (1.68) because 
the restoring force always acts in the opposite direction to the displacement.  
Spring constant or stiffness qFk =  is the constant of proportionality in Eq. (1.68). 
Flexibility or compliance Fq=δ  is the inverse of stiffness  
 

k
1

=δ         (1.69) 
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1.7.1.2. Potential Energy 
 
 Potential energy is the work (dot product of force and displacement) that must be 
performed for a body to be moved from a point where the energy of the body is equal 
to zero – that is, from a point where the force also equals zero. Thus, potential energy 
is also a measure of the work the body itself is able to perform thanks to the change in 
its position.  
 For one spring, the work can be calculate from formula  
 

pEukuFW ∆=∆=∆⋅= 2)(
2
1

2
1

   (1.70) 

 
where 21 uuu −=∆=∆u .  
 If qu =1  and 0u =2  then qu =∆  and the work in Eq. (1.70) is equal to the 
potential energy which can be written in form  
 

2

2
1 qkEp =              (1.71) 

 
 

1.7.2. Rigid Mass Body  
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Fig. 1.9 Rigid Mass Body. 
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1.7.2.1. Mass and Inertia Law 

 The mass m shown in Fig. 1.9 is a rigid body whose translational acceleration q , 
according to Newton’s Second Law of Motion in an inertial reference frame, is 
proportional to the resultant force (net force) of all forces acting on the mass  
 

qF m=        (1.72) 
 
 The mass m shown in Fig. 1.9 is a rigid body whose translational acceleration q , 
in a non-inertial reference frame, is proportional to the inertial force according to the 
formula 
 
 

qF mm −=          (1.73) 
 
 
 “Inertial force is a fictitious force acting on the body as a result of using a non-
inertial frame of reference; examples are the centrifugal and Coriolis forces that appear 
in rotating coordinate systems. Also known as effective force”, [2].  
 There is a negative sign on the right hand side of the Eq. (1.73) because the inertial 
force always acts in the opposite direction to the acceleration of the body. 
 
 

1.7.2.2. Mass Moment of Inertia and Inertia Law  
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Fig. 1.10 Rotation of Rigid Mass. 
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 In an inertial reference frame, the angular acceleration α  of the mass moment of 
inertia J  of a rigid body shown in Fig. 1.10 is, according to Newton’s Second Law of 
Motion, proportional to the resultant moment of all the forces acting on the mass i.e. 
 

αM J=         (1.74) 
 

 In a non-inertial reference frame, the angular acceleration α  of the mass moment 
of inertia J  of a rigid body shown in Fig. 1.10 is proportional to the inertial moment  
 

αM Jm −=           (1.75) 
 
There is a negative sign on the right hand side of the Eq. (1.75) because the inertial 
moment always acts in the opposite direction to the acceleration of the angular 
displacement. 
 
 

Remark: 
 
Mass moment of inertia J  for the rigid body can be expressed as the product of 
constant density ρ  of the body material and second moment of area I  of the 
body i.e. 

 
IJ ρ=        (1.76) 

 
where 
J    moment of mass inertia [kgm2

I
] 

   second moment of area [m4] or second moment of volume [m5

V
m

=ρ

]  

 or 
A
m

=ρ  density of the body [kg/m3] or density of the area [kg/m2

m

] 

   mass of the body [kg] 
V    volume of the body [m3

A
] 

   area of body [m2

 
] 

 
1.7.2.3. Kinetic Energy 

Kinetic energy is the energy which a body possesses because it is in motion. For the 
translational movement of one mass, kinetic energy can be written in form  
 

22

2
1

2
1 qmvmEk ==    (1.77) 

 
and for rotational movement of one rigid body – in form 
 

22

2
1

2
1 qJJEk == ω    (1.78) 
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1.7.3. Damper 
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Fig. 1.11 Viscous damper. 
 

1.7.3.1. Damping Law 
 
 In the viscous damper shown in Fig. 1.11 the applied force Q  is proportional to 
the relative velocity of its connection points (in Fig. 1.11 this velocity is equal to 
velocity of displacement qu  =∆ ). The resistance force (reaction) QF −=d  exerted by 
damping is described by the formula 
 

)( 21 uuuF  −−=∆⋅−= ccd            (1.79) 
 
where the minus sign means that the force vector is oppositely directed to the velocity 
of displacement vector 21 uuu  −=∆  (difference of velocity vectors of both ends of the 
spring along the spring axis). If velocity of displacement qu  =1  and 0u =2 , the 
Damping Law can be written in form 
 

qF cd −=         (1.80) 
 
The constant c  is the damping coefficient, the characteristic parameter of the damper. 
The ideal damper is considered to have no mass, thus the force at one end is equal and 
opposite in direction to the force at the other end. 
 There are negative signs on the right hand sides of the Eqs. (1.79) and (1.80) since 
the resistance force always acts in the opposite direction to the displacement’s velocity.  
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1.7.3.2. Rayleigh Dissipation Function 
 
This function describes the power of resistance forces, i.e. the work of these forces in 
time, which occurs in systems performing small oscillations. These forces are assumed 
to be proportional to velocities. The Rayleigh dissipation function, also known as 
dissipation function, is given by  
 

2

2
1 qc =          (1.81) 

 
1.7.4. Work of Acting Force 

 
 Work is the transfer of energy that occurs when a force acts on a body, and is 
calculated as a dot product of the force vector F  and the displacement vector q  of the 
point the force is acting on  
 

θcosFqW =⋅= qF                (1.82) 
 
where θ  is the angle between the force and the displacement vectors. 
 If a body is moving in such a way that the force has a component in a direction 
perpendicular to the direction of the body’s motion, the work of this component is 
equal to zero.  

1.8. Springs and Dampers in Parallel or in Series 
1.8.1. Springs 

1.8.1.1. Springs in Parallel 
 
Sometimes it is necessary to determine the equivalent (effective) spring constant ek  
for a system in which two or more springs are arranged in parallel as shown in Fig. 
1.12 or in series as in Fig. 1.13 
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Fig. 1.12 Combination of springs – springs in parallel. 
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 For springs in parallel, as shown in Fig. 1.14, the total reaction force is a sum of 
the forces’ values in springs. According to Spring Law, Eq. (1.68), the expression can 
be written 
 

qkqkkkqkqkqkFFFF ennn =+++=+++=+++= )( 212121   (1.83) 
 
Finally the equivalent stiffness of the spring ek  is given by 
 

ne kkkk +++= 21                    (1.84) 
 
which means that the stiffness of the equivalent spring is a sum of the stiffnesses of the 
springs assembled in parallel, i.e. In general, for n springs in parallel 
 

∑
=

=
n

i
ie kk

1
            (1.85) 

 
Now, in accordance with Eq. (1.84) and (1.69) it can be written that  
 

∑
=

=+++=
n

i ene 121

11111
δδδδδ

               (1.86) 

 

1.8.1.2. Springs in Series 
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Fig. 1.13 Combination of springs – springs in series. 
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For springs assembled in series, as shown in Fig. 1.15, deflection (displacement) of the 
system is the sum of the deflection of the individual springs 
 

FF
k
F

k
F

k
Fq e

n

δδδδ =+++=+++= )( 321
21

    (1.87) 

 
Finally the equivalent compliance of the spring eδ  is given by 
 

∑
=

=+++=
n

i
ine

1
21 δδδδδ                 (1.88) 

 
and using Eq. (1.69) one can achieve 
 

ne kkkk
1111

21

+++=      (1.89) 

 
and now it can be said that the inverse of the equivalent spring stiffness is a sum of the 
inverses of the springs’ stiffnesses. 
 In general for n springs in series the equivalent spring constant may be obtained 
from 

∑
=

=
n

i ie kk 1

11
        (1.90) 

 

1.8.2. Dampers 

The equivalent (effective) damper coefficient ec  for a system in which two or more 
dampers are arranged in parallel or in series can be appointed in a method analogical to 
the spring constant. 
 In general, for n dampers in parallel 
 

∑
=

=
n

i
ie cc

1
        (1.91) 

 
and for n dampers in series, the equivalent damper coefficient ec  may be obtained 
from 
 

∑
=

=
n

i ie cc 1

11
         (1.92) 
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1.9. Springs and Dampers neither in Parallel nor in Series 

1.9.1. Equivalent Stiffness of One Spring 

Let us consider one spring, whose ends can move as shown in Fig. 1.14,  
 

k

α2

α1
q  = A   q1 1 .

q  = A   q2 2 .

u2

u1

 
 

Fig. 1.14 A general case of a spring’s deformation. 
 

where 21, qq  are displacements of both ends of the spring, 21, uu  are their orthogonal 
projections onto the direction of the spring i.e. 111 cosαqu =  and 222 cosαqu = . Now, 
let us assume that displacements of ends of the spring 21, qq  depend on one 
generalized coordinate q  according to the relations qAq 11 =  and qAq 22 = . Finally 
one can archive  

111 cosαAqu =  and 111 cosαAqu =         (1.93) 
 
The potential energy of the spring can be written in form (see Eq. (1.70)) 
 

2
12 )(

2
1 uukEp −=                 (1.94) 

 
Substituting the relationships Eq. (1.93) into Eq. (1.94) one receive 
 

222
222 2

1)coscos(
2
1 qkqAAkE ep =−= αα       (1.95) 

 
Finally the formula for equivalent spring constant ek  may be formulated 
 

2
222 )coscos( αα AAkke −=          (1.96) 

 
If displacement of one end of spring is equal to zero ( 01 =u ) and 12 =A  i.e. qq =2  
the above simplified formula has the form 
 

2
2cos αkke =             (1.97) 
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1.9.2. Equivalent Damping Coefficient of One Damper 

The same reasoning in the case of energy dissipation function leads to formulas for 
equivalent damping coefficient ec  of one damper 
 

2
222 )coscos( αα AAcce −=          (1.98) 

 
and if displacement velocity of one end of damper is equal to zero ( 01 =u ) and 12 =A  
i.e. qq  =2  

2
2cos αcce =             (1.99) 

 

1.9.3. Springs or Dampers in Arbitrary Systems  

Illustrative Example 1.4 
Sometimes it is necessary to determine the equivalent spring constant ek  for a system 
in which two or more springs are arranged neither in parallel nor in series (for example 
Fig. 1.15 and Fig. 1.16). 
 

k1

α1 α2

q

ke

q
ke1 ke2

q
k2

 
 

Fig. 1.15 Combination of springs – neither in parallel nor in series (quasi-parallel). 
 
The potential energy of the system shown in Fig. 1.15 can be written in form 
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21

2
2

2
2

2
1

2
1
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2
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cos
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qkqkukukE

eee
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=+=

=+=+= αα
         (1.100) 

 
In general, for n springs the equivalent spring constant may be obtained from 
 

∑
=

=
n

i
eie kk

1
       (1.101) 
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Illustrative Example 1.5 
 
In situation shown in Fig. 1.16 the combination of springs corresponds to a set of 
equivalent springs in series. 

 

ke1

q

k2

k1

α1

α2

ke

q

q

ke2

 
 

Fig. 1.16 Combination of springs – neither in parallel nor in series (quasi-serial) 
 
 
Thus the equivalent stiffness of a system can be calculated from formula 

∑
=

=
n

i eie kk 1

11         (1.102) 

 where 
 

iiei kk α2cos=           (1.103) 
 
 By analogy, the same procedure can be used to dampers connected in the same 
way as is shown in Fig. 1.15 and Fig 1.16. With the use of formulas  
 

∑
=

=
n

i
eie cc

1
       (1.104) 

or 

∑
=

=
n

i eie cc 1

11
       (1.105) 

 
respectively, can be calculated the equivalent damper coefficient ec .  

39



1.10. Free Body Diagram (FBD) 

Before proceeding to perform dynamic analysis for a dynamic system (Fig. 1.17) using 
d’Alembert’s Principle (see Chapter 1.11), one should always create and draw a Free 
Body Diagram (Fig. 1.18).  
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Fig. 1.17 Single-degree-of-freedom system with viscous damping,  
excited by force acting on mass. 
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Fig. 1.18 Free body diagrams for a single-degree-of-freedom system with viscous 
damping, excited by force acting on mass. 
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In Fig. 1.18a can be seen a sketch of the body isolated from all other bodies, in which 
all the forces external to the body are shown. If d’Alembert’s Principle is taken into 
account, the inertia forces also ought to be shown in this sketch. While creating an 
FBD, one should take into account and mark the characteristics of the body, such as 
mass, moment of inertia, etc. It is also necessary to mark the displacement vector. The 
direction and sense of this vector automatically determines the direction and sense of 
the axis of the frame of reference – so direction of this vector is by definition positive.  
 All other vectors: 

q   – velocity vector 
q   – acceleration vector 

mF   – inertia force vector 

dF   – resistance force vector 

kF   – restoring force vector 
)(tF   – applied force vector 

should be marked with arrows, indicating their senses, which must be the same as the 
sense of the displacement q  (generalized coordinate). In reality, the sense of these 
vectors may be opposite to the one shown in the drawing in Fig. 1.18a, as in Eqs. 
(1.68), (1.73) and (1.80). Instead of the forces, the right-hand sides of Eqs. (1.68), 
(1.73) and (1.80) (with a negative sign) should be introduced into the equation of 
dynamic equilibrium. 
 There is also another method of creating an FBD. The senses of negative vectors 
ought to be changed in the diagram to their opposites, which means that the arrows 
indicating the sense of vector introduced into the diagram are to be drawn with their 
real sense, see Fig. 1.18b. The values of the forces should be introduced into the 
equation of dynamic equilibrium with positive signs. 
 The weight (gravity force) of the body gG m=  can also be shown in this diagram 
if necessary. However, then it is also necessary to mark the static displacement stq  and 
the static restoring force rF . 

1.11. D’Alembert’s Principle 

 An alternative approach to Newton’s Second Law of Motion is to make use of 
d’Alembert’s Principle to obtain the equation of motion. This principle states that when 
the material points move in accordance to the constraints, the difference of applied 
forces and inertial forces in a dynamic system does no virtual work. 
 

0)( , =⋅+=∑ iimi
i

W rFF δδ          (1.106) 

 
where  

iF     is the vector of applied force acting on point i of the system, 

iiim m qF −=,   is the vector of inertial force of point i of the system, 

im    is the mass of the particle i in the system 

iq    is the acceleration of the particle i in the system 

irδ     is the virtual displacement of point i of the system,  
    consistent with the constraints 
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The dot between vectors in formula Eq. (1.106) means a dot product of the vectors. 
The vector of the inertial force is the product of the mass and its acceleration. The 
negative sign means that the sense of the inertia force vector is always opposite to the 
sense of the vector of mass acceleration. 
 In a static case, when 0, =−= iiim m qF  , d’Alembert’s Principle Eq. (1.106) takes 
the form of Principle of Virtual Work.  
 D'Alembert also showed that one can transform an accelerating rigid body into an 
equivalent static system by adding the inertial force. 
 

 
 
 
 The application of d’Alembert’s Principle makes it possible to use equations of 
dynamic equilibrium in obtaining the equation of motion.  
 The most important feature of d’Alembert’s Principle is its simplicity – in the 
formulation of principle the arbitrary virtual displacements are assumed to be in 
directions that are orthogonal to the constraint forces, so the constraint forces do no 
work and unknown reactions are not present in equations. It is not necessary to 
calculate these forces to find equations of motion of the system 
 
Illustrative Example 1.6 
Equation of Motion 
 According to d’Alembert’s Principle it is possible to formulate the equation of 
motion of a single-degree-of-freedom viscously damped system excited in forced 
vibration by a force acting on the mass, Fig. 1.17. Especially in simple systems, the 
free body diagram is very useful in achieving the equation of motion, Fig. 1.18.  
 D’Alembert’s Principle states that a dynamic system may be set in a state of 
dynamic equilibrium by adding to the external forces an inertial force (IF). Looking at 
Fig. 1.18a, the summation of forces acting on the mass in the direction of the 
generalized coordinate q  gives directly 
 

0q =∑F          (1.107) 
 
Thus, we achieve 
 

0FFFF =+++ )(kdm t     (1.108) 
 
Now, using the expressions described by Eqs. (1.68), (1.73), (1.80) it is possible to 
write down 

)(tkcm Fqqq −=−−−       (1.109) 

D’Alembert’s Principle  

“a system may be set in a state of dynamic equilibrium by adding to the external 
forces a fictitious force that is commonly known as the inertial force”, [4]. 
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Multiplying the above equation by (–1) one can achieve 
 

)(tkcm Fqqq =++     (1.110) 
 
This equation is the vector differential equation of motion for an SDOF system with 
viscous damping and force applied to mass.  
 The scalar form of Eq. (1.110) is  
 

F(t)qkqcqm =++      (1.111) 
 
The same equation one can achieved summing the force in BD shown in Fig. 1.18b. 
 In this case, the application of d’Alembert’s Principle may seem trivial. In more 
complex systems, however, the problem becomes more difficult, and while the use of 
d’Alembert’s Principle is still possible, it becomes too complicated to be practical. 
This is due to the fact that in this instance, d’Alambert’s Principle would have to be 
applied together with the Principle of Virtual Work. Because of this, the Lagrangian 
equation will be more convenient to the solution of such complex systems.  
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2. Single-Degree-of-Freedom (SDOF) Systems 
2.1. Degrees of Freedom (DOF) 
Degrees of freedom are the ways in which the space configuration of a mechanical 
system may change, i.e. the independent movements the system can possibly undergo. 
If only one of these independent movements is possible, the system is called a Single-
Degree-Of-Freedom (SDOF) System 

2.2. Lagrangian Equation 

As has been stated in Chapter 1.11, formulating a differential equation of motion for a 
vibrating system by applying d’Alambert’s Principle is sometimes complicated, as it 
requires the determination of all the forces acting on the masses in an SDOF system. 
Therefore, in such more complex cases, it is often easier to derive this equation of 
motion in terms of the energies of the system with the use of the Lagrangian equation, 
[5] 
 

q
W

q
E

qq
E

q
E

dt
d pkk

∂
∂

=
∂

∂
+

∂
∂

+
∂
∂

−
∂
∂


   (2.1) 

where  
  kE  total kinetic energy of the system 
  pE  total potential energy of the system 

   Rayleigh Dissipation Function 
  W  virtual work of external force  
  q , q  generalized coordinate –  displacement and velocity  

In the case of small vibration around the equilibrium point, the kinetic energy in 
general does not depend on generalized displacements q . Then 
 

0=∂∂ qEk      (2.2) 
 
and Lagrangian equation has then the form used more often in typical situations 
 

q
W

q
E

qq
E

dt
d pk

∂
∂

=
∂

∂
+

∂
∂

+
∂
∂


              (2.3) 

 

2.3. Equation of Motion 

After the substitution of formulas for: potential energy Eq. (1.71), kinetic energy Eq. 
(1.77), Rayleigh dissipation function Eq. (1.81) and work of acting force Eq. (1.82) 
into Eq. (2.4), the result can be written in a form  
 

F(t)qkqcqm =++       (2.4) 
 
identical with the Eq. (1.111), which was achieved by using d’Alembert’s Principle. 
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2.4. Undamped Systems 

In ideal conditions, it is theoretically possible that a simple oscillator will never stop 
vibrating with a constant amplitude at its natural frequency. Such conditions are 
created when there is no damping at all. However, in practice it is impossible to 
eliminate all damping – therefore, the assumption that such conditions exist can only 
be warranted when the damping is negligibly small. Even so, the idealized solutions for 
such a case are of interest from the theoretical and didactical point of view. 
 The simplest possible vibratory system is shown in Fig. 2.1.  
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Fig. 2.1 Undamped single-degree-of-freedom system 
 

This system consists of a mass m  attached to the foundation by means of a spring 
with stiffness k . The mass can only move in one direction (translational motion) – the 
direction of the q  axis (generalized coordinate). For this reason such a system is called 
a single-degree-of-freedom system. Free vibration of such systems are discussed 
below. 

2.4.1. Homogeneous Equation of Motion and its Solution 

In accordance with Eq. (2.4) the equation of motion for undamped SDOF systems can 
be written in form 
 

0=+ qkqm               (2.5) 
 
where 0=q  defines the equilibrium position of the mass. This is the second order 
differential equation with constant coefficients. 
 The solution of the above equation can be written in the analytical form. The first 
step to achieve the analytical solution is to put in the Eq. (2.5)  
 

teq λ=         (2. 6) 
 
The characteristic equation obtained from Eq. (2.5) is 
 

02 =+ kmλ             (2.7) 
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There are two roots of this equation niωλ =1  and niωλ −=2 , where 1−=i  and  
 

mkn =ω           (2. 8) 
 
is known as the natural frequency of the system.  
 A total integral (general solution) of Eq. (2.5) has the form 
 

tqtqtq nCnS ωω cossin)( +=          (2.9) 
 
where Sq , Cq  are the constants of integration.  

2.4.2. Free Vibration 

 Free vibration occurs when a state of static equilibrium is disturbed, i.e. initial 
non-zero conditions are introduced into the system and there are no external excitation 
forces acting on the system, Fig. 2.1. This is a physical phenomenon described by the 
solution of Eq. (2.9) with two initial conditions, oqq =)0( , oqq  =)0( which determine 
constants of integration, i.e.  
 

noSoSn

oCoC

qqqqq
qqqqq

ωω  =→==
=→==

)0(
)0(

            (2.10) 

 
Finally the solution (displacement and velocity) has the form 
 

nnono tqtqtq ωωω sincos)( +=          (2.11) 
 

tqtqtq nonno ωωω cossin)(  +−=           (2.12) 
 
The exemplary free vibration can be seen in Fig. 2.2 
 

 
 

Fig. 2.2 Free vibration – undamped single-degree-of-freedom system: 
][2],[1],[3 smqmqsrad oo === ω  
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2.4.3. Forced Vibration 

The vibration of a system is forced if the response is dependent on the excitation. The 
non-resonant vibration is always steady-state when the excitation is periodic and 
continuous. The focus of the present chapter is harmonic excitation, which is important 
for two reasons. On the one hand, a large number of civil engineering structures is 
subjected to harmonic excitation produced by rotating machinery. On the other, the 
mathematical description of such excitation is relatively easy, as the solution of the 
equation of motion in this case is obtained in an analytical form. Even if excitation is 
not harmonic, it can be decomposed into a Fourier series (a series of harmonic 
functions). Through the superposition of individual responses of the system to these 
harmonic components of external excitation, we achieve a response of the system to 
the non-harmonic excitation. 

2.4.3.1. Response to Harmonic Load  

When the sinusoidal force tFtF o ωsin)( =  is applied to the mass in the undamped 
single-degree-of-freedom system, Fig. 2.3, the differential equation of motion is 
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Fig. 2.3 Undamped single-degree-of-freedom system excited in forced vibration by a 
harmonic force acting on mass 

 
 

tFqkqm o ωsin=+     (2.13) 
 
The solution of this equation is  
 

t
k
Ftqtqtq

n

o
nCnS ω

ωω
ωω sin

1
1cossin)( 22−

++=         (2.14) 

 
This total (general) solution to the linear differential equation Eq. (2.13) is the sum of 
the general solution (also called a complementary solution – the sum of the first two 
components on the right-hand side of Eq. (2.14)) of the related (reduced) homogeneous 
equation Eq. (2.5), and the particular solution (integral – the third component on the 
right-hand side of Eq. (2.14)). The complementary solution depends on the initial 
conditions. The particular solution depends on the forces of excitation only (does not 
depend on initial conditions). 
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 The total (general) solution is related to vibrations with the undamped natural 
frequency nω . The coefficients Cq , Cq  may be found from a comparison of )(tq , Eq. 
(2.14), and its first derivatives )(tq  at the time-point 0=t , with the initial conditions 

oqq =)0( , oqq  =)0( , i.e. from the set of equations 

oC qqq ==)0(   221
)0(

n

o
nS k

Fqq
ωω

ωω
−

+=     (2.15) 

 
The exemplary solutions if the mass is initially at rest in the equilibrium position of the 
system (i.e., 0)0( =q  and 0)0( =q ) at time 0>t  is 
 

)sin(sin
1

1)( 22 tt
k
Ftq n

nn

o ω
ω
ωω

ωω
−

−
=   (2.16) 

 
This solution can be seen in Fig. 2.4 

 

 
 

Fig. 2.4 Exemplary solutions for an undamped single-degree-of-freedom system 
excited in forced vibration by harmonic force acting on mass,  

srad2,srad12,/10kN,10 6 ==== no mNkF ωω  
 

In reality, the situation is different because of damping, which is always present in a 
physical system. Due to its effects, the vibration at natural frequency nω  fades 
gradually. With its fading, the condition of equilibrium is fulfilled, and only a steady-
state vibration at forcing frequency ω  remains: 
 

t
k
Ftq
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o ω
ωω
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1

1)( 22−
=        (2.17) 

 
This vibration exists as long as the force )(tF  is applied to the system. 
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2.4.3.2. Force Transmission to Foundation 

 Transmissibility Tν  is defined as the measure of the ability of a system either to 
amplify or to suppress an input vibration, equal to the ratio of the response amplitude 
of the system in steady-state forced vibration to the excitation amplitude; the ratio may 
be in forces, displacements, velocities, or accelerations. [1, 2] 
 In the analyzed case (when the spring is the only element connecting the mass to 
the foundation), the force transmitted to the foundation is directly proportional to the 
spring deflection kqFF kT == .  
 Substituting )(tq  from Eq. (2.17) one can achieve  
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nω
ωη =   (2.18) 

 
 En exemplary response factor curve (transmissibility Tν ) of an undamped single-
degree-of-freedom system excited in forced vibration by a harmonic force acting on 
mass can be seen in Fig. 2.5a. 
 
 

 
 

Fig. 2.5 Undamped single-degree-of-freedom system excited in forced vibration by a 
harmonic force acting on mass srad2=nω :  a) transmissibility; b) absolute value 

of transmissibility 
 
 

Usually, the more convenient way of presenting the response factor is a curve of 
absolute value of transmissibility Tν . The response factor curve for Tν  is shown in 
Fig. 2.5b. 
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2.4.3.3. Resonant Vibrations 

When a resonance occurs ( nωω = ), the expression Eq. (2.16) describing steady-state 
vibration becomes indeterminate. In such a situation, a mathematical analysis of the 
problem leads to a different solution. A detailed solution to the problem may be found 
in [6]. The accurate solution )(tq  in this case has a mathematical form in which the 
variable t is the multiplier of the harmonic component: 
 

t
k

Ftt
k

Ftq oo ωω
ω sin

2
cos

2
)( −=            (2.19) 

 
According to the above solution, the amplitude of )(tq  increases linearly in time, 
reaching an infinitely great value only after an infinitely great time (see Fig. 2.6). 
 

 
 

Fig. 2.6 Resonant vibration of an undamped single-degree-of-freedom system excited 
in forced vibration by a harmonic force acting on mass, 

srad12,/10kN,10 6 ==== no mNkF ωω  

2.4.3.4. Response to Harmonic Motion of Foundation  

Let us consider the case of forced vibration excited by a continuing harmonic motion 
of the foundation (Fig. 2.7). 
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Fig. 2.7 Undamped single-degree-of-freedom system excited in forced vibration by 
motion of foundation 

 
 

The differential equation of motion for the system, Fig. 2.7, excited by a continuing 
motion tutu o ωsin)( =  of the foundation, with accordance to Eqs. (1.67) and (2.5), is 
 

0)sin( =−+ tuqkqm o ω      (2.20) 
 
The solution of this equation is 
 

tutqtqtq
n

o
nCnS ω

ωω
ωω sin

1
cossin)( 22−

++=         (2.21) 

 
where mkn =ω  and the coefficients Sq  and Cq  are determined by the velocity and 
displacement of the mass, respectively, at time 0=t . Although it does not result from 
the formula in Eq. (2.21), when damping occurs the general integral eventually fades 
entirely. As has been stated in the previous chapter, only the particular integral, i.e. the 
steady-state vibration, remains. Hence, the ratio of amplitudes is defined in the 
following terms:  
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From a comparison between Eq. (2.22) and Eq. (2.18) it follows that in forced 
vibration of an undamped SDOF system, the force transmissibility, and the motion 
transmissibility are the same. 
 An exemplary response factor curve (transmissibility Tν ) of an undamped single-
degree-of-freedom system excited in forced vibration by motion of foundation can be 
seen in Fig. 2.5a, and the response factor curve for absolute value of transmissibility 

Tν  – in Fig. 2.5b. 
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2.5. Damped Systems 

As has already been noted, in reality every physical system undergoing motion 
contains frictional forces, otherwise referred to as damping forces. These forces are 
responsible for the loss of energy from the system – the energy is mostly transformed 
into heat. As the mechanism of this transformation has not yet been fully accounted 
for, an analysis of dynamic systems requires a number of assumptions to be made on 
the basis of practical experience. 

2.5.1. Viscously Damped System 

The simplest way to take into account the damping forces in dynamic analysis is to 
assume that these forces are proportional to the magnitude of the velocity, and opposite 
in direction to the direction of motion. This type of damping is known as viscous 
damping. The assumption of viscous damping is not always realistic, but it is made 
often nonetheless for two reasons. Firstly, in civil engineering structures damping is 
usually very low, and so the kind of damping assumed is of no great importance. 
Secondly, the mathematical analysis of a system with this kind of damping is relatively 
simple.  
 In Fig. 2.9 one can see a single degree-of-freedom system with a mass m, a spring 
with stiffness k, and a viscous damper with damping coefficient c. 
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Fig. 2.8 Single-degree-of-freedom system with a viscous damper  

2.5.2. Homogeneous Equation of Motion and its Solution 

The differential equation of motion of mass m , corresponding to Eq. (1.111) is 
 

0=++ qkqcqm      (2.23) 
 
 The solution of the above equation can also be written in the analytical form. The 
first step to achieve the analytical solution is to put into the Eq. (2.23)  
 

teq λ=          (2.24) 
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The characteristic equation obtained from Eq. (2.23) is 
 

02 =++ kcm λλ     (2.25) 
 
There are two roots of this equation dn iωαωλ +−=  and dn iωαωλ −−= , where  
 

nnd ωαωω <−= 21        (2.26) 
 
is the natural angular frequency of damped vibration – damping frequency. 
 The period of damped vibration is given by 
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and the damping ratio (fraction of critical damping) α  is defined by 
 

km
c

c
c

cr 2
==α     (2.28) 

 
where the critical damping coefficient ncr mkmc ω22 == . 
 Now, Eq. (2.23) can be written in the commonly used form  
 

02 2 =++ qqq nn ωαω        (2.29) 
 
and its general integral (solution) has the form 
 

)cossin()( tqtqetq dCdS
tn ωωαω += −    (2.30) 

 
where Sq , Cq  are the constants of integration.  

2.5.3. Free Vibration with Viscous Damping 

Free vibration occurs when a state of static equilibrium is disturbed, i.e. initial non-
zero conditions are introduced into the system and there are no external excitation 
forces acting on the system, Fig. 2.8. This is a physical phenomenon described by the 
solution Eq. (2.30) with two initial conditions, oqq =)0( , oqq  =)0(  which determine 
constants of integration, i.e.  
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Finally the solution has the form 
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where αβ =sin  and 21cos αβ −= . Exemplary solution can be seen in Fig. 2.9. 
 

 
 

Fig. 2.9 Free vibration response for a damped system. 

2.5.3.1. Underdamped System ( 1<α ) – Less-Than-Critical Damping 

 In a situation when the damping of the system is less than critical 1<α , a general 
solution of Eq. (2.23) has the form of Eq. (2.30). 
 

2.5.3.2. Critically Damped System ( 1=α ) – Critical Damping 
 
 In a situation when crcc =  there is no vibration and the solution of Eq. (2.23) is 
 

)()( tqqetq cs
tn += −αω     (2.33) 

2.5.3.3. Overdamped System ( 1>α ) – Greater-Than-Critical Damping 

 In a situation when the damping of the system is greater than critical 1>α , a 
total integral of Eq. (2.23) has the form 
 

)()( 11 22 −−−− += αωαωαω nnn t
C

t
S

t eqeqetq   (2.34) 
 
In such a situation, the motion is non-oscillatory, Fig. 2.10.  
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Fig. 2.10 Free vibration response with critical damping. 
 
This means that an overdamped system disturbed from its equilibrium position by 
introducing initial conditions does not perform vibration (at most, it will pass through 
the equilibrium position only once) and returns to the equilibrium position in a non-
oscillatory way. The overdamped system’s response is comparable to the response of a 
critically damped system, but the process of returning to the equilibrium state takes 
longer. The time required is proportional to the magnitude of the damping. 

2.5.3.4. Logarithmic Decrement 

A different way to determine the damping in a system is to specify the so called 
logarithmic decrement of damping. When 1<α , the degree of damping may be 
defined in terms of two peak values of a free oscillation curve, Fig. 2.9, which can be 
derived either theoretically Eq. (2.31) or experimentally (record of the oscillatory 
motion). Let us consider any two maxima (i.e. value of )(tq  when 0=dtdq ) 
separated by n cycles of oscillation i.e. )()( tqenTtq dnT

d
αω−=+ . Then the natural 

logarithm of the ratio of these maxima is 
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where n is an integer number greater than or equal to 1 ( 1≥n ).  
 From Eq. (2.35) one can find that 
 

224 ϑπ

ϑα
+

=               (2.36) 

 
For small values of α  (less than about 1.0 ) the logarithmic decrement πϑ 2<< , 
and an approximate relation between the damping ratio (fraction of critical damping) 
and the logarithmic decrement is 
 

παϑ 2=        (2.37) 
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2.5.4. Forced Vibration with Viscous Damping 

2.5.4.1. Response to Harmonic Load 

Fig. 2.11 shows the case of a harmonic force applied to the damped mass oscillator  
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Fig. 2.11 Single-degree-of-freedom system with viscous damping, excited by a 
harmonic force acting on a mass 

 
where 

)sin(cossin)( ϕωωω +=+= tFtFtFtF oCS              (2.38) 
 

)(tgarc,)(am 22
SCCSo FFFFtFF =+== ϕ   (2.39) 

 
The differential equation of motion of a single-degree-of-freedom system with viscous 
damping excited by a harmonic force has the form 
 

tFtFqkqcqm CS ωω cossin +=++     (2.40) 
or  

)cossin(2
2

2 tFtF
k

qqq CS
n

nn ωωωωαω +=++            (2.41) 

 
 The total solution of Eq. (2.40) or Eq. (2.41) with harmonic force vector defined 
by Eq. (2.38) consist of the complementary solution and the particular solution. The 
complementary solution is defined by the Eq. (2.30) for the underdamped case. The 
particular solution of the Eq. (2.40) or Eq. (2.41) can also be found in a harmonic form  
 

)sin(cossin)( ϕωωω +=+= tqtqtqtq oCS              (2.42) 
 
Substituting Eq. (2.42) into Eq. (2.40) one can achieve a set of algebraic equations 
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By defining the frequency ratio 
nωωη =           (2.44) 

Eqs. (2.43) can be written down as 
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The solution of the Eq. (2.45) is 
 

,
,
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The particular solution of Eq. (2.40) which is the steady-state response of the system, 
Fig. 2.10, can be finally written in form 
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where the ratio of a steady-state amplitude of )(tq  to the static deflection stq  is 
defined as the dynamic magnification factor described by formula 
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1am

αηη
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η
αηψ
−
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 By combining the complementary solution, or transient response, from Eq. (2.30) 
with the particular solution, or steady-state response, from Eq. (2.48), the total solution 
of Eq. (2.40) or Eq. (2.41) can be arrived at: 
 

)cos()sin()cossin()( ψω
ν

ψω
ν

ωωαω −+−++= − tF
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tF
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tqtqetq C
d

S
d

dCdS
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It must be noted that the constants of integration Sq  and Cq  should be calculated from 
the initial conditions with the use of the total response given by Eq. (2.51) and not 
from just the transient component of response given in Eq. (2.30). As the exponential 
factor tne αω−  will always be present in a damped system, the transient component of 
response disappears, and only the steady-state motion given by Eq. (2.48) remains. 
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 From Eqs. (2.48) it is seen that the steady-state response of the system is a time 
history of the force with phase delay. The variation of the steady-state displacement 

stqqam  (dynamic amplification factor dν ) as a function of the frequency ratio η  
and the damping ratio α  is shown in Fig. 2.12.  
 

 
 

Fig. 2.12 Dynamic magnification factor dν  as a function of frequency ratio for various 
amounts of damping 

 
Analogically to the magnification factor, the phase angle delay ψ , given by Eq. (2.51) 
and shown in Fig. 2.13, varies with the frequency ratio η  and the damping ratio α . 
When 1<η , it is the case of high tuning, i.e. structure parameters cause a greater value 
of natural frequency which remains greater than the frequency of excitation; when 

1>η , it is the case of low tuning, i.e. structure parameters cause the opposite situation. 
 

 
 

Fig. 2.13 Phase angle delayψ  as a function of frequency ratio for various damping 
values 

 
 

 

high 

tuning 

low 

tuning 
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It can be noted in Fig. 2.12 that the peak amplitude occurs at the frequency ratio  
 

121 2 <−= αη             (2.52) 
 
and the exact maximum value of dynamic amplification factor dν  is (valid for 1<α ) 
 

2max
12

1

αα
ν

−
=d               (2.53) 

 
For a lightly damped system 1<<α , the peak amplitude occurs at a frequency ratio 
very close to 1=η  (resonance). In practice, then, the maximum value of the dynamic 
amplification factor maxdν  may be assumed to occur at resonance, which means that 
the dynamic magnification factor has the maximum value  
 

α
νν

2
1

max =≈ rd             (2.54) 

 
It can be also seen from Eq. (2.54) that at the resonance ( 1=η ) the dynamic 
magnification factor is inversely proportional to the damping ratio. 
From Eq. (2.50) it follows that for undamped systems ( 0=α ) the amplification factor 
takes the form 

21
1
η

ν
−

=d          (2.55) 

 
From the expression in Eq. (2.55) it follows that the maximum value of the 
amplification factor for an undamped system is equal to infinity, (Fig. 2.5). 
Velocity and acceleration response can be achieved by differentiating Eq. (2.48) 
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where angle 

2
πψθ +=         (2.57) 

 
is the phase shift between the velocity and the exciting force. From the comparison of 
formulas Eq. (2.56) and Eq. (2.48), one can notice that the velocity and the 
displacement are 2π  out of phase from each other. 
 The amplitude of the velocity is 
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where a velocity response factor is described by formula 
 

222 )2()1( αηη

ην
+−

=v      (2.59) 

 
The velocity response factor is shown in Fig. 2.14. 
 

 
 

Fig. 2.14 The velocity response factor vν  as a function of frequency ratio for various 
amounts of damping 

 
 
The acceleration response is obtained by differentiating Eq. (2.56) 
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where angle 

πψβ +=              (2.61) 
 
is the phase shift between the velocity and the exciting force. It is interesting to note 
that from the comparison of formulas Eq. (2.50), Eq. (2.56) and Eq. (2.48), the 
acceleration and the displacement are π  out of phase from each other, and that the 
velocity and the acceleration as well as the velocity and the displacement are 2π  out 
of phase from each other. The amplitude of the acceleration is 
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where an acceleration response factor is described by formula 
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)2()1( αηη

η
ν

+−
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The acceleration response factor is shown in Fig. 2.15. 

 

 
 

Fig. 2.15 The acceleration response factor aν  as a function of frequency ratio for 
various amounts of damping 

 
 
The graphs drawn for displacement (Fig. 2.12), velocity (Fig. 2.14) and acceleration 
(Fig. 2.15) differ distinctly. 
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Conclusions: 
 

• The damping ratio has a very large influence on the amplitude and 
phase angle delay in the frequency region near resonance when 

1≈= nωωη . 

• The maximum magnification factor occurs for 11<≈= nωωη . 

• When the damping is small, 1<<α , the amplitude and the phase are 
almost independent of α . The damping and inertia forces are then 
very small, so that the exciting force is almost equal in value to the 
spring force. The spring force and inertia force are almost balanced 
(are counterbalanced). 

• When 1≈= nωωη  the damping force and the exciting force are 
almost equal. The spring force and the inertia force are almost 
balanced. 

• When the frequency ratio 1>>= nωωη , the phase angle ψ  
approaches π . The exciting force then almost equals the inertia 
force. 

• The amplitude approaches the static displacement when 
10 <<≈= nωωη . 

• The amplitude of displacement becomes small when 1>>= nωωη . 

• The phase angle is very sensitive to the ratio nωωη =  in the region 
of near-resonance for small damping. 

• When 221 αωωη −== n , then the dynamic amplification factor 

reaches a maximum 2
max 121 ααν −=d . 

• The amplitude of resonance is found to be 
α2

qam st=q . 

• The velocity response factor approaches zero )0( =vν  as 

0== nωωη  or ∞→= nωωη .  

• The acceleration response factor approaches zero )0( =aν  as 

0== nωωη  and approaches unity )1( =aν  as ∞→= nωωη . 

• The displacement and the velocity are 2π  out of phase. 

• The velocity and the acceleration and are 2π  out of phase. 

• The displacement and the acceleration are π  out of phase. 
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2.5.4.2. Force Transmission to Foundation  

The force transmitted to the foundation of the system is 
 

kqqcFFF kdT +=+=      (2.64) 
 
Substituting Eq. (2.48) and Eq. (2.56) into Eq. (2.64) yields the steady-state solution 
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in which the transmissibility Tν  defined as the ratio between the amplitude of the force 
transmitted to the foundation and the amplitude of the applied force (see Fig. 2.16) is 
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where 
 

φψ −=Ω      (2.67) 
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Since the displacement and the velocity are 2π  out of phase from each other, the 
forces qcFd =  and kqFk =  are also 2π  out of phase from each other, and the 
magnitude of the transmitted force can be achieved from 
 
 

22 )am()am(am qkqcFT +=              (2.69) 
 
 
By substituting Eq. (2.49) and Eq. (2.58) into Eq. (2.69) one can obtain the same 
formula which would follow from Eq. (2.66), that is 
 
 

oTodT FFF ναην =+= 2)2(1am    (2.70) 
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Fig. 2.16 The transmissibility Tν  as a function of frequency ratio for various amounts 

of damping 
 

2.5.4.3. Resonance Frequencies 

For an SDOF system undergoing harmonic excitation, displacement, velocity, and 
acceleration have three different resonance frequencies (points where they reach their 
maxima) which can be expressed in terms of their relation to the undamped natural 
frequency nω . 
 

 
 
It can be seen that these frequencies differ only slightly. Because of this, especially for 
the small degree of damping which is characteristic of civil engineering structures, 
these frequencies may in practice be assumed to be the same, and equal to the natural 
frequency.  

Conclusions: 

For an SDOF system undergoing harmonic excitation, displacement, velocity, 
and acceleration have three different resonance frequencies 

• Displacement resonance frequency:  221 αω −n  

• Velocity resonance frequency:   nω  

• Acceleration resonance frequency: 221 αω −n  
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2.5.4.4. Vibration Due to a Rotating Eccentric Weight  
(Inertial Excitation) 

In the mass-spring-damper system shown in Fig. 2.17, an unbalanced mass rm , 
rotating with the angular frequency ω , is fixed to the mass m  in a way that allows for 
rotating movement only. The mass rm  follows a circular path of radius e  (eccentricity 
radius) with respect to the pivot.  
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Fig. 2.17 Single DOF system with viscous damper, excited by rotating eccentric 
weight. 

 
The centrifugal force acting on the mass is described by formula 
 

22 ωω emMF roo ==        (2.71) 
 
where  
 

emro =ℑ              (2.72) 
 
is the moment of unbalance. It must be underlined that the amplitude of the exciting 
force is proportional to the square of the angular velocity (frequency). The projection 
of the centrifugal force onto the direction of oscillation is  
 

temtFtF ro ωωω coscos)( 2==             (2.73) 
 
This force ought to be substituted with the right side of Eq. (2.40) and the equation of 
motion can be written in form 
 

temqkqcqm r ωω cos2=++             (2.74) 
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Now, with accordance to Eq. (2.49), one can achieve 
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The magnitude of the force transmitted to the foundation, in accordance with Eq. (2.71) 
 

222)2(1am nrTodT emFF ωνηαην =+=       (2.76) 

 
It can be seen that the dynamic magnification factor, Fig. 2.18, and the transmissibility, 
Fig. 2.19, are now described by new formulas, respectively 
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Fig. 2.18 Dynamic magnification factor rν  as a function of frequency ratio for various 

amounts of damping 
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Fig. 2.19 The transmissibility Tν ′  as a function of frequency ratio for various amounts 

of damping 

2.5.4.5. Kinematically Forced Vibration 

There are many cases where the foundation or support of a structure undergoes motion 
which varies in time. The movement of the foundations may have to be considered in 
the analysis of the dynamic response of structures subjected to ground motion by 
seismic (earthquakes) or paraseismic excitation (mining tremors, the dynamic action of 
machines). A single-degree-of-freedom system with a viscous damper, excited in 
forced vibration by foundation motion )(tu , is shown in Fig. 2.20.  
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Fig. 2.20 Single-degree-of-freedom system with viscous damper, excited in forced 
vibration by foundation motion 
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The motion of mass m  is described by a sum of the foundation motion )(tu  and the 
relative motion )(tq  between the mass m  and the support, i.e. 
 

)()()( tqtutz +=    (2.79) 

 
The equation of motion, then, can be written in form 
 

0)( =+++ qkqcqum       (2.80) 

 
or in a more common way 
 

umqkqcqm  −=++                 (2.81) 

 
The factor on the right side of Eq. (2.81) has the same function as the excitation force 
in Eq. (2.40). If the function )(tu  is known, the right side of Eq. (2.81) is definite, then 
for some types of this function (especially if it is harmonic) this equation can be solved 
analytically. Let us assume that )(tu  is a harmonic function 
 

tutu o ωsin)( =            (2.82) 
 
After two times differentiation of the function in Eq. (2.82), it can be substituted to Eq. 
(2.81), and one can achieve  
 

tumqkqcqm o ωω sin2=++          (2.83) 

 
As has been stated earlier, the right hand side of the Eq. (2.83) may be interpreted as a 
force (equivalent acting force). The acting force can therefore be written in form 
 

tFtF o ωsin)( =              (2.84) 
 
where 
 

2ωoo muF =           (2.85) 
 
The amplitude of the exciting force is then again proportional to the square of the 
angular velocity (frequency), like in the case of the eccentric rotating mass – see Eq. 
(2.71). 
 Now, with accordance to Eqs. (2.49) and (2.75), one can achieve 
 

)sin(am)( ψω −= tqtq      (2.86) 
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where 
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The magnitude of the force transmitted to the foundation, in accordance with Eq. (2.71) 
 

oToTodT ukukFF νηναην ′==+= 22)2(1am        (2.88) 
 
It can be seen that the dynamic magnification factor and transmissibility (Eqs. (2.87) 
and (2.88)) are now described by the same formulas as in the case of the eccentric 
rotating mass – see Eq. (2.77) and (2.78), respectively. 
 The total displacement of the mass m  is 
 

)sin(sin)()()( ψωνω −+=+= tututqtutz oro        (2.89) 
 
The amplitude of displacement of mass m  is 
 

ψνν cos21)(am 2
rroutz ++=           (2.90) 

Since 

dνη
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ψ )1(
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2
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+
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using definition of dν , Eq. (2.50), the final formula, of the total displacement of the 
mass m  is 
 

oTod uutz ναην =+= 2)2(1)(am             (2.92) 
 
 It ought to be underlined that exactly the same function describes the 
transmissibility of motion (from the foundation to the structure, Eq. (2.92)), and of 
force (from the structure to the foundation, Eq. (2.66)). 
 
It is interesting to note that, if nωω >>  , 12 →= dr νην , πψ = , 0→Tν , and then  
 

)(sin)( tututq o −=−= ω  and 0)()()( =+= tqtutz      (2.93) 
 
The mass remains at rest in an external inertial frame of reference (x, y) (the observer is 
situated neither in the system nor on the ground, but is outside of the system), and its 
relative movement in a non-inertial frame of reference is connected with the ground 
which moves with accordance to the )(tz  function. The relative motion of the mass 
reflects in antiphase ( )()( tutq −= ) the kinematic excitation caused by the movement of 
the ground.  
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Conclusions: 
 

In case of inertial and kinematical excitation: 

• The amplitudes of displacement and force transmitted to the 
foundation are described now by new functions: 

o dynamic magnification factor dr νην 2=  instead the dν   

o transmissibility TT νην 2=′  instead the Tν ′  

• The important features distinguish these new functions with 
comparison to the first ones: 

o if 0→= nωωη  the values of functions approach zero 

( 0→rν ) instead approaching a limit one ( 1→dν ) 

o if ∞→= nωωη  the value of the rν  approaches a limit one 

( 1→rν ) instead approaching zero ( 0→dν ) 

o if ∞→= nωωη  also Tν ′  approaches infinity ( ∞→′Tν ) 
asymptotically to the line αη2 ;  
 for low tuning the response of the system can be greater 

than in the resonance (see Fig. 2.19) 
 for greater values of damping ratio α  the values of the 

transmissibility Tν ′  grow faster 

• The damping ratio still has a very large influence on the amplitude and 
phase angle delay in the frequency region near resonance when 

1≈= nωωη . 

• The phase angle is very sensitive to the ratio nωωη =  in the region 
of near-resonance for small damping. 

• The maximum magnification factor occurs now for ∞→= nωωη . 
 

For kinematically forced vibration 
• When the frequency ratio 1>>= nωωη , dynamic magnification 

factor 12 →= dr νην , the transmissibility 0→Tν  the phase angle 
delay ψ  approaches π .  

o The mass remains at rest in an external inertial frame of 
reference 0)()()( =+= tqtutz  

o The relative motion of the mass reflects in antiphase the 
kinematic excitation caused by the movement of the 
ground )(sin)( tututq o −=−= ω  
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2.5.5. Evaluation of Equivalent Viscous Damping 

In structures subject to significant or strong vibration, such as the ones excited by 
earthquakes or strong winds, special devices are usually installed to introduce viscous 
damping into the system. In standard structures such devices are not used. Even so, 
additional damping is assumed to occur in such structures as well, as it allows the 
differential equation of motion to remain linear for damped dynamic systems vibrating 
in the elastic range. The damping assumed is referred to as equivalent viscous 
damping, and the numerical value of its coefficient is usually calculated on the basis of 
experimental measurements using a harmonic force test. A different way to determine 
the damping in a system is to specify the so called logarithmic decrement of damping 
in a free oscillation test. 

2.5.5.1. Logarithmic Decrement  

The definition of the logarithmic decrement has been presented in Chapter 2.5.3.4. 
Another way to establish the logarithmic decrement involves calculating the ratio of 
two consecutive peak accelerations on a free oscillation (acceleration) curve. As it is 
far easier to experimentally measure accelerations than displacements, this 
modification is of great practical importance. The Eq. (2.31) can be in form 
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Differentiating Eq. (2.94) two times leads to formula 
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At time 1t , when 1)cos( 1 =−γω td  and 0)sin( 1 =− γω td   
 

)()( 222
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tnCetq ωωααω −= −        (2.98) 
 
and at time dTtt += 12 , corresponding to a period later, when again 1)cos( 2 =−γω td  
and 0)sin( 2 =− γω td , 
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The ratio of acceleration at time 1t  and 2t  is then 
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After taking the natural logarithmic of the ratio Eq. (2.100), the result is the 
logarithmic decrement in terms of the acceleration 
 

dnTtq
tq αωϑ ==

)(
)(ln

2

1




               (2.101) 

 
which is identical to the expression for the logarithmic decrement given by Eq. (2.35) 
in terms of displacement. From Eq. (2.35) or Eq. (2.101) the result Eq. (2.37) 
describing equivalent viscous damping ratio is 
 

π
ϑα
2

=eq        (2.102) 

2.5.5.2. Evaluation of Damping at Resonance  

It can be seen in Chapter 2.5.3 that, thanks to the free-vibration decay curve for SDOF 
systems and to the use of Eqs. (2.100) or (2.35), the damping can be evaluated by 
calculating the logarithmic decrement. A different way to calculate damping is to apply 
steady-state harmonic response in a range of frequencies in the neighborhood of 
resonance. It is enough to plot a frequency response curve for harmonic excitation in 
this range of frequencies, Fig. 2.21. 
 

 
 

Fig. 2.21 Experimental frequency response curve for damped system in the 
neighborhood of resonance 
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It is seen from Eq. (2.55) that the damping ratio is given by 
 

rν
α

2
1

=       (2.103) 

 
where )1( == ηνν dr  is the dynamic magnification factor evaluated at resonance.  
 In practice, the equivalent damping ratio eqα  is determined from the dynamic 
magnification factor evaluated by measuring the static displacement stq  and the 
maximum amplitude )am(max qqm =  during the harmonic excitation of the structure 
with the resonant frequency and by measuring  
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m
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Then, the equivalent damping ratio eqα  is 
 

m

st
eq q

q
2

=α          (2.105) 

 
In ordinary structures, the error involved in evaluating the equivalent damping ratio 

eqα  using the approximate Eq. (2.104) is not significant. Calculating the static 
displacement necessary in the formula in Eq. (2.105) may present a considerable 
problem, however. This is due to the fact that it is sometimes difficult to apply a force 
of proper value to the structure in the required place and direction. 
 

2.5.5.3. Hysteresis 

The most common method of evaluating equivalent viscous damping is to equate the 
energy dissipated in the period of vibration of the actual structure to the energy 
dissipated in an equivalent viscous system.  
 When the viscous damped SDOF system shown in Fig. 2.11 undergoes steady-
state forced vibration defined by Eq. (2.42), where 0=ϕ , the equation takes the form 
 

tqtq o ωsin)( =                 (2.106) 
 
The resultant force of the spring and damper acting on the mass, in accordance with the 
Eq. (2.64), is 
 

tkqtqckqqcF ooT ωωω sincos +=+=      (2.107) 
 
Equations (2.107) and (2.106) define the relation between TF  and q ; this relation is 
the ellipse shown in Fig. 2.22.  
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Fig. 2.22 Hysteresis curve for a spring and viscous damper in parallel 
 
 The maximum potential strain energy pE  stored at maximum displacement oq , if 
the system is elastic, is given by the triangular area under the segment of the line of 
displacement from zero to the point of maximum displacement, marked in Fig. 2.22.  
 The area enclosed in the loop (the ellipse, in the given case) during one cycle of 
vibration is equal to the energy dissipated in one cycle of harmonic oscillations dE . 
The energy dissipated by the damper is known as hysteresis loss. This energy can be 
calculated as a work of force TF  on displacement q , according to the formula 
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From Eq. (2.108), the damping ratio is  
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Consequently, the equivalent damping ratio could be obtained in the same way  
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where  
*
dE  is the energy dissipated during a cycle of vibration, i.e. the area enclosed in the 

loop of hysteresis achieved experimentally during one cycle of vibration;  
*
pE  is the potential strain energy, with 1=η  (resonant frequency), obtained from 

experimentally achieved resisting force-displacement plot, i.e. the triangular area 
under the segment of the line of displacement from zero to the point of 
maximum displacement oq . 
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2.5.5.4. Bandwidth (Half-Power) Method  

The bandwidth is the difference between two frequencies corresponding to the same 
response amplitude. The bandwidth is related to the damping in the system. In the 
evaluation of damping, it is convenient to measure the bandwidth at the points where 
the frequency-amplitude curve obtained experimentally for a damped structure reaches 

21  of its maximum (peak) value, Fig 2.23. 
 

 
 

Fig. 2.23 Experimental amplitude-frequency curve 
 

The points A and B corresponding to the frequencies 1f  and 2f  are called half-power 
points. In this case, then, the bandwidth is the distance between these points, i.e. 

12 fff −=∆ . The value of frequencies for this bandwidth can also be determined by 
comparing the response amplitude from Eq. (2.50) 
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with the 21  part of the maximal amplitude 
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achieved from Eq. (2.111) for the resonant frequency ( 1=η ). From the comparison, 
one can achieve the equation  
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Following M. Paz and W. Leigh [2], the next mathematical operations are done as 
follows: “Squaring both sides and solving for the frequency ratio results in 
 

222 1221 αααη +±−=           (2.114) 
 
or by neglecting 2α  in the square root term 
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Finally, the damping ratio is given approximately by half the difference between these 
half-power frequency ratios, namely  
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Finally, the equivalent damping ratio can be calculated from formula 
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2.5.5.5. Structural Damping  

From the Eq. (2.108) it follows that hysteresis loss (the energy lost from a system due 
to damping) is proportional to the forcing frequency ω . On the other hand, 
experimental research of real civil engineering structures reveals that, in most cases, 
the hysteresis loss is independent of forcing frequency. To provide a better model for 
the damping experienced during vibration of such structures, an arbitrary term  
 

kc n γω =           (2.119) 
 
is introduced. This term, referred to as structural damping, means that the damping 
force is equal to the viscous damping force at some frequency, depending upon the 
value of damping coefficient γ , but does not vary with forcing frequency. The viscous 
damping coefficient calculated from Eq. (2.119) has the value 
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 The dimensional parameter κ  is the retardation time of viscoelastic solid material 
of Voigt-Kelvin rheological model, in which the damping effect is an inherent property 
of the spring material and the spring is considered to have a damper acting in parallel 
with it, see Fig. 2.24.  
 From Eq. (2.120) it follows that the damping coefficient is proportional to stiffness 
of the spring. After substitution of Eq. (2.120) into Eq. (1.80) the absolute value of the 
damping force can be now written in form  
 

kd FqkqcF  κκ ===      (2.121) 
 
and one can see, if stiffness coefficient is independent of time ( )(tkk ≠ ), that the 
damping force value is proportional to the velocity of elastic reaction. In this case, the 
damping is a property of the system. 
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Fig. 2.24. Voigt-Kelvin rheological model 
 

The retardation time is equal to the time needed for the function to reach the value of 
63.011 ≈− e  of the reduced creep. It is convenient to assume that 
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and at the resonance the dynamic amplification factor, Eqs. (2.50), (2.55) is 
 

αγ
νν

2
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In the case of structural damping, the set of two parametric equations describing the 
hysteresis curve (ellipse) can be written as 
 

tqtq o ωsin)( =              (2.124) 
 

)sincos()( ttkqqqkkqqcFFF okdT ωωγκ +=+=+=+=   (2.125) 
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This ellipse, which represents the relation of the damping force (transient force) TF  to 
the displacement q , is similar to the ellipse shown in Fig. 2.22. Therefore, the 
damping coefficient may be calculated in the same way as the one presented in Chapter 
2.5.5.3. The equivalent damping ratio is given by  
 

2neq κωα =          (2.126) 
 
The dependence of the equivalent damping ratio on the natural frequency value is 
shown in Fig. 2.25. 
 

 
 

Fig. 2.25 Dependence of equivalent damping ratio on the natural frequency value 
 

2.5.5.6. Mass damping 

In this model of damping it is assumed that the damping force is proportional to the 
magnitude of the mass – or, to be more exact, to the momentum of the mass 
 

qmqcFd  µ==           (2.127) 
so the damping coefficient is 

mc µ=     (2.128) 
 
where µ  is the dimensional damping parameter. The equivalent damping ratio is given 
by  
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The viscous damping, then, represents an environmental damping by external forces 
acting on the structure, for example the resistance of air, Fig. 2.26  
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Fig. 2.26. Mass damping model 
 
The dependence of equivalent damping ratio on the natural frequency value is shown 
in Fig. 2.27. 
 

 
 

Fig. 2.27 Dependence of equivalent damping ratio on the natural frequency value 
 
 
The transient force is now equal to the spring force 
 

kqFF kT ==           (2.130) 
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2.5.5.7. Rayleigh Damping 

The Rayleigh model is a combination of the structural and mass models of damping. In 
this model it is assumed that the damping force is partly proportional to velocity of 
elastic reaction and partly proportional to the momentum of the mass. Thus, the 
damping coefficient is assumed to have the form 
 

mkc µκ +=     (2.131) 

 
and the equivalent damping ratio is given by 
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n
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µκω
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22
+=                  (2.132) 

 
The Rayleigh model takes into account both the viscous damping representing an 
environmental damping by external forces acting on the structure (external damping), 
and the damping due to the inherent properties of the material of the structure (internal 
damping). 
 The dependence of the equivalent damping ratio on the natural frequency value for 
the Rayleigh damping is shown in Fig. 2.28. 
 

 
 

Fig. 2.28 Dependence of equivalent damping ratio from the natural frequency value 
 
The transient force is now equal to  
 

)( qqkFT += κ           (2.133) 
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3. Multi-Degree-of-Freedom System (MDOF) 

In reality, structures are not built of separate mass points, but consist of a continuous 
mass also called distributed mass. Such systems have an infinite number of degrees of 
freedom. However, it is virtually impossible to find dynamical solutions to any but the 
most simple of such systems. In general, it is necessary to discretize systems, i.e. 
replace infinite-number-of-degrees-of-freedom systems with simplified models – 
finite-number-of-degrees-of-freedom systems which are also called Multiple-Degree-
of-Freedom (MDOF) systems.  
 A model which contains a finite number of degrees of freedom is called a discrete 
model. Discretization concerns the process of transferring continuous models and 
equations into discrete ones. Discretization can be realized as a mathematical 
approximation or as a granulation of masses. Discrete models can consist of clearly 
distinguishable, separate masses, called lumped masses.  
 Lumped mass models are created from continuous structures by replacing the 
distributed mass elements with a given number of lumped masses – the larger the 
number of masses, the better the approximation to the real structure. Furthermore, the 
masses (or lumped masses) may be interconnected by rigid elements; in such cases, the 
whole group acts as one rigid body possessed of both mass and moment of inertia. 
Mass points have translational degrees of freedom only, while the rigid bodies 
additionally have rotational degrees of freedom. The number of masses that may be 
used to represent a system is unlimited. 

3.1. Degrees of Freedom (DOF) 

 Degrees of freedom are the ways in which the space configuration of a mechanical 
system may change, i.e. the independent movements the system can possibly undergo.  
 Degrees of freedom are also independent displacements and/or rotations that 
specify the orientation of the body or system. 

3.2. Number of Degrees of Freedom 

The number of degrees of freedom d  of a mechanical system is equal to the minimum 
number of independent coordinates required to define completely the position of all 
parts of the system (configuration of a mechanical system) at any instant in time. In 
general, it is equal to the number of possible independent displacements. The numbers 
of degrees of freedom of a free (unconstrained) point and a free rigid body in space are 
shown in Fig. 3.1. The number of degrees of freedom of a free point and a free rigid 
body in a plane are shown in Fig. 3.2. 
 

ϕddd += ∆            (3.1) 

 
where 
 

∆d  – number of translational degrees of freedom 

ϕd  – number of rotational degrees of freedom 
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3.3. Systems of Coordinates 

In a dynamical analysis of MDOF systems three types of coordinates are used.  

3.3.1. External Coordinates 

The system of external coordinates is a fixed inertial set of reference axes (for instance 
the Cartesian coordinate system 321 ,, xxx , or zyx ,, ) useful for defining the 
configuration of a dynamic structure in a static equilibrium state. 
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Fig. 3.1 Degrees of freedom for a free point and a free rigid body in space 
 

q
1

q
2

q
1

q
2

q3

 
 

Fig. 3.2 Degrees of freedom for a free point and a free rigid body in a plane 

3.3.2. Local Coordinates 

Local coordinates iu  are dependent on time. They describe the movement of system 
elements from the static equilibrium state. Usually, but not necessarily, they describe 
the possible displacements of elements. Local coordinates are associated with: mass 
centers of masses and rigid bodies, points in which the springs and dampers are 
connected to the structure, points in which forces act on the structure and other points 
whose displacements are important for the dynamic description of the structure. Local 
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coordinates may be of a translational or a rotational type, see Fig. 3.3, Fig. 3.4, 
Fig. 4.4, Fig. 4.5, and Fig. 4.6.  

3.3.3. Generalized Coordinates  

Generalized coordinates (Lagrange’s generalized coordinates vector q) are dependent 
on time. They are a set of coordinates used to describe the configuration of a system 
relative to some reference configuration. The expression "generalized" is a remnant of 
a time when Cartesian coordinates were the standard. Generalized coordinates may be 
of a translational or a rotational type, Fig. 3.3 – Fig. 3.6, Fig. 4.3, Fig. 4.4, and Fig. 4.5.  
 A restriction for choosing a set of generalized coordinates is that they have to 
unequivocally define any possible configuration of the system relative to the reference 
configuration. That is to say, with the use of those coordinates it must be possible to 
determine all local movements of all elements of the whole system. The generalized 
coordinates are chosen to be independent of one another. The number of independent 
generalized coordinates n  is defined by the number of degrees of freedom of the 
system d . Usually, generalized coordinates are related to the mass centers’ position or 
rigid bodies mass centers’ positions, but as a rule, they are related to points of 
connections of masses or mass rigid bodies to the structure. In general, these points do 
not have to be mass centers. The number of generalized coordinates is then equal to the 
number of dynamic degrees of freedom (minimal base dn = ). Nevertheless, there are 
some situations when it is more convenient to assume the number of generalized 
coordinates to be greater than the number of dynamic degrees of freedom dn > . These 
additional generalized coordinates are then usually related to the position of forces, 
springs or dampers, which are connected to the structure in points not related to the 
mass points, Fig. 3.3. There may also be other reasons to assume dn > . 
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Fig. 3.3. The additional generalized coordinates q2 and q4
 

 not related to the mass 

 
Apart from practical reasons, all sets of generalized coordinates are equally good. The 
physics of the system are independent of the choice made between those sets. 
However, for practical reasons, some sets of coordinates are more useful than others – 
some are more optimally adapted to the system, and will make the solution of its 
equations of motion easier than others. 
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3.4. Defining a System and its Excitation 

In more complex and complicated MDOF systems it is easier to derive equations of 
motion in terms of the energies of the system with the use of the Lagrangian equations. 
This approach is realized with accordance to a special procedure whose algorithm 
requires defining the system and its excitation in a specific way. This procedure is 
shown below. 

3.4.1. Structures with Spring Elements  – Stiffness Matrix 

3.4.1.1. Stiffness Matrix in Local Coordinates Base of Spring Elements 

Let us assume that there are some springs in the system, whose stiffnesses jk  are 
assembled in a diagonal matrix  
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The order of the elements in the diagonal matrix { }k  corresponds to the order of local 
coordinates ju  in vector 
 

Tuuu ][ 321 =u         (3.3) 
 
The elements of the vector u  are the changes in length of springs. 

3.4.1.2.  Transformation from Generalized to Local Coordinates 

The linear transformation of the generalized coordinates to the local coordinates vector 
is 

qAu k=            (3.4) 
 
where  

kA  is the transformation matrix whose elements depend on the configuration of 
the structure only; the dimension of this transformation matrix is (number 
of local coordinates of spring elements)× (number of generalized 
coordinates)  

 

3.4.1.3. Stiffness Matrix in Generalized Coordinates Base  

The potential energy can be written in the form 
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The potential energy in the generalized base of coordinates, after substitution of Eq. 
(3.4) into formula Eq. (3.5), yields the expression 
 

qKqqA}{kAq TTT
pE

2
1

2
1

kk ==              (3.6) 

 
As it can be seen, the potential energy is given by the positive-definite quadratic form 
of the Lagrange’s generalized coordinates q , where K  is the stiffness matrix and Tq  
is the transposed vector q . Stiffness matrix K  is non-singular, symmetric and 
positive-definite, thus 0det >K , and can be achieved from formula 
 

{ } kk AkAK ⋅⋅= T     (3.7) 
 
The flexibility matrix is inverse to stiffness matrix  
 

1−= KD           (3.8) 
 
Remark: 
 

An (n×n) real symmetric matrix M is positive-definite if  xT

nℜ∈x
Mx > 0  for all non-zero 

vectors x with real entries ( ), where xT transpose denotes the  of vector x. All 
eigenvalues of positive-definite matrix M are positive. Positive-definite matrix M is 
always invertible (nonsingular) thus 0det >M . 
 

3.4.2. Structures with Mass Elements – Mass (Inertia) Matrix 

3.4.2.1. Transformation from Generalized to Local Coordinates 

For small vibration, the local coordinates are the linear transformation of the 
generalized coordinate 
 

qAu m=            (3.9) 
 
where  
u  is the local coordinate of mass elements vector  

 
 

Tuuu ][ 321 =u      (3.10) 
 
and 
 

mA  is the transformation matrix whose elements depend on the configuration of the 
structure only; the dimension of this transformation matrix is (number of local 
coordinates of mass elements)× (number of generalized coordinates dn ≥ )  
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3.4.2.2. Inertia Matrix in Local Coordinates Base of Mass Centers  

If local coordinates can be assumed to be located in points which are the mass center of 
every mass or rigid body, then the inertia matrix has the diagonal form 
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where jm  are the masses sensu stricto or mass moments of inertia i.e. jj Jm = , 
arranged with accordance to the elements of vector u  respectively, Eq. (3.10). 
 

3.4.2.3. Inertia Matrix in Generalized Coordinates Base  

 The kinetic energy of the whole system can be expressed by 
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jjk umE
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This formula is valid if the local coordinates are reduced to center points of masses and 
the translational coordinates system is a Cartesian one (in Polish, orthocartesian). 
 Substituting Eq. (3.9) into Eq. (3.12) it is possible to write 
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and finally 
 

m
T
m A{m}AB ⋅⋅=              (3.14) 

 
where B  is the square and symmetric matrix of inertia in a generalized coordinate 
base. In a minimal base of generalized coordinates dn = , matrix B  is non-singular 
and positive-definite, thus 0det >B . If dn > , inertia matrix B  is non-negatively 
definite and singular ( 0det =B ). 
 
 
Illustrative Example 3.1 
A local and generalized coordinates in a plane system is shown in Fig. 3.4. This is the 
plane rigid body, which mass is m  and polar mass moment of inertia about the axe 
through the mass center point OJ  is given. The example shows haw to determine a 
mass matrix B  in the generalized coordinate base. 
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Fig. 3.4 Local and generalized coordinates in a plane system (plane rigid body: mass 
m  and polar mass moment of inertia about the axe through the mass center point)  

 
 

Tuuu ][ 321=u     (3.15) 
 

Tqqq ][ 321=q     (3.16) 
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where 
 

Ox myS =   static moment of mass about the axis x   

Oy mxS =   static moment of mass about the axis y  

OOOA JyxmJ ++= )( 22  polar mass moment of inertia about the axis through the 
dynamic center – point A 
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3.4.3. Structures with Damping Elements – Damping matrix 

Rayleigh Dissipation Function describes the power of resistance forces, i.e. the work of 
these forces in time, which occurs in systems performing small oscillations. These 
forces are assumed to be proportional to velocities. The Rayleigh dissipation function, 
also known as the dissipation function, is given by the positive-definite quadratic form 
of the generalized velocities q  

qCq  T

2
1

=               (3.20) 

 
where C  is the square and symmetric damping matrix in the generalized coordinate 
base.  
 In a general case, two kinds of damping can exist in civil engineering structures: 
apparent (dampers) and non-apparent (structural damping). With accordance to this 
classification, a damping matrix can be formulated as a sum of two damping matrices 
 

21 CCC +=            (3.21) 
where  

1C  damping matrix achieved with the use of hypothesis of damping, which 
represents the structural damping and the environment influence  (Eq. 3.22) 

2C  damping matrix which represents the influence of the dampers (chapters 
3.4.3.1 to 3.4.3.3) 

 
 Usually, the damping matrix, by analogy to Eq. (2.128), is assumed to be 
proportional to the mass matrix (mass damping) or, by analogy to Eq. (2.120), is 
proportional to the stiffness matrix (structural damping) 
 

BC µ=1    KC κ=1     (3.22) 
 
It is best to assume that, by analogy to Eq. (2.132), the damping matrix is proportional 
to both these matrices (Rayleigh damping)  
 

BKC µκ +=1               (3.23) 
 
where finally C  is the square and symmetric damping matrix in the generalized 
coordinate base.  

3.4.3.1. Transformation from Generalized to Local Coordinates  

 For small vibration, local coordinates are the linear transformation of the 
generalized coordinates 

qAu d=           (3.24) 
where  

u  is the local coordinate of mass elements vector  
 

Tuuu ][ 321 =u        (3.25) 
and 
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dA  is the transformation matrix whose elements depend on the configuration of 
the structure only; the dimension of this transformation matrix is (number 
of local coordinates of damped elements)× (number of generalized 
coordinates dn ≥ )  

3.4.3.2. Damping Matrix in Local Coordinates Base of Damped Elements  

If local coordinates can be assumed to be located along damping elements, then the 
damping matrix has the diagonal form 
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3.4.3.3. Damping Matrix in Generalized Coordinates Base 

 The Rayleigh dissipation function of the whole system can be expressed by 
 

u{c}u  T

j
jjuc

2
1

2
1 2 == ∑ .          (3.27) 

 
where jc  are the damping coefficients of dampers arranged with accordance to the 
elements of vector u  respectively, Eq. (3.26).  
 Substituting Eq. (3.24) into Eq. (3.27) it is possible to write 
 

qCqqA{c}Aq  TTT

2
1

2
1

dd ==              (3.28) 

and finally 

dd2 A{c}AC ⋅⋅= T     (3.29) 
 
where C  is the square and symmetric damping matrix in the generalized coordinate 
base.  

3.4.4. Excitation Forces  

Work W is the transfer of energy that occurs when a force acts on a body, and is 
calculated as a dot product of the vector of force F  and displacement q  (displacement 
of the point the force is acting on). If a body is moving in such a way that the force has 
a component in a direction perpendicular to the direction of the body’s motion, the 
work of that component is equal to zero. In any situation, the work is given by the 
linear form of the coordinates q  
 

qF ⋅=W .           (3.30) 
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3.4.4.1. Transformation from Generalized to Local Coordinates 

If local coordinates can be assumed to be located in the points the excitation forces act 
on, these local coordinates are, for small vibration, the linear transformation of the 
generalized coordinate 
 

qAu f=           (3.31) 
 
where 
 

 Tuuu ][ 321 =u       (3.32) 
and 
 

u  is the local coordinates of forces vector  
fA  is the transformation matrix whose elements depend on the configuration of 

the structure only; the dimension of this transformation matrix is (number 
of local coordinates of forces)× (number of generalized coordinates dn ≥ )  

 

3.4.4.2. Excitation Force Vector in Local Coordinates Base  

The excitation forces vector, in local base of coordinates Eq. (3.32), has the form  
 

TPPP ][ 321 =P        (3.33) 
 

3.4.4.3. Excitation Force Vector in Generalized Coordinates Base  

The virtual work of excitation forces on the displacements described by Eq. (3.32) can 
be written as follows 
 

FqPAqPu TTTT

j
jjuPW ==== ∑ f .    (3.34) 

 
where 
 

PAF T
f=          (3.35) 

 
The work of the external forces F is the linear form of the generalized coordinates q .  

3.5. Lagrangian Equations 

As has been stated in Chapter 2.2, formulating a differential equation of motion for a 
vibrating system by applying d’Alambert’s Principle may be complicated even for 
SDOF systems. Therefore, in MDOF systems, which are usually more complex, it is 
easier to derive these equations of motion in terms of the energies of the system with 
the use of the Lagrangian equations 
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or in vector notation 
 
 

)()()()()( qqqqq WgradEgradgradEgradEgrad
dt
d

pkk =++−       (3.37) 

 
 
where  
 
 kE  total kinetic energy of the system 
 pE  total potential energy of the system 
 Φ  Rayleigh Dissipation Function 
 W  virtual work of external generalized forces (the portion of the forces not  
  related to the potential energy of the system (gravity and spring forces 
  appear in the potential energy expressions and are not included here) 
 iq  generalized coordinate (displacement)  
 q  generalized coordinates vector  
 iq  velocity at generalized coordinate iq  
 q  generalized velocities vector  
 
In the case of small vibration around the equilibrium point the kinetic energy in general 
does not depend on generalized displacements iq . Then 
 

0=
∂
∂

i

k

q
E

 0q =)(kEgrad          (3.38) 

 
and the Lagrangian equations take the form 
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or in vector notation 
 
 

)()()()( qqqq WgradEgradgradEgrad
dt
d

pk =++     (3.40) 
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3.6. Equation of Motion 

After substitution of the formulas Eqs. (3.6), (3.13), (3.20) and (3.34) into Eq. (3.40), 
and after differentiation of these expressions with respect to each chosen coordinate, 
one can receive an n  number of equations of motion in the generalized coordinate 
base. In the matrix form, this system may be written as  
 

)(tFqKqCqB =++     (3.41) 

 
where  
 
 B  mass (inertia) matrix of a system 
 C  damping matrix of a system 
 K  stiffness matrix of a system 
 )(tF  vector of external generalized forces acting on a system 
 qqq  ,,  generalized coordinates, velocities and accelerations vectors respectively 
 
The above is the equation of motion formulated with the use of the Displacement 
Method to calculate the stiffness matrix. If the equation of motion were to be 
formulated with the use of the Force Method to calculate the flexibility matrix, it 
would have the form 
 

)(tDFqqDCqDB =++     (3.42) 

 
If both methods (Displacement and Force Methods) make use of the same generalized 
coordinate base q , it is possible to transform one equation into the other by a simple 
matrix operation without formally using either of the methods.  
 For instance, in order to obtain the Eq. (3.42) from the Eq. (3.41), it is enough to 
premultiply the Eq. (3.41) by the flexibility matrix calculated as 1−= KD ; and vice 
versa, Eq. (3.42) should be premultiplied by the stiffness matrix calculated from the 
flexibility matrix according the to the formula 1DK −= in order to obtain the Eq. 
(3.41). 
 

3.7. Systems with Elastic and Inertial Coupling  

Static (Elastic) coupling 
 
If there are off-diagonal terms in the stiffness matrix K  in the matrix equation of 
motion Eq. (3.41), this indicates that elastic coupling exists. 
 
Inertial coupling 
 
If there are off-diagonal terms in the mass matrix B  in the matrix equation of motion 
Eq. (3.41), this indicates that inertial coupling exists. 
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3.7.1. System with Static Coupling  

 Let us consider the two-degree-of-freedom system shown in Fig. 3.5 
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Fig. 3.5 Two-degree-of-freedom system – generalized coordinate vector q 
 
 
 
The system has two degrees of freedom. The generalized coordinate vector is 
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The equation of motion can be written in the matrix form 
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It is apparent that the equations in Eq. (3.44) are coupled, as off-diagonal terms occur 
in the stiffness matrix. As these terms do not occur in the mass matrix, only elastic 
coupling exists.  
 

95



3.7.2. System with Inertial Coupling  

 Let us consider the two-degree-of-freedom system shown in Fig. 3.6 
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Fig. 3.6 Two-degree-of-freedom system – generalized coordinate vector q~  
 
 
This is the same two-degrees-of-freedom system as in Fig. 3.5, but a different 
generalized coordinate system is chosen. The generalized coordinate vector is now 
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Now the matrix equation of motion has the form 
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It is apparent that the equations in Eq. (3.46) are also coupled, as off-diagonal terms 
occur in the mass matrix. As these terms do not occur in the stiffness matrix, only 
inertial coupling exists.  
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3.7.3. System with Simultaneous Static and Inertial Coupling  

As the type of coupling depends on the choice of the generalized coordinates system, it 
is possible to choose such generalized coordinates that both static and inertial coupling 
will occur simultaneously. It seems also to be possible to find such a generalized 
coordinate system for which the equations of motion will be uncoupled. 

3.7.4. System without Coupling (Decoupled System) 

The generalized coordinates system for which there is no coupling at all is called the 
principal generalized coordinates system. This case will be further investigated in 
Chapters 3.12 and 3.13. 
 

 

3.8. Natural Frequencies and Normal Modes of Vibration 

 “The number of natural frequencies of vibration of any system is equal to the 
number of degrees-of-freedom; thus the system having distributed parameters has an 
infinite number of natural frequencies. At a given time, such a system usually vibrates 
with appreciable amplitude at only a limited number of frequencies, often at only one. 
With each natural frequency is associated a shape, called the normal or natural mode, 
which is assumed by the system during free vibration at the frequency. For example, 
when a uniform beam with simple supported or hinged ends vibrates laterally at its 
lowest or fundamental natural frequency, it assumes the shape of the half sine wave; 
this is a normal mode of vibration. When vibrating in this manner, the beam behaves as 
a system with a single degree-of-freedom, since its configuration at any time can be 
defined by giving the deflection of the center of the beam. When any linear system, i.e. 
one in which the elastic restoring force is proportional to the deflection, executes free 
vibration in a single natural mode, each element of the system except those at the 
supports and nodes executes simple harmonic mode about its equilibrium position. All 
possible free vibration of any linear system is made up of superposed vibrations in the 
normal modes at the corresponding natural frequencies. The total motion at any point 
of the system is the sum of the motions resulting from the vibration in the respective 
modes. 
 There are always nodal points, lines, or surfaces, i.e. points which do not move, in 
each of the normal modes of vibration of any system. For the fundamental mode, 
which corresponds to the lowest natural frequency, the supported or fixed points of the 

Conclusions: 
 

• the coupling of the equations of motion in MDOF systems is not 
a distinctive feature of the system but depends on the choice of the 
generalized coordinate system 

• the MDOF system equations of motion can be coupled in three ways: 
inertially, elastically or inertially and elastically simultaneously 

• uncoupled systems of equations, in which no coupling exists at all, are 
also possible  
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system usually are the nodal points; for other modes, there are additional nodes. In the 
modes of vibration corresponding to the patterns. In certain problems are, since a 
particular mode usually will not be excited by a force acting at a nodal points.”, [1]. 

3.8.1. Eigenproblem 

The problem of free vibrations requires that the force vector be equal to zero in 
Eq. (3.41). If the system is also undamped, the equation of motion can be written in 
form 
 

0qKqB =+               (3.47) 
 
where  
 
  B  mass matrix of a system 
  K  stiffness matrix of a system 
  qq ,  generalized coordinates and accelerations vectors 
 
For the free vibrations of the undamped structure, one can guess (Lucky Guess 
Method) the form of the solutions of Eq. (3.47)  
 

)sin()( ϕω += tt aq     (3.48) 
 
Two times differentiation of expression Eq. (3.48) with respect to time leads to formula 
 

qq 2ω−=            (3.49) 
 
The substitution of Eq. (3.49) into Eq. (3.47) gives 
 

0qBK =− )( 2ω                 (3.50) 
 
which, in this case, is a set of n homogeneous algebraic linear equations with n 
unknown displacements jq  ( nj ,,1= ) and an unknown parameter 2ω . The 
formulation of Eq. (3.50) is an important mathematical problem known as the 
eigenproblem. Its nontrivial solution, that is, the solution for which not all 0=jq , 
requires that the determinant of the matrix factor of q  be equal to zero, namely 
 

0)det( 2 =− BK ω      or 0)det( =− BK λ   (3.51) 
 
In general, the expansion of the determinant in Eq. (3.51) results in a polynomial 
equation of degree n in 2ωλ =  which should be satisfied for n eigenvalues of 2

nii ωλ =  
– real roots of polynomial Eq. (3.51). This polynomial is known as the characteristic 
equation of the system.  
 For any one natural frequency niω  (eigenvalue of 2

nii ωλ = ) such a solution exists 
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iwq =          (3.52) 

that 
0wBK =− ini )( 2ω     (3.53) 

 
The vector w i

niω

 is called an eigenvector (i-th normal or natural mode of vibration or 
modal shape). The eigenvector coordinates are generalized displacements, which 
describe the modal shape, that is they specify how, for each natural angular frequency 

, the various elements of the system move in relation to each other. 
 It is easy to prove that each non-zero column of the adjugate (adjoint) matrix  
 

)(adjadj 2BKA ii ω−=         (3.54) 
 
is an eigenvector of Eq. (3.50).  
 
 
Proof:  
Let us consider the formula for the inverse matrix 
 

i

i
i A

AA
det
adj1 =−                (3.55) 

 
This formula can be written in another form, i.e. 
 

iii AAA adjdet1 =−      (3.56) 
 
Premultiplication of Eq. (3.56) by matrix iA  and postmultiplication by any non-zero 
vector v results in 

vAAvA ⋅=⋅ iii adjdet        (3.57) 
 
Since 0det =iA  and designates a new vector vAb ⋅= iadj , Eq. (3.57) can be written 
in the form 

0bBKbAvAAvA =−==⋅= )()(adj det 2
niiiii ω        (3.58) 

 
As v could be any vector it could also be a versor, with 1 on j-th position. Then the 
multiplication vAi  takes out j-th column from the adjoint matrix. Comparing Eqs. 
(3.58) and (3.50), one can write down 
 

)(adj 2 BKbw nii ω−==    (3.59) 
 
The eigenvectors can be normalized  
 

iii Nww =norm,            (3.60) 
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usually using the norms 

jijii wN max== w                (3.61) 

 
or 
 

i
T
iiiN wBww ==    (3.62) 

 
 

3.8.2. Modal and Spectral Matrices 

For each value of eigenfrequency niω  (natural angular frequency) satisfying the 
characteristic Eq. (3.51) one may solve Eq. (3.53). This solution, with an accuracy up 
to a constant multiplier (multiplicative constant), is the eigenvector 
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The solutions Eq. (3.63) of Eq. (3.53) for i=1,…,n describe the normal modes (shapes) 
which may be conveniently arranged in the columns of a matrix known as the modal 
matrix W , that is 
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The n eigenvalues 2

nii ωλ =  can be assembled into a diagonal matrix }{ωΩ 2=2  which 
is known as a spectral matrix of the eigenproblem Eq. (3.50), that is 
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By using the modal and spectral matrices it is possible to assemble all of these relations 
into a single matrix equation 
 

2BWΩWK =               (3.66) 
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3.9. Normal and Natural Mode of Vibration 

When a system is capable of vibrating with more than one frequency, but is actually 
vibrating freely at only one of its possible natural frequencies, the system is said to be 
vibrating in one of its “normal modes.”  
 “A normal mode of vibration is a mode of vibration that is uncoupled from (i.e., 
can exist independently of) other modes of vibration of a system. When vibration of 
the system is defined as an eigenvalue problem, the normal modes are the eigenvectors 
and the normal mode frequencies are the eigenvalues. The term classical normal mode 
is sometimes applied to the normal modes of a vibrating systems characterized by 
vibration of each element of the system at the same frequency and phase. In general, 
classical normal modes exist only in systems having no damping or having particular 
type of damping.”, [1]. 
 “The natural mode of vibration is a mode of vibration assumed by a system when 
vibrating freely.”, [1]. 
 The mode of vibration associated with the lowest natural frequency of a system is 
referred to as the first (basic) mode. The next higher frequency is the second, and so 
on. 

3.10. Orthogonality of Normal Modes (Orthogonality Principle) 

The most important property of the normal modes is their orthogonality. For this 
reason the normal modes can be used to uncouple the matrix equations of motion. The 
solution of a set of separate differential equations is significantly easier than the 
solution of a set of coupled differential equations. 
Premultiplication of Eq. (3.66) by matrix TW  yields equation 
 

2WΩBWWKW TT =        (3.67) 
 
After transposition of Eq. (3.67), and taking into account the symmetry of matrices B  
and K , Eq. (3.67) can be written in form 
 

BWWΩWKW TT 2=         (3.68) 
 
The left sides of Eqs. (3.67) and (3.68) are the same, thus the right sides must also be 
the same, that is 
 

BWWΩBWΩW TT 22 =           (3.69) 
 
In general, Eq. (3.69) is true only if matrix BWWT  is a diagonal matrix. That matrix 
is called the principal masses matrix and its elements – modal masses 
 

}{mBWW o=T     (3.70) 
 
Substituting Eq. (3.70) into Eq. (3.68) implies that matrix WKWT  must also be a 
diagonal matrix (principal stiffnesses matrix) and its elements – modal stiffnesses 
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}}{ω{m}{kKWW 2
oo ==T                      (3.71) 

 
Formulas Eqs. (3.70) and (3.71) are valid if the normalization of modal vectors is done 
by using the norm of vector Eq. (3.65).The normalization of the modal vectors with the 
use of Eq. (3.66) yields formulas 
 

I}{mBWW o ==T                   (3.72) 
and 

{ }2ω== }{kKWW o
T        (3.73) 

 
where I  is an identity matrix. 
 If the flexibility matrix is used to formulate the equation of motion, Eq. (3.42), the 
reduced equation of motion has the form  
 

0qqDB =+               (3.74) 
 
where D  is a flexibility matrix. Now, Eq. (3.50) should be substituted with 
 

0qIDB =− − )( 2ω     (3.75) 
 
and consequently, instead of Eq. (3.51)  
 

0)det( 2 =− − IDB ω     (3.76) 
 
instead of Eq. (3.52)  
 

0wIDB =− −
i)( 2ω     (3.77) 

and etc. 
 
 

 

Conclusions: 
 

• It must be noticed that eigenvectors are orthogonal with respect to both the 
mass and the stiffness matrix, but eigenvectors are not orthogonal with 
respect to the flexibility matrix. 

• Each eigenvector is determined in terms of an arbitrary constant and can 
normalized arbitrarily. 

• If dn >  (base of generalized coordinates is not minimal) the 
eigenfrequency ∞=ω  can appear. These solutions must be neglected.  
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3.11. Natural Vibration  

3.11.1. Ambiguity of Term “Natural Vibration” 

The term “natural vibration” is somewhat problematic due to the conventions of Polish 
terminology. Following Langer [5], the Polish term “drgania własne” (the lexical 
equivalent of the English term “natural vibration”) does not relate to a physical 
phenomenon. It does not designate vibration, but a mathematical form of the general 
solution (total integral) of an inhomogeneous differential equation of motion without 
damping, Eq. (3.47), which describes a predisposition of the structure to vibrate freely 
with accordance to natural frequencies and natural (normal) forms of vibration. 
 In English terminology, the term “natural vibration” appears predominantly in 
connection to such terms as “frequency of natural vibration” or “mode of natural 
vibration”. This indicates that “natural vibration” are identified with “free vibration”. 
As Harris writes, “[t]he natural mode of vibration is a mode of vibration assumed by a 
system when vibrating freely.”, [1]. Thus, the expression, as used in the English 
terminology, clearly describes a physical phenomenon. 
 Therefore, the term “natural vibration” may be ambiguous, as it will have one 
meaning when used in the sense attached to it in English terminology, and a different 
one if used as a translation of the Polish “drgania własne”. It is suggested that the term 
“natural vibration” should be used uniformly in the meaning equivalent to free 
vibration to avoid this ambiguity. 
 

3.11.2. Natural Vibration According to Langer’s Meaning  

 As always for the second order differential linear equations, this solution depends 
on independent constants whose number is equal to the doubled number of the 
equations. This general solution can be expressed in form 
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Elements of the vectors s  and c  are constants of integration. As it can be seen, the 
time history of solution of Eq.(3.78) is a combination of simple harmonic oscillations 
with natural frequencies niω , whose amplitudes are proportional to eigenvectors iw .  
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3.12. Free Vibration  

3.12.1. Undamped Free Vibration 

Free vibration (natural vibration) is a physical phenomenon which occurs in an 
undamped MDOF system when there is no excitation and the initial conditions are 
given: oqq =)0(  and oqq  =)0( . If the base of generalized coordinates is minimal 
( dn = ) the solution Eq. (3.78) may be used to determinate the free vibration of the 
system, so 

{ } oo

oo

qW}ω{ssωWq
qWcWcq

1  1

1

−−

−

⋅=→⋅⋅=
=→=

   (3.80) 

 
and the solution of Eq. (3.78) is 
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
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3.12.2. Damped Free Vibration 

3.12.2.1. Matrix Equation of Motion 

The equation of motion which describes damped free vibration follows from Eq. (3.41) 
with initial conditions oqq =)0(  and oqq  =)0(  
 

0qKqCqB =++        (3.82) 
 
Usually it is convenient to assume that the damping matrix is proportional to either the 
mass or the stiffness matrix, but the best assumption is that the damping matrix is 
proportional to both of them (Rayleigh damping), Eq. (3.23), that is  
 

BKC µκ +=              (3.83) 
 
where µ  is the dimensional damping parameter and κ is also a dimensional parameter 
called the retardation time. 

3.12.2.2. Modal Transformation Method 

The transformation from the new set of coordinates r  to the generalized coordinates 
q , such as  

Wrq =          (3.84) 
 
is substituted into Eq. (3.82). By premultiplying the equation by the transposed modal 
matrix TW , and making use of the orthogonal properties of the modal matrix 
(eigenvectors), the matrix equation has the form 
 

0}r{kr}{cr}{m ooo =++         (3.85) 
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where 
CWW}{co

T=               (3.86) 
 
and in accordance with Eq. (3.84) the initial conditions of Eq. (3.85) are connected 
with the initial conditions of Eq. (3.82) by relations 
 

oo Wrq =    oo rWq  =   (3.87) 
 
Eq. (3.85) is the matrix form of a set of uncoupled equations of the Eq. (2.23) type.  

3.12.2.3. Principal Coordinates System 

 The coordinates by which it is possible to uncouple the MDOF system, described 
by vector r , are called the principal coordinates system. As it can be seen from Eq. 
(3.84), the principal coordinates vector r  can be achieved from the generalized 
coordinates vector q  with the use of modal matrix W  transformation. 
 The solution in the base of normal coordinates can be achieved by using the 
solution from Eq. (2.31) separately for each equation from the set of equations (3.85). 
This solution in matrix notation has the form 
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  (3.89) 

 
and after retransformation  
 

o
1

o
1)( qW

βcosω
tsinωeWqW

βcos
β)tcos(ωeWq
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dtαωdtαω nn −−−− ⋅







⋅+⋅







 −
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The inverse modal matrix can be calculated without a formal inverse procedure, since 
from the Orthogonality Principle results 
 

KW}k{BW}m{W 1
o

1
o

TT −−− ==1             (3.91) 
 
Thanks to the assumption Eq. (3.83), a quasi-frequency id ,ω  and a damping ratio iα  
can be associated with each natural mode iw . If the assumption Eq. (3.83) is not 

fulfilled, the solution is much more complicated. The term WCWT  is not then 
diagonal and the equations in Eq. (3.85) remain coupled because of the damping 
matrix. In such a case it is convenient to integrate Eq. (3.82) numerically. 
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3.13. Forced Vibration – Response to Harmonic Forces 

3.13.1. Direct Method 

 Let us assume that the force excitation vector in the equation of motion Eq. (3.41) 
is in the form 
 

ttt ωω cossin)( CS FFF +=             (3.92) 
 
and ω  is the angular frequency of harmonic excitation. 
 The total solution of Eq. (3.41) with harmonic force vector defined by Eq. (3.92) 
again consists of the complementary solution (transient component of the response) 
and particular solution (steady-state response) that persist when the transient or the 
complementary function have disappeared.  
 The steady-state response of equation of motion Eq. (3.41) could be looked for 
(Lucky Guess Method or method of undetermined coefficients) also in harmonic form, 
i.e. 
 

ttt ωω cossin)( CS qqq +=             (3.93) 
 
By substituting Eqs. (3.92) and (3.93) into Eq. (3.41), and then comparing the terms at 
the sinusoidal and cosinusoidal components of the solution respectively, the algebraic 
set of equations is achieved  
 

CC
2

S

SCS
2

)(

)(

FqBKCq

FCqqBK

=−+

=−−

ωω

ωω
            (3.94) 

 
It can now be said that the solution of Eq. (3.41) can exist in the form Eq. (3.94) only if 
the set of algebraic equations, written in matrix block’s form, is fulfilled  
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   (3.95) 

 
The solution of Eq. (3.95) with respect to vectors Sq  and Cq  makes it possible to 
determine explicitly the solution of Eq. (3.94). 
 If the influence of damping is negligible, Eq. (3.95) is reduced to the simple matrix 
form 

CSCS ,,
2 )( FqBK =−ω         (3.96) 

 
which is valid for both the sinusoidal Sq  and the cosinusoidal Cq  component of 
solution Eq. (3.94). 
 From the equation Eq. (3.42), and applying a procedure analogous to the one 
described previously, the set of algebraic equations has the form 
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         (3.97) 

 
If damping matrix is 0C = , the Eq. (3.97) is simplified to the form 
 

CSCS ,,
2 )( DFqDBI =−ω          (3.98) 

 
which is valid for both the sinusoidal Sq  and the cosinusoidal Cq  component of 
solution Eq. (3.93). The method described above is called the Direct Method because 
the eigenproblem solution is not necessary. It is also not necessary to assume that the 
damping matrix is proportional to either the mass or the stiffness matrix or to both of 
them to achieve the steady-state response of the system. Unfortunately, the size of the 
system of equations is doubled. Instead of a set of differential equations, a doubled set 
of coupled algebraic equations must be solved. 
 
 

 

Conclusions 

 
 

Advantages of the Direct Method  
 
in comparison to the Modal Transformation Method approach: 

• There is no need to solve the eigenproblem to achieve 
the steady-state response of the system. 

• There is no need to assume that the damping matrix is 
proportional to either the mass or the stiffness matrix or 
to both of them to achieve the steady-state response of 
the system. 

 
 
Disadvantages of the Direct Method  
 
in comparison to Modal Transformation Method approach: 

• It is necessary to solve a doubled set of coupled 
algebraic equations. 

• It is impossible to reduce the base of coordinates used to 
the determine the solution (the dynamic condensation 
cannot be performed, see Chapter 3.18) 
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3.13.2. Modal Transformation Method 

If the spectral matrix }{ωΩ 2=2  and the modal matrix W  are known, and if the 
assumption Eq. (3.83) is valid, and moreover if the damping coefficients specification 

iα  associated with successive modal forms is known, it is possible to use the same 
modal transformation, Eq. (3.84), which was applied to the analysis of damped free 
vibration. 
 After substituting Eq. (3.84) into Eq. (3.41) and then premultiplicating by TW , 
the equation has the form 
 

)(tTTTT RFWWrKWWrCWWrBW ==++   (3.99) 
 
Using the Orthogonality Principle Eqs. (3.70), (3.71) and additionally  
 

)2(diag ,, ioioi
T mkα== }mk{2αWCW oo           (3.100) 

 
the equation of motion takes the diagonal form 
 

)(tR}r{kr}mk{2αr}{m oooo =++        (3.101) 
 
Matrix Eq. (3.101) is a set of n independent differential equations of SDOF systems. 
The solution of this system is a superposition of independent solutions of equations of 
the type  

(t)Rrkrmkαrm iiioiioioiiio =++ ,,,, 2     (3.102) 
 
and could be solved for any kind of excitation. 
 In the particular situation of a harmonic excitation  
 

)cossin)cossin()( CSCS ttttt T ωωωω RRFFWR +=+=    (3.103) 
and 

ttt ωω cossin)( CS rrr +=           (3.104) 
 
Using results Eqs. (2.46) and (2.47) it is possible to write 
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where 
 

nii

iii

ii

oi
i

iii

i

oi
i

dd

k
h

k
h

hhhhhh

ωωη
ηαη

ηα
ηαη

η

=
+−

=
+−
−

=

==

2222222

2

1

222212112111

)2()1(
21

)2()1(
11

)(diag)(diag  }{h}{h

 (3.106) 

108



Considering relations Wrq =  and FWR T=  one can achieve  
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              (3.107) 

 
or in matrix block form 
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where 
T}WhW{H 11 =       (3.109) 

 
T}WW{hH 22 =      (3.110) 

 
 If damping influence is negligible 0H =1  the Eq. (3.108) is simplified to the form 
 

FHq 1=            (3.111) 
 
which is valid for both the sinusoidal and the cosinusoidal component of solution, and 
 

)1(
1
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,

1
iio

i k
h

η−
=      (3.112) 

 

 

Conclusions 
 

Advantages of the Modal Transformation Method  
in comparison to the Direct Method approach: 

• It is possible to use this approach for another type of forcing 
excitations, i.e. not for harmonic excitation only. 

• The whole analysis can be conducted with the use of SDOF systems 
only 

• It is possible to arbitrarily specify the damping ratios for each mode. 

 
Disadvantages of the Modal Transformation Method  
in comparison to the Direct Method approach: 

• The eigenproblem analysis must be accomplished 

• The assumption is necessary that the damping matrix is proportional 
to either the mass or the stiffness matrix or to both of them to achieve 
the steady-state response of the system. 

109



3.14. Dynamic Condensation 

It has been seen that the equation of motion of an MDOF system can be uncoupled by 
using the principal coordinates of the system. By using this device, any single 
differential equation can be solved for vibration in a given mode at a given frequency. 
The resultant MDOF system vibration is obtained by the superposition of solutions of 
all these single differential equations in the base of principal coordinates. 
 In a discrete mass system, or lumped mass system, with n degrees of freedom, it is 
rarely necessary to consider all n eigenvalues and eigenvectors. It may be sufficient to 
know the response in the lowest natural mode, or, perhaps, the first few lowest natural 
modes. Depending on the significance of the higher modes of vibration, further 
analyses may be necessary. 
 Consider the system defined by the Eq. (3.41). Let us assume that the vector nr  is 
related to the n  first lowest principal coordinates of the vector r  ( dn < ), and that 
only the n  first natural modes described by the n  first eigenvectors 

[ ]nn wwwW 21=  are taken into account – dynamic condensation. If so, the 
transformation from principal to generalized coordinates is, with accordance to Eq. 
(3.84), described by the formula 
 

nnrWq =              (3.113) 
 
After substitution from Eq. (3.113) and premultiplication by the matrix T

nW  Eq. 
(3.112) becomes, 
 

)(tT
nnn

T
nnn

T
nnn

T
n FWrWKWrWCWrBWW =++    (3.114) 

 
or 
 

 )(tnnnnnnn Rr}{kr}mk{2αr}{m oooo =++           (3.115) 
 
Matrix Eq. (3.115) is a set of dn <  independent differential equations of SDOF 
systems. The solution of this system is a superposition of independent solutions of 
equations of the type  
 

(t)Rrkrmkαrm iiioiioioiiio =++ ,,,, 2     (3.116) 
 
and could be solved for any kind of excitation. The solutions given in the base of nr  
can be transformed into solutions of the original system in the generalized coordinate 
base q  given by Eq. (3.113). 
 The response of the system is then known in the original coordinates in terms of 
the response in the dn <  principle directions only. The solution is now an 
approximation only; the greater significance of the next higher modes, the closer the 
approximation will be to the full solution in the base dn = . These higher modes may 
need to be analyzed further. 
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3.15. Kinematically Forced Vibration 

Let us consider a structure whose motion is described by a vector of generalized 
coordinates q . Let us also assume that there are no external dynamic forces acting on 
this structure, but the foundation or support of the structure undergoes motion which 
varies in time. This motion is assumed to be described by the known function of time 
and by an additional set of coordinates assembled in vector )(tz .  
 The equation of motion can be written in matrix block form 
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where )(tZ  is a vector of unknown forces in a base of coordinates )(tz .  
 The first matrix equation of Eq. (3.117) can be written in the equivalent form  
 
 

zKzCzBqKqCqB qzqzqzqqqqqq −−−=++      (3.118) 
 
 
Eq. (3.118) can be used to find the solution with respect to )(tq  as a result of 
kinematic excitation )(tz . If the solution )(tq  is already known, then with the use or 
equation  
 

Z(t)zKqKzCqCzBqB zzzqzzzqzzzq =+++++       (3.119) 
 
it is possible to find the forces )(tZ . 
 

3.16. Variants of Damping Model 

In the case of civil engineering and building structures there are usually no lumped 
dampers but the vibration decays if there are not external excitations. It is also difficult 
to point to sources of damping, as there seem to be many of them. Therefore, a 
problem of choosing the damping matrix C  and the generalized forces TFQ =  in the 
base of generalized coordinates q  appears. 
 Assuming an external character of the resistance to motion, it ought to be assumed 
that (see also Eq. (2.128)) 
 

BC μ=      (3.120) 
 
and then the generalized forces vector TF  transmitted to the structure has the form 
 

)( qqBFKqF  μT −−==    (3.121) 
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In the case of the Voigt-Kelvin rheological model, i.e. when an internal character of 
resistance to motion is assumed,  
 

KC κ=          (3.122) 
 
and then the generalized forces vector TF  transmitted to the structure has the form 
 

qBFqqKF  −=+= )( κT          (3.123) 
 
From the earlier analyses (Chapters 2.5.5.5 and 2.5.5.6) it is known that in both cases 
the assumptions lead to the specification of the damping ratios for each natural mode: 

ini ,2ωµα =  and 2,ini ωκα =  respectively. Experimental investigations do not 
validate either of these hypotheses of damping, i.e. these methods of specifying 
damping coefficients. 
 The Rayleigh model (Chapter 2.5.5.7) takes into account both the viscous damping 
representing an environmental damping by external forces acting on the structure 
(external damping), and the damping due to the inherent properties of the material of 
the structure (internal damping). Thus, the damping matrix is assumed to have the form 
 

BKC µκ +=             (3.124) 
 
and then the generalized forces vector TF  transmitted to the structure has the form  
 

)()( qqBFqqKF  μT −−=+= κ             (3.125) 
 

 
 

Fig. 3.7 Dependence of equivalent damping ratio on the natural frequency value 
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In this case a non-dimensional damping ratio, Fig. 3.7, given by the formula below, is 
assigned to each mode of vibration  
 

in

in
i

,

,

22 ω
µκω

α +=               (3.126) 

 
For the frequency κµ=Ω  the damping ratio reaches its minimum µκα =min . If 
the frequency Ω  is recognized as the most important one, the minimal coefficient 
ratio minαα =  will be assonated to it. This assumption leads to the result 
 

Ω=αµ   Ω=ακ           (3.127) 
 
It is also possible to choose two important natural frequencies in,ω , jn,ω  and to require 
that the condition ααα == ji  be fulfilled for two equations received after substituting 
these conditions into Eq. (3.126). The solution of these two equations gives two 
parameters: µ  and κ . 
 It is important to note that the problems with specifying the damping matrix 
decrease when the modal transformation procedure is used. In this case it is possible to 
arbitrarily specify the damping ratios iα  for each mode. It is also possible to assume 

constji === ααα , which is tantamount to the assumption that 
 
 

K}Wkω2αKW{B}Wmω2αBW{C onon
TT +=   (3.128) 

 
 
but then the problem of generalized transmitted force remains undetermined. 
 In the analysis of the steady-state harmonic vibration of discrete systems it is 
recommended to assume the Voigt-Kelvin model of damping with the parameter 

ωακ 2= , where α  is the damping ratio appropriate for a given type of structure and 
ω  is the angular frequency of harmonic excitation. Then 
 

KC
ω
α2

=                (3.129) 

 
 

BqFqqKF 2)2( ω
ω
α

+=+= T               (3.130) 

 
This assumption can be interpreted in the principal coordinate system as  
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It can be seen that in the resonance zone in,ωω ≈ , in which the damping is significant, 

αα ≈i . However, outside the resonance zone, the damping ratio ii ηαα =  is different 
than α . Even so, as the influence of small damping is negligible, this is of no great 
importance. Thus, the assumptions from Eqs. (3.129) and (3.130) are practically 
tantamount to the hypothesis of the determined decrement of damping. It is important 
to notice that this assumption can only be made for steady-state harmonic solutions of 
lightly damped systems.  
 The vibration analysis is simplified significantly when the resistance to motion is 
negligible. In that case  
 

0C =   qBFKqF −==T         (3.133) 
 
In addition, if the flexibility matrix D is used, it is possible to write the equation of 
motion in the base of generalized forces QF =T  as follows 
 

FQQBD =+                                                   (3.134) 
 
In the case of harmonic excitation, instead of Eq. (3.98), the following equation is valid 
 

CSCS ,,
2 )( FQDBI =−ω                     (3.135) 
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PLANE BEAMS, FRAMES, TRUSSES AND 
FOUNDATIONS 
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4. Plane Beams, Frames, Trusses and Foundations 

 “The first step in analyzing any physical structure is to represent it by a 
mathematical model which will have essentially the same dynamic behavior. A suitable 
number and distribution of masses, springs, and dampers must be chosen, and the input 
forces or foundation motions must be defined. The model should have sufficient 
degrees-of-freedom to determine the modes which will have significant response to the 
exciting force or motion. 
 The properties of a system that must be known are the natural frequencies nω , the 
normal mode shapes, … the damping of the respective modes, and the mass 
distribution mj

4.1. Plane Beams and Frames  

. The detailed distribution of stiffness and damping of a system are not 
used directly but rather appear indirectly as the properties of the respective modes. The 
characteristic properties of the modes may be determined experimentally as well as 
analytically.”, [1]. 

Let us consider plane beams or frames systems, constructed with weightless plain bars. 
The axes of the bars intersect in geometrical nodes. There are lumped masses and rigid 
bodies in the structure. In the mass center of each lumped mass, two local translational 
cartesian coordinates are assumed to exist, and in the mass center of each rigid body an 
additional rotational coordinate must be assumed. The whole set of coordinates is 
written as a vector  
 

Tuuu ][ 321 =u         (4. 1) 
 
As it was shown in Chapter 3.4.2.2, the inertia matrix in the local coordinates base of 
mass centers has a diagonal form, Eq. (3.11) 
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where jm  are the masses sensu stricto (associated with translational coordinates) or 
mass moments jj Jm =  (associated with rotational coordinates). The generalized 
coordinates vector  
 

Tqqq ][ 321 =q        (4.3) 
 
can be transformed to the local coordinates vector u  with accordance to Eq. (3.9) 
 

qAu m=            (4.4) 
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The inertia matrix in the generalized coordinates base has the form determined by Eq. 
(3.14), i.e. 
 

m
T
m A{m}AB ⋅⋅=     (4.5) 

 
The structure can be excited by the generalized forces, Eq. (3.35) 
 

PAF T
f=           (4.6) 

 
The next calculations of the dynamic analysis of such structures could be realized with 
the use of the Force or the Displacement Method.  

4.1.1. Displacement Method 

4.1.1.1. Kinematically (Geometrically) Indeterminate Structures 

A rigid body system consists of a number of rigid bodies in space. The degrees of 
freedom of these independent rigid bodies can be removed by adding kinematic 
constraints, thanks to which the number of degrees of freedom is reduced.  
 A system is kinematically indeterminate if the number of unknown node/joint 
displacements that are needed to describe the displaced shape of the structure is greater 
than zero. 

4.1.1.2. Degree of Kinematic (Geometric) Indeterminacy 

The degree of kinematic (geometric) indeterminacy is the number of kinematic 
constraints necessary to achieve the kinematic (geometrical) determinacy of the 
system. It is described by the formula  
 

ϕnnng += ∆     (4.7) 
 
where 

ϕn  – the number of rotational constraints necessary to obtain geometric 
determinacy from the point of view of the Displacement Method 

∆n  – the number of translational constraints it is necessary to add to the kinematic 
chain in order to obtain a geometrically stable and statically determinate truss 

 
and 

)(2 rpwn +−=∆        (4.8) 
 
where 

w  – number of truss hinges in a kinematic chain 
p   – number of members in a kinematic chain 
r   – number of supporting constraints (links) in a kinematic chain 
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4.1.1.3. Degree of Kinematic (Geometric) Indeterminacy in a Dynamic 
Sense 

The degree of kinematic (geometric) indeterminacy in a dynamic sense gdn  is defined 
as the number of degrees of kinematic indeterminacy gn  reduced by the number of 
degrees of freedom which are the dynamic generalized coordinate d . Therefore, the 
number gdn  can be interpreted as the number of additional non-dynamic information, 
necessary only due to static solution of the structure in the Displacement Method sense 
(Fig. 4.2). 
 

dnn ggd −=     (4.9) 
 

4.1.1.4. Stiffness Matrix 

4.1.1.4.1. Kinematic Coordinates Vector in the Dynamic Sense 

The kinematic coordinates vector in the dynamic sense will be expressed as x . The 
vector x  is the displacement vector of those points of the structure which are neither 
mass points nor points of fixing the rigid bodies to the structure, but which are 
necessary to kinematically determine the structure from the Displacement Method 
point of view.  

4.1.1.4.2. Expanded Base of Kinematic Coordinates  

The expanded base of kinematic coordinates is defined as the vector 
 









=

x
q

q̂              (4.10) 

 
The displacement vector in the expanded base of kinematic coordinates consists of two 
subvectors:  

• subvector  
 

T
dqq ][ 1 =q                                                   (4.11) 

 
which is the generalized coordinates vector whose dimension is equal to the number of 
generalized coordinates d  and  

• subvector 
 

T
ngd

xx ][ 1 =x                                                  (4.12) 

 
which is the kinematic (geometric) coordinates vector in the dynamic sense, whose 
dimension is gdn . 
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4.1.1.4.3. Stiffness Matrix in an Expanded Base of Coordinates 

The stiffness matrix in an expanded base of coordinates is defined as 
 









=

xxxq

qxqqˆ
KK
KK

K     (4.13) 

 
 

T
xqqx KK =              (4.14) 

 
where:  dd ×=qqdim K , gdnd ×=qxdim K , dngd ×=xqdim K , gdgd nn ×=xxdim K  

4.1.1.5. Static Condensation 

In order to avoid terminological misunderstandings, it is necessary to mention that the 
term “Static Condensation” used in this book has a different meaning than the same 
term as used by another authors. Contrary to the definition of Static Condensation 
formulated for example by M. Paz and W. Leigh in [1], that “...Static Condensation 
Method...is only approximate and may produce relatively large errors in the results 
when applied to dynamic problems”, the Static Condensation Method proposed here, 
devised by J. Langer in [4], gives exact results when applied to dynamic problems. The 
main difference from the method proposed in [1] is that, in the method presented here, 
there are no primary and secondary (less important) degrees of freedom. Degrees of 
freedom are here divided into Lagrange’s generalized coordinates q  and kinematic 
(geometric) degrees of freedom x  which do not describe displacements of the mass 
points, but are necessary if the Primary Structure of the Displacement Method is to be 
kinematically determined. After the solution of the dynamic problem in the base of 
generalized coordinates q  it is always possible to find the kinematic degrees of 
freedom x  from Eq. (4.16).  
 The equilibrium conditions of the Displacement Method in the expanded base of 
coordinates q , Eq. (4.10), has the form 
 

0xKqK =+ xxxq ,       (4.15) 

 
therefore from here 
 

qKKx xq
1

xx
−−=       (4.16) 

 
From the identity  
 

qKxKqK =+ qxqq         (4.17) 
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after substituting Eq. (4.16) into (4.17), one can achieve the stiffness matrix in the base 
of generalized coordinates q  from formula 
 

xq
1

xxqxqq KKKKK −−=          (4.18) 

 
For an SDOF system the kinematic indeterminacy degree 1=gdn , from Eq. (4.18) one 
can find the equivalent stiffness coefficient  
 

xx

xqqx
qq k

kk
kk −=      (4.19) 

 

4.1.2. Force Method 

4.1.2.1. Degree of Static Indeterminacy 

4.1.2.1.1. Statically Indeterminate Structures 

A system is statically indeterminate if the number of unknown member forces and, 
optionally, reactions in the system, is greater than the number of independent, non-
trivial equilibrium equations available for determining these unknown forces. 
In general, the static indeterminacy of structural systems depends not only on their 
external supports, but on their internal structures as well. 
 

4.1.2.1.2. Degree of Static Indeterminacy 

The degree of static indeterminacy of a system (number of redundants, or number of 
hyperstatics) is NMh nnn −=  where 

Mn   is the number of unknown member forces, and optionally, reactions in the 
system; 

Nn   is the number of independent, non-trivial equilibrium equations available 
for determining these Mn  unknown forces. 

In practice, it is more convenient to determine the degree of static indeterminacy of a 
plane system by using the formula 
 

tenh 3−=              (4.20) 
or in space  

benh 6−=                                                        (4.21) 
where  

e  is the number of constraints in the system,  
t  is the number of rigid bodies in the 2D system, 
b  is the number of rigid bodies in the 3D system 
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4.1.2.2. Flexibility Matrix 

4.1.2.2.1. Redundant (Hyperstatic) Forces Vector  

The redundant forces vector of the Force Method will be expressed as vector X  
whose dimension is hn .  
 

4.1.2.2.2. Independent Characteristic Forces Vector  

The independent characteristic forces vector Q  is a vector of unknown internal forces 
transmitted from the mass to the structure. The vector Q  is in accordance with the 
generalized coordinates vector q . The dimension of the vector Q  is equal to the 
number of generalized coordinates d. 
 

4.1.2.2.3. Primary Structure (Scheme) of Force Method 

To create a Primary Structure of the Force Method it is necessary to make the  
assumption that a dynamic force iQ  acts in the place and the direction of the 
generalized coordinate iq , and a hyperstatic force iX  acts in the place and the 
direction of the restraints ix  (Fig. 4.3). The dimension of vectors q  and Q  is d , but 
the dimension of vectors x  and X  is hn . 
 

4.1.2.2.4. Expanded Base of Kinetic Coordinates 

The vector of dynamic forces in the expanded base of kinetic coordinates Q


  
 









=

X
Q

Q


             (4.22) 

 
consists of two subvectors:  

• subvector  
 

T
dQQ ][ 1 =Q         (4.23) 

 
whose dimension is equal to d  and  

• subvector 
 

T
nh

XX ][ 1 =X        (4.24) 
 
whose dimension is equal to hn   
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4.1.2.2.5. Flexibility Matrix in Expanded Base of Coordinates 

The flexibility matrix in the expanded base of coordinates is defined 
 
 









=

xxxq

qxqqˆ
DD
DD

D     (4.25) 

 
where 

T
xqqx DD =               (4.26) 

 
and   
  dd ×=qqdim D , hnd ×=qxdim D , dnh ×=xqdim D , hh nn ×=xxdim D  
 

4.1.2.3. Static Condensation 

After operations analogical to the ones in the case of the stiffness matrix (Chapter 
4.1.1.6), it is possible to find the flexibility matrix in the base of generalized forces 
Q , from formula 

 

xq
1

xxqxqq DDDDD −−=         (4.27) 

 
and the redundant forces vector from  
 

QDDX xq
1

xx
−−=      (4.28) 

 
The dimensions of matrices K  and D  are the same and are equal to the number of 
generalized coordinates d , and of course  
 

1−= DK              (4.29) 

 
For an SDOF system the static indeterminacy degree 1=hn , Eq. (4.29) has the form 
 
 

xx

xqqx
qq δ

δδ
δδ −=       (4.30) 
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4.1.3.  Choice of the Method 

In a given case, either the Displacement Method or the Force Method  may be the most 
convenient for formulating the matrix equation of motion, as it will give rise to a lesser 
number of additional hyperstatic or hyperkinematic unknowns. In order to choose, 
which method is the most convenient, it is sufficient to check one simple criterion. 
Namely, one has to determine which is the greater: the degree of kinematic 
indeterminacy in the dynamic sense gdn  (calculated from formula Eq. (4.9)) or the 
degree of static indeterminacy of the system hn  (calculated from formula Eq. (4.20)). 
 

 

4.1.4. Forced Vibration 

When the vector of generalized forces and the inertia, damping, stiffness or flexibility 
matrix are achieved, it is enough to write the equation of motion, Eq. (3.41) or (3.42), 
and solve it using the algorithms which are presented in Chapter 3. There are three 
possibilities, which will be considered below. 

4.1.4.1. Modal Transformation Method 

If the inertia and the stiffness/flexibility matrices are known, the eigenproblem may be 
solved, see Chapter 3.8. Next, using the Modal Transformation Method, see Chapter 
3.13.2, the equations of motion can be decoupled, Eq. (3.101). Then, the system of 
independent equations, of the Eq. (3.102) type, can be solved separately in the 
principal coordinates base. The final solution is achieved with the use of these separate 
solutions and the superposition method. The solution in the generalized coordinates 
base may be obtained with the use of the modal transformation, Eq. (3.84). The 
dynamic condensation approach, Chapter 3.14, can also be used.  
 

 

Conclusions 
Advantages of the Modal Transformation Method of 
solving the equations of motion for beam or frame structures: 

• The possibility to use this approach for other types of 
forcing excitations, i.e. not for harmonic excitation only. 

• The possibility to reduce the base of principle 
coordinates used to determine the final solution in the 
generalized coordinates base (dynamic condensation can 
be carried out). 

• The possibility to conduct the whole analysis with the 
use of SDOF systems only. 

• The possibility to arbitrarily specify the damping ratios 
for each mode.  

Choice of the Method: 

• If gdh nn >   the Displacement Method should be chosen. 
• If gdh nn <   the Force Method should be chosen. 
• If gdh nn =   either of these methods can be chosen.  
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4.1.4.2. Direct Method 

When only the harmonic excitation forces act in the system, the solution of the 
equation of motion is usually realized with the use of the Direct Method, Chapter 
3.13.1. Analyzing harmonically forced vibration, and taking into account damping, the 
displacement steady-state response can be determined from Eqs. (3.95) or (3.97). The 
independent characteristic forces can then be evaluated from equations  
 

C
2

CC

S
2

SS

BqFQ

BqFQ

ω

ω

+=

+=
                (4.31) 

 
Bending moments SM , CM , shear forces ST , CT  and axial (normal) forces SN , CN  
can be then calculated, and their diagrams can be drawn. It is also possible to calculate 
the amplitudes of the bending moments, shear forces and axial forces using the 
formulas 
 

22

22

22

am

am

am

CS

CS

CS

NNN

TTT

MMM

+=

+=

+=

     (4.32) 

 
The amplitudes of the bending moments diagram, the amplitudes of the shear forces 
diagram and the amplitudes of the normal forces diagram are the dynamic envelopes of 
these section forces, i.e. the envelopes with respect to time. The amplitudes of shear 
forces and the amplitudes of normal forces diagrams are usually constant between 
points of concentrated force application. The amplitude of bending moments diagrams 
are usually curvilinear between points of concentrated force application, except for the 
situation when the diagrams SM , CM  are proportional.  
 If the damping influence is negligible, the state of displacement can be calculated 
from Eqs. (3.96) or (3.98). The independent characteristic forces can then be evaluated 
from equations, Eq. (4.31), or independently of displacements, from Eq. (3.135) 
directly, separately for SQ  and CQ . 
 

Conclusions 
Disadvantages of the Modal Transformation Method of 
solving the equations of motion for beam or frame structures: 

• The eigenproblem analysis must be accomplished. 

• The assumption that the damping matrix is proportional 
to either the mass or the stiffness matrix or to both of 
them is necessary to achieve an uncoupled system. 
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Notice 
The static condensation procedure, which was described in Chapter 4.1.1.6, 
can be avoided if the generalized coordinate base is assumed to be an already 
expanded one ( dn > , 0det =B ), i.e. all the equations of motion are 
formulated in an already expanded generalized coordinate base. This is 
possible in consideration of the homogeneous character of the unknowns q  
and x . Unfortunately, the number of the dynamic unknowns increases. The 
matrix equation of motion then has the form 
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If the Force Method is applied, the assumption that coordinate base is already 
expanded is impossible, because of the non-homogenous character of 
unknowns q  and X . 

Conclusions 

Advantages of the Direct Method of solving the equations of 
motion for beam or frame structures: 
 

• The eigenproblem solution is not necessary to achieve 
the steady-state response of the system. 

• The assumption that the damping matrix is proportional 
to either the mass or the stiffness matrix or to both of 
them is not necessary to achieve the steady-state 
response of the system. 
 
 

Disadvantages of the Direct Method of solving the equations of 
motion for beam or frame structures: 
 

• It is necessary to solve a doubled set of coupled 
algebraic equations. 

• It is impossible to reduce the coordinates base used to 
determine the solution (the dynamic condensation 
cannot be performed). 

125



4.1.4.3. Numerical Integration  

The third possibility to solve the matrix equation of motion which describes the forced 
vibration of the beam or frame is to numerically integrate this equation with the use of 
the appropriate numerical method.  
 
 

 

 

 

 

Conclusions 

 
 

Advantages of the numerical integration method of solving the 
equations of motion for beam or frame structures: 
 

• The eigenproblem solution is not necessary to achieve 
the solution of the system. 

• The assumption that the damping matrix is proportional 
to either the mass or the stiffness matrix or to both of 
them is not necessary. 

• It is possible to achieve the solution for any type of 
forcing excitations. 

• Solutions can be obtained not only for steady-state 
response. 

 

 

Disadvantages of the numerical integration method of solving the 
equations of motion for beam or frame structures: 
 

• The solutions are achieved in a non-analytical form. 

• The solutions are very time-consuming. 

• Special algorithms should be applied. 
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Illustrative Example 4.1 

Let us consider a statically and kinematically indeterminate plane frame structure. An 
example of the dynamic scheme of a frame structure is shown in Fig. 4.1.  
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Fig. 4.1 Dynamic scheme of the frame 
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The number of degrees of freedom (Fig. 4.2) 
 

        312 =+=+= ∆ ϕddd      

 
The degree of static indeterminacy is (Fig. 4.2) 
 

11343 =⋅−=−= tenh      
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Fig. 4.2 Force Method scheme of coordinates  
 
 
The degree of kinematic (geometric) indeterminacy is (Fig. 4.2) 
 

           422 =+=+= ∆ ϕnnng      
 
The degree of kinematic (geometric) indeterminacy in a dynamic sense  
 

134 =−=−= dnn ggd      
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Fig. 4.3 Displacement Method scheme of coordinates 
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Because gdh nn =  either of the Displacement Method or the Force Method can be 
chosen. The Displacement Method has been chosen arbitrary. 
 The generalized coordinates vector q  is 
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The x  vector consists of one element only 
 

            ][ 1x=x       
 
The expanded base of kinematic coordinates is defined as the vector 
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The stiffness matrix in an expanded base of coordinates is defined as 
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where 
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Static Condensation yields, Eq. (4.18), the stiffness matrix in generalized coordinates 
base 
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Mass matrix can be achieved with the use of transformation from local to generalized 
coordinates, Fig. 4.4.  
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Fig. 4.4 Generalized and local coordinates associated with mass center 
 
 
The local coordinates transformation to generalized coordinate may be formulated as   
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The inertia (mass) matrix in the local coordinates base of mass centers has a diagonal 
form, Eq. (3.11) 
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The inertia (mass) matrix in the generalized coordinates base has the form 
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The structure can be excited by the generalized forces, Eq. (3.35) 
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Finally, matrix equation of motion has the form 
 

        )(tFqKqB =+      
 
The eigenproblem formulation can be written down as 
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The solution of this algebraic set of equation leads to eigenvalues and natural 
frequencies 
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and eigenvectors and modal matrix 
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Natural modes of vibration are shown below 
 

• First mode of vibration 
 

1,00

0,1780,147

 
 
 

• Second mode of vibration 
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Harmonically forced vibration solution realized with the use of the Direct Method, 
Eqs. (3.95) and (3.96) 
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Finally, the displacements  Sq , Cq  and qam  are 
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The diagrams of bending moments SM , CM  and Mam  are shown in Figures below 
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4.2. Trusses 

Let us consider a statically determinate or indeterminate plane truss structure with 
accordance to the theory introduced by Langer in [5]. An example of a dynamic 
scheme of a truss structure is shown in Fig. 4.5.  
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Fig. 4.5 Dynamic scheme of the truss 
 
The prismatic and straight members are pin-connected. The length of a member is il , 
the area – iA , the mass – im  and Young's Modulus of Elasticity – iE . It is assumed 
that the truss is a discrete structure whose masses mi

 

 are concentrated in nodes. Each 
mass displacement is assumed to be described by two local cartesian coordinates. It is 
most convenient to assume that the generalized Lagrange’s coordinates are the same as 
the local coordinates, i.e. 

{m}BIAuq === m             (4.33) 

 
The mass matrix elements can be calculated from formula 
 

∑+=
j

jii Mm m
2
1

             (4.34) 

 
where iM is the concentrated mass associated with the generalized coordinate iq  and 

∑
j

jm  is the sum of “j” mass of the members connected in node “i”.  

 It is convenient to derive the equation of motion for the truss with the use of the 
Displacement Method, thus the stiffness matrix must be determined. The local 
coordinates of the displacement state are taken to be extensions of the members  
 

T][ 321 ∆∆∆=Δ            (4.35) 

134



The transformation from generalized coordinates can be formulated as  
 

qAΔ ∆=               (4.36) 
 
The potential energy can be calculated as below 
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where  
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

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= A

L
EAAK T         (4.38) 

 
The truss may be loaded by excitation forces acting on nodes of the structure. If these 
forces, represented by vector P , are determined in the local base of coordinates u , 
then, with regard to Eq. (4.33), uq =  and one can obtain PF = . 
 The damping matrix C  ought to be determined with regard to the chosen damping 
model.  
 The equation of motion has the form Eq. (3.41). After the solution of this equation 
in the displacements base uq = , one ought to determine the stress-strain state in the 
form of the forces vector in the set of members 
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In the case of the steady-state response to harmonic excitation, the damping matrix can 
be assumed to be in the form of Eq. (3.129) and then 
 

)2( CSS qqA
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L
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
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

= ∆                (4.41) 

 
22am jCjSj NNN +=           (4.42) 

 
where Sq  and Cq  fulfill Eq. (3.95). 
 If the damping influence is negligible, the state of displacement can be calculated 
from Eq. (3.96) and 0=α  should be substituted into Eqs. (4.37) and (4.38). 
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4.3. Foundations 

One of the most important problems in structural dynamics is the analysis of vibrations 
generated by a machine attached to a block foundation. The foundation is placed on the 
surface of elastic ground, Fig. 4.6.  
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Fig. 4.6 Foundation on elastic ground 
 
 

 

Assumptions 
 

It is assumed that: 
 
• The block foundation is a rigid body. 
• The base contact area is placed on the horizontal plane yx .  
• The structure is symmetric with respect to the plane zx . 
• The axes yx ,  are the principal axes of the area of the foundation 

contact surface . 
• The axes zyx ,,  pass through the centroid of the area of the foundation 

contact surface. 
• The elastic ground is a non-inertial one described by three parameters: 

o the stiffness coefficients in the horizontal direction are zx kk ,  (in 
the directions zx ,  respectively),  

o and the stiffness coefficient in the direction of rotation around the 
axis y  perpendicular to the plane of vibrations is ϕk . 

• The mass center of the block foundation (point O), could be located not 
on the same vertical line as the centroid of the foundation base area. 

• The vibrations are harmonically excited by a force rotating in plane zx  
• The force may be located not in the mass center of the block foundation. 
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Taking into account the above assumptions, the space vibration of the structure can be 
reduced to the problem of the plane vibrations in the symmetry plane zx . Three 
generalized coordinates are sufficient to describe the dynamic properties of the 
structure. These generalized, local and block mass center coordinates are shown in Fig. 
4.6. In the vector notation they have a form  
 

Tuu ][ 21=u           (4.43) 
and 

Tqqq ][ 321=q              (4.44) 
 
The transformation of generalized to local coordinates can be written down in form 
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     (4.45) 

 
Finally, the inertia matrix has the form analogical to the one shown in Eq. (3.19), i.e. 
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where 

Oxy zmS =  The static moment of mass with respect to the plane xy .  

Oyz xmS =  The static moment of mass with respect to the plane yz . 

OOOA JzxmJ ++= )( 22  The polar mass moment of inertia about the axis through the 
dynamic center – point A, i.e. about the axis y  through the 
centroid of the contact area and perpendicular to the plane of 
vibrations. 

OJ  The moment of mass inertia of the machine-foundation 
structure with respect to the axis passing through the mass 
center of the machine-foundation structure 

m  The mass of machine-foundation structure 
  
 The potential energy of the ground elasticity is 
 

)(
2
1

321 qJkqAkqAkE Axzp ϕ++=    (4.47) 

 
From Eq. (4.47) it is possible to achieve the stiffness matrix  
 

( )Axz JkAkAk ϕ diag=K           (4.48) 
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where A  is the area of surface of contact between structure and elastic ground. 
 The damping matrix can be assumed on the basis of one of the hypotheses of 
damping, even though it is most frequently assumed that KC κ= , i.e. structural 
damping. 
After reducing the rotating force from a given point of its localization to the point of 
localization of generalized coordinates. This point is the centroid A of the area of the 
foundation contact surface. The generalized forces vector can be obtained in the 
following form  
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Since the weight of the block foundation is usually significant, and because of the 
assumption that the mass center, point O, of the block foundation is not located on the 
same vertical line as the centroid of the foundation base area, it seems to be advisable 
to take into account an amendment resulting from the second order theory. This second 
order theory amendment is, in this situation, the moment of the gravity force (weight of 
the block foundation) about the axis y  through the centroid of the foundation base 
area. This axis is perpendicular to the plane of vibrations. Since the mass center, point 
O, of the block foundation is moving during the vibrations, this additional moment of 
force depends on time. This additional moment of force can be written down in the 
form   
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This vector should be transferred onto the left side of the matrix equation of motion. 
After this operation the matrix equation of motion has the standard form  
 

)(tFqKqCqB =++          (4.51) 
 
The stiffness matrix is diagonal but differs from the form presented in Eq. (4.48). Now,  
 

)(diag xyAxz SgJkAkAk −= ϕK              (4.52) 
 
The solution of Eq. (4.51) can be achieved with the use of the Direct Method or the 
Modal Transformation Method. As a result the vector q  is obtained and then it is 
possible to calculate the vector Q  of the generalized forces transmitted to the ground 
 

BqFFQ 2
T ω+==                 (4.53) 
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There are three elements in this vector. The first element zFQ T1 =  is the vertical 
transmitted force; the second element xFQ T2 =  is the horizontal transmitted force; the 
third element yMQ T3 =  is the moment of transmitted force around the axis y . These 
transmitted forces make it possible to find the dynamic stresses in the foundation 
contact surface. These stresses ought to be calculated separately for sinusoidal and 
cosinusoidal components. The final amplitudal values of stresses should be calculated 
with the use of formula 
 

22am CS σσσ +=                 (4.45) 
 
The generalized coordinates vector is also useful to obtain local displacements of 
chosen points of foundation, with the use of formula Eq. (4.46).The amplitude of the 
local cartesian displacements of any point may be obtained from expressions 
 

2
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2
11am CS uuu +=                 (4.55) 

and 
2
2

2
22am CS uuu +=                  (4.56) 

 
These amplitudes describe the “frame of trajectory” of the vibrating point. As it was 
described in Chapter 1.4.2, the trajectory is an ellipse, see Fig. 4.7 and Fig. 1.5 
(Lissajous figures – periodic vibration). This ellipse is inscribed into a rectangular 
frame with dimensions )(2am)(2am 21 uu × . 
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Fig. 4.7 Trajectory of vibration of a given point A of block foundation. 
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It is important to notice that the dimensions of the “frame of trajectory” change 
depending on the directions of the local cartesian coordinates, while the trajectory itself 
is an invariant figure, i.e. it describes the motion of the point in an objective way. For 
this reason it is important to determine the trajectory. It can be found that 
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where 
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The formulas in Eq. (4.60) describe the values of the principal amplitudes, but they do 
not describe their geometric orientations. The maximum value of the principle 
amplitude occurs when 1)22cos( =− θωt , which means that θω =t . Then  
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                (4.60) 

 
The minimum value of the principle amplitude occurs when 1)22cos( −=− θωt , which 
means that 2πθω +=t . Then  
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          (4.61) 

 
Expressions Eqs. (4.61), (4.62) describe the principle amplitudes in the vector sense by 
their projections on coordinate axes x  and z . Therefore, it is possible to determine the 
geometrical orientation of the motion trajectory. Moreover, it is also possible to use the 
relations 
 

RR ~~~ TR =              (4.62) 
and 

rr ~~~ Tr =            (4.63) 
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