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INTRODUCTION

This book presents the theory of Single-Degree-Of-Freedom (SDOF) and Multi-
Degree-Of-Freedom (MDOF) Systems, which corresponds to the educational program
for students of Structural Dynamics at the Faculty of Civil Engineering . Theories of
free and forced steady-state vibration of undamped and viscously damped systems are
presented and discussed. The equation of motion is derived in two ways: firstly —
according to the d’Alembert’s Principle, and secondly — according to the Mechanical
Energy Balance method with use of Lagrange’s equation. Particularly, the
comprehensive analysis of single-degree-of-freedom systems is carried out. Multiple
degree-of-freedom systems are discussed, including the normal-mode theory of linear
elastic structures and Lagrange’s equation. The free and forced vibration are analyzed
with the use of either the modal transformation approach or the direct method for
harmonically excited systems. The finite-number-of-degrees-of-freedom systems are
obtained from the ones whose parameters are distributed. This is achieved by lumping
parameters for certain regions into equivalent masses, springs, and dampers; each of
these is assumed to have only a single function. The plane beams, trusses and
foundations subject to the action of dynamic forces are analyzed from the point of view
of such discretized systems.

A detailed list of literature is placed at the end of the book. As the authors were
once professor Jan Langer’s students, the present handbook is mainly based on his
book [5].



SYMBOLS AND ACRONYMS

a acceleration magnitude

a,amq amplitude

QApeat amplitude of beat

a vector of amplitudes, vector of acceleration

a,,a,,a, acceleration components along the coordinate axes X, y and z

A area

ALALALALA, transformation matrices from generalized to local coordinates

b number of rigid bodies in the 3D system

B,{m} mass (inertia) matrix, diagonal inertia matrix

c,C, damping coefficient, equivalent damping coefficient

Cer critical damping coefficient

C constant

C.C,,C,{c} damping matrix, diagonal damping matrix

d number of degrees of freedom

d, number of translational degrees of freedom

d, number of rotational degrees of freedom

D flexibility matrix

D flexibility matrix in expanded base of coordinates

e eccentricity radius, the number of constraints in the system

E Young’s modulus

E, energy dissipated during a cycle of vibration

E, kinetic energy

E, potential energy

E; potential strain energy

f frequency

F vector of spring force

F. inertia force

F, damping force

F vector of static restoring force

Fe vector of external force

F value of transmitted to foundation force

FoFy.F, force components along the coordinate axes x, y and z

F, Fe sinusoidal and cosinusoidal component of force

Fs, Fc vectors of sinusoidal and cosinusoidal components of force
vector

AF(t) additional moment of force

G shear modulus

G weight, gravity force vector
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second moment of area or second moment of volume
moment of mass inertia of the body
moment of mass inertia of the body around the fixed axis &,

or rotation in plane around the point O or A

spring constant, stiffness, equivalent spring constant, equivalent
stiffness

stiffness matrix, diagonal stiffness matrix

principle stiffnesses matrix
stiffness matrix in expanded base of coordinates
moment of momentum value, moment of momentum vector

mass
matrix
principle masses matrix

rotating mass

inertia moment

moments of force with respect to an axis through O

vector of external moment

bending moments,

degree of geometric indeterminacy

degree of kinematic (geometric) indeterminacy in a dynamic

sense
degree of static indeterminacy

number of unknown member forces
number of independent, non-trivial equilibrium equations
number of rotational constraints

number of translational constraints

axial (normal) forces

forces vector in the set of members

number of members in a kinematic chain

vector of momentum

excitation forces vector in a local base of coordinates
displacement, velocity, acceleration in generalized coordinates

vector of displacements, velocities, accelerations in generalized
coordinates

maximum amplitude of displacement

initial displacement, initial velocity

sinusoidal and cosinusoidal component of displacement,

constants of integration
sinusoidal and cosinusoidal component of displacements vector,

vectors of constants of integration
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static deflection
expanded base of kinematic coordinates vector
vector of unknown internal forces, dynamic force

dynamic forces vector in expanded base of coordinates
number of supporting constraints (links) in a kinematic chain
displacement, velocity, acceleration in principal coordinates
displacement, velocity and acceleration vectors in principal
coordinates

virtual displacement

matrix, element of the matrix

semi-major axis and semi-minor axis of ellipse

vectors of sine and cosine functions

static moment of mass about the axis x and y

time, number of rigid bodies in the 2D system,

period

period of damped vibration

shear forces

displacement, velocity, acceleration in local coordinates
vector of displacements, velocities and accelerations in local
coordinates

amplitude of foundation motion

velocity magnitude

vector of velocity

volume

number of truss hinges in a kinematic chain

work

virtual work

eigenvector

modal matrix

norm of vector w

absolute value of w;;,

cartesian coordinates

kinematic coordinates vector in the dynamic sense
hyperstatic forces vector

damping ratio (fraction of critical damping)
equivalent (viscous) damping ratio
non-dimensional damping coefficient
flexibility, compliance

extensions of the members vector
magnitude of angular acceleration

vector of angular acceleration

frequency ratio

module of w;,



9 logarithmic decrement

K dimensional parameter — retardation time

A root of characteristic equation, eigenvalue

U dimensional damping parameter

V, acceleration response factor

Vi Vg maxr Vim dynamic magnification factor, maximum value of dynamic
amplification factor

v, resonant dynamic magnification factor,

Vi, Vy response factor, transmissibility

v, velocity response factor

0 density of the body or density of the area

Os, Oc, O values of stresses

) initial phase

145} Rayleigh dissipation function

0,0,¢ angular displacements, angular velocities, angular accelerations

0.0, ¢ vector of angular displacements, velocities and accelerations

o vector of angular velocity

w,Q angular frequency, magnitude of angular velocity, angular
frequency of excitation

, natural frequency

@, (angular) frequency of damped vibration, damping frequency

ot+o phase

v phase angle delay

Q° spectral matrix

moment of unbalance
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1. Basic ldeas

1.1. Important Concepts and Definitions

Dynamics

Dynamics is the branch of mechanics that deals with the
motion of a system of material particles under the influence
of forces, especially ones originating outside of the system

Vibration

Vibration is a type of oscillation in which the quantity is a
parameter that defines the motion of a mechanical system.

Generalized coordinate

Generalized coordinates uniquely define any possible
configuration of the system relative to the reference
configuration. In this book the generalized coordinates are
chosen to be independent of one another.
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1.2. Harmonic and Quasi-Harmonic Motion

Harmonic functions are often used to analyze shock and vibration. The following
equation describes the displacement pattern followed by a body moving harmonically
in time

a(t) = asin2z f t + ¢) = asin(wt + ¢) | (1.1)

where f is the frequency, w =2z f is the corresponding angular frequency, a >0 is
the amplitude of the displacement, (wt+¢) is the phase and ¢ is the initial phase of

the harmonic displacement function.
The velocity ¢(t) and acceleration ¢j(t) of the body are found by differentiating
the displacement once and twice, respectively:

|d(t) =a(27 f)cos(2z f t + ) = awcos(wt + p) | (1.2)

G(t) =—a(2zf)?sin2z ft + @) = —aw’sin(wt + @) = —o’q(t) 1.3)

Displacement, velocity and acceleration amplitudes are defined as follows:

amg=a, amd=wa, am{=ow’a (1.4)

A harmonic motion described by Eq. (1.1) can be written down in form

|q(t):qS sinwt + g coswt| (1.5)

where

|qS =acoswt, Q. =asin a)t| (1.6)

a:amq:‘\]q§+qé (17)

®= arCtg(qc /qs )

or

The velocity and acceleration can be obtained by differentiating Eq. (1.5) with respect
to time twice. After the first differentiation the equation of velocity is achieved in a
form equivalent to Eq. (1.2)

|q(t) = 0,0 CoS wt — q.msin wt (1.8)

After the second differentiation the equation of acceleration is achieved in a form
equivalent to Eq. (1.3)

Gi(t) = —q.0° sin ot — g’ cos wt (1.9)

The quasi-harmonic motion with amplitude modulation a(t) >0 can be written in form

|a(t) = a(t) sin(et + ¢) = g (t)sin ot + g (t) cos ot | (1.10)

11



1.3. Characteristics of Harmonic Motion

Period T[s]
The period of a periodic quantity is the smallest increment of the
independent variable for which the function repeats itself i.e.

3VET+)=f(0)

Angular frequency (circular frequency) o=2x/T =2z f [radls]
The angular frequency of a periodic quantity, in radians per unit time,
is the frequency multiplied by 27.

Initial phase angle ¢ = (at+¢)|_, [rad]
The phase of a periodic quantity, for a periodic value of the
independent variable, is the fractional part of a period through which
the independent variable has advanced, measured from an arbitrary
reference, in time point equal to zero.




1.4. Superposition of Harmonic Moves

A point which undergoes simultaneous excitation from two independent sources
exhibits vibration that is a sum of two vibrations. This phenomenon is referred to as
superposition of vibration. While superposition may be applied to vibration whose
function in time takes on any shape, only the case of harmonic vibration will be
considered here. There are two possibilities that should be taken into account:

e  superposition of parallel vibration - both movements occur in the same
direction. This situation may result in the phenomenon of beats.

e superposition of perpendicular vibration - the movements occur
perpendicularly to one another. Under the influence of the resultant vibration
the point moves along a complicated trajectory. The least complicated of the
curves that reflect those trajectories graphically are called Lissajous curves.

1.4.1. Superposition of Synchronous Moves

Let us consider a movement of the point described by the function q(t) which is a
combination of the collinear harmonic movements ;(t), each of which is described

by

|qj(t) =a, sin(wjt+¢j)| (1.11)

where w;= @ =const, ¢;=¢ =const. Such movements are called synchronous. Then

q(t):(ZajJsin(ijgoj)=asin(a)t+go) (1.12)
i

The amplitude of resultant movement is a sum of component amplitudes, i.e.

a=>a| (1.13)
i

Conclusion:

The resultant movement is harmonic and synchronous with component
movements.

1.4.2. Superposition of Isochronous Moves

Let us consider a movement of the point described by the function g;(t), Eq. (1.11),
where @;= @ = const , but the phase angles are different, i.e. ¢;# ¢,. Such movements
are called isochronous. Then

|qj(t) =a;sin(ot+¢;) =a; cosg; sinwt+a;sing, c05a)t| (1.14)

13



The resultant movement can be expressed by formula

q(t) = (Zaj COS(pJ—Jsin ot +(Zaj sin (/)J-JCOSa)t
i i

By introducing new vectors, which can be defined

a=[a a, a T

c=[cosp, cosp, cosp, -]

s=[sing, sing, sing, -]

the formula Eq. (1.15) can be written in form

q(t) =a'c sinwt+a'ssin wt = asin(wt + @)

where

a's
Q= al’Ctg [?J
C

and

a’=a"cc’a+a'ss'a=a" (ccT 4+ ssT)a —a'Ra

The elements of matrix R can be calculated according to formulas

R =cosg, cosg; +sing;sing; = cos|goi —goj|

a=+a'cc'a+a’ss’a = \/aT(ccT +ssT)a = \/aTR a

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

Conclusion:

a=4a'Ra>0

e The resultant movement is harmonic with an angular frequency o.
e The amplitude of this movement can be calculated from formula

14



Illustrative Example 1.1

In the case of two movements

1 cosle, — ¢
R= 1.25
cos|o, — | 1 (1.25)
thus
a= \/af +a; + 22,3, Cos|g; — | (1.26)

For example, when

LRSS then a=ya +a (1.27)

|(P1_(P2|=7Z then a=|a1_a2|

1.4.3. Superposition of Asynchronous Moves

Let us consider a movement of the point as a superposition of movements
described by Eq. (1.11), where angular frequencies «; are different — asynchronous
moves . The resultant movement q(t) is not a harmonic one. This movement is

periodic if the proportion of the angular frequencies of component movements is a
rational number, i.e.

|w1:a)2:a)3:---=n1:n2:n3:-~| (1.28)

where n; are relatively prime natural numbers (i.e. their set does not have a common
divisor). Then, it can be written a)j/nj =const , and from here

a2

Period T of the resultant movement is the lowest common multiple of the
component movements periods. If n; are small numbers, period T is comparable to
periods of component movements. In the opposite situation, period T can be many
times greater than the periods of component movements. If any of the n; is not a

rational number (for example @, =1, o, :\/E), the period achieves infinity. The
maximum absolute value of resultant movement is described by formula

15



max max la®)| <Y 3, (1.30)
i

In the case of superposition of two harmonic movements for which @, = @, and
a=a, or a =~a,, the superposition of these asynchronous moves leads to a
phenomenon which is called beats.

Conclusion:
e Generally, the resultant movement is not a harmonic one.

e This movement is periodic only if the proportion of the angular
frequencies of component movements is a rational number

Illustrative Example 1.2
Superposition of Parallel Vibrations — Beats

Let us consider a periodic vibration which appears as a result of a superposition of two
simple harmonic quantities (vibrations) occurring in the same direction but with
different frequencies, f, and f, . The amplitudes of component functions are the same
a, =a, =a oralmost the same a, ~a,.

As a result of the superposition of these parallel vibrations, the phenomenon of
beats appears, Fig. 1.1. A periodic increase and decrease of amplitude at the beat
frequency (f, — f,) can be observed.

Fig. 1.1 Superposition of parallel vibrations — Beats

16



One can assume, according to Eq. (1.11), that the components of vibration have a form

|a,(t) = asin(@, t+g,)| (1.31)

|q2(t)=asm(w2t+¢’2)| (1.32)

Since the functions Egs. (1.31) and (1.32) have different frequencies, in any given
frame of reference such points in time exist, in which both functions are in phase. If we
then assume one of these points in time to be the beginning of a new frame of
reference, we can simplify the mathematical notation of the phenomenon without
changing the degree of the generality of notation. In the end, the following forms of
functions describing movement are assumed:

0z
039

The resultant move can be calculated by summing Eq.(1.33) and (1.34), namely

|q(t):q1(t)+q2(t):asina)lt+asina)2t| (1.35)
Since
sina+sinﬂ=23in#cos% (1.36)

therefore formula Eq. (1.35) can be written in form

qt) = {Zacos(wl ;wz tﬂsin(wl ;a)z t) =
= |:28.COS(27Z’ - tﬂsin(Zﬁu J: (1.37)
2 2

=[2a cos(27zfamt)]sin[27z f_t]

Resultant movement (resultant vibrations) can be thought of as the movement with
frequency

- (1.38)

which is an arithmetic mean of two movement frequencies. The amplitude describes
the formula in square bracket in Eq. (1.37). It can be seen that amplitude of the
resultant movement q(t) changes in time with frequency

17



f,—f
Fom =— > : (1.39)

Since frequencies f, ~ f, are almost the same, the value of frequency f,,, Eq. (1.39),

is small and the amplitude (expression in square brackets in formula Eq. (1.37))
changes slowly. This phenomenon is called amplitude modulation. The amplitude of
the beats is up to two times greater than the amplitudes of movement components, and
its maximum appears when

cos(zn%q =+1 (1.40)

Since these values occur twice in one period, the frequency of beats is equal to doubled
frequency f,, i.e.isequal to

foear =| F, — £ (1.41)

Fig. 1.2 shows a graph of the beats phenomena when the amplitudes of component
functions are the same a, =a, =a or almost the same a, ~a, .

Fig. 1.3 shows a graph of the beats phenomena when the amplitudes of component
functions are not the same a #a, and amplitude of beat is now described by
expression

Qe = \/ a’ +a’ +2a,a,cos(w, — o)t (1.42)

component function 1

AN u |
| A{ i
W

| I H\H

P’ R

|

_— component finction H2

E— resultant function

Fig. 1.2 Beats — the amplitudes of component functions are the same a, =a, =a
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) Il |‘ " i ” H component function #1
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in

component function H2

—

[ ] ? [ —_— resultant function
|
|

Fig. 1.3 Beats — the amplitudes of component functions are not the same a, # a,

lllustrative Example 1.3
Superposition of Perpendicular Vibrations — Lissajous Curves

Let us consider a periodic vibration which appears as a result of a superposition of
two simple harmonic quantities (vibrations) occurring in directions perpendicular to
one another, and with different frequencies, f, = f, and f,=f , Fig. 1.4.

Fig. 1.4 Superposition of perpendicular vibrations — Lissajous curve

19



Such a situation is referred to as superposition of perpendicular vibration. The
trajectories of the resultant motion are often very complex curves. The least
complicated of these are called Lissajous curves.

In mathematics, a Lissajous curve is the graph of a system of two parametric
equations

|X(t) = a, sin(e,1) | (1.43)

|y(t) =a, sin(w, t +¢))| (1.44)

which describe complex harmonic motion. The equation of the point’s trajectory can
be obtained from equations of vibration by eliminating the parameter t (time).

The trajectory of the point is a plane curve, whose shape depends on the ratio of
both angular frequencies a)x/a)y and on the phase shift ¢ between the vibrations. The
shape of the figure is highly sensitive to the ratio a)x/a)y , Fig. 1.5.

The problem of establishing the trajectory of the point can be divided into two
main cases: the frequencies are the same or they are not the same.

Frequencies are the same o, = o, =
From the Eq. (1.43) it can be obtained

. X
sin(wt) = - (1.45)
then
X2
cos(ot) =+ [1-—-| (1.46)
aX
After taking into consideration Eq. (1.44) and the trigonometric formula
|sin(a+ﬂ):sinacosﬂ+005asinﬂ| (1.47)

the Eq. (1.44) can, with the use of Egs. (1.45), (1.46) and (1.47), be written in the form

2
Y _Xosp+ /1—X—Zsin¢) (1.48)
a, a, a,
After squaring and transforming the Eq. (1.48), one can write finally
x> y? o 2x :
?+§—a ay cosp =sin’p (1.49)
X y X2y

This is an equation of an ellipse tilted under the angle ¢ to the axis of a frame of
reference.

20



Special cases of an ellipse (the first column in Fig. 1.5)

e For ¢ =0 the trajectory is described by the equation

=Yy 1.50
y o (1.50)

It means that the Lissajous curve is a line segment
o Fora, #a,

@ =+x/2 the trajectory is described by the equation

X2

2
2+y—:1
aX

) (151)
y

job)

It means that the Lissajous curve is an ellipse whose axes are in accordance with the
axes of a frame of reference.

e For a,=a,=a, ¢=7/2 the trajectory is described by the equation

X2+y2=a2

(1.52)
It means that the Lissajous curve becomes a circle

wl:w2=1:1

wl:w2=1:2 wl:w2=2:3

TW2=4:7
1

A A‘A A‘A A

IS

7

=p4

j

N O\

j

AR

/
\\\
O R

(S5
=

Fig. 1.5 Lissajous figures — periodic vibration
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Freguencies are not the same o, # o,

For ratio o, /w, =1/2, ¢ =x/2 the figure is a parabola.
For ratio @, /@, which is rational, these curves are closed. It means that

resultant movement is periodic, though often very complex.
Lissajous figures where o, =1, @, =N (N is a natural number) and

p=—" (1.53)

are Chebyshev polynomials of the first kind of degree N.

For other ratios , /@, the curves are more complicated. The more complex
curves are often similar in appearance to three-dimensional knots. In this
sense, Lissajous curves are the projections of these knots onto a plane.

Under continuous change of phase ¢ the Lissajous curves change shape,
giving the impression of dancing in three-dimensional space. In such cases the
movement may be very complex — the trajectory may not even be a closed
curve, which means that the movement is not periodic, Fig. 1.6.

WL:w2=1:1,41

22

Fig. 1.6 Lissajous figures — non-periodic vibration




1.5. Translational and Rotational Motion

In this chapter the most important definitions of physical quantities describing motion are
presented. The same physical quantity can be defined in different ways. The definitions are
generally formulated with the use of [1,2,3].

An inertial frame of reference
¢ An inertial frame of reference is one in which Newton’s First Law of Motion is true.
o A frame of reference is inertial if it remains at rest or moves uniformly in a straight
line, neither rotating nor accelerating in relation to the stars.

Displacement vector q [m]

e A vector quantity that specifies the change of position of a body or particle. It is
usually measured from the mean position or position of rest. It is a vector quantity
having direction as well as magnitude.

¢ A linear distance from the initial to the final position of an object moved from one
place to another (regardless of the length of path followed).

o A distance vector of an oscillating particle from its equilibrium position.

Displacement g [m] — the magnitude of the displacement

Velocity vector v, g [m/s]

o A vector quantity that specifies the time rate of change of displacement vector with
respect to a reference frame. If the reference frame is not inertial, the velocity is
often designated “relative velocity”.

o A time rate of change of position of a body; it is a vector quantity having direction
as well as magnitude.

* A first derivative of the displacement vector g with respect to time v=dq/dt=¢.

Speed or velocity v, ¢ [m/s] — the magnitude of velocity

Acceleration vector a, § [m/s?]
e A vector quantity that specifies the time rate of velocity of a body; it is a vector
quantity having direction as well as magnitude.
* A first derivative of the velocity vector v with respect to time a=dv/dt=V.
o A second derivative of displacement vector q with respect to time a = dzq/dt2 =q.

23



Acceleration magnitude a or ¢ [m/s’] - the magnitude of acceleration

Angular displacement vector o, g [rad]

e A direction of the displacement vector is the same as the direction of the axis of
rotation and perpendicular to the plane of the angle. The length (magnitude) of the
vector is equal to the angle, and the sense is determined by the “right hand rule”.

o An angular distance of an oscillating body from its equilibrium position.

Angular displacement or angle ¢, q [rad]
¢ A magnitude of the angular displacement vector ¢.
e The angle is the measure of the inclination of one line or surface with respect to
another, equal to the amount that one would have to be turned in order to have the
same inclination as the other.

Angular velocity vector o, ¢,q [rad/s]
¢ A time rate of change of position of angular displacement; it is a vector quantity
having direction as well as magnitude.
o A first derivative of the angular displacement vector ¢ with respect to time
o =de/dt

Angular velocity w [rad/s] ] - the magnitude of angular velocity

Angular acceleration vector €, @, ¢, § [rad/s’]

¢ A time rate of change of angular velocity; it is a vector quantity having direction as
well as magnitude.

o A first derivative of the angular velocity vector ® with respect to time
e=do/dt=0.

e A second derivative of angular displacement vector ¢ with respect to time
e=d%/dt?=¢.

Angular acceleration ¢, ,¢,¢[rad/s’] — the magnitude of angular
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1.6. Newton’s Laws of Motion

Newton’s Laws of Motion (called Newton’s First, Second and Third Laws) are
fundamental to classical mechanics. These laws have been proven to be valid for all
mechanical problems in an inertial reference frame. They are directly applicable to
bodies idealized as particles, that is, bodies assumed to possess mass but no volume. In
elementary mechanics, however, it is proven that Newton’s Laws of Motion can also
be directly applied to bodies of finite dimensions.

1.6.1. First Law

In an inertial frame of reference a particle not subjected to external forces remains at
rest or moves with constant speed in a straight line.

1.6.2. Second Law

The objective of study in this chapter is to describe motion (displacement q or
velocity v =dq/dt =¢q) of the mass particle m at any time t, for a given set of initial
conditions at time t =0. The analytical relation between the displacement g and time
t in an inertial frame of reference is given by Newton’s Second Law of Motion

_dp _d(mv) _ dv_ dm o dm
“ =5~ at _mdt+vdt_ma+vdt (1.54)

where p is the vector momentum of the particle (as a product of its mass mand
velocity v, p=mv), F,, is the resultant vector (net force) of external forces acting on

the particle with mass m and a is its acceleration vector defined as the first derivative
of the velocity vector with respect to time or the second derivative of displacement

with respect to time i.e. a=d?q/dt* =§.
If the mass particle is not changing in time (m = const ) the second term on the

right side of Eq. (1.54) is equal to zero and Newton’s Second Law of Motion can be
written in classical form

F,=ma (1.55)

Eqg. (1.55) is a vector relation and as such it can be written in equivalent form in
terms of its components along the coordinate axes x, y and z, namely,

D> F, =ma, (1.56)
D> F,=ma, (1.57)
SF, -ma, (1.58)
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The general motion of a rigid body is described by two vector equations:
the first one describes the translational motion with the velocity of its mass center O

d
E(mvo) =[5, (1.59)

the second one describes the rotational motion of the body around its mass center O

dL,

1.60
=M. (160)

In above equations:

m
VO
ex

ex

is the mass of the rigid body
is the velocity of center of mass of the body ,
is the resultant of external forces (net force) acting on the body,

is the resultant moment vector of external forces acting on the body with
respect to the point O, which is the center of mass of the body,

is the resultant moment of momentum vector with respect to center of mass
of the body.

Although this last equation expressed in its scalar components is quite
complicated, it is not usually needed in structural dynamics.

Let us consider the special case of a movement — the rigid body rotation around a
fixed axis. In this case, Newton’s Second Law of Motion can now be written in form

where:
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is the angular velocity vector (@ =da/dt =a),

is the angular displacement vector (rotation around the fixed axis), whose
direction is the same as the axis,

is the moment of mass inertia of the body around the fixed axis of rotation,

is the resultant moment vector of external forces determined with respect to
the same axis of rotation,

is the resultant moment of momentum vector (L = Jw ),

is the angular acceleration vector defined as & =d%a/dt* =i .



If the mass moment of inertia of the body is not changing in time ( J = const ) the
second term on the right side of Eq. (1.61) is equal to zero and Newton’s Second Law
of Motion for rigid body rotation around a fixed axis can be written in classical form

M, = Je (1.62)
or
ZM§=J§g§ (1.63)
where
&, is the angular acceleration vector around the fixed axis &,
J; is the moment of mass inertia of the body with respect to the fixed axis &,

Z M, is the sum of the moments of all the external forces acting on the body with
respect to the fixed axis &.

Newton’s Second Law of Motion yields the following equations for plane motion
of a rigid body:

> F,=ma, (1.64)
> F,=ma, (1.65)
S Mg =Joe (1.66)

In above equations:

a,, a, are the acceleration component, along the x and y axes, of the point O (center
of mass of the body);

& is the angular acceleration around the mass centre point O,

Jo is the mass moment of inertia of the body with respect to an axis through the

mass center O, perpendicular to the x-y plane,
ZMO is the sum of the moments of all the external forces acting on the body with
respect to an axis through O, perpendicular to the x-y plane.

1.6.3. Third Law (Law of Action and Reaction)

If in an inertial frame of reference two particles interact, the force F exerted by
the first particle on the second particle (called the action force) is equal in magnitude
and opposite in direction to the force (—F ) exerted by the second particle on the first
particle (called the reaction force). The action and reaction forces both act along the
same line but in the opposite directions. Each of them acts on a different particle,
however.
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1.7. Elementary Parts of Vibratory Systems

A real vibratory system is able to store both kinds of mechanical energy, potential and
kinetic, and to dissipate them. This is achieved with the means of springs for storing
potential energy, mass or inertia for storing kinetic energy, and damping for dissipating
energy. In an undamped system, the vibration is characterized by mechanical energy
only, i.e. it is a continual shift from one to the other kind of mechanical energy (from
potential to Kinetic and back again). In a damped system, part of the energy is
dissipated, i.e. is transferred to non-mechanical forms of energy (for instance to heat).
A damped system, on the other hand, requires external sources of energy for the
vibration to be maintained, as each cycle of oscillation causes some energy to be lost
from the system. While it is possible for one structure to perform all the above
functions (storing both kinds of energy and dissipating it), only discrete and lumped
parameter systems composed of ideal springs, masses, and dampers will be considered
here. In such systems, each element performs one function only. In translational
motion, displacements are defined as linear distances; in rotational motion,
displacements are defined as angular motions.

1.7.1. Springs

Springs are shown: in Fig. 1.7 linear (translational motion) and in Fig. 1.8 rotational
(rotational motion).

Fig. 1.7 Linear spring.
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Fig. 1.8 Rotational spring.
1.7.1.1. Spring Law

In the linear spring shown in Fig. 1.7 and the rotational one shown in Fig. 1.8 the
change in the length of the spring is proportional to the external generalized force Q
acting on the spring (or moment of force for rotational spring). According to Hooke’s
Law of Elasticity the restoring force (elastic reaction, spring force) F, =—Q exerted
by the spring material is described by the formula

|Fk:—k-Au:—k(u1—u2)| (1.67)

where the minus sign means that the force vector is oppositely directed to the
displacement vector Au=u, —u, (the difference of the displacement vectors of both
ends of the spring along the spring axis, see also Chapter 1.9.1). If displacement
u, =q and u, =0, the Spring Law can be written in form

F =-kq (1.68)

There are negative signs on the right hand sides of the Egs. (1.67), (1.68) because
the restoring force always acts in the opposite direction to the displacement.
Spring constant or stiffness k=F/q is the constant of proportionality in Eq. (1.68).

Flexibility or compliance 6= q/F is the inverse of stiffness

1
o== 1.
" (1.69)
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1.7.1.2. Potential Energy

Potential energy is the work (dot product of force and displacement) that must be
performed for a body to be moved from a point where the energy of the body is equal
to zero — that is, from a point where the force also equals zero. Thus, potential energy
is also a measure of the work the body itself is able to perform thanks to the change in
its position.

For one spring, the work can be calculate from formula

wz%+LAu=%kmm2=AEp (1.70)

where Au = |Au|=|u; —u,|.
If uy=q and u,=0 then Au=q and the work in Eq. (1.70) is equal to the
potential energy which can be written in form

E :%qu (1.71)

1.7.2. Rigid Mass Body

F(t)

q(t), a(), a(t)

Fig. 1.9 Rigid Mass Body.
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1.7.2.1. Mass and Inertia Law

The mass m shown in Fig. 1.9 is a rigid body whose translational acceleration g,

according to Newton’s Second Law of Motion in an inertial reference frame, is
proportional to the resultant force (net force) of all forces acting on the mass

F=mg (1.72)

The mass m shown in Fig. 1.9 is a rigid body whose translational acceleration ¢,

in a non-inertial reference frame, is proportional to the inertial force according to the
formula

F,=—-mg (1.73)

“Inertial force is a fictitious force acting on the body as a result of using a non-
inertial frame of reference; examples are the centrifugal and Coriolis forces that appear
in rotating coordinate systems. Also known as effective force”, [2].

There is a negative sign on the right hand side of the Eq. (1.73) because the inertial
force always acts in the opposite direction to the acceleration of the body.

1.7.2.2. Mass Moment of Inertia and Inertia Law

a(t)/a®. g

Fig. 1.10 Rotation of Rigid Mass.
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In an inertial reference frame, the angular acceleration a of the mass moment of
inertia J of a rigid body shown in Fig. 1.10 is, according to Newton’s Second Law of
Motion, proportional to the resultant moment of all the forces acting on the mass i.e.

a

In a non-inertial reference frame, the angular acceleration a of the mass moment
of inertia J of a rigid body shown in Fig. 1.10 is proportional to the inertial moment

M, =-Ji (1.75)

m

There is a negative sign on the right hand side of the Eq. (1.75) because the inertial
moment always acts in the opposite direction to the acceleration of the angular
displacement.

Remark:

Mass moment of inertia J for the rigid body can be expressed as the product of
constant density p of the body material and second moment of area | of the

body i.e.

J=pl (1.76)
where
J moment of mass inertia [kgm?]
I second moment of area [m] or second moment of volume [m°]
m

=—or p =% density of the body [kg/m®] or density of the area [kg/m?]

Yol
m mass of the body [kg]

Y, volume of the body [m°]
A area of body [m?]

1.7.2.3. Kinetic Energy

Kinetic energy is the energy which a body possesses because it is in motion. For the
translational movement of one mass, kinetic energy can be written in form

1 1
E,=—mvi==-mg>? 1.77
K75 5 q ( )

and for rotational movement of one rigid body — in form

1 1
E, ==Jw?’==Jq>2 1.78
=5 () 5 q ( )
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1.7.3. Damper

Fig. 1.11 Viscous damper.
1.7.3.1. Damping Law

In the viscous damper shown in Fig. 1.11 the applied force Q is proportional to
the relative velocity of its connection points (in Fig. 1.11 this velocity is equal to
velocity of displacement Au=q). The resistance force (reaction) F, =—Q exerted by
damping is described by the formula

[F=—c-Au=—c(u,-0,)] (L.79)

where the minus sign means that the force vector is oppositely directed to the velocity
of displacement vector Au=u, —u, (difference of velocity vectors of both ends of the
spring along the spring axis). If velocity of displacement U, =g and u, =0, the
Damping Law can be written in form

F,=—cq (1.80)

The constant ¢ is the damping coefficient, the characteristic parameter of the damper.
The ideal damper is considered to have no mass, thus the force at one end is equal and
opposite in direction to the force at the other end.

There are negative signs on the right hand sides of the Egs. (1.79) and (1.80) since
the resistance force always acts in the opposite direction to the displacement’s velocity.

33



1.7.3.2. Rayleigh Dissipation Function

This function describes the power of resistance forces, i.e. the work of these forces in
time, which occurs in systems performing small oscillations. These forces are assumed
to be proportional to velocities. The Rayleigh dissipation function, also known as
dissipation function, is given by

o=Lcg (1.81)
> .

1.7.4. Work of Acting Force

Work is the transfer of energy that occurs when a force acts on a body, and is
calculated as a dot product of the force vector F and the displacement vector q of the

point the force is acting on

W =F.q=Fqcosé (1.82)

where @ is the angle between the force and the displacement vectors.

If a body is moving in such a way that the force has a component in a direction
perpendicular to the direction of the body’s motion, the work of this component is
equal to zero.

1.8. Springs and Dampers in Parallel or in Series
1.8.1. Springs
1.8.1.1. Springs in Parallel

Sometimes it is necessary to determine the equivalent (effective) spring constant k,

for a system in which two or more springs are arranged in parallel as shown in Fig.
1.12 orin series as in Fig. 1.13

Q Q
q e q
kl k2 000 kl’] > ke
JTIVTT STHTT 1777 1777
Rl F m F F

Fig. 1.12 Combination of springs — springs in parallel.



For springs in parallel, as shown in Fig. 1.14, the total reaction force is a sum of
the forces’ values in springs. According to Spring Law, Eq. (1.68), the expression can
be written

F=FR+F+...+F =k g+k,q+...+k, qg=(k; +k, +...+k,)g=k.,q| (1.83)
Finally the equivalent stiffness of the spring k, is given by
ko =K, +K, +...+K, (1.84)

which means that the stiffness of the equivalent spring is a sum of the stiffnesses of the
springs assembled in parallel, i.e. In general, for n springs in parallel

k, = Zn:ki (1.85)

Now, in accordance with Eq. (1.84) and (1.69) it can be written that

1 &1
+...+—:Z5— (1.86)

1 1 1
—_— —_— + —_—
59 é‘1 é‘2 5n i=1 Ue

1.8.1.2. Springs in Series

ol

000

x

Fig. 1.13 Combination of springs — springs in series.
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For springs assembled in series, as shown in Fig. 1.15, deflection (displacement) of the
system is the sum of the deflection of the individual springs

q:k£+k£+"'+k£=(51+52+"'+53)F=5EF (1.87)

1 2 n

Finally the equivalent compliance of the spring &, is given by

8,=0,+0,+...+6,=D.6, (1.88)
i=1

and using Eq. (1.69) one can achieve

— = — (1.89)

and now it can be said that the inverse of the equivalent spring stiffness is a sum of the
inverses of the springs’ stiffnesses.

In general for n springs in series the equivalent spring constant may be obtained
from

1 &1
e (1.90)

e i=1 B

1.8.2. Dampers

The equivalent (effective) damper coefficient c, for a system in which two or more

dampers are arranged in parallel or in series can be appointed in a method analogical to
the spring constant.
In general, for n dampers in parallel

C, = Zci (1.92)

n
i=1

and for n dampers in series, the equivalent damper coefficient c, may be obtained
from

(1.92)
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1.9. Springs and Dampers neither in Parallel nor in Series

1.9.1. Equivalent Stiffness of One Spring

Let us consider one spring, whose ends can move as shown in Fig. 1.14,

g:=A;-q

Fig. 1.14 A general case of a spring’s deformation.

where q,, g, are displacements of both ends of the spring, u,, u, are their orthogonal
projections onto the direction of the spring i.e. u, =0, cose; and u, =g, cosa,. Now,
let us assume that displacements of ends of the spring q,,q, depend on one
generalized coordinate q according to the relations ¢, =A g and g, = A, q. Finally

one can archive
as9

The potential energy of the spring can be written in form (see Eq. (1.70))

1
E, :Ek(uz—ul)2 (1.94)

Substituting the relationships Eq. (1.93) into Eq. (1.94) one receive

E, :%k(A2 cosa, — A, cosa)?q? =%keq2 (1.95)

Finally the formula for equivalent spring constant k, may be formulated

k,=k (A, cosa, — A, cosa)? (1.96)

If displacement of one end of spring is equal to zero (u;=0) and A, =11i.e. qg,=q
the above simplified formula has the form

k,=k cos’ a, (1.97)
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1.9.2. Equivalent Damping Coefficient of One Damper

The same reasoning in the case of energy dissipation function leads to formulas for
equivalent damping coefficient c, of one damper

c,=C(A, cosa, — A, cosa)? (1.98)

and if displacement velocity of one end of damper is equal to zero (u, =0) and A, =1
ie d,=d

c,=ccos’a, (1.99)

1.9.3. Springs or Dampers in Arbitrary Systems

Illustrative Example 1.4
Sometimes it is necessary to determine the equivalent spring constant k, for a system

in which two or more springs are arranged neither in parallel nor in series (for example
Fig. 1.15 and Fig. 1.16).

Fig. 1.15 Combination of springs — neither in parallel nor in series (quasi-parallel).

The potential energy of the system shown in Fig. 1.15 can be written in form

En =%k1u12+%k2 u; =%klc°52051 q2+%k2 s’ 4" =

1 1 (1.100)
ZE (kle +k2e) q2 ZE ke q2
In general, for n springs the equivalent spring constant may be obtained from
k.= kK, (1.101)
i=1
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Ilustrative Example 1.5

In situation shown in Fig. 1.16 the combination of springs corresponds to a set of
equivalent springs in series.

Fig. 1.16 Combination of springs — neither in parallel nor in series (quasi-serial)

Thus the equivalent stiffness of a system can be calculated from formula

1 <1 (1.102)
ke |Z=1: kei
where
k,; = k; cos® (1.103)

By analogy, the same procedure can be used to dampers connected in the same
way as is shown in Fig. 1.15 and Fig 1.16. With the use of formulas

n
Ce = Zcei (1104)
i=1
or
1 &1
—=3= (1.105)
ce 'Z:; Cei

respectively, can be calculated the equivalent damper coefficient c,.
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1.10. Free Body Diagram (FBD)

Before proceeding to perform dynamic analysis for a dynamic system (Fig. 1.17) using
d’Alembert’s Principle (see Chapter 1.11), one should always create and draw a Free
Body Diagram (Fig. 1.18).

F(0)

q(t), a(t), a(t)

Lo

Fig. 1.17 Single-degree-of-freedom system with viscous damping,
excited by force acting on mass.

a) F(0) b)

F(0)

—_ ¢

mq

q(t), act). a(t) %

kg 7'cq

Fig. 1.18 Free body diagrams for a single-degree-of-freedom system with viscous
damping, excited by force acting on mass.

40



In Fig. 1.18a can be seen a sketch of the body isolated from all other bodies, in which
all the forces external to the body are shown. If d’Alembert’s Principle is taken into
account, the inertia forces also ought to be shown in this sketch. While creating an
FBD, one should take into account and mark the characteristics of the body, such as
mass, moment of inertia, etc. It is also necessary to mark the displacement vector. The
direction and sense of this vector automatically determines the direction and sense of
the axis of the frame of reference — so direction of this vector is by definition positive.
All other vectors:
q — velocity vector

o} — acceleration vector

F. — inertia force vector

F, — resistance force vector
F — restoring force vector
F(t) — applied force vector

should be marked with arrows, indicating their senses, which must be the same as the
sense of the displacement q (generalized coordinate). In reality, the sense of these

vectors may be opposite to the one shown in the drawing in Fig. 1.18a, as in Egs.
(1.68), (1.73) and (1.80). Instead of the forces, the right-hand sides of Eqgs. (1.68),
(1.73) and (1.80) (with a negative sign) should be introduced into the equation of
dynamic equilibrium.

There is also another method of creating an FBD. The senses of negative vectors
ought to be changed in the diagram to their opposites, which means that the arrows
indicating the sense of vector introduced into the diagram are to be drawn with their
real sense, see Fig. 1.18b. The values of the forces should be introduced into the
equation of dynamic equilibrium with positive signs.

The weight (gravity force) of the body G = mg can also be shown in this diagram

if necessary. However, then it is also necessary to mark the static displacement g, and
the static restoring force F,.

1.11. D’Alembert’s Principle

An alternative approach to Newton’s Second Law of Motion is to make use of
d’Alembert’s Principle to obtain the equation of motion. This principle states that when
the material points move in accordance to the constraints, the difference of applied
forces and inertial forces in a dynamic system does no virtual work.

W = (F+F,;)-6r,=0 (1.106)
i
where
F is the vector of applied force acting on point i of the system,
Foi =—-m; is the vector of inertial force of point i of the system,
m, is the mass of the particle i in the system

o} is the acceleration of the particle i in the system
is the virtual displacement of point i of the system,
consistent with the constraints
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The dot between vectors in formula Eq. (1.106) means a dot product of the vectors.
The vector of the inertial force is the product of the mass and its acceleration. The
negative sign means that the sense of the inertia force vector is always opposite to the
sense of the vector of mass acceleration.

In a static case, when F_; =-m,{; =0, d’Alembert’s Principle Eq. (1.106) takes
the form of Principle of Virtual Work.

D'Alembert also showed that one can transform an accelerating rigid body into an
equivalent static system by adding the inertial force.

D’Alembert’s Principle

“a system may be set in a state of dynamic equilibrium by adding to the external
forces a fictitious force that is commonly known as the inertial force”, [4].

The application of d’Alembert’s Principle makes it possible to use equations of
dynamic equilibrium in obtaining the equation of motion.

The most important feature of d’Alembert’s Principle is its simplicity — in the
formulation of principle the arbitrary virtual displacements are assumed to be in
directions that are orthogonal to the constraint forces, so the constraint forces do no
work and unknown reactions are not present in equations. It is not necessary to
calculate these forces to find equations of motion of the system

llustrative Example 1.6
Equation of Motion
According to d’Alembert’s Principle it is possible to formulate the equation of
motion of a single-degree-of-freedom viscously damped system excited in forced
vibration by a force acting on the mass, Fig. 1.17. Especially in simple systems, the
free body diagram is very useful in achieving the equation of motion, Fig. 1.18.
D’Alembert’s Principle states that a dynamic system may be set in a state of
dynamic equilibrium by adding to the external forces an inertial force (IF). Looking at
Fig. 1.18a, the summation of forces acting on the mass in the direction of the
generalized coordinate g gives directly

SF, =0 (1.107)

Thus, we achieve

|Fn+Fi+F +F(t) =0] (1.108)

Now, using the expressions described by Egs. (1.68), (1.73), (1.80) it is possible to
write down

|—mq—cq—kq:—|:(t)| (1.109)
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Multiplying the above equation by (-1) one can achieve

| mi+cq+kg=F()] (1.110)

This equation is the vector differential equation of motion for an SDOF system with
viscous damping and force applied to mass.
The scalar form of Eq. (1.110) is

| mG+cq+kq=F(@)| (1.111)

The same equation one can achieved summing the force in BD shown in Fig. 1.18b.

In this case, the application of d’Alembert’s Principle may seem trivial. In more
complex systems, however, the problem becomes more difficult, and while the use of
d’Alembert’s Principle is still possible, it becomes too complicated to be practical.
This is due to the fact that in this instance, d’Alambert’s Principle would have to be
applied together with the Principle of Virtual Work. Because of this, the Lagrangian
equation will be more convenient to the solution of such complex systems.
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2. Single-Degree-of-Freedom (SDOF) Systems
2.1. Degrees of Freedom (DOF)

Degrees of freedom are the ways in which the space configuration of a mechanical
system may change, i.e. the independent movements the system can possibly undergo.
If only one of these independent movements is possible, the system is called a Single-
Degree-Of-Freedom (SDOF) System

2.2. Lagrangian Equation

As has been stated in Chapter 1.11, formulating a differential equation of motion for a
vibrating system by applying d’Alambert’s Principle is sometimes complicated, as it
requires the determination of all the forces acting on the masses in an SDOF system.
Therefore, in such more complex cases, it is often easier to derive this equation of
motion in terms of the energies of the system with the use of the Lagrangian equation,

(5]

4, B 00 OF, W

2.1
dt 6§ o9 o9 o9 aq @

where
total kinetic energy of the system

total potential energy of the system

=

E
E,
D

Rayleigh Dissipation Function
W virtual work of external force
g , g generalized coordinate — displacement and velocity

In the case of small vibration around the equilibrium point, the Kinetic energy in
general does not depend on generalized displacements . Then

e

and Lagrangian equation has then the form used more often in typical situations

GE 0 & _ow

=— 2.3
d g o9 oq 0q (23)

2.3. Equation of Motion

After the substitution of formulas for: potential energy Eq. (1.71), kinetic energy Eq.
(1.77), Rayleigh dissipation function Eq. (1.81) and work of acting force Eq. (1.82)
into Eq. (2.4), the result can be written in a form

| mg+cq+kg=F(@)| (2.4)

identical with the Eq. (1.111), which was achieved by using d’Alembert’s Principle.
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2.4. Undamped Systems

In ideal conditions, it is theoretically possible that a simple oscillator will never stop
vibrating with a constant amplitude at its natural frequency. Such conditions are
created when there is no damping at all. However, in practice it is impossible to
eliminate all damping — therefore, the assumption that such conditions exist can only
be warranted when the damping is negligibly small. Even so, the idealized solutions for
such a case are of interest from the theoretical and didactical point of view.

The simplest possible vibratory system is shown in Fig. 2.1.

q(t) lq(t)

. IE ¥
/%

Fig. 2.1 Undamped single-degree-of-freedom system

This system consists of a mass m attached to the foundation by means of a spring
with stiffness k . The mass can only move in one direction (translational motion) — the
direction of the q axis (generalized coordinate). For this reason such a system is called

a single-degree-of-freedom system. Free vibration of such systems are discussed
below.

2.4.1. Homogeneous Equation of Motion and its Solution

In accordance with Eq. (2.4) the equation of motion for undamped SDOF systems can

be written in form
mi+kg=0 (2.5)

where q =0 defines the equilibrium position of the mass. This is the second order
differential equation with constant coefficients.

The solution of the above equation can be written in the analytical form. The first
step to achieve the analytical solution is to put in the Eq. (2.5)

q=e" (2.6)

The characteristic equation obtained from Eq. (2.5) is

mA? +k=0 .7)
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There are two roots of this equation 4, =iw, and A, =—iw,, where i=+/-1 and

o, =,/k/m

is known as the natural frequency of the system.
A total integral (general solution) of Eqg. (2.5) has the form

|q(t) =(QsSinw,t+0. cosa,t

where g5, q. are the constants of integration.

2.4.2. Free Vibration

2. 8)

(2.9)

Free vibration occurs when a state of static equilibrium is disturbed, i.e. initial
non-zero conditions are introduced into the system and there are no external excitation
forces acting on the system, Fig. 2.1. This is a physical phenomenon described by the
solution of Eq. (2.9) with two initial conditions, q(0)=q,, ¢(0)=d,which determine

constants of integration, i.e.

q(0)=qc=q0 - 0c=Q,
Q(O)za)nqs=qo - qszqo/wn

Finally the solution (displacement and velocity) has the form

la(t) =g, cose,t+ 4, sinw, t/o,

|d(t) = - 9,0, Sin@, t+d, cosa,t

The exemplary free vibration can be seen in Fig. 2.2

(2.10)

(2.11)
(2.12)

g4
A4-

[}e]

§
+=
<
<o

glt)

g

Fig. 2.2 Free vibration — undamped single-degree-of-freedom system:

w=3[rad/s], q,=1[m], ¢, =2[m/s]
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2.4.3. Forced Vibration

The vibration of a system is forced if the response is dependent on the excitation. The
non-resonant vibration is always steady-state when the excitation is periodic and
continuous. The focus of the present chapter is harmonic excitation, which is important
for two reasons. On the one hand, a large number of civil engineering structures is
subjected to harmonic excitation produced by rotating machinery. On the other, the
mathematical description of such excitation is relatively easy, as the solution of the
equation of motion in this case is obtained in an analytical form. Even if excitation is
not harmonic, it can be decomposed into a Fourier series (a series of harmonic
functions). Through the superposition of individual responses of the system to these
harmonic components of external excitation, we achieve a response of the system to
the non-harmonic excitation.

2.4.3.1. Response to Harmonic Load

When the sinusoidal force F(t)=F,sinwt is applied to the mass in the undamped
single-degree-of-freedom system, Fig. 2.3, the differential equation of motion is

Jl/ F() ¢/ F@)
m m
B

a(t) q(t)

K /%kq

Fig. 2.3 Undamped single-degree-of-freedom system excited in forced vibration by a
harmonic force acting on mass

| mg+kq="F,sinet (2.13)

The solution of this equation is

q(t)=0gssinw,t+0c coswnt+%1;zsina)t (2.14)

- wz/wn

This total (general) solution to the linear differential equation Eq. (2.13) is the sum of
the general solution (also called a complementary solution — the sum of the first two
components on the right-hand side of Eq. (2.14)) of the related (reduced) homogeneous
equation Eq. (2.5), and the particular solution (integral — the third component on the
right-hand side of Eq. (2.14)). The complementary solution depends on the initial
conditions. The particular solution depends on the forces of excitation only (does not
depend on initial conditions).

48



The total (general) solution is related to vibrations with the undamped natural
frequency w, . The coefficients q., g, may be found from a comparison of q(t), EQ.

(2.14), and its first derivatives ¢(t) at the time-point t=0, with the initial conditions
q0)=q,, ¢(0)=gq,, i.e. from the set of equations

O] @

The exemplary solutions if the mass is initially at rest in the equilibrium position of the
system (i.e., q(0)=0 and g(0)=0) attime t>0 is

i (sin wt——sm ,t) (2.16)

q(t)_? 2/ 2 o,

This solution can be seen in Fig. 2.4

q(0)

0.002}

0.001}

—0.001

—0.002}

Fig. 2.4 Exemplary solutions for an undamped single-degree-of-freedom system
excited in forced vibration by harmonic force acting on mass,
F,=10kN, k=10°N/m, w=12rad/s, ,=2rad/s

In reality, the situation is different because of damping, which is always present in a
physical system. Due to its effects, the vibration at natural frequency «, fades

gradually. With its fading, the condition of equilibrium is fulfilled, and only a steady-
state vibration at forcing frequency @ remains:

q(t) —%;sin wt (2.17)

ghas

This vibration exists as long as the force F(t) is applied to the system.
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2.4.3.2. Force Transmission to Foundation

Transmissibility v; is defined as the measure of the ability of a system either to
amplify or to suppress an input vibration, equal to the ratio of the response amplitude
of the system in steady-state forced vibration to the excitation amplitude; the ratio may
be in forces, displacements, velocities, or accelerations. [1, 2]

In the analyzed case (when the spring is the only element connecting the mass to
the foundation), the force transmitted to the foundation is directly proportional to the
spring deflection F; =F,  =kq.

Substituting q(t) from Eq. (2.17) one can achieve

F, amF 1 1
Ll IE N U n=-2 (2.18)
F amF 1-0°/0? 1-7 o,

VT=

En exemplary response factor curve (transmissibility v; ) of an undamped single-

degree-of-freedom system excited in forced vibration by a harmonic force acting on
mass can be seen in Fig. 2.5a.

a) b)
yr Z(F

10

Fig. 2.5 Undamped single-degree-of-freedom system excited in forced vibration by a
harmonic force acting on mass «, =2rad/s: @) transmissibility; b) absolute value

of transmissibility

Usually, the more convenient way of presenting the response factor is a curve of
absolute value of transmissibility |v;|. The response factor curve for |v;| is shown in

Fig. 2.5b.
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2.4.3.3. Resonant Vibrations

When a resonance occurs (@ =@, ), the expression Eq. (2.16) describing steady-state
vibration becomes indeterminate. In such a situation, a mathematical analysis of the

problem leads to a different solution. A detailed solution to the problem may be

found

in [6]. The accurate solution q(t) in this case has a mathematical form in which the

variable t is the multiplier of the harmonic component:

Fow F .
t) =——tcoswt ——2sin wt
90 =7 teosat =2 sina

(2.19)

According to the above solution, the amplitude of q(t) increases linearly in time,

reaching an infinitely great value only after an infinitely great time (see Fig. 2.6).

q(t)

1.0

0.5¢

0.5+

-1.0

Fig. 2.6 Resonant vibration of an undamped single-degree-of-freedom system excited

in forced vibration by a harmonic force acting on mass,
F,=10kN, k=10°N/m, o=, =12rad/s

2.4.3.4. Response to Harmonic Motion of Foundation

Let us consider the case of forced vibration excited by a continuing harmonic motion

of the foundation (Fig. 2.7).
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lQ(t), q(t), q(t) %

k k (g-u)

u(t)

Fig. 2.7 Undamped single-degree-of-freedom system excited in forced vibration by
motion of foundation

The differential equation of motion for the system, Fig. 2.7, excited by a continuing
motion u(t) =u,sinwt of the foundation, with accordance to Egs. (1.67) and (2.5), is

| mg+k(q-u,sinet)=0] (2.20)
The solution of this equation is
q(t)=qs sinw,t+ 0. COSa)nt+%Sinwt (2.21)
l1-w /a)n

where @, =./k/m and the coefficients q; and q. are determined by the velocity and

displacement of the mass, respectively, at time t=0. Although it does not result from
the formula in Eq. (2.21), when damping occurs the general integral eventually fades
entirely. As has been stated in the previous chapter, only the particular integral, i.e. the
steady-state vibration, remains. Hence, the ratio of amplitudes is defined in the
following terms:

amgq _ _ 1
amu 1-0*/ o}

n

(2.22)

From a comparison between Eq. (2.22) and Eq. (2.18) it follows that in forced
vibration of an undamped SDOF system, the force transmissibility, and the motion
transmissibility are the same.

An exemplary response factor curve (transmissibility v; ) of an undamped single-
degree-of-freedom system excited in forced vibration by motion of foundation can be
seen in Fig. 2.5a, and the response factor curve for absolute value of transmissibility
[vr| - in Fig. 2.5b.
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2.5. Damped Systems

As has already been noted, in reality every physical system undergoing motion
contains frictional forces, otherwise referred to as damping forces. These forces are
responsible for the loss of energy from the system — the energy is mostly transformed
into heat. As the mechanism of this transformation has not yet been fully accounted
for, an analysis of dynamic systems requires a number of assumptions to be made on
the basis of practical experience.

2.5.1. Viscously Damped System

The simplest way to take into account the damping forces in dynamic analysis is to
assume that these forces are proportional to the magnitude of the velocity, and opposite
in direction to the direction of motion. This type of damping is known as viscous
damping. The assumption of viscous damping is not always realistic, but it is made
often nonetheless for two reasons. Firstly, in civil engineering structures damping is
usually very low, and so the kind of damping assumed is of no great importance.
Secondly, the mathematical analysis of a system with this kind of damping is relatively
simple.

In Fig. 2.9 one can see a single degree-of-freedom system with a mass m, a spring
with stiffness k, and a viscous damper with damping coefficient c.

m

kIC kg 7' cq

Fig. 2.8 Single-degree-of-freedom system with a viscous damper
2.5.2. Homogeneous Equation of Motion and its Solution

The differential equation of motion of mass m, corresponding to Eq. (1.111) is

mG+cq+kq=0| (2.23)

The solution of the above equation can also be written in the analytical form. The
first step to achieve the analytical solution is to put into the Eq. (2.23)

q=e" (2.24)

53



The characteristic equation obtained from Eq. (2.23) is

mA% +cA+k=0

(2.25)

There are two roots of this equation 1=-aw, +iw, and A =-awm, —iw,, where

_ 2
wy =oNl-a® <o,

is the natural angular frequency of damped vibration — damping frequency.

The period of damped vibration is given by

T, =2_7r 21 T

=] =] n >
@y a)n\/l—az \/1—0:2

Tn

and the damping ratio (fraction of critical damping) « is defined by

C C
o=—=

C, 2+km

where the critical damping coefficient c,, = 2vkm =2maw, .
Now, Eq. (2.23) can be written in the commonly used form

4+ 2am, 4+ o’ q=0

and its general integral (solution) has the form

q(t) =e“"(qs sin w, t + g, oS, t)
S d © d

where ¢, q. are the constants of integration.

2.5.3. Free Vibration with Viscous Damping

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Free vibration occurs when a state of static equilibrium is disturbed, i.e. initial non-
zero conditions are introduced into the system and there are no external excitation
forces acting on the system, Fig. 2.8. This is a physical phenomenon described by the
solution Eq. (2.30) with two initial conditions, q(0)=q,, §(0)=¢, which determine

constants of integration, i.e.

q(0)=qc =q, - qczqf

q(O) =y qs _aa)nqo = qo - qS =_q0 +
Wy

l-a

2

Finally the solution has the form
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qt) =e™'| q, coswdt+msin ot |=
@y

e cos(awyt—p) L et sinwyt | (2.32)

cos B °

@, Cosf

where sin f=a and cos 3 =+1—a? . Exemplary solution can be seen in Fig. 2.9.

q(2)

()

——
——
I
>

>

>

D

D

D

Fig. 2.9 Free vibration response for a damped system.

2.5.3.1. Underdamped System ( « <1) — Less-Than-Critical Damping

In a situation when the damping of the system is less than critical « <1, a general
solution of Eq. (2.23) has the form of Eq. (2.30).

2.5.3.2. Critically Damped System ( « =1) — Critical Damping

In a situation when ¢ =c_, there is no vibration and the solution of Eq. (2.23) is

qt) =e™'(q, +q, t)

(2.33)

2.5.3.3. Overdamped System ( « >1) — Greater-Than-Critical Damping

In a situation when the damping of the system is greater than critical «>1, a
total integral of Eq. (2.23) has the form

q(t) — e—awnt(qset(on\/z + qce—twn\/ﬁ )

(2.34)
In such a situation, the motion is non-oscillatory, Fig. 2.10.
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ql(t)

Fig. 2.10 Free vibration response with critical damping.

This means that an overdamped system disturbed from its equilibrium position by
introducing initial conditions does not perform vibration (at most, it will pass through
the equilibrium position only once) and returns to the equilibrium position in a non-
oscillatory way. The overdamped system’s response is comparable to the response of a
critically damped system, but the process of returning to the equilibrium state takes
longer. The time required is proportional to the magnitude of the damping.

2.5.3.4. Logarithmic Decrement

A different way to determine the damping in a system is to specify the so called
logarithmic decrement of damping. When « <1, the degree of damping may be

defined in terms of two peak values of a free oscillation curve, Fig. 2.9, which can be
derived either theoretically Eq. (2.31) or experimentally (record of the oscillatory
motion). Let us consider any two maxima (i.e. value of q(t) when dg/dt=0)
separated by n cycles of oscillation i.e. q(t+nT,)=e“""q(t). Then the natural
logarithm of the ratio of these maxima is

1 q(t) 27
=—Ih—————=an,T, = 2.35
n q(t+nT,) Mo (2.35)
where n is an integer number greater than or equalto 1 ( n>1).
From Eq. (2.35) one can find that
G (2.36)
Nar? + 92

For small values of « (less than about 0.1) the logarithmic decrement 9<<2r,

and an approximate relation between the damping ratio (fraction of critical damping)
and the logarithmic decrement is

(2.37)
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2.5.4. Forced Vibration with Viscous Damping
2.5.4.1. Response to Harmonic Load

Fig. 2.11 shows the case of a harmonic force applied to the damped mass oscillator

F (1) F (1)

m

k J-c 4\@! /%Cq

lQ(t), g(t), d() 3

Fig. 2.11 Single-degree-of-freedom system with viscous damping, excited by a
harmonic force acting on a mass

where
| F(t) = F sin @t + F; cosawt = F, sin(awt +(p)| (2.38)
F,=amF(t)=yF2+F2, g=arctg(F./F;) (2.39)

The differential equation of motion of a single-degree-of-freedom system with viscous
damping excited by a harmonic force has the form

mG+cq+kqg=Fsinot+ FCCOSa)t| (2.40)

or

2
G+ Zaa)nq+a)§q:%(Fs sin ot + F; cos at) (2.41)

The total solution of Eq. (2.40) or Eq. (2.41) with harmonic force vector defined
by Eg. (2.38) consist of the complementary solution and the particular solution. The
complementary solution is defined by the Eq. (2.30) for the underdamped case. The
particular solution of the Eg. (2.40) or Eq. (2.41) can also be found in a harmonic form

|q(t)=qs sinwt + ¢ coswt =q, sin(a)t+go)| (2.42)

Substituting Eq. (2.42) into Eq. (2.40) one can achieve a set of algebraic equations

@*— ). —2aw. 0. = F.o?/k
(w0, )ds ) n2 Oc S ”2/ (2.43)
200,00 + (0 - @°)qe = Feaf [k
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By defining the frequency ratio

(@44

Egs. (2.43) can be written down as

1-1%)qs -2 =F /k
(1-n")as a277QC s/ (2.45)
2ands +(1-1°)dc = F. /K
The solution of the Eq. (2.45) is
=hF +h,F,
qS hl S| 2 (246)
dc = hFe —h,F,
where
1 1-5»° 1 2an
= h,=— 2.47
"= (1-7°)* + (2an)’ ©k @-7°)? +(2an)? (247

The particular solution of Eq. (2.40) which is the steady-state response of the system,
Fig. 2.10, can be finally written in form

q(t) :%FS sin(et — ) +V?ch cos(wt — ) (2.48)
and
F
amq:VTd,/FS +Fo =V =va g (2.49)

where the ratio of a steady-state amplitude of q(t) to the static deflection ¢ is
defined as the dynamic magnification factor described by formula

am 1 2
Vg = q_ and w =arctan sz (2.50)

G -7+ Qan) -

By combining the complementary solution, or transient response, from Eq. (2.30)
with the particular solution, or steady-state response, from Eq. (2.48), the total solution
of Eq. (2.40) or Eq. (2.41) can be arrived at:

q(t) = e (s Sin @, t + g COS o, 1) +V7d F sin(et —y) +V?d F. cos(et—y)| (2.51)

It must be noted that the constants of integration g; and g, should be calculated from

the initial conditions with the use of the total response given by Eq. (2.51) and not
from just the transient component of response given in Eq. (2.30). As the exponential

factor e " will always be present in a damped system, the transient component of
response disappears, and only the steady-state motion given by Eq. (2.48) remains.
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From Egs. (2.48) it is seen that the steady-state response of the system is a time
history of the force with phase delay. The variation of the steady-state displacement
amq/q, (dynamic amplification factor v, ) as a function of the frequency ratio 7

and the damping ratio « is shown in Fig. 2.12.
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Fig. 2.12 Dynamic magnification factor v, as a function of frequency ratio for various
amounts of damping

Analogically to the magnification factor, the phase angle delay y , given by Eq. (2.51)
and shown in Fig. 2.13, varies with the frequency ratio 7 and the damping ratio « .
When 7 <1, it is the case of high tuning, i.e. structure parameters cause a greater value

of natural frequency which remains greater than the frequency of excitation; when
n>1, itis the case of low tuning, i.e. structure parameters cause the opposite situation.

high

tuning

=001

=1

a=0.2

0.0 0.5 1.0 1.5 2.0

Fig. 2.13 Phase angle delay i as a function of frequency ratio for various damping
values
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It can be noted in Fig. 2.12 that the peak amplitude occurs at the frequency ratio

n=v1-2a’ <1 (2.52)

and the exact maximum value of dynamic amplification factor v, is (valid for « <1)

1

Vimax = ———
" 204/1- a*

For a lightly damped system « <<1, the peak amplitude occurs at a frequency ratio
very close to 7 =1 (resonance). In practice, then, the maximum value of the dynamic

amplification factor v, ., may be assumed to occur at resonance, which means that
the dynamic magnification factor has the maximum value

(2.53)

Vd e ~ ]/r =— (254)

It can be also seen from Eq. (2.54) that at the resonance (7 =1) the dynamic
magnification factor is inversely proportional to the damping ratio.

From Eq. (2.50) it follows that for undamped systems (« = 0) the amplification factor
takes the form

1
-7’

Ve = (2.55)

From the expression in Eq. (2.55) it follows that the maximum value of the
amplification factor for an undamped system is equal to infinity, (Fig. 2.5).
Velocity and acceleration response can be achieved by differentiating Eq. (2.48)

G(t) = wvrd F, cos(at — ) — wv?d F. sin(et — )
(2.56)
= a)VT“ Fs sin(wt —0) + a)VT" F. cos(wt —6)

where angle

9=V/+% (2.57)

is the phase shift between the velocity and the exciting force. From the comparison of
formulas Eq. (2.56) and Eq. (2.48), one can notice that the velocity and the
displacement are /2 out of phase from each other.

The amplitude of the velocity is

. F F
amg=wamq=nv,——=V,—— 2.58
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where a velocity response factor is described by formula

v, = U (2.59)
J@-7%)? +(2an)?

The velocity response factor is shown in Fig. 2.14.
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Fig. 2.14 The velocity response factor v, as a function of frequency ratio for various
amounts of damping

The acceleration response is obtained by differentiating Eq. (2.56)

§(t) = —? V?d F, sin(ot —y) - o’ V?dFC cos(wt —y) =
(2.60)

= w?® Vrd Fs sin(awt - g) + ®* V?d F. cos(awt - p)

where angle

esn

is the phase shift between the velocity and the exciting force. It is interesting to note
that from the comparison of formulas Eg. (2.50), Eq. (2.56) and Eq. (2.48), the
acceleration and the displacement are 7 out of phase from each other, and that the

velocity and the acceleration as well as the velocity and the displacement are /2 out
of phase from each other. The amplitude of the acceleration is
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am § = o’ amq:nzvdi:vai (2.62)
m m

where an acceleration response factor is described by formula

v, = i (2:63)
V=7")? +Q2an)

The acceleration response factor is shown in Fig. 2.15.
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Fig. 2.15 The acceleration response factor v, as a function of frequency ratio for
various amounts of damping

The graphs drawn for displacement (Fig. 2.12), velocity (Fig. 2.14) and acceleration
(Fig. 2.15) differ distinctly.
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Conclusions:

The damping ratio has a very large influence on the amplitude and
phase angle delay in the frequency region near resonance when
n=olo,~1.

The maximum magnification factor occurs for = w/w, ~1<1.
When the damping is small, & <<1, the amplitude and the phase are
almost independent of « . The damping and inertia forces are then
very small, so that the exciting force is almost equal in value to the
spring force. The spring force and inertia force are almost balanced
(are counterbalanced).

When 7 =w/w, ~1 the damping force and the exciting force are

almost equal. The spring force and the inertia force are almost
balanced.
When the frequency ratio 7 =w/w, >>1, the phase angle y

approaches = . The exciting force then almost equals the inertia
force.

The amplitude approaches the static displacement when
n=w/w, ~0<<1.

The amplitude of displacement becomes small when 7 = /@, >>1.
The phase angle is very sensitive to the ratio = ®/w, in the region
of near-resonance for small damping.

When 7 = o/o, =+/1-2a? , then the dynamic amplification factor

reaches a maximum vy ... = ]/Zawll—az ;

The amplitude of resonance is found to be am g = %
o

The velocity response factor approaches zero (v, =0) as
n=o/w,=0 or n=0/o, >o.

The acceleration response factor approaches zero (v, =0) as
n = w/w, =0 and approaches unity (v, =1) as 7 =w/w, > ».
The displacement and the velocity are /2 out of phase.

The velocity and the acceleration and are /2 out of phase.

The displacement and the acceleration are 7 out of phase.
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2.5.4.2. Force Transmission to Foundation

The force transmitted to the foundation of the system is

|Fr =F, +F, =cq+kq|

(2.64)

Substituting Eq. (2.48) and Eq. (2.56) into Eq. (2.64) yields the steady-state solution

Fr =v, (F. +2anFs)cos(at —y) + v, (Fs —2anvi; ) sin(et —y) =
=v, 41+ (2an)?’F,sin(wt —y +¢) = v, F, sin(ot - Q) =

=am F; sin(at — Q)

(2.65)

in which the transmissibility v; defined as the ratio between the amplitude of the force
transmitted to the foundation and the amplitude of the applied force (see Fig. 2.16) is

vy =

2
an|1:FT T oy =J 1+ (2an)

S 1-7n*)? +(2an)?

where

F. + 2anF,

¢ =arctan
F, —2amf,

(2.66)

(2.67)

(2.68)

Since the displacement and the velocity are z/2 out of phase from each other, the
forces Fy =cq and F,=kq are also z/2 out of phase from each other, and the
magnitude of the transmitted force can be achieved from

am F; =\/(c amq)® + (k amq)?

(2.69)

By substituting Eq. (2.49) and Eqg. (2.58) into Eq. (2.69) one can obtain the same
formula which would follow from Eq. (2.66), that is

am F; =vyy/1+(2an)’F, = v, F,

(2.70)
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a=01

=02

a=03

Fig. 2.16 The transmissibility v, as a function of frequency ratio for various amounts
of damping

2.5.4.3. Resonance Frequencies

For an SDOF system undergoing harmonic excitation, displacement, velocity, and
acceleration have three different resonance frequencies (points where they reach their
maxima) which can be expressed in terms of their relation to the undamped natural

frequency o, .

Conclusions:

For an SDOF system undergoing harmonic excitation, displacement, velocity,
and acceleration have three different resonance frequencies

o Displacement resonance frequency: o, \1-2a*

¢ Velocity resonance frequency: @,
e Acceleration resonance frequency: @, / Vi1-2a?

It can be seen that these frequencies differ only slightly. Because of this, especially for
the small degree of damping which is characteristic of civil engineering structures,
these frequencies may in practice be assumed to be the same, and equal to the natural

frequency.
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2.5.4.4. Vibration Due to a Rotating Eccentric Weight
(Inertial Excitation)

In the mass-spring-damper system shown in Fig. 2.17, an unbalanced mass m,,
rotating with the angular frequency w, is fixed to the mass m in a way that allows for
rotating movement only. The mass m, follows a circular path of radius e (eccentricity
radius) with respect to the pivot.

q(t), a(t), a(t)

Fig. 2.17 Single DOF system with viscous damper, excited by rotating eccentric
weight.

The centrifugal force acting on the mass is described by formula

F,=M,0’ =mew’ (2.71)

where
3, =me (2.72)

is the moment of unbalance. It must be underlined that the amplitude of the exciting
force is proportional to the square of the angular velocity (frequency). The projection
of the centrifugal force onto the direction of oscillation is

F(t) = F, coswt = m,ew? cos wt (2.73)

This force ought to be substituted with the right side of Eq. (2.40) and the equation of
motion can be written in form

mG+cq+kq=mew’cosat (2.74)
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Now, with accordance to Eq. (2.49), one can achieve

amg= 5_
g=vy K =Vy

K =1nVy

r

m

2
m.e® 2, Mee

(2.75)

The magnitude of the force transmitted to the foundation, in accordance with Eq. (2.71)

am F; =v, 41+ (2an)’F, =n’v; mewo?

(2.76)

It can be seen that the dynamic magnification factor, Fig. 2.18, and the transmissibility,
Fig. 2.19, are now described by new formulas, respectively

2

n

V. =

r =N Ve =
Yt + @any?

1+ (2an)?

V, — ZV — 2
T A ) + an)?

2.77)

(2.78)

Vr

hn
T

-2
T

a=0.1

_— a=0.2

— a=0.3

2

Fig. 2.18 Dynamic magnification factor v, as a function of frequency ratio for various
amounts of damping
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Fig. 2.19 The transmissibility v; as a function of frequency ratio for various amounts

of damping

2.5.4.5. Kinematically Forced Vibration

There are many cases where the foundation or support of a structure undergoes motion
which varies in time. The movement of the foundations may have to be considered in
the analysis of the dynamic response of structures subjected to ground motion by
seismic (earthquakes) or paraseismic excitation (mining tremors, the dynamic action of
machines). A single-degree-of-freedom system with a viscous damper, excited in

forced vibration by foundation motion u(t), is shown in Fig. 2.20.

q@®+u()

F ()

\ﬂ/ F(t)

m(G+0)

-

i u(t)

Fig. 2.20 Single-degree-of-freedom system with viscous damper, excited in forced
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The motion of mass m is described by a sum of the foundation motion u(t) and the
relative motion q(t) between the mass m and the support, i.e.

z(t) =u(t) +q(t) (2.79)

The equation of motion, then, can be written in form

ml+g)+cq+kg=0 (2.80)

or in a more common way

mg+cq+kq=-mi (2.81)

The factor on the right side of Eq. (2.81) has the same function as the excitation force
in Eq. (2.40). If the function u(t) is known, the right side of Eq. (2.81) is definite, then

for some types of this function (especially if it is harmonic) this equation can be solved
analytically. Let us assume that u(t) is a harmonic function

e

After two times differentiation of the function in Eq. (2.82), it can be substituted to Eq.
(2.81), and one can achieve

m@ +cq+k g =me *u, sin ot (2.83)

As has been stated earlier, the right hand side of the Eq. (2.83) may be interpreted as a
force (equivalent acting force). The acting force can therefore be written in form

e

where

F, = mu,o® (2.85)

The amplitude of the exciting force is then again proportional to the square of the
angular velocity (frequency), like in the case of the eccentric rotating mass — see Eq.
(2.71).

Now, with accordance to Egs. (2.49) and (2.75), one can achieve

g(t) =amqsin(wt —y) (2.86)
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where

2

F mu
aquvd?"zvd ;w =n°v4U, =V, U, (2.87)

The magnitude of the force transmitted to the foundation, in accordance with Eq. (2.71)

am FT =Vd’,1+ (20(77)2 FO =V 7]2k u, =V{ kU0 (2.88)

It can be seen that the dynamic magnification factor and transmissibility (Egs. (2.87)
and (2.88)) are now described by the same formulas as in the case of the eccentric
rotating mass — see Eq. (2.77) and (2.78), respectively.

The total displacement of the mass m is

|z(t) =u(t) +q(t) =u, sinat + v, u, sin(at —y) | (2.89)

The amplitude of displacement of mass m is

am z(t) = u, 1+ v? +2v, cosy (2.90)

Since

CoSy = (2.91)

1
T (1—’72)Vd
J1+tan®y

using definition of v, Eq. (2.50), the final formula, of the total displacement of the
mass m is

am z(t) = v44/1+ (2an)?u, = v, U, (2.92)

It ought to be underlined that exactly the same function describes the
transmissibility of motion (from the foundation to the structure, Eq. (2.92)), and of
force (from the structure to the foundation, Eq. (2.66)).

It is interesting to note that, if @ >> w, , v, =n*vy -1, w =7z, v; =0, and then

| at)=-u,sinet=-u@®)| and | z(t)=u(®)+q(t) = 0| (2.93)

The mass remains at rest in an external inertial frame of reference (x, y) (the observer is
situated neither in the system nor on the ground, but is outside of the system), and its
relative movement in a non-inertial frame of reference is connected with the ground
which moves with accordance to the z(t) function. The relative motion of the mass
reflects in antiphase (q(t) = —u(t) ) the kinematic excitation caused by the movement of
the ground.
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Conclusions:

In case of inertial and kinematical excitation:
The amplitudes of displacement and force transmitted to the
foundation are described now by new functions:
o dynamic magnification factor v, = v, instead the v,
o transmissibility v; =n%v; instead the v;
The important features distinguish these new functions with
comparison to the first ones:
o if n=w/w, >0 the values of functions approach zero
(v, = 0) instead approaching a limit one (v, —>1)
o if n=w/w, > o the value of the v, approaches a limit one
(v, > 1) instead approaching zero (v, — 0)
o if n=w/w, >~ also v; approaches infinity (v; - )
asymptotically to the line 2a7 ;

= for low tuning the response of the system can be greater
than in the resonance (see Fig. 2.19)
= for greater values of damping ratio « the values of the

transmissibility v; grow faster

The damping ratio still has a very large influence on the amplitude and
phase angle delay in the frequency region near resonance when
n=olo,~1.

The phase angle is very sensitive to the ratio 7=/, in the region

of near-resonance for small damping.
The maximum magnification factor occurs now for 7 = @/, — «.

For kinematically forced vibration
When the frequency ratio 7 =w/w®,>>1, dynamic magnification
factor v, =n’v, —>1, the transmissibility v; —0 the phase angle
delay w approaches = .
0 The mass remains at rest in an external inertial frame of
reference | z(t) =u(t) +q(t) = 0|
0 The relative motion of the mass reflects in antiphase the
kinematic excitation caused by the movement of the
ground | q(t) =-u,sinwt =-u(t)|
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2.5.5. Evaluation of Equivalent Viscous Damping

In structures subject to significant or strong vibration, such as the ones excited by
earthquakes or strong winds, special devices are usually installed to introduce viscous
damping into the system. In standard structures such devices are not used. Even so,
additional damping is assumed to occur in such structures as well, as it allows the
differential equation of motion to remain linear for damped dynamic systems vibrating
in the elastic range. The damping assumed is referred to as equivalent viscous
damping, and the numerical value of its coefficient is usually calculated on the basis of
experimental measurements using a harmonic force test. A different way to determine
the damping in a system is to specify the so called logarithmic decrement of damping
in a free oscillation test.

2.5.5.1. Logarithmic Decrement

The definition of the logarithmic decrement has been presented in Chapter 2.5.3.4.
Another way to establish the logarithmic decrement involves calculating the ratio of
two consecutive peak accelerations on a free oscillation (acceleration) curve. As it is
far easier to experimentally measure accelerations than displacements, this
modification is of great practical importance. The Eq. (2.31) can be in form

q(t) = Ce ™" cos(wyt - 7) (2.94)
where constant C is
. 2
C :\/qf + (qo +q02aa)n) (295)
@y
tan y = Jo * 9% (2.96)
qoa)d

Differentiating Eq. (2.94) two times leads to formula

G(t) = Ce *"{[-am, cos(awyt — y) — o, sin(w, t — ¥)](~aw,) + (2.97)
+[aw, o, sin(o,t - y) — o cos(w,t — 7)1} '
Attime t, when cos(w,t, —y) =1 and sin(e,t, —y)=0
Gi(t,) = Ce " (@0} — w?) (2.98)

and at time t, =t, + T, , corresponding to a period later, when again cos(aw,t, —y) =1
and sin(wyt, —»)=0,

G(t,) = Ce @) (o w? — w?) (2.99)
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The ratio of acceleration at time t; and t, is then

= geenTs (2.100)

After taking the natural logarithmic of the ratio Eq. (2.100), the result is the
logarithmic decrement in terms of the acceleration

——=am,T, (2.101)

which is identical to the expression for the logarithmic decrement given by Eq. (2.35)
in terms of displacement. From Eqg. (2.35) or Eqg. (2.101) the result Eq. (2.37)
describing equivalent viscous damping ratio is

Uy =— (2.102)

2.5.5.2. Evaluation of Damping at Resonance

It can be seen in Chapter 2.5.3 that, thanks to the free-vibration decay curve for SDOF
systems and to the use of Egs. (2.100) or (2.35), the damping can be evaluated by
calculating the logarithmic decrement. A different way to calculate damping is to apply
steady-state harmonic response in a range of frequencies in the neighborhood of
resonance. It is enough to plot a frequency response curve for harmonic excitation in
this range of frequencies, Fig. 2.21.

I

Fig. 2.21 Experimental frequency response curve for damped system in the
neighborhood of resonance
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It is seen from Eq. (2.55) that the damping ratio is given by

1
a=— (2.103)

where v, =v,(n =1) is the dynamic magnification factor evaluated at resonance.

In practice, the equivalent damping ratio «,, is determined from the dynamic
magnification factor evaluated by measuring the static displacement q, and the
maximum amplitude qg,, =max(amq) during the harmonic excitation of the structure
with the resonant frequency and by measuring

v =dn (2.104)
st
Then, the equivalent damping ratio «,, is
oF
Oy =—— 2.105
"= (2.105)

In ordinary structures, the error involved in evaluating the equivalent damping ratio

a,, Using the approximate Eg. (2.104) is not significant. Calculating the static

displacement necessary in the formula in Eq. (2.105) may present a considerable
problem, however. This is due to the fact that it is sometimes difficult to apply a force
of proper value to the structure in the required place and direction.

2.5.5.3. Hysteresis

The most common method of evaluating equivalent viscous damping is to equate the
energy dissipated in the period of vibration of the actual structure to the energy
dissipated in an equivalent viscous system.

When the viscous damped SDOF system shown in Fig. 2.11 undergoes steady-
state forced vibration defined by Eq. (2.42), where ¢ =0, the equation takes the form

q(t) =q,sin ot (2.106)

The resultant force of the spring and damper acting on the mass, in accordance with the
Eq. (2.64), is

|FT =c( + kq = can, cos wt + kg, sin wt (2.107)

Equations (2.107) and (2.106) define the relation between F, and q; this relation is
the ellipse shown in Fig. 2.22.
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Fig. 2.22 Hysteresis curve for a spring and viscous damper in parallel

The maximum potential strain energy E, stored at maximum displacement q,,, if
the system is elastic, is given by the triangular area under the segment of the line of
displacement from zero to the point of maximum displacement, marked in Fig. 2.22.

The area enclosed in the loop (the ellipse, in the given case) during one cycle of
vibration is equal to the energy dissipated in one cycle of harmonic oscillations E, .
The energy dissipated by the damper is known as hysteresis loss. This energy can be
calculated as a work of force F; on displacement g, according to the formula

T+27/0 dx
E,=W= [ F Edt =rCoq’ =4mnaE, (2.108)
T

From Eq. (2.108), the damping ratio is

a=——=t (2.109)

Consequently, the equivalent damping ratio could be obtained in the same way

1 E,
Oy =——= (2.110)
4zn E,

where
E, is the energy dissipated during a cycle of vibration, i.e. the area enclosed in the
loop of hysteresis achieved experimentally during one cycle of vibration;
E’; is the potential strain energy, with 7 =1 (resonant frequency), obtained from

experimentally achieved resisting force-displacement plot, i.e. the triangular area
under the segment of the line of displacement from zero to the point of
maximum displacement q, .
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2.5.5.4. Bandwidth (Half-Power) Method

The bandwidth is the difference between two frequencies corresponding to the same
response amplitude. The bandwidth is related to the damping in the system. In the
evaluation of damping, it is convenient to measure the bandwidth at the points where
the frequency-amplitude curve obtained experimentally for a damped structure reaches

1,/\/5 of its maximum (peak) value, Fig 2.23.

am

m

gm
5
V2

A

Fig. 2.23 Experimental amplitude-frequency curve

The points A and B corresponding to the frequencies f, and f, are called half-power

points. In this case, then, the bandwidth is the distance between these points, i.e.
Af = f, — f,. The value of frequencies for this bandwidth can also be determined by

comparing the response amplitude from Eq. (2.50)

amq= O (2.111)
V= 7*)* + (2an)*
with the 1,/\/5 part of the maximal amplitude
g, = max(am qg) = g—“ (2.112)
a

achieved from Eq. (2.111) for the resonant frequency (7 =1). From the comparison,
one can achieve the equation

qst 1 qst
=—— 2.113
Ja-7) + @an)? N2 2 -
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Following M. Paz and W. Leigh [2], the next mathematical operations are done as
follows: “Squaring both sides and solving for the frequency ratio results in

n? =1-2a% + 2a1+ a? (2.114)

or by neglecting o in the square root term

nt=1-2a°-2a
n? =1-2a*+2a

2.115
n =l-a-ao’ ( )

7, 21l+a—a’

Finally, the damping ratio is given approximately by half the difference between these
half-power frequency ratios, namely

lo,-o f,—1
Ay, = = 2.116
2 o, f,+ f, ( )
since
lo,—o, _f-f and zf2+fl ” (2.117)
2 o, 2f, ! 2 | '
Finally, the equivalent damping ratio can be calculated from formula
fz — fl
Aoy = 2.118
AT (2.118)

2.5.5.5. Structural Damping

From the Eq. (2.108) it follows that hysteresis loss (the energy lost from a system due
to damping) is proportional to the forcing frequency @ . On the other hand,
experimental research of real civil engineering structures reveals that, in most cases,
the hysteresis loss is independent of forcing frequency. To provide a better model for
the damping experienced during vibration of such structures, an arbitrary term

@9

is introduced. This term, referred to as structural damping, means that the damping
force is equal to the viscous damping force at some frequency, depending upon the
value of damping coefficient y, but does not vary with forcing frequency. The viscous

damping coefficient calculated from Eq. (2.119) has the value

c=Lk=xk (2.120)

@y,
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The dimensional parameter « is the retardation time of viscoelastic solid material
of Voigt-Kelvin rheological model, in which the damping effect is an inherent property
of the spring material and the spring is considered to have a damper acting in parallel
with it, see Fig. 2.24.

From Eg. (2.120) it follows that the damping coefficient is proportional to stiffness
of the spring. After substitution of Eq. (2.120) into Eq. (1.80) the absolute value of the
damping force can be now written in form

== «xkq=xF, (2.121)

and one can see, if stiffness coefficient is independent of time (k =k(t)), that the
damping force value is proportional to the velocity of elastic reaction. In this case, the

damping is a property of the system.
QV F ()

q()

Fig. 2.24. Voigt-Kelvin rheological model

The retardation time is equal to the time needed for the function to reach the value of
1-1/e ~ 0.63 of the reduced creep. It is convenient to assume that

2 2
k=L =22 0 (2.122)
o, o, (0]
and at the resonance the dynamic amplification factor, Egs. (2.50), (2.55) is
1 1
Vy =V, =—=— (2.123)
y 2«

In the case of structural damping, the set of two parametric equations describing the
hysteresis curve (ellipse) can be written as

q(t) =q, sin ot (2.124)

| F, =F, + F, =cq + kg =k(xq+ qg) =kq, (¥ cos et +sin a)t)| (2.125)
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This ellipse, which represents the relation of the damping force (transient force) F; to
the displacement q, is similar to the ellipse shown in Fig. 2.22. Therefore, the

damping coefficient may be calculated in the same way as the one presented in Chapter
2.5.5.3. The equivalent damping ratio is given by

e

The dependence of the equivalent damping ratio on the natural frequency value is
shown in Fig. 2.25.

Teq

A

> w,

Fig. 2.25 Dependence of equivalent damping ratio on the natural frequency value

2.5.5.6. Mass damping

In this model of damping it is assumed that the damping force is proportional to the
magnitude of the mass — or, to be more exact, to the momentum of the mass

227

c=um (2.128)

so the damping coefficient is

where g is the dimensional damping parameter. The equivalent damping ratio is given
by

U

Ay = c ___ M _
2 km 24km 20,

The viscous damping, then, represents an environmental damping by external forces
acting on the structure, for example the resistance of air, Fig. 2.26

(2.129)
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F(t)

q(t)

Fig. 2.26. Mass damping model

The dependence of equivalent damping ratio on the natural frequency value is shown
in Fig. 2.27.

eq

A

W,

Fig. 2.27 Dependence of equivalent damping ratio on the natural frequency value

The transient force is now equal to the spring force
F =F =kqg (2.130)
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2.5.5.7. Rayleigh Damping

The Rayleigh model is a combination of the structural and mass models of damping. In
this model it is assumed that the damping force is partly proportional to velocity of
elastic reaction and partly proportional to the momentum of the mass. Thus, the
damping coefficient is assumed to have the form

c=xk+um (2.131)

and the equivalent damping ratio is given by

G

a =
M2 20

(2.132)

n

The Rayleigh model takes into account both the viscous damping representing an
environmental damping by external forces acting on the structure (external damping),
and the damping due to the inherent properties of the material of the structure (internal
damping).

The dependence of the equivalent damping ratio on the natural frequency value for
the Rayleigh damping is shown in Fig. 2.28.

Qeq

A

» w,

Fig. 2.28 Dependence of equivalent damping ratio from the natural frequency value

The transient force is now equal to

129
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3.

Multi-Degree-of-Freedom System (MDOF)

In reality, structures are not built of separate mass points, but consist of a continuous
mass also called distributed mass. Such systems have an infinite number of degrees of
freedom. However, it is virtually impossible to find dynamical solutions to any but the
most simple of such systems. In general, it is necessary to discretize systems, i.e.
replace infinite-number-of-degrees-of-freedom systems with simplified models —
finite-number-of-degrees-of-freedom systems which are also called Multiple-Degree-
of-Freedom (MDOF) systems.

A model which contains a finite number of degrees of freedom is called a discrete
model. Discretization concerns the process of transferring continuous models and
equations into discrete ones. Discretization can be realized as a mathematical
approximation or as a granulation of masses. Discrete models can consist of clearly
distinguishable, separate masses, called lumped masses.

Lumped mass models are created from continuous structures by replacing the
distributed mass elements with a given number of lumped masses — the larger the
number of masses, the better the approximation to the real structure. Furthermore, the
masses (or lumped masses) may be interconnected by rigid elements; in such cases, the
whole group acts as one rigid body possessed of both mass and moment of inertia.
Mass points have translational degrees of freedom only, while the rigid bodies
additionally have rotational degrees of freedom. The number of masses that may be
used to represent a system is unlimited.

3.1. Degrees of Freedom (DOF)

Degrees of freedom are the ways in which the space configuration of a mechanical
system may change, i.e. the independent movements the system can possibly undergo.

Degrees of freedom are also independent displacements and/or rotations that
specify the orientation of the body or system.

3.2. Number of Degrees of Freedom

The number of degrees of freedom d of a mechanical system is equal to the minimum
number of independent coordinates required to define completely the position of all
parts of the system (configuration of a mechanical system) at any instant in time. In
general, it is equal to the number of possible independent displacements. The numbers
of degrees of freedom of a free (unconstrained) point and a free rigid body in space are
shown in Fig. 3.1. The number of degrees of freedom of a free point and a free rigid
body in a plane are shown in Fig. 3.2.

d=d, +d, (3.1)

where

d, —number of translational degrees of freedom
d, — number of rotational degrees of freedom
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3.3. Systems of Coordinates

In a dynamical analysis of MDOF systems three types of coordinates are used.

3.3.1. External Coordinates

The system of external coordinates is a fixed inertial set of reference axes (for instance
the Cartesian coordinate system x,,X,,X;, or X,y,z) useful for defining the
configuration of a dynamic structure in a static equilibrium state.

g i

Fig. 3.1 Degrees of freedom for a free point and a free rigid body in space

9;

%

Fig. 3.2 Degrees of freedom for a free point and a free rigid body in a plane

3.3.2. Local Coordinates

Local coordinates u; are dependent on time. They describe the movement of system

elements from the static equilibrium state. Usually, but not necessarily, they describe
the possible displacements of elements. Local coordinates are associated with: mass
centers of masses and rigid bodies, points in which the springs and dampers are
connected to the structure, points in which forces act on the structure and other points
whose displacements are important for the dynamic description of the structure. Local
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coordinates may be of a translational or a rotational type, see Fig. 3.3, Fig. 3.4,
Fig. 4.4, Fig. 4.5, and Fig. 4.6.

3.3.3. Generalized Coordinates

Generalized coordinates (Lagrange’s generalized coordinates vector q) are dependent
on time. They are a set of coordinates used to describe the configuration of a system
relative to some reference configuration. The expression "generalized" is a remnant of
a time when Cartesian coordinates were the standard. Generalized coordinates may be
of a translational or a rotational type, Fig. 3.3 — Fig. 3.6, Fig. 4.3, Fig. 4.4, and Fig. 4.5.

A restriction for choosing a set of generalized coordinates is that they have to
unequivocally define any possible configuration of the system relative to the reference
configuration. That is to say, with the use of those coordinates it must be possible to
determine all local movements of all elements of the whole system. The generalized
coordinates are chosen to be independent of one another. The number of independent
generalized coordinates n is defined by the number of degrees of freedom of the
system d . Usually, generalized coordinates are related to the mass centers’ position or
rigid bodies mass centers’ positions, but as a rule, they are related to points of
connections of masses or mass rigid bodies to the structure. In general, these points do
not have to be mass centers. The number of generalized coordinates is then equal to the
number of dynamic degrees of freedom (minimal base n=d ). Nevertheless, there are
some situations when it is more convenient to assume the number of generalized
coordinates to be greater than the number of dynamic degrees of freedom n>d . These
additional generalized coordinates are then usually related to the position of forces,
springs or dampers, which are connected to the structure in points not related to the
mass points, Fig. 3.3. There may also be other reasons to assume n>d .

a)

%/ F()

7
Y

b)

1 m, TC m,

Fig. 3.3. The additional generalized coordinates g, and g4 not related to the mass

Apart from practical reasons, all sets of generalized coordinates are equally good. The
physics of the system are independent of the choice made between those sets.
However, for practical reasons, some sets of coordinates are more useful than others —
some are more optimally adapted to the system, and will make the solution of its
equations of motion easier than others.
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3.4. Defining a System and its Excitation

In more complex and complicated MDOF systems it is easier to derive equations of
motion in terms of the energies of the system with the use of the Lagrangian equations.
This approach is realized with accordance to a special procedure whose algorithm
requires defining the system and its excitation in a specific way. This procedure is
shown below.

3.4.1. Structures with Spring Elements — Stiffness Matrix
3.4.1.1. Stiffness Matrix in Local Coordinates Base of Spring Elements

Let us assume that there are some springs in the system, whose stiffnesses k; are
assembled in a diagonal matrix

kb, 0 O
0 k, O

K}=diag(k, k, k = 2 .

{kK}=diag(k, k, k; ..) 0 0 Kk (3.2

The order of the elements in the diagonal matrix {k} corresponds to the order of local
coordinates u; in vector

u=[u u, u, ..J" (3.3)

The elements of the vector u are the changes in length of springs.

3.4.1.2. Transformation from Generalized to Local Coordinates

The linear transformation of the generalized coordinates to the local coordinates vector

u=AJq (3.4)

A, isthe transformation matrix whose elements depend on the configuration of

the structure only; the dimension of this transformation matrix is (number
of local coordinates of spring elements)x (number of generalized
coordinates)

3.4.1.3. Stiffness Matrix in Generalized Coordinates Base

The potential energy can be written in the form

1 1
E, =§Zj:k1u? =2 u'{khu (3.5)
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The potential energy in the generalized base of coordinates, after substitution of Eq.
(3.4) into formula Eq. (3.5), yields the expression

1 1
E, =§qTAl{k}Akq =§qTKq (3.6)

As it can be seen, the potential energy is given by the positive-definite quadratic form
of the Lagrange’s generalized coordinates ¢, where K is the stiffness matrix and q"
is the transposed vector q. Stiffness matrix K is non-singular, symmetric and
positive-definite, thus det K >0, and can be achieved from formula

K=A]-{k}-A, (3.7)

The flexibility matrix is inverse to stiffness matrix

@8)

Remark:

An (nxn) real symmetric matrix M is positive-definite if x'Mx >0 for all non-zero

vectors x with real entries (x € R"), where x" denotes the transpose of vector x. All
eigenvalues of positive-definite matrix M are positive. Positive-definite matrix M is
always invertible (nonsingular) thus detM > 0.

3.4.2. Structures with Mass Elements — Mass (Inertia) Matrix
3.4.2.1. Transformation from Generalized to Local Coordinates

For small vibration, the local coordinates are the linear transformation of the
generalized coordinate

u=A,q (3.9
where
u is the local coordinate of mass elements vector
u=[u u, u ..J (3.10)
and

A is the transformation matrix whose elements depend on the configuration of the

structure only; the dimension of this transformation matrix is (number of local
coordinates of mass elements) x (number of generalized coordinates n>d)
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3.4.2.2. Inertia Matrix in Local Coordinates Base of Mass Centers

If local coordinates can be assumed to be located in points which are the mass center of
every mass or rigid body, then the inertia matrix has the diagonal form

m 0 O
0 m 0
m}=diag(m, m, m, ..)= 2
{m} gm m, m; ..) 0 0 m, (3.11)

where m,; are the masses sensu stricto or mass moments of inertia i.e. m; :Jj,
arranged with accordance to the elements of vector u respectively, Eq. (3.10).

3.4.2.3. Inertia Matrix in Generalized Coordinates Base

The kinetic energy of the whole system can be expressed by

1 o 1. .
E, =52mjuf=§uT{m}u (3.12)
i

This formula is valid if the local coordinates are reduced to center points of masses and
the translational coordinates system is a Cartesian one (in Polish, orthocartesian).
Substituting Eq. (3.9) into Eq. (3.12) it is possible to write

E, = 4T ALMIALG = 7B (313)

and finally

B=Al -{m}-A,_ (3.14)

where B is the square and symmetric matrix of inertia in a generalized coordinate
base. In a minimal base of generalized coordinates n=d , matrix B is non-singular
and positive-definite, thus detB>0. If n>d, inertia matrix B is non-negatively

definite and singular (detB=0).

Illustrative Example 3.1

A local and generalized coordinates in a plane system is shown in Fig. 3.4. This is the
plane rigid body, which mass is m and polar mass moment of inertia about the axe
through the mass center point J, is given. The example shows haw to determine a

mass matrix B in the generalized coordinate base.
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Fig. 3.4 Local and generalized coordinates in a plane system (plane rigid body: mass
m and polar mass moment of inertia about the axe through the mass center point)

u=[u, u, uJ (3.15)
q :[Ch g, q3]T (3.16)
1 0 —Xxg
A,=10 1 vy, (3.17)
0 O 1
m 0 O
{m}=diag(m m Jy)=|/0 m O (3.18)
0 0 J,
m 0 —MX, m 0 -S,
B=Al-{m}A, = 0 m my, = 0 m S, || 319
-Mx, My, m(x3+y3)+Jo| |-S, S, Ja
where
S, =my, static moment of mass about the axis x
S, =mx, static moment of mass about the axis y

Ja=m(xg+y2)+Jg polar mass moment of inertia about the axis through the
dynamic center — point A

89



3.4.3. Structures with Damping Elements — Damping matrix

Rayleigh Dissipation Function describes the power of resistance forces, i.e. the work of
these forces in time, which occurs in systems performing small oscillations. These
forces are assumed to be proportional to velocities. The Rayleigh dissipation function,
also known as the dissipation function, is given by the positive-definite quadratic form
of the generalized velocities ¢

®=%qTCq (3.20)

where C is the square and symmetric damping matrix in the generalized coordinate

base.

In a general case, two kinds of damping can exist in civil engineering structures:
apparent (dampers) and non-apparent (structural damping). With accordance to this
classification, a damping matrix can be formulated as a sum of two damping matrices

ez

C, damping matrix achieved with the use of hypothesis of damping, which

represents the structural damping and the environment influence (Eq. 3.22)
C, damping matrix which represents the influence of the dampers (chapters

3.431103.4.3.3)

Usually, the damping matrix, by analogy to Eq. (2.128), is assumed to be
proportional to the mass matrix (mass damping) or, by analogy to Eq. (2.120), is
proportional to the stiffness matrix (structural damping)

e2)

It is best to assume that, by analogy to Eq. (2.132), the damping matrix is proportional
to both these matrices (Rayleigh damping)

@29

where finally C is the square and symmetric damping matrix in the generalized
coordinate base.

3.4.3.1. Transformation from Generalized to Local Coordinates

For small vibration, local coordinates are the linear transformation of the
generalized coordinates

u=Agq (3.24)
where
u is the local coordinate of mass elements vector
u=[u u, u ..J (3.25)
and
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A, isthe transformation matrix whose elements depend on the configuration of

the structure only; the dimension of this transformation matrix is (number
of local coordinates of damped elements)x (number of generalized
coordinates n>d)

3.4.3.2. Damping Matrix in Local Coordinates Base of Damped Elements

If local coordinates can be assumed to be located along damping elements, then the
damping matrix has the diagonal form

c, 0 O
0 c, O
c}=diag(c, ¢, ¢, ..)= 2
=il & & =g g o (3.26)
3.4.3.3. Damping Matrix in Generalized Coordinates Base
The Rayleigh dissipation function of the whole system can be expressed by
1 .2 1 -T .
@:EZCJ-UJ- =5 {cyul. (3.27)
j

where c; are the damping coefficients of dampers arranged with accordance to the

elements of vector u respectively, Eq. (3.26).
Substituting Eg. (3.24) into Eq. (3.27) it is possible to write

1. 1.
D=3 a4’ A{ctAq =5qTCq (3.28)

and finally

C,=Aj {c}-A, (3.29)

where C is the square and symmetric damping matrix in the generalized coordinate
base.

3.4.4. Excitation Forces

Work W is the transfer of energy that occurs when a force acts on a body, and is
calculated as a dot product of the vector of force F and displacement q (displacement
of the point the force is acting on). If a body is moving in such a way that the force has
a component in a direction perpendicular to the direction of the body’s motion, the
work of that component is equal to zero. In any situation, the work is given by the
linear form of the coordinates q

W=Fql (3.30)
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3.4.4.1. Transformation from Generalized to Local Coordinates

If local coordinates can be assumed to be located in the points the excitation forces act
on, these local coordinates are, for small vibration, the linear transformation of the
generalized coordinate

u=A;q (3.31)
where
u=[u u, u ..J' (3.32)
and
u is the local coordinates of forces vector

A; isthe transformation matrix whose elements depend on the configuration of
the structure only; the dimension of this transformation matrix is (number
of local coordinates of forces) x (number of generalized coordinates n>d )

3.4.4.2. Excitation Force Vector in Local Coordinates Base

The excitation forces vector, in local base of coordinates Eq. (3.32), has the form

P=[F, P, P ..T (3:33)

3.4.4.3. Excitation Force Vector in Generalized Coordinates Base

The virtual work of excitation forces on the displacements described by Eq. (3.32) can
be written as follows

W:ZPjszququAIpquF_ (3.34)
]

where

F=AP (3.35)

The work of the external forces F is the linear form of the generalized coordinates q .

3.5. Lagrangian Equations

As has been stated in Chapter 2.2, formulating a differential equation of motion for a
vibrating system by applying d’Alambert’s Principle may be complicated even for
SDOF systems. Therefore, in MDOF systems, which are usually more complex, it is
easier to derive these equations of motion in terms of the energies of the system with
the use of the Lagrangian equations
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oE
A OB 0D 5 MW i _45.n (3.36)
dt o¢; oJq; og; og;  Oq;

or in vector notation

%grad E,(q)-grad E,(q)+grad@ (q) + grad E,(q)=grad W(q) | (3.37)

where

E, total Kinetic energy of the system

E, total potential energy of the system

) Rayleigh Dissipation Function

W virtual work of external generalized forces (the portion of the forces not
related to the potential energy of the system (gravity and spring forces
appear in the potential energy expressions and are not included here)

q generalized coordinate (displacement)

q generalized coordinates vector

o velocity at generalized coordinate g

q generalized velocities vector

In the case of small vibration around the equilibrium point the kinetic energy in general
does not depend on generalized displacements g; . Then

oE
6_qk=O grad E, (q) =0 (3.38)

and the Lagrangian equations take the form

oF
OB SO BRSO (3.39)
dt ag, oq, og, o

or in vector notation

%grad E.(q)+grad (§)+grad E,(q) = grad W(q) (3.40)
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3.6. Equation of Motion

After substitution of the formulas Egs. (3.6), (3.13), (3.20) and (3.34) into Eq. (3.40),
and after differentiation of these expressions with respect to each chosen coordinate,
one can receive an n number of equations of motion in the generalized coordinate
base. In the matrix form, this system may be written as

Bd+Cq+ Kqg=F(t) (3.41)
where
B mass (inertia) matrix of a system
C damping matrix of a system
K stiffness matrix of a system

F(t)  vector of external generalized forces acting on a system
d,q,6 generalized coordinates, velocities and accelerations vectors respectively

The above is the equation of motion formulated with the use of the Displacement
Method to calculate the stiffness matrix. If the equation of motion were to be
formulated with the use of the Force Method to calculate the flexibility matrix, it
would have the form

DB{ + DCq + g = DF(t) (3.42)

If both methods (Displacement and Force Methods) make use of the same generalized
coordinate base q, it is possible to transform one equation into the other by a simple

matrix operation without formally using either of the methods.
For instance, in order to obtain the Eq. (3.42) from the Eq. (3.41), it is enough to

premultiply the Eq. (3.41) by the flexibility matrix calculated as D=K™; and vice
versa, Eqg. (3.42) should be premultiplied by the stiffness matrix calculated from the

flexibility matrix according the to the formula K =D™in order to obtain the Eq.
(3.41).

3.7. Systems with Elastic and Inertial Coupling
Static (Elastic) coupling

If there are off-diagonal terms in the stiffness matrix K in the matrix equation of
motion Eq. (3.41), this indicates that elastic coupling exists.

Inertial coupling

If there are off-diagonal terms in the mass matrix B in the matrix equation of motion
Eqg. (3.41), this indicates that inertial coupling exists.
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3.7.1. System with Static Coupling

Let us consider the two-degree-of-freedom system shown in Fig. 3.5

\L HO)

Fig. 3.5 Two-degree-of-freedom system — generalized coordinate vector q

The system has two degrees of freedom. The generalized coordinate vector is

%
= 3.43
a-| ¥] @)

The equation of motion can be written in the matrix form

m 0 | ¢ c, —C |, kl = kl G| P
{0 mj{qz]{_q cj[qz}{_ K, hﬂ(j{qj—{o} (3.44)

It is apparent that the equations in Eq. (3.44) are coupled, as off-diagonal terms occur
in the stiffness matrix. As these terms do not occur in the mass matrix, only elastic
coupling exists.
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3.7.2. System with Inertial Coupling

Let us consider the two-degree-of-freedom system shown in Fig. 3.6

HY

=y

Fig. 3.6 Two-degree-of-freedom system — generalized coordinate vector g

This is the same two-degrees-of-freedom system as in Fig. 3.5, but a different
generalized coordinate system is chosen. The generalized coordinate vector is now

o1

Il
1
) o)
N =
[

|

0,.—0Q,
= 3.45
ol 349

Now the matrix equation of motion has the form

my m, al C, 0 al |(1 0 al ~ Pl
{ml m1+mj{aj{o OLZ}{O kz}{ﬁj{a} (3.46)

It is apparent that the equations in Eq. (3.46) are also coupled, as off-diagonal terms
occur in the mass matrix. As these terms do not occur in the stiffness matrix, only
inertial coupling exists.
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3.7.3. System with Simultaneous Static and Inertial Coupling

As the type of coupling depends on the choice of the generalized coordinates system, it
is possible to choose such generalized coordinates that both static and inertial coupling
will occur simultaneously. It seems also to be possible to find such a generalized
coordinate system for which the equations of motion will be uncoupled.

3.7.4. System without Coupling (Decoupled System)

The generalized coordinates system for which there is no coupling at all is called the
principal generalized coordinates system. This case will be further investigated in
Chapters 3.12 and 3.13.

Conclusions:

e the coupling of the equations of motion in MDOF systems is not
a distinctive feature of the system but depends on the choice of the
generalized coordinate system

e the MDOF system equations of motion can be coupled in three ways:
inertially, elastically or inertially and elastically simultaneously

e uncoupled systems of equations, in which no coupling exists at all, are
also possible

3.8. Natural Frequencies and Normal Modes of Vibration

“The number of natural frequencies of vibration of any system is equal to the
number of degrees-of-freedom; thus the system having distributed parameters has an
infinite number of natural frequencies. At a given time, such a system usually vibrates
with appreciable amplitude at only a limited number of frequencies, often at only one.
With each natural frequency is associated a shape, called the normal or natural mode,
which is assumed by the system during free vibration at the frequency. For example,
when a uniform beam with simple supported or hinged ends vibrates laterally at its
lowest or fundamental natural frequency, it assumes the shape of the half sine wave;
this is a normal mode of vibration. When vibrating in this manner, the beam behaves as
a system with a single degree-of-freedom, since its configuration at any time can be
defined by giving the deflection of the center of the beam. When any linear system, i.e.
one in which the elastic restoring force is proportional to the deflection, executes free
vibration in a single natural mode, each element of the system except those at the
supports and nodes executes simple harmonic mode about its equilibrium position. All
possible free vibration of any linear system is made up of superposed vibrations in the
normal modes at the corresponding natural frequencies. The total motion at any point
of the system is the sum of the motions resulting from the vibration in the respective
modes.

There are always nodal points, lines, or surfaces, i.e. points which do not move, in
each of the normal modes of vibration of any system. For the fundamental mode,
which corresponds to the lowest natural frequency, the supported or fixed points of the
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system usually are the nodal points; for other modes, there are additional nodes. In the
modes of vibration corresponding to the patterns. In certain problems are, since a
particular mode usually will not be excited by a force acting at a nodal points.”, [1].

3.8.1. Eigenproblem

The problem of free vibrations requires that the force vector be equal to zero in
Eq. (3.41). If the system is also undamped, the equation of motion can be written in

form
@
where
B mass matrix of a system
K stiffness matrix of a system

d, § generalized coordinates and accelerations vectors

For the free vibrations of the undamped structure, one can guess (Lucky Guess
Method) the form of the solutions of Eq. (3.47)

|att) =asin(et + ¢)| (3.48)

Two times differentiation of expression Eq. (3.48) with respect to time leads to formula

§=-0q (3.49)

The substitution of Eq. (3.49) into Eq. (3.47) gives

(K-@’B)q=0 (3.50)

which, in this case, is a set of n homogeneous algebraic linear equations with n
unknown displacements ¢; (j=1...,n) and an unknown parameter o®. The

formulation of Eg. (3.50) is an important mathematical problem known as the
eigenproblem. Its nontrivial solution, that is, the solution for which not all g; =0,

requires that the determinant of the matrix factor of q be equal to zero, namely

det(K-’B)=0| or | det(K-2B)=0| (3.51)

In general, the expansion of the determinant in Eq. (3.51) results in a polynomial
equation of degree nin 1=’ which should be satisfied for n eigenvalues of 4 = @/,

— real roots of polynomial Eq. (3.51). This polynomial is known as the characteristic
equation of the system.

For any one natural frequency o,; (eigenvalue of A, = 3 ) such a solution exists
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g=Ww, (3.52)

that

(K- 2B)w, =0 (3.53)

The vector w;j is called an eigenvector (i-th normal or natural mode of vibration or
modal shape). The eigenvector coordinates are generalized displacements, which
describe the modal shape, that is they specify how, for each natural angular frequency
o,; , the various elements of the system move in relation to each other.

It is easy to prove that each non-zero column of the adjugate (adjoint) matrix

adjA, = adj(K- w?B) (3.54)

is an eigenvector of Eq. (3.50).

Proof:
Let us consider the formula for the inverse matrix

4 adjA,
A, L A 3.55
det A, (3:55)

This formula can be written in another form, i.e.
Altdet A, =adjA, (3.56)

Premultiplication of Eq. (3.56) by matrix A, and postmultiplication by any non-zero
vector v results in

| detA,-v=A, adjA -v| (3.57)

Since detA,; =0 and designates a new vector b =adjA, - v, Eq. (3.57) can be written
in the form

detA, v=A, (adjA, -v)=Ab=(K-w’B)b=0 (3.58)

As v could be any vector it could also be a versor, with 1 on j-th position. Then the
multiplication A,v takes out j-th column from the adjoint matrix. Comparing Egs.

(3.58) and (3.50), one can write down

w, =b =adj(K- »’B) (3.59)

The eigenvectors can be normalized

Wi,norm =Wi/Ni (360)
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usually using the norms

N; = |w;|= m?x|wji| (3.61)

or

N; =|w| = wiBw, (3.62)

3.8.2. Modal and Spectral Matrices

For each value of eigenfrequency w, (natural angular frequency) satisfying the

characteristic Eq. (3.51) one may solve Eq. (3.53). This solution, with an accuracy up
to a constant multiplier (multiplicative constant), is the eigenvector

qll Wil
) W.
w, =| WM (3.63)
Gin Win

The solutions Eq. (3.63) of Eq. (3.53) for i=1,...,n describe the normal modes (shapes)
which may be conveniently arranged in the columns of a matrix known as the modal
matrix W, that is

Wll WlZ Wln
Wy, Wy ..o W,

W=lw, w, .. w]=l2 "% 7 7 (3.64)
Wnl Wn2 Wnn

The n eigenvalues 1, = w? can be assembled into a diagonal matrix Q° ={®»’} which
is known as a spectral matrix of the eigenproblem Eq. (3.50), that is

oy 0 0
2
Q° ={0’}= (.) Yo (.) (3.65)
0 0 w?,

By using the modal and spectral matrices it is possible to assemble all of these relations
into a single matrix equation

KW = BWQ? (3.66)
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3.9. Normal and Natural Mode of Vibration

When a system is capable of vibrating with more than one frequency, but is actually
vibrating freely at only one of its possible natural frequencies, the system is said to be
vibrating in one of its “normal modes.”

“A normal mode of vibration is a mode of vibration that is uncoupled from (i.e.,
can exist independently of) other modes of vibration of a system. When vibration of
the system is defined as an eigenvalue problem, the normal modes are the eigenvectors
and the normal mode frequencies are the eigenvalues. The term classical normal mode
is sometimes applied to the normal modes of a vibrating systems characterized by
vibration of each element of the system at the same frequency and phase. In general,
classical normal modes exist only in systems having no damping or having particular
type of damping.”, [1].

“The natural mode of vibration is a mode of vibration assumed by a system when
vibrating freely.”, [1].

The mode of vibration associated with the lowest natural frequency of a system is
referred to as the first (basic) mode. The next higher frequency is the second, and so
on.

3.10. Orthogonality of Normal Modes (Orthogonality Principle)

The most important property of the normal modes is their orthogonality. For this
reason the normal modes can be used to uncouple the matrix equations of motion. The
solution of a set of separate differential equations is significantly easier than the
solution of a set of coupled differential equations.

Premultiplication of Eq. (3.66) by matrix W' yields equation

WTKW = W BWQ? (3.67)

After transposition of Eq. (3.67), and taking into account the symmetry of matrices B
and K, Eq. (3.67) can be written in form

WKW = Q°W'BW (3.68)

The left sides of Eqgs. (3.67) and (3.68) are the same, thus the right sides must also be
the same, that is

W'BWQ? = Q°W'BW (3.69)

In general, Eq. (3.69) is true only if matrix W'BW is a diagonal matrix. That matrix
is called the principal masses matrix and its elements — modal masses

W'BW ={m,_} (3.70)

Substituting Eq. (3.70) into Eq. (3.68) implies that matrix W'KW must also be a
diagonal matrix (principal stiffnesses matrix) and its elements — modal stiffnesses
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WKW ={k,}={m,Ho"} 3.71)

Formulas Egs. (3.70) and (3.71) are valid if the normalization of modal vectors is done
by using the norm of vector Eg. (3.65).The normalization of the modal vectors with the
use of Eq. (3.66) yields formulas

WTBW ={m, }=1 (3.72)

and

WKW ={k,} = | &’ (3.73)

where | is an identity matrix.
If the flexibility matrix is used to formulate the equation of motion, Eq. (3.42), the
reduced equation of motion has the form

@79

where D is a flexibility matrix. Now, Eq. (3.50) should be substituted with

(DB-w?1)q=0 (3.75)

and consequently, instead of Eq. (3.51)

det(DB—w?21) =0 (3.76)
instead of Eq. (3.52)

(DB-w?l)w, =0 (3.77)
and etc.

Conclusions:

o |t must be noticed that eigenvectors are orthogonal with respect to both the
mass and the stiffness matrix, but eigenvectors are not orthogonal with
respect to the flexibility matrix.

e Each eigenvector is determined in terms of an arbitrary constant and can
normalized arbitrarily.

e If n>d (base of generalized coordinates is not minimal) the
eigenfrequency w=oco can appear. These solutions must be neglected.
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3.11. Natural Vibration
3.11.1. Ambiguity of Term “Natural Vibration”

The term “natural vibration” is somewhat problematic due to the conventions of Polish
terminology. Following Langer [5], the Polish term “drgania wiasne” (the lexical
equivalent of the English term “natural vibration”) does not relate to a physical
phenomenon. It does not designate vibration, but a mathematical form of the general
solution (total integral) of an inhomogeneous differential equation of motion without
damping, Eq. (3.47), which describes a predisposition of the structure to vibrate freely
with accordance to natural frequencies and natural (normal) forms of vibration.

In English terminology, the term “natural vibration” appears predominantly in
connection to such terms as “frequency of natural vibration” or “mode of natural
vibration”. This indicates that “natural vibration” are identified with “free vibration”.
As Harris writes, “[t]he natural mode of vibration is a mode of vibration assumed by a
system when vibrating freely.”, [1]. Thus, the expression, as used in the English
terminology, clearly describes a physical phenomenon.

Therefore, the term “natural vibration” may be ambiguous, as it will have one
meaning when used in the sense attached to it in English terminology, and a different
one if used as a translation of the Polish “drgania wiasne”. It is suggested that the term
“natural vibration” should be used uniformly in the meaning equivalent to free
vibration to avoid this ambiguity.

3.11.2. Natural Vibration According to Langer’s Meaning

As always for the second order differential linear equations, this solution depends
on independent constants whose number is equal to the doubled number of the
equations. This general solution can be expressed in form

d
q(t) = > w;(s; sinw,t +¢; cosw,t) = W-{sine,t}-s+ W-{cose t}-c| (3.78)

i=1

where
{sine t}=diag(sino,t sino,t ... sinw,t)
{cosm, t} =diag(cosw,t cosm,t ... COSw,t) (3.79)
s=[s, s, ... 41" c=[c, ¢, ... ¢

Elements of the vectors s and c¢ are constants of integration. As it can be seen, the
time history of solution of Eq.(3.78) is a combination of simple harmonic oscillations
with natural frequencies @, , whose amplitudes are proportional to eigenvectors w; .

ni !
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3.12. Free Vibration
3.12.1. Undamped Free Vibration

Free vibration (natural vibration) is a physical phenomenon which occurs in an
undamped MDOF system when there is no excitation and the initial conditions are
given: q(0)=qg, and g(0)=q,. If the base of generalized coordinates is minimal
(n=d) the solution Eq. (3.78) may be used to determinate the free vibration of the
system, so

g,=Wc —> c=WTq, (3.80)
4, =W-{o}s - s={o?'}-W7q, '
and the solution of Eq. (3.78) is
q(t) = W -{cosw, t}- Wg, +W-{M}W‘lqo (3.81)
(Dn

3.12.2. Damped Free Vibration
3.12.2.1. Matrix Equation of Motion

The equation of motion which describes damped free vibration follows from Eq. (3.41)
with initial conditions q(0) =g, and ¢(0)=q,

| B+ Cq+Kq=0| (3.82)

Usually it is convenient to assume that the damping matrix is proportional to either the
mass or the stiffness matrix, but the best assumption is that the damping matrix is
proportional to both of them (Rayleigh damping), Eq. (3.23), that is

@3

where g is the dimensional damping parameter and « is also a dimensional parameter
called the retardation time.

3.12.2.2. Modal Transformation Method

The transformation from the new set of coordinates r to the generalized coordinates
g, such as

g=Wr (3.84)

is substituted into Eq. (3.82). By premultiplying the equation by the transposed modal

matrix W', and making use of the orthogonal properties of the modal matrix
(eigenvectors), the matrix equation has the form

[{m, ¥ +{c, }i +{k,}r =0 (3.85)
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where

{c.}=W'cw (3.86)

and in accordance with Eqg. (3.84) the initial conditions of Eq. (3.85) are connected
with the initial conditions of Eq. (3.82) by relations

g, = Wr, q, = Wr, (3.87)
Eqg. (3.85) is the matrix form of a set of uncoupled equations of the Eq. (2.23) type.

3.12.2.3.  Principal Coordinates System

The coordinates by which it is possible to uncouple the MDOF system, described
by vector r, are called the principal coordinates system. As it can be seen from Eq.
(3.84), the principal coordinates vector r can be achieved from the generalized
coordinates vector q with the use of modal matrix W transformation.

The solution in the base of normal coordinates can be achieved by using the
solution from Eq. (2.31) separately for each equation from the set of equations (3.85).
This solution in matrix notation has the form

r(t) = {e“‘“’nt w} o[F. b {e

cosp

—aoyt SINO;T

o000 ﬁ} i (3.88)

where

{em"t M} = diag[e“’i”“vit M]

cosp cos 3,
(3.89)

sinm, t . —wot SNyt
e—ow)nt Oy — dlag e jon it d,i
®,CosP @,; COS f3,

and after retransformation

qt)=W- {e“‘”"t cos(wyt=p) B)} “Wg, +W- {
cos p

o-ont sinm,t
®,Cosp

}' Wilqo

(3.90)

The inverse modal matrix can be calculated without a formal inverse procedure, since
from the Orthogonality Principle results

W ={m }*W'B={k,}'W'K

(3.91)

Thanks to the assumption Eq. (3.83), a quasi-frequency w,; and a damping ratio ¢;
can be associated with each natural mode w;,. If the assumption Eq. (3.83) is not

fulfilled, the solution is much more complicated. The term W'CW is not then

diagonal and the equations in Eq. (3.85) remain coupled because of the damping
matrix. In such a case it is convenient to integrate Eq. (3.82) numerically.
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3.13. Forced Vibration — Response to Harmonic Forces
3.13.1. Direct Method

Let us assume that the force excitation vector in the equation of motion Eq. (3.41)
is in the form

| F(t) = K sinot+ F. coswt| (3.92)

and  isthe angular frequency of harmonic excitation.

The total solution of Eq. (3.41) with harmonic force vector defined by Eq. (3.92)
again consists of the complementary solution (transient component of the response)
and particular solution (steady-state response) that persist when the transient or the
complementary function have disappeared.

The steady-state response of equation of motion Eq. (3.41) could be looked for
(Lucky Guess Method or method of undetermined coefficients) also in harmonic form,
ie.

|a(t) = gssin et + . cos ot (3.93)

By substituting Egs. (3.92) and (3.93) into Eq. (3.41), and then comparing the terms at
the sinusoidal and cosinusoidal components of the solution respectively, the algebraic
set of equations is achieved

(K _sz)QS -wCq. =Fg
(3.94)
oCq, + (K - 0’B)q. =F.

It can now be said that the solution of Eq. (3.41) can exist in the form Eq. (3.94) only if
the set of algebraic equations, written in matrix block’s form, is fulfilled

K—C()ZB -wC qs _ Fs
P =

The solution of Eq. (3.95) with respect to vectors g and g. makes it possible to

determine explicitly the solution of Eq. (3.94).
If the influence of damping is negligible, Eq. (3.95) is reduced to the simple matrix
form

(K- sz)qs,c = Fs,c (3.96)

which is valid for both the sinusoidal g5 and the cosinusoidal g, component of

solution Eq. (3.94).
From the equation Eq. (3.42), and applying a procedure analogous to the one
described previously, the set of algebraic equations has the form
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|- w’DB —wD DF,
y e S (3.97)
oDC |—»°DB || 0¢ DF.

If damping matrix is C =0, the Eqg. (3.97) is simplified to the form

( _(UZDB)qs,c =DF; ¢ (3.98)

which is valid for both the sinusoidal g5 and the cosinusoidal g, component of

solution Eqg. (3.93). The method described above is called the Direct Method because
the eigenproblem solution is not necessary. It is also not necessary to assume that the
damping matrix is proportional to either the mass or the stiffness matrix or to both of
them to achieve the steady-state response of the system. Unfortunately, the size of the
system of equations is doubled. Instead of a set of differential equations, a doubled set
of coupled algebraic equations must be solved.

Conclusions

Advantages of the Direct Method

in comparison to the Modal Transformation Method approach:

e There is no need to solve the eigenproblem to achieve
the steady-state response of the system.

e There is no need to assume that the damping matrix is
proportional to either the mass or the stiffness matrix or
to both of them to achieve the steady-state response of
the system.

Disadvantages of the Direct Method

in comparison to Modal Transformation Method approach:

e It is necessary to solve a doubled set of coupled
algebraic equations.

e Itis impossible to reduce the base of coordinates used to
the determine the solution (the dynamic condensation
cannot be performed, see Chapter 3.18)
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3.13.2. Modal Transformation Method

If the spectral matrix Q2 ={®’} and the modal matrix W are known, and if the
assumption Eq. (3.83) is valid, and moreover if the damping coefficients specification
«a; associated with successive modal forms is known, it is possible to use the same
modal transformation, Eq. (3.84), which was applied to the analysis of damped free
vibration.

After substituting Eq. (3.84) into Eq. (3.41) and then premultiplicating by W',
the equation has the form

WT'BWr+W'CWr+W'KWr=W'F =R(t) (3.99)

Using the Orthogonality Principle Egs. (3.70), (3.71) and additionally

WT'CW ={2a,/k,m, } = diag(20;/k,;m,;) (3.100)

the equation of motion takes the diagonal form

{m }¥ + {20k ,m, } +{k, }r =R(t) (3.101)

Matrix Eq. (3.101) is a set of n independent differential equations of SDOF systems.
The solution of this system is a superposition of independent solutions of equations of
the type

My i + 2054 [KeiMg 1 + Ky 1 = Ri(t) (3.102)

and could be solved for any kind of excitation.
In the particular situation of a harmonic excitation

R(t) = W' (Fsin ot + F. cos wt) = Rg sin ot + R cos wt) (3.103)

and

|r(t)=rssin ot +1g coswtl (3.104)

Using results Egs. (2.46) and (2.47) it is possible to write

:: : f:ﬁgz i:jgsc ,’ (3.105)
where
{h,}=diag(h, h, - hge)  {h,}=diag(h, hy, ... hy)
e ki (-7 )12_+77(i2ai e T ki W )220_17220! oy (3.106)
11 = ©f @
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Considering relations g =Wr and R =W'F one can achieve

qs = W{h,JW'F, + W{h,}W'F, = H,F + H,F.

) = N (3.107)
gc = W{hJW'F, —W{h,JW'F, = H,F, —H,F

or in matrix block form

ds H  H, || K
o Rle] im0

H, =w{h W’ (3.109)

where

H, = W{h,}W’' (3.110)

If damping influence is negligible H, =0 the Eq. (3.108) is simplified to the form

(3:111)

which is valid for both the sinusoidal and the cosinusoidal component of solution, and

1

hli B ko,i (1_ 77i2)

(3.112)

Conclusions
Advantages of the Modal Transformation Method
in comparison to the Direct Method approach;

e It is possible to use this approach for another type of forcing
excitations, i.e. not for harmonic excitation only.

e The whole analysis can be conducted with the use of SDOF systems
only

e Itis possible to arbitrarily specify the damping ratios for each mode.

Disadvantages of the Modal Transformation Method
in comparison to the Direct Method approach:

e The eigenproblem analysis must be accomplished

e The assumption is necessary that the damping matrix is proportional
to either the mass or the stiffness matrix or to both of them to achieve
the steady-state response of the system.
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3.14. Dynamic Condensation

It has been seen that the equation of motion of an MDOF system can be uncoupled by
using the principal coordinates of the system. By using this device, any single
differential equation can be solved for vibration in a given mode at a given frequency.
The resultant MDOF system vibration is obtained by the superposition of solutions of
all these single differential equations in the base of principal coordinates.

In a discrete mass system, or lumped mass system, with n degrees of freedom, it is
rarely necessary to consider all n eigenvalues and eigenvectors. It may be sufficient to
know the response in the lowest natural mode, or, perhaps, the first few lowest natural
modes. Depending on the significance of the higher modes of vibration, further
analyses may be necessary.

Consider the system defined by the Eq. (3.41). Let us assume that the vector r, is

related to the n first lowest principal coordinates of the vector r (n<d), and that
only the n first natural modes described by the n first eigenvectors
W, =[w, w, ... w,] are taken into account — dynamic condensation. If so, the

transformation from principal to generalized coordinates is, with accordance to Eg.
(3.84), described by the formula

(3113)

After substitution from Eq. (3.113) and premultiplication by the matrix W, Eq.
(3.112) becomes,

WIBW, i, + W/ CW, i, + WKW, r, = W F(t) (3.114)
or
{my 31y +{2ayk,m, 31, +{K 3,1, =R, (1) (3.115)

Matrix Eg. (3.115) is a set of n<d independent differential equations of SDOF
systems. The solution of this system is a superposition of independent solutions of
equations of the type

m,if; + 20, v\ KoMy fi + Ky i1; = Ri(t) (3.116)

and could be solved for any kind of excitation. The solutions given in the base of r,

can be transformed into solutions of the original system in the generalized coordinate
base g given by Eq. (3.113).

The response of the system is then known in the original coordinates in terms of
the response in the n<d principle directions only. The solution is now an
approximation only; the greater significance of the next higher modes, the closer the
approximation will be to the full solution in the base n=d . These higher modes may
need to be analyzed further.
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3.15. Kinematically Forced Vibration

Let us consider a structure whose motion is described by a vector of generalized
coordinates q. Let us also assume that there are no external dynamic forces acting on

this structure, but the foundation or support of the structure undergoes motion which
varies in time. This motion is assumed to be described by the known function of time
and by an additional set of coordinates assembled in vector z(t) .

The equation of motion can be written in matrix block form

qu qu q qu qu q qu qu q ~ 0
{qu szu{cm JI:LH+[KH‘ KJM—[Z“J (3.117)

where Z(t) is a vector of unknown forces in a base of coordinates z(t) .
The first matrix equation of Eq. (3.117) can be written in the equivalent form

@)

| Byl +Cqq 4+ Kyqq=-B,72-C.,z2-K,z (3.118)

Eqg. (3.118) can be used to find the solution with respect to q(t) as a result of
kinematic excitation z(t) . If the solution q(t) is already known, then with the use or
equation

| B+ B, 2+C,00+C,, 2+ K, q+K,z=Z(t) (3.119)

it is possible to find the forces Z(t) .

3.16. Variants of Damping Model

In the case of civil engineering and building structures there are usually no lumped
dampers but the vibration decays if there are not external excitations. It is also difficult
to point to sources of damping, as there seem to be many of them. Therefore, a
problem of choosing the damping matrix C and the generalized forces Q =F; in the

base of generalized coordinates g appears.

Assuming an external character of the resistance to motion, it ought to be assumed
that (see also Eqg. (2.128))

C=uB (3.120)

and then the generalized forces vector F; transmitted to the structure has the form

|F; =Ka=F-B(G-uq)| (3.121)
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In the case of the Voigt-Kelvin rheological model, i.e. when an internal character of
resistance to motion is assumed,

C-xK (3.122)

and then the generalized forces vector F; transmitted to the structure has the form

|F; =K(q+xq) =F-Bi| (3.123)

From the earlier analyses (Chapters 2.5.5.5 and 2.5.5.6) it is known that in both cases
the assumptions lead to the specification of the damping ratios for each natural mode:
o =u/2w,; and o =xa,;/2 respectively. Experimental investigations do not

validate either of these hypotheses of damping, i.e. these methods of specifying
damping coefficients.

The Rayleigh model (Chapter 2.5.5.7) takes into account both the viscous damping
representing an environmental damping by external forces acting on the structure
(external damping), and the damping due to the inherent properties of the material of
the structure (internal damping). Thus, the damping matrix is assumed to have the form

@120

and then the generalized forces vector F; transmitted to the structure has the form

[Fr =K(a+~d)=F-B(d- )] (3.125)

eq

» w,

Fig. 3.7 Dependence of equivalent damping ratio on the natural frequency value
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In this case a non-dimensional damping ratio, Fig. 3.7, given by the formula below, is
assigned to each mode of vibration

o =—ly = (3.126)

For the frequency Q= /u/x the damping ratio reaches its minimum «;, =+ ux . If

the frequency Q is recognized as the most important one, the minimal coefficient
will be assonated to it. This assumption leads to the result

L=aQ (3.127)

It is also possible to choose two important natural frequencies o

n,i?

ratio ¢ =«

min

o, ; and to require
that the condition «; =a; =« be fulfilled for two equations received after substituting

these conditions into Eq. (3.126). The solution of these two equations gives two
parameters: x and « .

It is important to note that the problems with specifying the damping matrix
decrease when the modal transformation procedure is used. In this case it is possible to
arbitrarily specify the damping ratios ¢, for each mode. It is also possible to assume

a; = a; =a =const, which is tantamount to the assumption that

C=BW{200,/m }W'B +KW{2a/® k,JW'K (3.128)

but then the problem of generalized transmitted force remains undetermined.

In the analysis of the steady-state harmonic vibration of discrete systems it is
recommended to assume the Voigt-Kelvin model of damping with the parameter
x=2a/w, where « is the damping ratio appropriate for a given type of structure and

w is the angular frequency of harmonic excitation. Then

c=2%k (3.129)
0]
2a . 2
F =K(q +;q) =F+°Bq (3.130)

This assumption can be interpreted in the principal coordinate system as
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2
Cou =Ky, (3.131)
[0
C,: o,
o= _Thi & (3.132)
2\/ko,imo,i @ 1

It can be seen that in the resonance zone o~ w,

ni?
a; ~ a . However, outside the resonance zone, the damping ratio «; = &/n; is different

than « . Even so, as the influence of small damping is negligible, this is of no great
importance. Thus, the assumptions from Egs. (3.129) and (3.130) are practically
tantamount to the hypothesis of the determined decrement of damping. It is important
to notice that this assumption can only be made for steady-state harmonic solutions of
lightly damped systems.

The vibration analysis is simplified significantly when the resistance to motion is
negligible. In that case

in which the damping is significant,

CcC=0 |F; =Kq=F-Bg (3.133)

In addition, if the flexibility matrix D is used, it is possible to write the equation of
motion in the base of generalized forces F; =Q as follows

(3130

In the case of harmonic excitation, instead of Eq. (3.98), the following equation is valid

(1-@°DB)Qs ¢ =Fs (3.135)
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4.

Plane Beams, Frames, Trusses and Foundations

“The first step in analyzing any physical structure is to represent it by a
mathematical model which will have essentially the same dynamic behavior. A suitable
number and distribution of masses, springs, and dampers must be chosen, and the input
forces or foundation motions must be defined. The model should have sufficient
degrees-of-freedom to determine the modes which will have significant response to the
exciting force or motion.

The properties of a system that must be known are the natural frequencies w, , the

normal mode shapes, ... the damping of the respective modes, and the mass
distribution m;. The detailed distribution of stiffness and damping of a system are not
used directly but rather appear indirectly as the properties of the respective modes. The
characteristic properties of the modes may be determined experimentally as well as
analytically.”, [1].

4.1. Plane Beams and Frames

Let us consider plane beams or frames systems, constructed with weightless plain bars.
The axes of the bars intersect in geometrical nodes. There are lumped masses and rigid
bodies in the structure. In the mass center of each lumped mass, two local translational
cartesian coordinates are assumed to exist, and in the mass center of each rigid body an
additional rotational coordinate must be assumed. The whole set of coordinates is
written as a vector

u=[u u, u ..J 4.1)

As it was shown in Chapter 3.4.2.2, the inertia matrix in the local coordinates base of
mass centers has a diagonal form, Eq. (3.11)

m 0 O
0 m 0

m}=diag(m, m, m, ..)= 2

{m} g(m, 2 3 ) 0 0 m, (4.2)

where m; are the masses sensu stricto (associated with translational coordinates) or
mass moments m; =J,; (associated with rotational coordinates). The generalized
coordinates vector

q=[g, o, 9 ..T (4.3)

can be transformed to the local coordinates vector u with accordance to Eq. (3.9)

u=A.q (4.4)

116



The inertia matrix in the generalized coordinates base has the form determined by Eqg.
(3.14), i.e.

B=Al -{m}-A, (4.5)

The structure can be excited by the generalized forces, Eq. (3.35)

F=A[P (4.6)

The next calculations of the dynamic analysis of such structures could be realized with
the use of the Force or the Displacement Method.

4.1.1.Displacement Method
4.1.1.1. Kinematically (Geometrically) Indeterminate Structures

A rigid body system consists of a number of rigid bodies in space. The degrees of
freedom of these independent rigid bodies can be removed by adding kinematic
constraints, thanks to which the number of degrees of freedom is reduced.

A system is kinematically indeterminate if the number of unknown node/joint
displacements that are needed to describe the displaced shape of the structure is greater
than zero.

4.1.1.2. Degree of Kinematic (Geometric) Indeterminacy

The degree of kinematic (geometric) indeterminacy is the number of kinematic
constraints necessary to achieve the kinematic (geometrical) determinacy of the
system. It is described by the formula

)

where
n, —the number of rotational constraints necessary to obtain geometric
determinacy from the point of view of the Displacement Method
n, — the number of translational constraints it is necessary to add to the kinematic
chain in order to obtain a geometrically stable and statically determinate truss

and

n, =2w—(p+71)] (4.8)

where
W — number of truss hinges in a kinematic chain
p —number of members in a kinematic chain

r —number of supporting constraints (links) in a kinematic chain
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4.1.1.3. Degree of Kinematic (Geometric) Indeterminacy in a Dynamic
Sense

The degree of kinematic (geometric) indeterminacy in a dynamic sense n, is defined
as the number of degrees of kinematic indeterminacy n, reduced by the number of

degrees of freedom which are the dynamic generalized coordinate d . Therefore, the
number ng, can be interpreted as the number of additional non-dynamic information,

necessary only due to static solution of the structure in the Displacement Method sense

(Fig. 4.2).
49

4.1.1.4. Stiffness Matrix
4.1.1.4.1. Kinematic Coordinates Vector in the Dynamic Sense

The kinematic coordinates vector in the dynamic sense will be expressed as x. The
vector x is the displacement vector of those points of the structure which are neither
mass points nor points of fixing the rigid bodies to the structure, but which are
necessary to kinematically determine the structure from the Displacement Method
point of view.

4.1.1.4.2. Expanded Base of Kinematic Coordinates

The expanded base of kinematic coordinates is defined as the vector

6= m (4.10)

X

The displacement vector in the expanded base of kinematic coordinates consists of two
subvectors:
e subvector

a=[a, ... qI (4.11)

which is the generalized coordinates vector whose dimension is equal to the number of
generalized coordinates d and
e  subvector

x=[x o X, T (4.12)

which is the kinematic (geometric) coordinates vector in the dynamic sense, whose
dimension is n, .
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4.1.1.4.3. Stiffness Matrix in an Expanded Base of Coordinates

The stiffness matrix in an expanded base of coordinates is defined as

-~ K, K
K=| % ¥ (4.13)
|:K><q Kxx
Ko =Kl (4.14)
where: dimK,, =dxd, dimK, =dxny, dimK, =n,xd, dimK,, =ny,xny

4.1.1.5. Static Condensation

In order to avoid terminological misunderstandings, it is necessary to mention that the
term “Static Condensation” used in this book has a different meaning than the same
term as used by another authors. Contrary to the definition of Static Condensation
formulated for example by M. Paz and W. Leigh in [1], that “...Static Condensation
Method...is only approximate and may produce relatively large errors in the results
when applied to dynamic problems”, the Static Condensation Method proposed here,
devised by J. Langer in [4], gives exact results when applied to dynamic problems. The
main difference from the method proposed in [1] is that, in the method presented here,
there are no primary and secondary (less important) degrees of freedom. Degrees of
freedom are here divided into Lagrange’s generalized coordinates g and kinematic

(geometric) degrees of freedom x which do not describe displacements of the mass
points, but are necessary if the Primary Structure of the Displacement Method is to be
kinematically determined. After the solution of the dynamic problem in the base of
generalized coordinates q it is always possible to find the kinematic degrees of
freedom x from Eq. (4.16).

The equilibrium conditions of the Displacement Method in the expanded base of

coordinates q, Eqg. (4.10), has the form

Kqd+ K x=0|, (4.15)
therefore from here
x=-K K, g (4.16)
From the identity
Kd+Kux=Kdq (4.17)
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after substituting Eq. (4.16) into (4.17), one can achieve the stiffness matrix in the base
of generalized coordinates g from formula

=
K = Ky~ Ko KtKy, (4.18)

For an SDOF system the kinematic indeterminacy degree n,, =1, from Eq. (4.18) one
can find the equivalent stiffness coefficient

k XkX
=k ——2 (4.19)

XX

4.1.2.Force Method
4.1.2.1. Degree of Static Indeterminacy
4.1.2.1.1. Statically Indeterminate Structures

A system is statically indeterminate if the number of unknown member forces and,
optionally, reactions in the system, is greater than the number of independent, non-
trivial equilibrium equations available for determining these unknown forces.

In general, the static indeterminacy of structural systems depends not only on their
external supports, but on their internal structures as well.

4.1.2.1.2. Degree of Static Indeterminacy

The degree of static indeterminacy of a system (number of redundants, or number of
hyperstatics) is n, =n,, —n, where
ny IS the number of unknown member forces, and optionally, reactions in the
system;
ny is the number of independent, non-trivial equilibrium equations available
for determining these n,, unknown forces.

In practice, it is more convenient to determine the degree of static indeterminacy of a
plane system by using the formula

@20

or in space
(21
where
e is the number of constraints in the system,
t is the number of rigid bodies in the 2D system,

b is the number of rigid bodies in the 3D system
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4.1.2.2. Flexibility Matrix
4.1.2.2.1. Redundant (Hyperstatic) Forces Vector

The redundant forces vector of the Force Method will be expressed as vector X
whose dimension is n,,.

4.1.2.2.2. Independent Characteristic Forces Vector

The independent characteristic forces vector Q is a vector of unknown internal forces
transmitted from the mass to the structure. The vector Q is in accordance with the
generalized coordinates vector q. The dimension of the vector Q is equal to the
number of generalized coordinates d.

4.1.2.2.3. Primary Structure (Scheme) of Force Method

To create a Primary Structure of the Force Method it is necessary to make the
assumption that a dynamic force Q; acts in the place and the direction of the

generalized coordinate ¢;, and a hyperstatic force X; acts in the place and the
direction of the restraints x; (Fig. 4.3). The dimension of vectors g and Q is d, but
the dimension of vectors x and X is n,.

4.1.2.2.4. Expanded Base of Kinetic Coordinates

The vector of dynamic forces in the expanded base of kinetic coordinates Q

~ |Q
= 4.22
Q {X (4.22)
consists of two subvectors:
e subvector
Q=[Q ... Q]I (4.23)
whose dimension is equal to d and
e subvector
X=[X; ... X, IT (4.29)

whose dimension is equal to n,
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4.1.2.2.5. Flexibility Matrix in Expanded Base of Coordinates

The flexibility matrix in the expanded base of coordinates is defined

. [D, D
DE I (4.25)
|:qu Dxx
where
Dy =D} (4.26)
and

dimD, =dxd, dimD, =dxn,, dimD,, =n, xd, dimD,, =n, xn,

4.1.2.3. Static Condensation

After operations analogical to the ones in the case of the stiffness matrix (Chapter
4.1.1.6), it is possible to find the flexibility matrix in the base of generalized forces
Q, from formula

D=D,-D,D,.D (4.27)

qq X — XX Xq

and the redundant forces vector from

X=-D;'D,,Q (4.28)

The dimensions of matrices K and D are the same and are equal to the number of
generalized coordinates d , and of course

K=D" (4.29)

For an SDOF system the static indeterminacy degree n, =1, Eq. (4.29) has the form

dqxé‘Xq
6 = 5qq —5— (430)

XX
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4.1.3. Choice of the Method

In a given case, either the Displacement Method or the Force Method may be the most
convenient for formulating the matrix equation of motion, as it will give rise to a lesser
number of additional hyperstatic or hyperkinematic unknowns. In order to choose,
which method is the most convenient, it is sufficient to check one simple criterion.
Namely, one has to determine which is the greater: the degree of kinematic
indeterminacy in the dynamic sense n,, (calculated from formula Eq. (4.9)) or the

degree of static indeterminacy of the system n,, (calculated from formula Eq. (4.20)).

Choice of the Method:
e Ifn,>ny, the Displacement Method should be chosen.
e If n,<n, the Force Method should be chosen.
e If n,=ny either of these methods can be chosen.

4.1.4.Forced Vibration

When the vector of generalized forces and the inertia, damping, stiffness or flexibility
matrix are achieved, it is enough to write the equation of motion, Eq. (3.41) or (3.42),
and solve it using the algorithms which are presented in Chapter 3. There are three
possibilities, which will be considered below.

4.1.4.1. Modal Transformation Method

If the inertia and the stiffness/flexibility matrices are known, the eigenproblem may be
solved, see Chapter 3.8. Next, using the Modal Transformation Method, see Chapter
3.13.2, the equations of motion can be decoupled, Eq. (3.101). Then, the system of
independent equations, of the Eq. (3.102) type, can be solved separately in the
principal coordinates base. The final solution is achieved with the use of these separate
solutions and the superposition method. The solution in the generalized coordinates
base may be obtained with the use of the modal transformation, Eq. (3.84). The
dynamic condensation approach, Chapter 3.14, can also be used.

Conclusions

Advantages of the Modal Transformation Method of
solving the equations of motion for beam or frame structures:
e The possibility to use this approach for other types of
forcing excitations, i.e. not for harmonic excitation only.
e The possibility to reduce the base of principle
coordinates used to determine the final solution in the
generalized coordinates base (dynamic condensation can
be carried out).
e The possibility to conduct the whole analysis with the
use of SDOF systems only.
e The possibility to arbitrarily specify the damping ratios
for each mode.
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Conclusions

Disadvantages of the Modal Transformation Method of
solving the equations of motion for beam or frame structures:

e The eigenproblem analysis must be accomplished.

e The assumption that the damping matrix is proportional
to either the mass or the stiffness matrix or to both of
them is necessary to achieve an uncoupled system.

4.1.4.2. Direct Method

When only the harmonic excitation forces act in the system, the solution of the
equation of motion is usually realized with the use of the Direct Method, Chapter
3.13.1. Analyzing harmonically forced vibration, and taking into account damping, the
displacement steady-state response can be determined from Egs. (3.95) or (3.97). The
independent characteristic forces can then be evaluated from equations

Qs=F+ Q’ZBQS

4.31
Qc=Fc+ OJZBQC @3

Bending moments Mg, M, shear forces T, T, and axial (normal) forces Ng, N.

can be then calculated, and their diagrams can be drawn. It is also possible to calculate
the amplitudes of the bending moments, shear forces and axial forces using the
formulas

amM =M +M¢
amT =, T2+T2 (4.32)
amN = /N2 + N2

The amplitudes of the bending moments diagram, the amplitudes of the shear forces
diagram and the amplitudes of the normal forces diagram are the dynamic envelopes of
these section forces, i.e. the envelopes with respect to time. The amplitudes of shear
forces and the amplitudes of normal forces diagrams are usually constant between
points of concentrated force application. The amplitude of bending moments diagrams
are usually curvilinear between points of concentrated force application, except for the
situation when the diagrams My, M. are proportional.

If the damping influence is negligible, the state of displacement can be calculated
from Eqgs. (3.96) or (3.98). The independent characteristic forces can then be evaluated
from equations, Eqg. (4.31), or independently of displacements, from Eg. (3.135)
directly, separately for Qg and Q..
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Notice

The static condensation procedure, which was described in Chapter 4.1.1.6,
can be avoided if the generalized coordinate base is assumed to be an already
expanded one (n>d, detB=0), i.e. all the equations of motion are
formulated in an already expanded generalized coordinate base. This is
possible in consideration of the homogeneous character of the unknowns q
and x. Unfortunately, the number of the dynamic unknowns increases. The
matrix equation of motion then has the form

o e e i)

If the Force Method is applied, the assumption that coordinate base is already
expanded is impossible, because of the non-homogenous character of
unknowns g and X.

Conclusions

Advantages of the Direct Method of solving the equations of
motion for beam or frame structures:

e The eigenproblem solution is not necessary to achieve
the steady-state response of the system.

e The assumption that the damping matrix is proportional
to either the mass or the stiffness matrix or to both of
them is not necessary to achieve the steady-state
response of the system.

Disadvantages of the Direct Method of solving the equations of
motion for beam or frame structures:

e |t is necessary to solve a doubled set of coupled
algebraic equations.

e It is impossible to reduce the coordinates base used to
determine the solution (the dynamic condensation
cannot be performed).

125



4.1.4.3. Numerical Integration

The third possibility to solve the matrix equation of motion which describes the forced
vibration of the beam or frame is to numerically integrate this equation with the use of
the appropriate numerical method.
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Illustrative Example 4.1

Let us consider a statically and kinematically indeterminate plane frame structure. An

example of the dynamic scheme of a frame structure is shown in Fig. 4.1.

I:)O
pt
m,J
o so
<= i
V77
EJ=const
©
(Q\]
VR v
a a

where

Fig. 4.1 Dynamic scheme of the frame

a=3m

E =200GPa

| =9800cm*(1300)
El =const

EA=0o0

GA=w

m =500kg

Jo =20.8kgm?
h, =0.25m

h, =0.40m

P, =1kN

o =30rad/s

The number of degrees of freedom (Fig. 4.2)

d=d, +d, =2+1=3|

The degree of static indeterminacy is (Fig. 4.2)

[, =e-3t=4-3.1=1]
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Fig. 4.2 Force Method scheme of coordinates

The degree of kinematic (geometric) indeterminacy is (Fig. 4.2)

|ng:nA+n¢:2+2:4|

The degree of kinematic (geometric) indeterminacy in a dynamic sense

|ng =n, —d =4-3=1]

Fig. 4.3 Displacement Method scheme of coordinates
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Because n, =n,, either of the Displacement Method or the Force Method can be

chosen. The Displacement Method has been chosen arbitrary.
The generalized coordinates vector q is

0
q=|0q,
0;

The x vector consists of one element only

The expanded base of kinematic coordinates is defined as the vector

The stiffness matrix in an expanded base of coordinates is defined as

[ 15El -3El -6El |
3 0 T2 g2
| 3 | I3
El —3El
0 0
k: qu qu _ 2|3 2|2
Ko Ko] |38, TEL 28
| | |
-6ElI -3ElI 2EI 6 El
R | I
where
—6El
_ T _ |2 _ 6E|
qu_qu_ —3E| Kxx_I: Iz
212

Static Condensation yields, Eq. (4.18), the stiffness matrix in generalized coordinates
base
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K=Ky —KuKoK,, =

[ 6EI 3El  El

I® 213 2 6 - .

El  9EI EI 6.53-10 1.09-10° -2.18-10

- _;3 98|3 202 | -1.09-10° 0.82:10° 1.09-10°

El El 19El | |—-218-10° 1.09-10° 41.14-10°
22 T3

Mass matrix can be achieved with the use of transformation from local to generalized
coordinates, Fig. 4.4.

Fig. 4.4 Generalized and local coordinates associated with mass center

The local coordinates transformation to generalized coordinate may be formulated as

u, 1 0 0|q
u=A,0 — |U,[=/0 1 hy|Q,
U, 0 0 1]|lq,

The inertia (mass) matrix in the local coordinates base of mass centers has a diagonal
form, Eq. (3.11)

m 0 O
{m}=diag(m m J,)=/0 m O
0 0 J,
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The inertia (mass) matrix in the generalized coordinates base has the form

m

B=Al .{m}-A_=|0

0

0
m
mhy

0

500 O 0

mh, |=| 0 500 125
Jo +mhj 0 125 52.08

The structure can be excited by the generalized forces, Eq. (3.35)

E=

— P, cos pt 0
Pysinpt |=| B,
Py h, sin pt Poh,

-P,

sinpt+| O

0

cos pt =Fsin pt + F; cos pt

Finally, matrix equation of motion has the form

Bg + Kqg = F(t)

The eigenproblem formulation can be written down as

and

(K-2?B)q=0

The solution of this algebraic set of equation leads to eigenvalues and natural

frequencies

and eigenvectors and modal matrix

@, =34.91[rad/s] — f, =5.56[Hz]
@, =115.2[rad/s] - f, =18.3[Hz]
@, =1401[rad/s] - f, = 223[Hz]
0.178 1 —-0.002
W=[w, w, ... w]=| 1 —-0.193 -0.250
-0.014 0.050 1
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Natural modes of vibration are shown below

e  First mode of vibration

1,00

0,178

L

e  Second mode of vibration

w, =|-0.193
0.05

A

e  Third mode of vibration

~0.002
W, =|—0.250

132




Harmonically forced vibration solution realized with the

use of the Direct Method,

Egs. (3.95) and (3.96)
K-pB 0 PH
0 K-p®B||dc]|

Fs
Fe

or

Osc = (K - sz)ilFs,c

Finally, the displacements g, q. and amq are

0.001[m] —0.0003[m] 0.0011[m]
gs = 0.006[m] | qgc.=| —-0.001[m] |, amqg=| 0.0061[m] |,
—7.8-107° [rad] 6.6-10° [rad] 0.000078 [rad]

The diagrams of bending moments Mg, M. and amM are shown in Figures below

8.29 0.75
[KNm] [KNm]
14.09 . 77;772.11
__ 4.79 5.83
8.33
\ [ iy
2.97 ‘
[KNm]
14.25
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4.2. Trusses

Let us consider a statically determinate or indeterminate plane truss structure with
accordance to the theory introduced by Langer in [5]. An example of a dynamic
scheme of a truss structure is shown in Fig. 4.5.

Fig. 4.5 Dynamic scheme of the truss

The prismatic and straight members are pin-connected. The length of a member is |,
the area — A;, the mass — w; and Young's Modulus of Elasticity — E;. It is assumed

that the truss is a discrete structure whose masses m; are concentrated in nodes. Each
mass displacement is assumed to be described by two local cartesian coordinates. It is
most convenient to assume that the generalized Lagrange’s coordinates are the same as
the local coordinates, i.e.

g=u A,=1 B={m} (4.33)

The mass matrix elements can be calculated from formula

m =M, +2 3, (4.38)
j

where M, is the concentrated mass associated with the generalized coordinate g; and

D m; is the sum of “j” mass of the members connected in node “i”.
i

It is convenient to derive the equation of motion for the truss with the use of the
Displacement Method, thus the stiffness matrix must be determined. The local
coordinates of the displacement state are taken to be extensions of the members

A=[A, A, A, ] (4.35)
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The transformation from generalized coordinates can be formulated as
A=A, (4.36)

The potential energy can be calculated as below

1 . [(EA EA 1
E —=AT TAT ==q'K 4.37
=7 {L} 2q {L} \a=5 0K (4.37)
where
K = AT{ié}AA (4.38)

The truss may be loaded by excitation forces acting on nodes of the structure. If these
forces, represented by vector P, are determined in the local base of coordinates u,
then, with regard to Eq. (4.33), g =u and one can obtain F=P .

The damping matrix C ought to be determined with regard to the chosen damping
model.

The equation of motion has the form Eq. (3.41). After the solution of this equation
in the displacements base g =u, one ought to determine the stress-strain state in the

form of the forces vector in the set of members

N = {EI:L\}(A+ A) {EI:A}AA(C]+KQ) (4.39)

In the case of the steady-state response to harmonic excitation, the damping matrix can
be assumed to be in the form of Eq. (3.129) and then

N, = { ELA}A (s - 2101c) (4.40)

N = {ELA}A (0o +2a0) (4.41)

amN, =, [N% +NZ (4.42)

where g and q. fulfill Eq. (3.95).

If the damping influence is negligible, the state of displacement can be calculated
from Eq. (3.96) and « =0 should be substituted into Eqgs. (4.37) and (4.38).
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4.3. Foundations

One of the most important problems in structural dynamics is the analysis of vibrations
generated by a machine attached to a block foundation. The foundation is placed on the
surface of elastic ground, Fig. 4.6.

ot

z/h ¢

(% %)
0 (Xo.7)

mg

U,
U

—AxT—

%

Fig. 4.6 Foundation on elastic ground

Assumptions

It is assumed that:

e The block foundation is a rigid body.
e The base contact area is placed on the horizontal plane xy .
e The structure is symmetric with respect to the plane xz .
e The axes x,y are the principal axes of the area of the foundation
contact surface .
e The axes x,y,z pass through the centroid of the area of the foundation
contact surface.
e The elastic ground is a non-inertial one described by three parameters:
(o] the stiffness coefficients in the horizontal direction are k,,k, (in
the directions x,z respectively),
o] and the stiffness coefficient in the direction of rotation around the
axis y perpendicular to the plane of vibrations is k.
e The mass center of the block foundation (point O), could be located not
on the same vertical line as the centroid of the foundation base area.
e The vibrations are harmonically excited by a force rotating in plane xz

e The force may be located not in the mass center of the block foundation.
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Taking into account the above assumptions, the space vibration of the structure can be
reduced to the problem of the plane vibrations in the symmetry plane xz. Three
generalized coordinates are sufficient to describe the dynamic properties of the

structure. These generalized, local and block mass center coordinates are shown in Fig.
4.6. In the vector notation they have a form

u= [Ul uz]T (4-43)

and

q:[% g, qs]T (4-44)

The transformation of generalized to local coordinates can be written down in form
u| [1 0 -x % 445
u,| |0 1 z qz (4.45)

Finally, the inertia matrix has the form analogical to the one shown in Eqg. (3.19), i.e.

m 0 -3,
B=| 0 m Sy (4.46)
vz Sxy Ja
where
S,y =Mz, The static moment of mass with respect to the plane xy .
Sy, =MX, The static moment of mass with respect to the plane yz .

J,y=m(x5+23)+J, The polar mass moment of inertia about the axis through the
dynamic center — point A, i.e. about the axis y through the

centroid of the contact area and perpendicular to the plane of
vibrations.

Jo The moment of mass inertia of the machine-foundation
structure with respect to the axis passing through the mass
center of the machine-foundation structure

m The mass of machine-foundation structure

The potential energy of the ground elasticity is

1
E, =E(kZAq1+kqu2 +kq, J A 0;) (4.47)

From Eq. (4.47) it is possible to achieve the stiffness matrix

|K=diag(sz k, A k¢JA)| (4.48)
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where A is the area of surface of contact between structure and elastic ground.

The damping matrix can be assumed on the basis of one of the hypotheses of

damping, even though it is most frequently assumed that C=xK,, i.e. structural
damping.
After reducing the rotating force from a given point of its localization to the point of
localization of generalized coordinates. This point is the centroid A of the area of the
foundation contact surface. The generalized forces vector can be obtained in the
following form

0 1
Ft)=| 1 |F,sihot+| 0 |F, coswt (4.49)
7 —Xg

Since the weight of the block foundation is usually significant, and because of the
assumption that the mass center, point O, of the block foundation is not located on the
same vertical line as the centroid of the foundation base area, it seems to be advisable
to take into account an amendment resulting from the second order theory. This second
order theory amendment is, in this situation, the moment of the gravity force (weight of
the block foundation) about the axis y through the centroid of the foundation base

area. This axis is perpendicular to the plane of vibrations. Since the mass center, point
O, of the block foundation is moving during the vibrations, this additional moment of
force depends on time. This additional moment of force can be written down in the
form

0 00 0 |[q
AF(t)=| 0 [=[0 0 0 |[q, (4.50)
mg ZO 0 O gsxy q3

This vector should be transferred onto the left side of the matrix equation of motion.
After this operation the matrix equation of motion has the standard form

| Bi+Cq+Kq=F()| (451)

The stiffness matrix is diagonal but differs from the form presented in Eq. (4.48). Now,

[K=diag (k,A kA k,3,-9S,)] (4.52)

The solution of Eg. (4.51) can be achieved with the use of the Direct Method or the
Modal Transformation Method. As a result the vector g is obtained and then it is

possible to calculate the vector Q of the generalized forces transmitted to the ground

Q=F, =F+0’Bq (4.53)
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There are three elements in this vector. The first element Q, =F;, is the vertical
transmitted force; the second element Q, = F;, is the horizontal transmitted force; the
third element Q, = My, is the moment of transmitted force around the axis y . These

transmitted forces make it possible to find the dynamic stresses in the foundation
contact surface. These stresses ought to be calculated separately for sinusoidal and
cosinusoidal components. The final amplitudal values of stresses should be calculated
with the use of formula

amo =+ ol + 0} (4.45)

The generalized coordinates vector is also useful to obtain local displacements of
chosen points of foundation, with the use of formula Eq. (4.46).The amplitude of the
local cartesian displacements of any point may be obtained from expressions

amu, = y/u’ +Uuz (4.55)
amu, = y/uZ, +uZ. (4.56)

These amplitudes describe the “frame of trajectory” of the vibrating point. As it was
described in Chapter 1.4.2, the trajectory is an ellipse, see Fig. 4.7 and Fig. 1.5
(Lissajous figures — periodic vibration). This ellipse is inscribed into a rectangular
frame with dimensions (2amu,) x (2amu,) .

and

2amuy,

Fig. 4.7 Trajectory of vibration of a given point A of block foundation.

139



It is important to notice that the dimensions of the “frame of trajectory” change
depending on the directions of the local cartesian coordinates, while the trajectory itself
is an invariant figure, i.e. it describes the motion of the point in an objective way. For
this reason it is important to determine the trajectory. It can be found that

u?(t) =u"u = (ug sin @t + U cos at) - (ug sin wt + U, cos wt) =

Lo T 1 T 2 T 2 (4'57)
=E(ucuc+usus)+ Z(ucuc—usus) + (ugug)® cos(2at — 26)
where
-
20 = arctan— ZUSUCT (4.58)
UcUc —UsUs
and
R = maxu(t 1 1
e ((t))}=\/5<uéuc T T

The formulas in Eq. (4.60) describe the values of the principal amplitudes, but they do
not describe their geometric orientations. The maximum value of the principle
amplitude occurs when cos(2wt —26) =1, which means that ot =6 . Then

2

R
{F}-l} =ugsind+u cosd

(4.60)

The minimum value of the principle amplitude occurs when cos(2at —26) = -1, which
means that wt =60+ /2. Then

- |n
r=[f}=ussin6+uccose (4.61)

r

Expressions Eqs. (4.61), (4.62) describe the principle amplitudes in the vector sense by
their projections on coordinate axes x and z . Therefore, it is possible to determine the
geometrical orientation of the motion trajectory. Moreover, it is also possible to use the
relations

ol
I
pull
—
A1

(4.62)

and

-
I

=1
=1

(4.63)
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