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Chapter 1

Preface
This book accompanies the lecture called “Secure Systems and Networks”
which is taught at Wroclaw University of Technology. It should be treated as
a complementary material to the lecture, as it contains some more detailed
explanations of covered topics and extended examples.

Topics covered in the lecture focus mainly on security of networked sys-
tems, so the main focus is set on networking protocols, their current and his-
toric vulnerabilities and the impact these problems have on software. They
are organized in a similar order that in the lecture.

As computer systems control more and more aspects of our everyday life,
the importance of security of these systems becomes even more important.
We need to be aware of potential problems of the existing systems so we
can protect ourselves from intentional or accidental mischief, and as pro-
grammers and future authors of software running on these systems – we
are obliged to write the software in a responsible way, knowing the pitfalls
and traps that we may fall into.

The physical security of computers, network equipment and the infras-
tructure is very important, as well as proper access control systems and pro-
tocols that are used, as they all form the chain of interconnected elements
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that build the complete working system. Integrity of that system depends on
all elements, starting with software, and to maintain the reliability and safety
of the whole system it is important not to underestimate the relevance of each
underlying element, being it hardware malfunction, a programming error, or
the user ignorance.
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Chapter 2

Basic security in computer
systems
2.1 The main problem are people
Although it is possible to automate many access rules and procedures and
deploy very sophisticated security policies, research shows that the weakest
link in the computer system security are the people who use it. This is
not even because people want to break the security intentionally, but due to
several factors. These include:

◦ Lack of understanding for the rules.
People tend to create simple, easy to remember passwords or store
them in easily accessible places, such as a yellow sticky note under the
table. Or are easily tricked to give away information that should be kept
confidential. If they do not understand that their actions can sabotage
the security of the whole network, they will not pay enough attention
to real problems.
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2.2. USERNAMES AND ACCESS RIGHTS

◦ No security when at home.
Once people finish their work and go home, they often forget about
the security constraints. Some people bring their work home and pro-
cess confidential data on home computers full of viruses and malware
programs, others talk openly with friends in pubs and share the infor-
mation that should be kept secret. The same passwords are often used
at work and in online social networks or other public servers.

◦ Disregard for threats and risks.
Many times security is seen as an obstacle as people do not know per-
sonally any examples of a security breach or any other security prob-
lem. If it did not happen yet, what is a real chance of happening soon?
Or is it just a nuisance in every-day work?

Last but not least – it is natural to us to stand in opposition to anything that
is enforced on us. If a security policy is implemented, the overall impression
may be that people are not to be trusted. Some may even feel offended. In
overall, this may in turn stimulate sub-concious resistance and in fact weaken
security instead of strengthening it.

2.2 Usernames and access rights
Unix and any other modern operating system intended for desktop/laptop
computers are multitasking systems, which means they can run several pro-
grams at the same time. Such programs are called processes and each of
them is running in a separate address space and is isolated from all other pro-
cesses, i.e. they do not share the same memory and the communication and
interaction between processes is limited to the mechanisms provided by the
operating system. The actual multitasking is usually achieved by time-sharing,
i.e. processes run on a processor for a specified maximum time (the timeslot
and are then put away (frozen) to allow other processes to access a CPU
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CHAPTER 2. BASIC SECURITY IN COMPUTER SYSTEMS

(This is called a preemptive multitasking – each process may be interrupted
at any point of execution∗, not just the system calls). On multi-processor ma-
chines many processes may run at the same time on different CPUs, but still
preemptive multitasking is used to allow running more processes than the
actual number of CPUs.

Another feature of the system is its ability to run processes on behalf
of different users. This gives ability to distinguish different users, offer them
their own share of the disk space protected from curious eyes of other users,
and protect their processes from those run by others. Different users may
be assigned different access rights to filesystem, external devices and various
other system resources. This feature is called a multiuser environment.

2.3 File access
File access in Unix is controlled by checking access rights associated with
each individual file or directory†. Basic access rights include read, write and
execute permissions (r, w and x) and are repeated in threecategories, for the
file owner, group of users, and all others (u, g and o) – see fig. 2.1.
Access to a file for a process will be granted if one of these conditions applies:

◦ Effective uid of the process is equal to 0;
◦ Effective uid of the process is the same as the owner of the file and the

“user” permission bits allow the required access;
◦ Effective uid of the process is not the same as the owner of the file, but

the effective group id, or one of the extra groups that the user belongs
to is the same as the group owner of the file and the ”group” access bits
allow the required access;

∗Some operating systems may allow context switch only inside a system call. In such case we
talk about non-preemptive multitasking.
†A directory is actually regarded as a special file containing the list of other files.
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2.3. FILE ACCESS

drwxr-x--x  3

ogu

others

group

user

 111101001
  7  5  1

type (catalog/file/special device,

root wheel

number of links

Figure 2.1: Unix file access rights

◦ Neither the euid or egid (or the auxiliary groups) match the file owners,
but the “others” permission bits allow access.

In addition to the basic file permissions, Unix offers some special permission
bits shown in fig. 2.2.

Set User ID bit (04000 – (1) in fig. 2.2) allows changing the user ID related
to a running process for the duration of running the program.

(1) -rwsr-xr-x – set-user-id
(2) -rwxr-sr-x – set-group-id
(3) -rw------T – sticky bit
(4) -rwxr-xr-t – sticky bit (T+x)
(5) drwxr-sr-x – set-group-id
(6) drwxr-lr-x – obligatory locking (s-x)
(7) drwxrwxrwt – sticky bit

Figure 2.2: Special access rights in Unix

Set Group ID (02000) on an executable file (2) works much the same, but
changing the effective group ID of the executed process. When used on
16



CHAPTER 2. BASIC SECURITY IN COMPUTER SYSTEMS

directories (5) – allows inheriting the group owner on all files and subdirec-
tories created (BSD behaviour). Without the corresponding execute bit set,
as in (6) – forces the obligatory locking mechanism (i.e. file locking functions
are blocking) over the advisory locking used normally.

Sticky bit (01000) – (7) in fig. 2.2, is used in directories with group/other
write permissions (such as /tmp). Normally, write access to a directory means
not only the right to create files but also to delete the existing ones or modify-
ing their names. So it is also possible that one process removes a file owned
by other process and possibly replace it with another file or a symlink, which
may lead to race condition (see section 8.6) or different problems. Sticky bit
on a directory disallows removing of files owned by other users, or changing
the attributes of such files.

Modern Unix systems also provide an extension to these typical access
rights, which is called Access Control Lists or ACLs. These allow each in-
dividual file or directory to have a special extra list of users or groups with
additional allow or deny rules.

2.4 UID and effective UID
In order to differentiate users and processes run by them, different accounts
can be created in a Unix system, each requiring a separate login name and
a password. For a system, however, it is much easier to distinguish differ-
ent users not by names, but by unique numbers – so called “user IDs”, or
UIDs. The mapping between a user name and his UID is provided by the
/etc/passwd file.

Once a user accesses the system by providing a valid username and pass-
word and logging in, the system creates a login shell process by running the
user’s login shell (the last parameter in the /etc/passwd file). This shell is
run with user’s UID, listed in the second field of the /etc/passwd user entry
and this UID is inherited by all subprocesses that this shell can spawn. So

17



2.4. UID AND EFFECTIVE UID

all the processes run by the user will be created with the same UID and will
access file systems and system resources with access rights checked against
this particular UID.

Special access for such programs is achieved by combination of two spe-
cial features of the authorization system – set user id bit in file access rights
and effective user ID (euid) in process information. Effective user ID is just
like the normal uid, except that it is actually the user ID that the system
checks when it needs to find whether a process can open a file or access a
device. Usually, EUID and UID are the same, i.e. containing the same value
inherited all the way down from the login process and identifying a user. So
for most cases we can pretend that the UID value is the one we care about.

However, when a process executes a program that has a “set user ID” bit
set in a filesystem, things change a little‡. The UID of the process remains
the same, but the EUID is set to the owner of the file, i.e. the program that
is being run from the disk. In the most common case of such programs, the
file is owned by root, i.e. its owner ID is 0, and the resulting process will have
its EUID set to 0, while the UID value is preserved from the parent process
(and possibly from the login shell). In the same way, if a file has a “set group
ID” bit set, that group is set as the running process’s effective group.

‡this actually is done during the exec() system call.
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Chapter 3

Authentication and
authorization
One of the fundamental problems in computer systems security is establish-
ing trust and identifying who is trying to access the system and whether he
or she should be granted access to perform desired actions or not.

Humans have no problems identifying other humans – or at least a small
subset of friends, relatives, or even other people seen from time to time. We
can recognize the face, the overall look, the voice and many other details
characteristic to a particular person and once we know this person’s identity,
we can easily connect these two.

Computers, on the other hand, have very limited peripheral devices when
compared to human senses. They may have cameras installed, but face recog-
nition software is not readily available and needs a lot of processing power.
Same goes with voice recognition or other biometric information process-
ing. So the mostly used devices for actual user identification are the simple
ones – keyboards and appropriate logic behind the procedures being used
for user authentication. If you enter a secret password, the computer system
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3.1. PASSWORDS

will grant you access, assuming you really know how to keep your password
secret, so if anybody provides this password, it must be you. This assumption,
although very fundamental for the security of system passwords, is hard to
meet nowadays, as we learn about network sniffing or other password tar-
geted attacks, such as phishing (see section 5.4).

Other methods of authentication include special tokens that a user must
use every time when accessing a computer system – if we cannot identify a
user directly, we may perform better with special devices designed especially
for identification purposes. But again – if identifying such a device means
identifying a user, we must assume that the device has not been lost, stolen
or misplaced and is used by its sole owner, not somebody else.

3.1 Passwords
For long time passwords have been the mostly used system for identifying
users. They are easy to use even by “computer illiterates”, as the idea behind
them is really simple – you need a username, and a secret. If you know the
secret, you are in. The typical problems coming with passwords are not so
obvious though – it is a common knowledge, that you are not expected to
share your password with other people (still, some people do), and be careful
when typing, so nobody is looking at your keyboard over your shoulder, but
not too many people care about changing their passwords regularly or using
a different password for every service they create accounts on. Nowadays, op-
erating systems usually implement some better ways of authentication, such
as fingertip scanning or configurable modules (by methods such as PAM
described in section 3.3), but even now, passwords are the most commonly
used authentication method in many web services, databases and many other
programs.

Unix system used to store the passwords in the /etc/passwd file together
with some other data regarding user accounts. Passwords stored in a system

20



CHAPTER 3. AUTHENTICATION AND AUTHORIZATION

/etc/passwd:

root:x:0:1:Super-User:/root:/sbin/sh

rootjs:x:0:1:Super-User:/root:/usr/bin/bash

js:x:500:10:Joe Shmoe:/home/js:/usr/bin/bash

/etc/shadow:

root:Gna56gd2rA@fG:11581:0:99999:7:::

rootjs:$1$Fixx5fG2nvvZAhskrei.sw$ns0SmHS1:11554:0:99999:7:::

js:aZA56GD2Ra@FG:11581:0:99999:14:::

Figure 3.1: Sample lines from passwd and shadow files

are encrypted using a one-way hash function, so that decrypting the password
is impossible. However, techniques such as passwords cracking (explained
in detail in section 3.1.2 on page 23) forced the passwords to be moved to the
/etc/shadow file which does not have to be readable to every user of the sys-
tem. The traditional Unix crypt() hash function allows 8-character passwords
(truncating any following characters) which nowadays is not considered se-
cure enough (passwords shown for users root and js in fig. 3.1 are samples
of passwords encrypted this way), so it is now replaced with MD5 (user rootjs
in fig. 3.1) or SHA. The other fields of the /etc/shadow file contain the “aging”
information, i.e. how often it has to be changed or when it finally expires.

3.1.1 Password vulnerabilities
Passwords are the traditional and the most widely used mechanism for ac-
cessing computer systems, but they also pose a lot of problems.

Contrary to the popular belief – they are also costly in maintenance. If
they are not changed regularly, they may be broken. If, on the other hand,
the computer system forces a user to change them too often, users will tend
to forget them or write them down on sticky yellow notes attached to their
screens, which is even worse.

Typical passwords are easy to guess or break. As more and more systems
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3.1. PASSWORDS

require some sort of access control, we are overwhelmed with more and
more passwords to remember, so it is natural to expect, that people may
use the same passwords over and over again, and that these passwords will
not be very complicated. This way they will be also vulnerable to password
cracking (see section 3.1.2). Passwords are also easy to find by just “looking
over shoulder” while someone is just typing it. Maybe not the first time in
whole, but definitely a part of it, and the whole password can be definitely
found if there is a chance to see it typed just a few times.

Also, as they are often used to access remote systems over the network,
and the standard network layers do not provide any transmission privacy,
they may be stolen by tapping into the network and eavesdropping on just
the very few packets of every connection being established.

If people have too many passwords to remember, they tend to create
simple ones, that they will easily remember. Unfortunately, these also are
easy to guess. So do not use passwords such as:

◦ Your name, spouse’s name, girlfriend’s name, dog’s name. Anybody’s
name.

◦ Names of your favorite fantasy characters.
◦ The hostname of your computer.
◦ Your phone number or your license plate number.
◦ Anybody’s birth date.
◦ Some information easily obtained about you (birth date, address)
◦ Some information based on your username.
◦ Words, which can be found in a dictionary. Any. Including Polish or

Japanese :-)
◦ Simple patterns of letters on the keyboard, like qwerty or 3edc

22



CHAPTER 3. AUTHENTICATION AND AUTHORIZATION

◦ The same as already set on some other computer system.
◦ Any of the above spelled backwards (!elpmaxe elttil siht ekil).
◦ Any of the above with first/last letter capitalized.
◦ Any of the above followed or prefixed by a single digit or punctuation.
◦ Any 0f 7he abov3 5pe11ed 1n 50m3 funny way (like r00t or f00tba11).

Thinking of a good password which will be not easy to guess may be some-
times difficult, so here is some advice what is considered a good password:

◦ Having both uppercase and lowercase letters.
◦ Hard to guess.
◦ Containing digits and/or punctuation characters. Also in the middle.
◦ Seven or more characters long.
◦ Easy to type quickly, i.e. hard too see when they are typed
◦ Not containing some problematic characters, such as @ or Ctrl-H.

3.1.2 Password crackers
Traditionally passwords have been stored in the /etc/passwd file which is
readable by every user in the system, as it also provides the mapping between
user IDs and usernames, which is needed on many occasions, such as listing
files with ls or finding home directories of users.

In order to protect passwords, they have always been stored in the en-
crypted form, using a one-way hash function∗. Whenever a user logs in, he
provides his username and password, but to verify this information it is not
necessary to have the password stored in the same form. The login program
∗originally this was a crypt() function, which in modern systems is now replaced with MD5.
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encrypts the password using the same one-way function that was used origi-
nally and compares the encrypted versions. If they match, the password given
by the user must be correct, if they don’t – there must be some difference.
It is not possible to tell whether it was a typo, a simple one-character error
or a completely different password. The password must be given exactly the
same as when it was generated or the login process will fail.

Although it is not possible to reverse the process of encoding the pass-
word and retrieve its plaintext version from the encrypted form, it is quite
feasible to try guessing it, as the encrypted version provides an easy way of
verification.

With the constantly increasing computing power available for single pro-
cessors or clusters of computers, this process is getting much easier than
anticipated in the past. Table 3.1 shows estimated breaking times, assuming
8000 encryption operations per seconds (achievable on a single Pentium-3 100
MHz processor). With the current state-of-the-art quad-core 2.4 GHz proces-
sors we may expect 100-fold speed increase, which means the listed times
will be 100 times shorter, so a 8-letter lowercase password is now crackable
in about 8 hours instead of 302 days (still on a single processor).

Password cracking is a task that can be split into independent parts very
easily, so it can benefit from massively parallel computing. Separate tasks
may either work on a partial dictionary, or can be given a subset of all pass-
words. So the time needed to crack some passwords decreases in linear
proportion to the number of computers that participate in the task. E.g. if
we could afford to dedicate 1 000 000 computers for such a job, the time re-
quired decreases by 6 orders of magnitude, i.e. just over 3 months for a 8-digit
password that may contain any characters of codes 1-127.

There are a lot of ready-to-use passwords crackers available from the In-
ternet. Some of the most commonly used include JOHN THE RIPPER, THC HY-
DRA and the original CRACK program. There are also system- or application-
specific crackers that can be dedicated to cracking passwords needed for ac-
cessing PDF or ZIP files, cracking WEP/WPA keys (AIRCRACK or AIRSNORT),
24



CHAPTER 3. AUTHENTICATION AND AUTHORIZATION

Characters used no. of breaking time
passwords required

4-digit password (PIN code) 10000 1.2 seconds
typical language vocabulary 100000 12 s
4-letter password 456976 1 minute
8-digits password 1 · 108 3 hours 25 mins
6-letter password 3 · 108 11 hours
8-letter password, lowercase 2 · 1010 302 days
8-character password, lowercase and digits 2.8 · 1012 11 years
8-letter password, mixed case 5 · 1013 212 years
8 characters, all ASCII 32-127 7 · 1015 28594 years
8 characters, all keyboard 1-127 6.7 · 1016 268246 years
All possibilities for MD5 hash function 3.4 · 1038 1.3 · 1027 years

Estimated age of the Universe 1010 years

Table 3.1: Strength of different passwords

or “recovering” passwords used to protect MS-Windows systems (e.g. CAIN
AND ABEL or SOLARWINDS). A useful list of available crackers may be found
in [Lyo06].

3.2 One Time Passwords
The obvious solution to the problem of password sniffing are the passwords,
that are changed frequently. So frequently, that a new password is required
every time that the user logs in, so even when the password is sniffed, it will
be useless. There are several systems allowing such way of operation, some
of them requiring specialized hardware, others using just some clever ideas
and a proper setup. The next few pages will show the most popular systems
in use.
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3.2.1 S/Key system
S/Key One Time Passwords system makes use of MD5 or MD4 hash func-
tions to achieve uniqueness of passwords sent over insecure media, such as
network. The idea behind the system is a very simple extension of the tra-
ditional password system which normally takes a user-provided password,
encrypts it using a hash function and then stores such an encrypted form in
the /etc/passwd file. In S/Key, the password is run through the hash function
not just once, but several times – usually 100 times (see fig. 3.2), but this is just
an arbitrary number. When changing a password, user provides a new one –
let’s call it password number 0, and system has to store it in the encrypted
form. In S/Key, password no. 0 is encrypted using MD5 function, producing
128 bits of data. Higher and lower 64 bits are XOR-ed, producing a 64-bit data,
which becomes password no. 1. This in turn is run through MD5/XOR again
to produce password no. 2. The process is repeated until we get password
no. 99 which is finally stored in a password file – /etc/skeykeys.

md5(pass1)

pass 1pass 0

pass 2

pass 98

pass 99

md5(md5(...md5(pass2)...))

md5(pass98)

md5(pass0)

Figure 3.2: S/Key principles

Now – the password no. 99 is stored in a system and the user wants to
log in. All he has to do is to provide a password no. 98. The system may
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calculate its MD5 hash, and if the password is correct it will match password
no. 99 stored in the /etc/skeykeys file. In such case, the stored password
(i.e. encrypted password 98) will be replaced with the just entered password
which is both the encrypted version of password 98 and encrypted version
of password 97. So, next time the user wants to log in, he will be asked for
password no. 97.

Security and usefulness of this system is based on simplicity of generating
all subsequent passwords from any password we already have when com-
pared to difficulties of doing the same in the opposite direction. If password
no. 40 is known, generating passwords no. 41, 42, 43 ... is trivial, but finding
passwords numbered between 0 and 39 is impossible or at least improbable
(it would require processing power taking billions of years to finish).

3.2.2 Tokens

Figure 3.3: RSA OTP tokens

Tokens are small pieces of hardware that
can be used as authentication devices, much
like the keys may be used to open locks. For
token authentication to succeed, the user
has to prove that he has the token with him
which may be checked in many ways. To-
kens connected to RS232, parallel or USB
port of a computer system may be used as
a kind of a hardware license key, but nowa-
days it is much easier to depend on some
short cryptographic data to be shown by a
token itself and entered by a user.

Tokens may either work as standalone
devices independent of the outside world
(i.e. only producing some output needed
for authentication) or work bidirectionally –
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requiring some input (a challenge) and producing the adequate response.
Challenge-response tokens either require this data to be entered numerically
through the built-in keypad, or contain some input device, such as photodi-
ode, to allow some simple transmission by a “blinking” a special applet on
the computer screen and holding the token in the right position to receive
that data. Once the data is entered into the token, it calculates the response
and displays in on a LCD screen, so that it may be typed by a user wishing
to authenticate himself. The response calculation algorithm has to be secret,
otherwise the token function could be duplicated.

Standalone tokens produce the output that changes from time to time.
It may be given for example as a 6-digit number changing once a minute,
looking like a sequence of random numbers, but the algorithm for that must
be of course predictable, as the same sequence has to be generated at the
authentication server. The authentication process then compares the data
provided by the user with the current state of the sequence generator on the
authentication server and if they match, the user is presumed to have the
token, so the authentication succeeds. Figure 3.3 shows how these tokens
may look like.

One of the problems with standalone tokens is the proper time synchro-
nisation between the token and the server.

Even though it may look as a complicated task, the procedure is simple
and straightforward. Both the token and a server contain the sequence gen-
erator, so if the server is able to produce the number which is considered a
“current” one, it can produce also the next one and already knows the pre-
vious one which has just expired. In fact – it may go along the timeline and
produce any value expected from the token in the past or in the future. So,
if the token value is not current, but matches the next one in sequence, the
server may note the time difference and adjust the sequence generator.
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3.3 Pluggable Authentication Modules (PAM)
New authentication methods appear from time to time as new ideas are devel-
oped and new hardware becomes more popular and cheaper. If new methods
of authentication are to be implemented, it is necessary to recompile lots of
programs that usually do user authentication. This includes the login process
done by the /bin/login program, but also connections by TELNET, RLOGIN,
SSH, FTP, e-mail services provided by POP3 or IMAP, and any other network
service.

Adding support for new emerging authentication methods by manual in-
sertion of appropriate code of existing applications was the only option for
some time, but now is considered to be a very inefficient way. Instead, there
is a standardised way of calling library functions providing the authentication
services, so that new methods can be added as shared libraries. This is called
PAM, or Pluggable Authentication Modules.

Applications compatible with PAM do not check user credentials by them-
selves but rather call the appropriate functions in the PAM library. The main
configuration of the PAM system is stored in /etc/pam.conf file, but most of
the actual functionality comes from the /etc/pam.d directory, where there is
a separate config for each service available in the system (see fig. 3.4). Adding
new authentication methods can be achieved by simply installing the appro-
priate library (dynamically linked, in a form of a libSomething.so file) and
referencing it from those services, that should use this method, either as a
sufficient or a required prerequisite (fig. 3.5).
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% ls -la /etc/pam.d/

-rw-r--r-- 1 root root 384 2008-04-03 03:02 chfn

-rw-r--r-- 1 root root 92 2009-07-31 15:46 chpasswd

-rw-r--r-- 1 root root 581 2008-04-03 03:02 chsh

...

-rw-r--r-- 1 root root 4113 2009-07-31 15:46 login

-rw-r--r-- 1 root root 520 2008-04-09 22:22 other

-rw-r--r-- 1 root root 92 2008-04-03 03:02 passwd

-rw-r--r-- 1 root root 168 2007-10-04 21:56 ppp

-rw-r--r-- 1 root root 69 2008-10-10 18:55 samba

-rw-r--r-- 1 root root 1272 2009-01-28 21:58 sshd

Figure 3.4: Sample contents of the /etc/pam.d directory

auth [success=1] pam_unix.so nullok_secure

# here’s the fallback if no module succeeds

auth requisite pam_deny.so

auth sufficient pam_rootok.so

password [success=1] pam_unix.so obscure md5

password required pam_permit.so

# passwords may be provided by the gnome keyring

password optional pam_gnome_keyring.so

# or the S/Key OTP system

password optional pam_skey.so

Figure 3.5: Sample contents of a service using pam.d configuration
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Chapter 4

Network Security
IP protocols, as we know them and use them every day, have been designed
and developed in early 1970s as part of the ARPANET project. At that time,
there were very few considerations for security of the actual data transmis-
sion, and most of it depended on the physical security of the wires used to
connect the computing centres. Today we not only cannot control access to
all the data cables and routers that are located along the route across the
globe, but we go wireless using WiFi and WEP, meaning “Wired Equivalent
Privacy” which we already know is misleading. In todays reality a lot of as-
sumptions adopted long ago have to be revised, but some of them would
require changes so fundamental, that they are just impractical, as the whole
protocol stack and networking applications would have to be rewritten from
the bottom up.

To solve such fundamental problems either new protocols have to be de-
veloped, or a workaround may be implemented. Both of these solutions
however require a lot of effort spent in adopting the existing software. The
best example is IPv6 – a new protocol designed to solve several problems
existing in IPv4 (most notable ones being address space scalability and secu-
rity). Even though it has been standardized in late ’90s and the first imple-
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mentations followed shortly, it has not replaced IPv4 until today. Most of the
modern computer systems have nowadays the full support for IPv6, but it
has not replaced the dominant IPv4 network. Even the security parts of the
IPv6, such as IPSec need a lot of effort with rewriting existing applications
and are implemented very slowly.

4.1 Basic IPv4 problems
IP networks suffer many problems inherited from the past, and the most
notable ones include these:

◦ IP layer does not guarantee any data confidentiality (or encryption), so
everything sent over the network may be overheard (sniffed).

◦ Many times we have to trust the data which is served from hosts beyond
our control (e.g. the up-hierarchy DNS servers).

◦ Many protocols designed to improve security are the workarounds and
no real solution is possible.

◦ The biggest advantage of IP networks – unlimited encapsulation and
interoperability – is also the weakest security point, as any restrictions
enforced by firewalls or similar mechanisms may be circumvented by
encapsulating “unwanted” IP packets within other “good” IP packets that
will match the firewall passing criteria.

◦ Security extensions and improvements have to be introduced as com-
pletely new protocols or separate protocol layers, on a one-by-one basis
and only after a wide acceptance (e.g. SSL, IPSec)

All of this makes it really hard to deal with security problems of today’s
networks. Some of them are network-layer problems, some are application-
layer problems. The most common ones will be described in the following
sections, starting from the lower layers of the TCP/IP protocol stack.
32



CHAPTER 4. NETWORK SECURITY

4.2 Sniffing
Regardless of the actual physical media, ethernet networks are broadcast
networks. Even if some data is sent from one host directly to another, it may
be overheard by other machines located on the same local network, or on
the path.

A sample conversation between two hosts is shown in fig. 4.1 where we
can see a login attempt from host asic to an interactive login server at cyber
using the TELNET protocol. The cleartext password “abc” can be clearly seen
when it is sent from the client to the server, even though it is not echoed back.
The sample shown is the output of a SNOOP program run on Solaris platform,
but similar tools are available on other operating systems. In Linux we may
use TCPDUMP which is usually installed by default, or programs such as SNORT,
IPGRAB, ETTERCAP, ONE WAY NETWORK SNIFFER, etc. A lot of these programs
are available from http://freshmeat.net/ and http://sourceforge.net/.

Sniffing is very hard to detect, as it does not generate any extra traffic and
is rather a passive way of grabbing the packets from the network interface.
Tools for sniffing are also widely available – the most common ones are the
protocol analyzers, i.e. network monitoring tools, such as TCPDUMP [JLM09]
or WIRESHARK [wir10]. There are also libraries, such as LIBPCAP, with APIs
that may be used for sniffing from within programs [Gar08].

4.3 Spoofing
Spoofing is a technique of injecting some contents into a conversation be-
tween two communicating computer systems in a way that impersonates
somebody else. There are many ways of spoofing that can be done on dif-
ferent levels, starting from physical/network layers and ending in particular
protocols or authentication methods.
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49 asic ts/pub/src# snoop cyber

asic -> cyber TELNET C port=53218

cyber -> asic TELNET R port=53218 login:

asic -> cyber TELNET C port=53218

asic -> cyber TELNET C port=53218 t

cyber -> asic TELNET R port=53218 t

asic -> cyber TELNET C port=53218

asic -> cyber TELNET C port=53218 s

cyber -> asic TELNET R port=53218 s

asic -> cyber TELNET C port=53218

cyber -> asic TELNET R port=53218 s/key 90 cy11009\r\n

asic -> cyber TELNET C port=53218

cyber -> asic TELNET R port=53218 PASSCODE or Password

asic -> cyber TELNET C port=53218

asic -> cyber TELNET C port=53218 a

cyber -> asic TELNET R port=53218

asic -> cyber TELNET C port=53218 b

cyber -> asic TELNET R port=53218

asic -> cyber TELNET C port=53218 c

cyber -> asic TELNET R port=53218

asic -> cyber TELNET C port=53218

Figure 4.1: Sniffing network data using the SNOOP program.

4.3.1 DNS Spoofing
Lets consider a local network that consists of a few servers and several work-
stations that access services located in these servers. These may include disks
exported from the servers, authentication services, internal WWW pages,
online library resources or any other services. Servers do not offer these
services just to anybody in the world but usually restrict the access to just
a range of IP addresses or – especially in case of larger networks – to a spec-
ified domain owned by the organisation.

When a request for a service comes, all that is known is the IP address
of the client. In order to find the corresponding domain name of the client
it is necessary to consult the DNS service – in this case, a reverse mapping
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from IP addresses to names. This information however, will be provided by
the DNS servers belonging to the client site and may give false information.

Let us assume that the server in question is sun1000.pwr.wroc.pl with IP
address 156.17.1.33 and there is an incoming connection to that server from
IP 63.0.3.1. To check the name of the client, it is necessary to find the mapping
for 1.3.0.63.in-addr.arpa. The information will be provided by the server
responsible for 3.0.63.in-addr.arpa or 0.63.in-addr.arpa subdomain and there
is nothing that can prevent this server from saying that, for example, reverse
mapping for 63.0.3.1 is sun1000.pwr.wroc.pl, so that the server will assume
the connection is coming from its own address (or it may be just any name
belonging to the local “trusted” network).

In order to check whether this information is valid, it is necessary to cross-
check the given name with a non-reverse mapping, i.e. translate it from the
domain name to the IP address (or addresses, as there may exist many IP
interfaces with different IPs, all associated with the same host). The mapping
done in this direction will be provided by local DNS servers (i.e. in this case –
the ones responsible for pwr.wroc.pl domain). If one of the returned IP
addresses for that host name matches the IP address that we used to find the
reverse mapping, everything is OK and the reverse translation is valid. No
match in the address list is a clear indication of DNS spoofing taking place,
i.e. someone trying to steal some of services from the pwr.wroc.pl domain
by pretending to belong to this domain as a client.

For all the services that are started through the inetd daemon, spoofing
prevention is very simple with the TCPD package [Ven95]. The TCPD pro-
gram is run by inetd instead of the actual service daemon (such as telnetd
or rlogind) but with original parameters, allowing TCPD to resume normal
operation and executing the appropriate server once all the security checks
have been finished (see fig. 4.2). These include checks against DNS spoofing
first, but a customized configuration file may be provided, giving the server
a choice whether to accept the connection or not, based on criteria such as
the client’s IP address, DNS name, or DNS reverse mapping status. A sample
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telnet telnetd

inetd

tcpd

- port number?
- setuid()
- /usr/sbin/server

telnet telnetd

inetd
- port number?
- setuid()
- /usr/sbin/tcpd

- spoofing?
- hosts.allow?
- /usr/sbin/server

the client the server

Figure 4.2: Anti-spoof checking by TCPD

of such configuration is shown in fig. 4.3.

# our router reads its config using tftp, other hosts are banned

# from tftpd access

in.tftpd: router.pwr.wroc.pl : allow

in.tftpd: all : rfc931 : deny

# other services

in.talkd,in.fingerd : 156.17.0.0/255.255.0.0 : allow

in.talkd,in.fingerd : ALL : deny

# we allow telnet only from hosts registered in DNS

in.telnetd : KNOWN : rfc931 : allow

ALL : ALL : rfc931 : deny

Figure 4.3: Sample hosts.allow file for TCPD

Even though the TCPD uses both /etc/hosts.allow and /etc/hosts.deny files (in
that order) with the assumed ALLOW/DENY actions set accordingly, it is usually
better to put all entries in just one file and explicitly set whether each match-
ing line should allow or deny access. In the given example we first deal with
TFTP service, which is normally used to boot up local diskless clients, pro-
vide configuration files for routers, switches and other network equipment
or backup their configurations, so access may be limited to a specific host
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and all other addresses may be denied. The rfc931 option requests querying
the IDENTD daemon on the other side to find who is making the connection.

The TALKD and FINGERD programs are then allowed from a metropolitan
area network (including Wroclaw University of Technology as well as other
academic institutions in Wroclaw), denying access from all other sources.
Interactive access to TELNETD is then allowed from hosts that have proper
reverse-DNS mapping and finally, all connections to other services from any
IP addresses are denied by the last line.

4.3.2 SMTP Spoofing
SMTP spoofing is even simpler and may be done without any special access
or tools. All is needed is some kind of a client (such as TELNET or NETCAT
allowing to establish a connection to port 25 on which mail servers listen to
packets. Mail servers do not normally ask clients or any connecting servers
for their credentials, allowing anybody to connect and drop mail that will be
later delivered.

The SMTP protocol (or its enhanced version called ESMTP) is actually
quite simple and easy to use – even to type the conversation manually. A
sample SMTP session of sending spoofed email is shown in figure 4.4.

4.4 Link and network layer problems
Some of the security problems are not specific to a particular application, but
are common to all networking programs due to their nature. The next four
sections describe some problems that are located in layers 2 and 3 of the OSI
model and may affect all applications running on top of them.
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--> telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’^’.

<-- 220 doh.pwr.wroc.pl ESMTP Sendmail; Wed, 6 Oct 2010 12:43:01 +0200

--> ehlo spoofer

<-- 250 doh.pwr.wroc.pl Hello localhost [127.0.0.1], pleased to meet you

--> mail from: <santa@heaven.org>

<-- 250 <santa@heaven.org>... Sender ok

--> rcpt to: <ts@localhost>

<-- 250 <ts@localhost>... Recipient ok

--> data

<-- 354 Enter mail, end with "." on a line by itself

--> From: Santa <santa@heaven.org>

--> To: ts

-->

--> What will you do if you catch me?

--> .

<-- 250 CAA05466 Message accepted for delivery

Figure 4.4: SMTP spoofing

4.4.1 ARP
Hosts on a network communicate using various methods, depending where
they are located.

To send a packet to a host on a local network the network layer (IP) puts
the appropriate IP address as the destination, and the link layer adds the MAC
address of the corresponding host. This needs to be a correct address so that
the destination host’s network card will pick the packet off the network. If the
packet is sent to a host on a remote network, the destination IP will be of that
host, but the network layer determines that it has to go through a forwarding
router with a specified IP address, so the destination address in layer 2 data
of the packet must be set to the router’s MAC address. The proper mapping
between layer 2 and layer 3 addresses is needed then every time a packet is
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solaris> arp -a

Net to Media Table

Device IP Address Mask Flags Phys Addr

------ --------------------- --------------- ----- ---------------

le0 ALL-SYSTEMS.MCAST.NET 255.255.255.255 01:00:5e:00:00:01

le0 rush 255.255.255.255 00:10:5a:48:1e:20

le0 hop.ict.pwr.wroc.pl 255.255.255.255 00:e0:63:04:1c:c0

le0 okapi 255.255.255.255 SP 08:00:20:73:c8:42

Linux> arp -a

asic (156.17.41.90) at 08:00:20:7B:07:FA [ether] on eth0

gorg1 (156.17.41.81) at 00:C0:DF:AC:9B:63 [ether] PERM on eth0

gorg2 (156.17.41.82) at 00:C0:DF:C1:A2:CB [ether] PERM on eth0

test (156.17.41.69) at * PERM PUP on eth0

Figure 4.5: Sample ARP tables on two hosts

sent over the network, whether its destination is local or remote.
These mappings are required for all hosts on the local network. Depend-

ing on local topology and determined by the netmask, local segments may
span over just few host (e.g. 16) or may contain several hundreds of them
(like 256 or 4096). Adding the required IP/MAC mappings manually would
be a tedious and ineffective task, so special protocols are used to automate
this task – ARP (Address Resolution Protocol) and RARP (Reverse ARP).

Whenever a packet is sent to a local IP address, the ARP table is consulted
(a sample of such tables obtained with the arp -a is shown in fig. 4.5). If a
match is found, the corresponding MAC address is used. If not – the network
layer sends the ARP packet, which is the request for a mapping from the
requested IP address to the yet unknown MAC address. This packet is sent
as broadcast, so if the target host discovers that the requested IP address
is his IP address, it sends a reply, which is then cached at least for several
minutes. Whenever the mapping is used for sending packets, its “time to live”
in the ARP table is prolonged, and if it is ever expired and deleted, it may be
regained by the ARP protocol again, when needed.
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This mechanism is simple, yet very effective in maintaining the up-to-date
information about the local network, even when it changes dynamically, as
people come and go connecting and disconnecting their laptops or switching
on and off their desktop computers.

But as all other simple dynamic protocols this one is also prone to abuse.
If any host on a network decides to respond to all ARP requests providing
its own MAC address, it will effectively steal the packets that were meant for
other hosts. This not only escalates the sniffing problem, but provides a way
for man-in-the-middle attacks, as the stealing host may inspect the packets
addressed for the victim, alter their contents and send them using the proper
MAC address. Other possible misuses come from whatever may be done by
redirecting the packets from the victim to the attacker. For example, if the
victim is a WWW server, the attacking host may launch a copy of that server
with modified web pages, leading to server identity theft and server spoofing.

4.4.2 Denial of Service attacks
Under this category we can file every type of an attack in which one user or a
system process takes so much of a system resource or resources, that it gets
exhausted and other users and processes can no longer use it. It may include
disk space, CPU time, processes, network connections, network bandwidth,
access to particular devices or services, communication mechanisms or any-
thing that is available in limited amounts. Some of these attacks are in fact
a side-effect of the ill-written programs or scripts or the effect of a simple
mistake, such as the wrong comparison at the loop conditional, no error
checking of the results value from the system call (or endless repeating of
an action in case of an error that cannot be corrected this way).

For the attacks originating locally, i.e. within a system, there are some
tools that may prevent such an abuse from happening. These mainly include
mechanisms that limit the usage for particular types of resources for a single
process or a process group. If such limits are in place, a process trying to
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exhaustively overuse a system resource (being it a disk space, a CPU time or a
memory), will be either simply denied access to that resource, once it reaches
the limit, or killed, if the limit appears to be the CPU time. It may prevent
some unexpected side-effects of programs being tested, but is usually not a
good idea for production servers and programs run in such environments, as
it may actually interfere with legitimately running programs that happen to be
servers running all the time and thus accumulating over time the CPU time
or other resources in a way that is really hard to predict. If we overestimate
the imposed limit, it will not be effective, but if we underestimate it – it may
actually prevent the legitimate server from running under normal conditions.

SYN flooding
One of the network DoS attacks is SYN flooding . It exploits TCP protocol
vulnerability which is present since the creation of this protocol (i.e. around
1970), but has been declared a problem in 2000. Establishing TCP connection
requires a 3-way handshake between the client and the server, as shown in
fig. 4.6.

server

client

SRC: client:12345
DST: server:23
TCP, options: SYN

SRC: server:23
DST: client:12345
TCP, options: SYN ACK

SRC: client:12345
DST: server:23
TCP, options: ACK

Time

Figure 4.6: Establishing TCP connection

Client sends a connection request to a well-known server port. This request
is a TCP packet with special combination of flags: the SYN flag is set and the
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ACK flag is reset. The server responds to such a packet by accepting the
connection and responding with another special packet, which has both SYN
and ACK flags set, and then waits for the final confirmation from the client.
The connection at this stage is in a half-open state, meaning it has already
been accepted by the server, but still in the connection establishment phase,
so that the server cannot simply discard the connection, but has to wait until
it is finally acknowledged from the client by sending the packet with ACK set
and SYN flag reset.

The problem appears if some malicious clients start sending the first SYN
packets, but then never complete the connections. The typical queues in the
TCP/IP stack of protocols allow only a small number of outstanding connec-
tions (ranging from 50 to 1000) so this limit may get exhausted very easily.
And because it is a system-wide limit affecting the TCP connection estab-
lishment, once it is reached, it will not be possible to create any new TCP
connection. So, for example, the WWW server may be attacked by SYN
flooding a SMTP port on the same server, or any other open port.

Broadcast storms
Also called ping flooding. Exploits poorly configured gateways which allow
sending co-called directed broadcasts. When using IP sub-netting the ad-
dress space assigned to an entity such as a company or a university is divided
in smaller parts, called subnets. It is always done at predefined boundaries
(determined by a netmask), so for example we may have a network span-
ning across the addresses 156.17.1.0 to 156.17.1.63 and another one from
156.17.1.64 to 156.17.1.127 when the netmask is set to 255.255.255.192. There
are 26 bits set in the binary form of the netmask, so we may also write those
networks as 156.17.1.0/26 and 156.17.1.64/26 respectively. In every subnet-
work there are two addresses which have special meaning – the first one (i.e.
156.17.1.0 or 156.17.1.64) is the network address. The last one (i.e. 156.17.1.63
or 156.17.1.127 ) are the directed broadcast address. If you send a PING packet
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to such an address, you get the response from every single host that is present
on that network, much the same when sending a packet to the 255.255.255.255
address. The only difference is that the packets to 255.255.255.255 are “real”
broadcasts which are cut-out at the subnetwork boundary by a router, while
the directed broadcasts are legal unicast packets throughout the whole Inter-
net (and can be forwarded by routers) except their final destination, i.e. their
own network, where they are treated as broadcasts.

4.4.3 TCP/IP stack vulnerabilities
There are also vulnerabilities in TCP/IP stack that had been present in dif-
ferent implementations of most of the operating systems for many years and
have been discovered only during the last few years. It happened so, be-
cause in the early days of TCP/IP development the main goal to achieve was
the interconnectivity and efficiency of the network protocols, not the secu-
rity aspects, although many problems were addressed at that time and solved
instantly. However, some bugs or loopholes remained undetected and were
adopted in many implementations ported then to new and new operating
systems and hardware platforms.

The first of such problems that were detected in 1997 was Ping of Death.
It relies on the RFC 971[DeS86] specification of a maximum packet size be-
ing 65535 bytes (i.e. 216−1). Packets longer than MTU (which is usually set
to 1500 bytes on ethernet media) have to be split into fragments, which are
reassembled at the receiving end of the communication. However, due to a
bug in implementation of packet reassembly code (affecting not only ICMP,
but just any IP protocol, e.g. UDP or TCP) it was possible to send a frag-
ment with a maximum allowed offset (65528, which is (213−1) · 8), and a size
causing the reassembled packet to exceed its maximum size. As this was not
anticipated, almost all of the TCP/IP implementations caused buffer overflow
errors while in the kernel mode, which affected the whole operating system,
usually causing a system crash.
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Once this attack has become widely known, people started browsing the
source code of TCP/IP implementations for possible other errors and some
other problems have been found in a very short period of time. Some ex-
ploit programs have also been created. Teardrop is one of such attacks where
overlapping fragments of a packet may cause a system crash. In other sys-
tems the Land attack was successful, where packets coming from the network
interface had the same source and destination address.

4.5 Networking protocols
Different networking protocols have security problems of their own. Accord-
ing to the OSI model, a protocol is generally placed in the highest layer (the
application layer), but in fact most of the applications and the communication
protocols that they use define all aspects from session establishment, through
data interpretation, up to application-level functional specification, so they oc-
cupy the three highest layers of the OSI model (i.e. session, presentation,
and application). In the following sections we look in detail into some of the
most popular application-layer protocols and their vulnerabilities.

4.5.1 Interactive login
Standard connection protocols such as TELNET, RLOGIN, RSH, or REXEC, do
not use encryption and are vulnerable to data sniffing and password stealing.
Accounts that are left open and active when a user no longer needs to use
the system (e.g. after changing the employment, or moving out to another
city), are also a security threat, as they may get taken by someone breaking
into the system. Having a “login shell” in a system across the globe is a very
desirable thing, as it may help the attacker to cover his tracks when trying
to break in into even more systems, by using several “hops”, so that tracking
back the origin of the connection will be hard or impossible, as it will require
cooperation of many system administrators of all the computers used in such
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a chain of connections. A hunt for an attacker using this technique (based
on a real story) is described in [Sto90].

To make things even worse, RLOGIN and RSH protocols allow users to log in
without checking a password if there is an entry for a (hostname, username)
pair in user’s ˜/.rhosts file. For checking this, the destination server trusts
entirely the information provided by a rlogin/rsh client. The solution to this
problem is to use the ssh [BSB05] program instead, which encrypts the whole
communication, so that the passwords cannot be sniffed, but also, for other
methods of authentication, first of all it checks the credentials of the con-
necting host/client for any signs of spoofing, and only then allows alternative
authentication methods, such as user login keys (similar to certificates).

4.5.2 FTP
FTP protocol is one of the most complex and sophisticated protocols devel-
oped so far. Its main goals are to provide a fast an reliable data transfer with
maximum possible transfer rates, but also allowing to abort the lengthy trans-
fers at any time or to resume transfers that have failed for any reason. All
servers allow also conversion between text formats between Unix/DOS/Mac
machines, and modern servers allow features like file compression “on the
fly” or transfer of the whole directories with a single GET command.

The way that FTP protocol works is actually quite complicated and may
not work in modern firewalled networks by default. Port 21 is used for
control connection and port 20 for data transfer. FTP server can operate
either in active mode, which is the default for most of the clients, or the
passive mode, which is preferred by the web-based clients such as FIREFOX.
These two modes of operation are shown in fig. 4.7.

In active mode (fig. 4.7(a)) the client connects first to port 21 of the server
and issues commands, but commands requiring data transfer, such as DIR,
GET or RETR cause the client to issue a PORT command, informing a server
about the port number that client has opened. It is the server then who
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opens the connection to the client from its own port 20 and the data is trans-
ferred using this new connection, while the old one may still be used to issue
other commands (e.g. to abort the transfer). When transfer is complete,

FTP client

FTP server

5002

5001

21
COMMAND

20
DATA

P
O
R
T
 
5
0
0
2

O
K

D
A

T
A

 C
H

A
N

N
E

L

O
K

Time

(a) FTP in active mode
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(b) FTP in passive mode

Figure 4.7: FTP modes of operation:
(a) active and (b) passive

this connection is closed
automatically.

Data transfer in pas-
sive mode (fig. 4.7(b))
uses additional port on
the server. The client
first uses the PASV com-
mand to indicate its
willingness to initiate
the passive mode data
transfer to which the
server opens some ran-
dom additional port and
informs the client of its
number with the OK re-
sponse. The client then
opens connection to the
given port and trans-
mits the data.

4.5.3 Anonymous FTP
Anonymous FTP poses even more threats to the computer system, as by the
definition, it allows access for any users of the Internet and if any problem
with the service is discovered, it may be exploited by anybody. So the proper
setup of anonymous FTP service is crucial for the security of the server
running it.
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# Special users

deny-uid %-99 %65534-

deny-gid %-99 %65534-

allow-uid ftp

allow-gid ftp

# various user groups and classes

guestgroup ftpchroot

guestuser *

class all real,guest,anonymous *

class localreal real *.pwr.wroc.pl 156.17.*.*

# access limits for various user classes

limit dead 0 Any /etc/ftp/msg.dead

limit localreal 30 Any /etc/ftp/msg.toomany

limit anonymous 100 SaSu|Any1800-0800 /etc/ftp/msg.toomany.offpeak

# possibility of compressing files or directories on-the-fly

compress yes anonymous guest real localreal

tar yes anonymous guest real localreal

# permissions to modify files and execute special commands

delete no guest,anonymous # deleting files?

overwrite no guest,anonymous # replacing them?

chmod no anonymous # changing permissions?

umask no anonymous # changing umask?

rename no anonymous # renaming files?

# uploading configuration for various subdirectories

upload /pub/ftp * no

upload /pub/ftp /pub no

upload /pub/ftp /pub/incoming yes ftpadm ftp 0620 dirs

# filters for potentially unsafe file names

path-filter anonymous /etc/msg.badpath ^[-A-Za-z0-9_\.]*$ ^\. ^-

path-filter guest /etc/msg.badpath ^[-A-Za-z0-9_\.]*$ ^\. ^-

Figure 4.8: Sample anonymous FTP server setup file
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The setup process is complicated and there are lots of common errors that
may be made. These include for example publishing real password file inside
the server’s /etc directory instead of a specially prepared one, or improper file
modes on special files needed in the /dev directory. Careless configuration
of upload directories may cause creation of warez servers and if the FTP
server is not constrained by the chroot-ed environment, then any break-in to
the FTP service may allow the penetration of the whole host system. Such
break-ins are quite probable, given the actual history of various FTP servers,
such as WUFTPD or PROFTPD.

A part of sample WUFTPD config file is provided in fig. 4.8 to show the
complexity of anonymous FTP server setup. Care has to be taken not only
to provide definitions of various classes of users and granting them appro-
priate access to specific directories within the FTP server’s space, but also to
limit their access to unwanted places and prevent them from creating poten-
tially dangerous files. It is also important to setup proper file permissions on
files left by anonymous users in the upload directories and disallow various
operations, such as renaming or overwriting files. Further setup options are
needed if a firewall system is used on the server host and the FTP server has
to bind to specific port numbers for active or passive mode transfers.

4.5.4 NFS
NFS service provides disk access in local networks. Disks (or rather filesys-
tems) are exported from servers and mounted on NFS clients. The service
uses UDP (NFS v.2) or UDP and TCP (NFS v.3) as the transport layer mech-
anism, but using a higher layers abstracts provided by RPC (Remote Pro-
cedure Calls). For a proper NFS operation a helper program PORTMAP is
needed (residing on UDP port 111) which translates RPC function numbers
to TCP/UDP port numbers. NFS service requests are directed to mountd or
nfsd daemons which also must be running on the server.

In NFS vulnerability problems exist in both directions: servers have to be
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protected against clients cheating on file permissions or access restrictions,
and clients have to be careful about contents of the imported filesystems.

Protecting clients against malicious servers
Clients are vulnerable to problems coming from any special file permissions
and elevated privileges present on files exported from servers. If someone
has root access to the NFS server, it is trivial to create a suid script or a
program that may spawn a root-owned shell or do just anything – create a
new user, add a cron job, install a rootkit, etc. It will be pointless to run
such a program on the server, but if all special access rights are respected at
the client that mounted the filesystem with a planted suid script, it would be
possible to break into the client system.

To circumvent these problems, clients may restrict interpretation of some
special features from the server’s disk. The nosuid option tells the client to
ignore any suid and sgid bits on a mounted filesystem, noexec ignores all x
bits on regular and special files (they are still needed on directories), so it will
not be possible to run any program from a mounted disk. The nodev option
disallow special interpretation of the device files.

Protecting servers against malicious clients
It is also possible to pose security threats from the client to the NFS server.
If someone obtains root access to the NFS client that happens to have a
filesystem mounted from the server with a write access, he may create files
on that filesystem as root and change their permissions – e.g. by adding the
suid bit and creating a suid-shell or a suid-script. If this shell is then run by
a regular user on the server, root privileges may be obtained instantly.

In order to block this behaviour the default export rules for a filesystem
map root-access from a client to uid of nobody, so no harm can be done to the
server system. If a client machine can be trusted and really needs root access
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to the server’s disk, the filesystem may be exported with root=client name
(Solaris/SysV) or no root squash(client name) (Linux) option.

Another problem comes with so called loop exports, i.e. exports to lo-
calhost. Some systems required or advised such exports for automounter
services. However, port forwarding or IP tunneling techniques could exploit
this as NFS servers could mistakenly identify mount requests coming out of
the tunnel as local requests. This may lead to a security breach where any
non-root user may mount an exported file system, thus bypassing any access
rights protection on that system.

Here are some final remarks on exporting and importing filesystems
through NFS:

◦ Export filesystems only to a closed list of clients, never to “everybody”
◦ Export filesystems in read-only mode, whenever possible
◦ Use no root squash or root options with caution.
◦ Turn on verification of a source port of NFS client requests (Solaris:
nfs portmon)

◦ Avoid loopback exports.
◦ Restrict access to PORTMAP and RPCBIND daemons through TCPD or a

firewall.

Some useful commands to check the current state of the NFS system are:
mount, showmount -e servername or cat /etc/mtab.

4.5.5 DNS
DNS service translates host names (“human readable form”) to IP addresses
and IP addresses to host names (“reverse DNS”) and is one of the very funda-
mental network services. Practically every program uses it through the lib-
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nsl.so library. Servers use caching for storage of all the information learned
from other servers.

The DNS system is organized in hierarchical way, i.e. delegating subdo-
mains to their respective servers. The top-level domain is the “.” domain, i.e.
the dot domain. All queries that cannot be answered from the cache have
to start with this domain and go from the top level down to the needed sub-
domain. For example, when asking for a translation of sun1000.pwr.wroc.pl
the following chain of events happens:

1. The first query finds servers responsible for the “.” top-level domain:
. NS A.ROOT-SERVERS.NET

. NS B.ROOT-SERVERS.NET

. NS C.ROOT-SERVERS.NET

[...]

. NS M.ROOT-SERVERS.NET

2. These servers only delegate top-level domains (both functional and na-
tional) to other servers, e.g.:

pl. NS NMS.CYFRONET.KRAKOW.pl

pl. NS DNS2.MAN.LODZ.pl

pl. NS BILBO.NASK.ORG.pl

pl. NS DNS.FUW.EDU.pl

pl. NS DNS2.TPSA.pl

pl. NS SUNIC.SUNET.SE

3. Each of these servers has information about all the subdomains and
hosts listed directly under ‘pl’ or any other top-level domain, so they
list ‘wroc.pl’ subdomain too.

wroc.pl NS ldhpux.immt.pwr.wroc.pl

wroc.pl NS sun2.pwr.wroc.pl
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wroc.pl NS alfa.nask.wroc.pl

wroc.pl NS bilbo.nask.org.pl

wroc.pl NS dns.uw.edu.pl

wroc.pl NS wask.wask.wroc.pl

4. For “sun1000.pwr.wroc.pl” the above servers have to be queried about
“pwr.wroc.pl” subdomain:

pwr.wroc.pl NS wask.wask.wroc.pl

pwr.wroc.pl NS ldhpux.immt.pwr.wroc.pl

pwr.wroc.pl NS sun2.pwr.wroc.pl

pwr.wroc.pl NS dns.uw.edu.pl

5. And finally the query may be made for the IN A record:
sun1000.pwr.wroc.pl IN A 156.17.1.33

sun1000.pwr.wroc.pl IN A 156.17.250.2

All of this happens automatically whenever any DNS query is made, but is
not visible in such detail. It is possible to see a summary of the information
needed to find a desired host by adding the -v (verbose) flag to the host com-
mand. Figure 4.9 shows such a detailed information for the final stage of the
above query. Servers use caching for storage of all the information learned
from other servers. Clients can be often served from cached information.
Numbers before the IN keyword are the TTL (Time To Live) values for each
record, i.e. how long (in seconds) a particular record will be kept in the cache
of the DNS server that sent this answer.

This however also poses security threats if some server in the chain is
modified to provide falsified information – it will be caches for as long as
it was designed to, so a service redirection through DNS is possible, which
is extremely dangerous as falsified information circulating between servers
can “live” there for a long time, and a poisoned server may propagate this
information to other servers.
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% host -v -t a sun1000.pwr.wroc.pl

;; QUESTION SECTION:

;sun1000.pwr.wroc.pl. IN A

;; ANSWER SECTION:

sun1000.pwr.wroc.pl. 3600 IN A 156.17.1.33

sun1000.pwr.wroc.pl. 3600 IN A 156.17.250.2

;; AUTHORITY SECTION:

pwr.wroc.pl. 532 IN NS dns2.pwr.wroc.pl.

pwr.wroc.pl. 532 IN NS sun2.pwr.wroc.pl.

pwr.wroc.pl. 532 IN NS ns1.net.icm.edu.pl.

pwr.wroc.pl. 532 IN NS wask.wask.wroc.pl.

pwr.wroc.pl. 532 IN NS dns.pwr.wroc.pl.

pwr.wroc.pl. 532 IN NS ns2.net.icm.edu.pl.

;; ADDITIONAL SECTION:

dns.pwr.wroc.pl. 1433 IN A 156.17.18.10

ns1.net.icm.edu.pl. 82798 IN A 193.0.71.133

ns2.net.icm.edu.pl. 83318 IN A 212.87.0.71

dns2.pwr.wroc.pl. 518 IN A 156.17.18.11

sun2.pwr.wroc.pl. 3568 IN A 156.17.5.2

wask.wask.wroc.pl. 82798 IN A 156.17.254.3

Figure 4.9: Summary of a DNS query

Typical DNS problems
DNS service problems that affect security of the local network may have a
local or remote sources. Very often they are just a configuration error, but
sometimes they may be a remotely exploitable bug in the server software.The
typical problems are:

◦ Server poisoning – in answers given to client queries.
◦ Attempts to use security holes in DNS servers allowing remote com-
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mand execution and host break-ins.
◦ Configuration errors leading to either information leakage, service dis-

ruption or a server remote exploit vulnerabilities. For example – loops
between secondary servers may cause a long-term DNS-poisoning prop-
agated from one server to another.

◦ There are many known security bugs in old versions of the name server
program (bind versions 4.x.x and 8.1.x – buffer overflow errors).

4.5.6 WWW
WWW, since its creation and public release in 1993, has become the most
popular internet protocol. The versatility of available media and techniques
and easiness of implementing new extensions have greatly helped in gaining
this popularity. Nowadays for many users WWW services are “The Internet”,
as they do not even realize the existence of any other IP protocols, maybe
with a tiny exception for messaging/communications services such as Skype
or Jabber or peer-to-peer file sharing, but even these are often substituted by
web page gateways.

Security problems follow – Easiness of installing plugins and various ex-
tensions encourages spreading of malware such as viruses or trojan horses.
Weak passwords and authentication schemes lead to sensitive information
leakouts. Weak server protection mechanisms and misconfigured servers
are abused to destroy the reputation of many companies for which the web
presence is now a must.

There are several security concerns regarding WWW usage:

Stealing sensitive information
Information stored on the WWW server may have limited circulation –
e.g. it can be stored in areas with limited access, protected by a password,
or access rules based on IP address of a client. However, it may be
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possible to bypass these, or obtain a list of files that are not visible
through index pages, etc.

Spreading of malware
Easy file transfers and automatic file type recognition – possibility of
installing trojan horses or other malicious programs by clients.

Server break-ins
A WWW server is a complicated and complex piece of software that
includes many plug-ins and pieces of other helper programs that have
to interact properly. Configuration errors or software bugs may lead
to remote exploit vulnerabilities leading to server break-in and further
possibilities of mischievous actions.

Bad programming leading to further problems
Server break-ins and all other web-related problems are usually caused
by bad programming habits of the programmers who develop WWW-
based services. As these may use several programming languages,
different data models and various back-ends for data, interoperability
problems become one of the main issues. The OWASP Top 10 docu-
ment [The10] lists the most critical web application security risks iden-
tified today.

HTTP protocol threats
HTTP protocol is vulnerable to DNS spoofing (as any other internet service)
and eavesdropping (sniffing). This is especially important due to the type of
offered service and the type of data (online shopping, e-banking, access to
restricted data). Web proxies and caching servers add to this problem, as
they are another potential place for stealing or modifying data.

Web browsers are a piece of software that changes very rapidly. They act
on a perimeter – interpreting the contents which is offered by WWW servers,
but as the technology changes, the services are modified in the same way
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and very often incompatibilities are found with older versions of the same
software, or with a different browser which has not yet implemented some
features that web page authors find trendy.

WWW pages have long gone from the static stadium to dynamically chang-
ing contents. Different technologies are used for that:

JavasSript
Code is executed inside a client web browser, loaded from the server.
JavaScript has access to a local filesystem and cookies. It can also per-
form intentional or unintentional DoS attacks when a JavaScript code
starts consuming a lot of processing power in a very non-efficient way
due to lazy programming. File access exposes users to stealing personal
data and sending them (without user’s consent) to the server. This is
especially important as some browser errors further expose users to
so-called cross-site scripting, where the contents of one web page redi-
rects the browser to run a script loaded from another server.

Java
Constrained environment in which Java code is executed.
Strong restrictions preventing programs from “escaping” this constrained
environment and from allocating too many system resources (e.g. CPU
time). Java standard has been introduced by Sun Microsystems and
browser developers were required to acquire compatibility certificates
after rigorous testing to actually be able to use Java name in their prod-
uct description. However, many incompatible extensions have been in-
troduced and gained popularity (mostly in Microsoft servers and clients),
forcing other software to use them too, in order not to be left behind.

Server-side includes
Executed on the server side, so affecting the server security, not the
client. However, lousy written (and poorly tested) code may cause effects
similar to DoS attacks. Also, they need very strict setup of the server
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to prevent elevation of access rights (e.g. when a server-side script can
access and present some files on the system that would normally be
inaccessible to a user due to file permissions).

Another source of HTTP-related break-ins are the software bugs and holes
in the server code. WWW servers have evolved to a very complicated pieces
of software where they no longer just serve the files identified by an URL.
There are server-side scripts, CGI and PHP extensions, plug-ins and other
extensions that all need separation of privileges and access rights checking,
potentially different in each context in which some part of a web site is exe-
cuting that dynamic part.

Some examples of server problems are listed below:
◦ Apache – access rules in old versions of the server software allowed

bypassing the “allow” and “deny” directives for directory access, thus
exposing the contents of hidden directories.

◦ MS IIS – vulnerable to viruses and worms spreading through specially
crafted HTTP queries (e.g. Nimda virus).

◦ WWW page requests are generally context-free. Binding several re-
quests into a session may be done through user cookies or by encoding
session information in returned URLs. Parsing these information must
be resistant to any modifications made by user.

◦ Some programs implement a web-type model of user interface (such
as Frontpage, Satan/SAINT), by running as a kind of temporary www-
server and starting a web browser for user interaction.

Counteracting WWW service security threats
Lessening the security threats regarding HTTP protocol requires acting on
many levels – both at the server side and in the clients. Some techniques may
prevent the actual problems, some others may decrease the size of damage
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possible if something bad happens. Some other eliminate the threats by
avoiding the potential problems.

In the server:
◦ Running the server with uid=nobody.
◦ Using chroot() constrained environment.
◦ Symbolic links and server <!--include ...> directives.
◦ Users should be able to run processes in WWW server context (e.g.

CGI scripts).
◦ Proper access rights on directories containing the served documents

and running a user-provided scripts by the server with user access
rights or nobody to avoid giving out sensitive data or abuse by local
users.

◦ Session context should be kept at the server. Client should only be
given a “handle” to this context.

◦ Detailed validation of all the data sent by the client and appropriate error
handling.

In server scripts:
◦ Detailed analysis of all error return codes in server scripts and its func-

tions (they should do whatever is expected or return an error message).
◦ Scripts must be prepared to deal with malformed data and queries.
◦ Data provided by users may be modified maliciously to bypass server

checks (special characters, injected cookies, exceeded length of vari-
ables, replaced data in drop-down lists, etc.)

On the client side – scepticism, mistrust and a common sense are the best
remedies:
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◦ Various browser additions allow blocking malicious code (such as NO-
SCRIPT, FLASHBLOCK and similar).

◦ When accessing pages in secured mode (e.g. when making online pur-
chases or during online banking) – paying attention to whether the
access is really encrypted and if the server certificates are valid.

4.5.7 SSL and TLS
Secure Sockets Layer (SSL) is a collection of library routines used to improve
security of several services using TCP protocol. It has gained the most pop-
ularity with HTTP, but can also be used in SMTP, IMAP, TELNET and many
other protocols.

SSL has been developed as an intermediate layer between transport and
session layers (fig. 4.10). SSL acts as a lower session layer and is applicable
to connection-oriented underlying transport protocols, such as TCP. To use
SSL, first a normal TCP connection is established, that yields two connected
sockets, one at each endpoint of the communication. These sockets are in
turn used to “upgrade” the connection to the encrypted/authenticated status
by calling appropriate SSL functions.

An extension to SSL is the TLS protocol (Transport Layer Security) de-
scribed first in RFC 2246 [DA99] and still developed on the IETF standards
track (currently in RFC 5246 [DR08] with various updates in RFC5746). It is
composed of two layers: the TLS Record Protocol and the TLS Handshake
Protocol. Using TLS, the client and the server negotiate how the connection
should be established in the handshake phase, where they exchange infor-
mation about ciphers and hash functions that each site can use and decide
on the actual algorithms – the strongest ones from the common subset.

The server also sends back to the client its digital certificate which acts as
a form of identification to prevent server identity theft. A session key is gen-
erated to use symmetric encryption for the duration of the connection. If any
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Figure 4.10: SSL position in the TCP/IP protocol stack

problems are found during connection setup (such as too weak algorithms
or an invalid certificate) the connection is dropped.

TLS may be used in many connection-oriented protocols, mostly seen in
HTTPS for web browsing, but extensions exist to use TLS in FTP, SMTP [Hof02],
NNTP and in creation of VPNs. It has also been implemented in datagram-
oriented protocols (UDP) as Datagram Transport Layer Security (DTLS [RM06]).

4.5.8 SMTP
Electronic mail is probably the most heavily used network application, which
is used not only to communicate in the traditional way, but also to share doc-
uments, pictures or large binary files. As an application it may be considered
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as a distributed program that runs cross every computer architecture and
virtually any platform. People expect to be able to use it on any operating
system, on a PC, a laptop or a mobile telephone.

SMTP architecture
First e-mail systems date well before anybody heard about the Internet –
when TCP/IP protocols were just being developed for local networks and
the typical site-to-site connectivity was achievable by modems calling over
long distance telephone lines. E-mail worked on these through the UUCP
(Unix to Unix Copy) protocol, by the accept-store-forward paradigm. This
holds true also today – servers accept e-mail from users, store them locally
for reliability, then forward it to other servers, only the underlying media has
changed, greatly improving both the throughput and the direct connectivity
between the e-mail systems.

The e-mail system consists of several types of programs that have to co-
operate to make the system work (fig. 4.11). Mail User Agents (MUA) allow

MUA

mailx elm pine Outlook FireBird

TCP/IP
MTA

another MTA

remote
system

sendmail
IMAP protocol

MDA

/bin/rmail/bin/mail /bin/uux

uucico uucico
UUCP

UUCP mail/file delivery agents

POP3 protocol

or: exim, postfix, etc...

Local store
(mailbox)

Figure 4.11: E-mail system architecture.
users to read mail, write new messages and send them. MTA programs (Mail
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Transfer Agents) accept mail from external hosts or send it between hosts.
MDA programs (Mail Delivery Agents) put mail in user mailboxes on local
machines, after the mail reached a local system.

As MTA server accept SMTP commands directly from other servers, and
are reachable directly from the Internet, they may be vulnerable to remote
exploit attacks. DoS type attacks are also possible and even today many e-mail
servers are configured in a way that allows relaying spam through them.

MTA programs can be also run from command-line by local users and
be exploitable this way. Some programs such as sendmail have a very bad
reputation on having new and new security-related bugs discovered, but even
sendmail replacements such as QMAIL, EXIM or POSTFIX have suffered from
security problems.

MDA programs need special privileges in order to append messages to
different user mailboxes, thus are especially vulnerable to any local exploits,
even if not directly accessible from the outside. In Unix systems, MDA pro-
grams are usually suid programs or are a part of the MTA program.

MUA programs do not usually connect to the outside world and are run on
behalf of the user with access rights restricted to that user only, so they cannot
be used to elevate user privileges to the level of a system administrator, but a
much greater security threat comes from the fact, that MUAs usually can run
arbitrary programs based on MIME encoding and attachments present in the
received mail. This may lead to exploiting bugs in these helper programs,
and to spreading of viruses and worms if an e-mail attachment is treated as
a program to run.

Open Relays
E-mail systems pre-date the Internet and deep in their design the basic mode
of operation is still accept-store-forward. Much the same, as the traditional
Post system works – letters are accepted over the counter or from postboxes,
then they are sorted and forwarded to next Post Office in the chain, which
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either delivers the letter locally, or forwards it to the next Post Office, closer
to the final destination.

All e-mail servers work in a similar way, forwarding messages on behalf
of other systems, in a shared effort to deliver them to final users. However,
what was good when the general system-to-system connectivity was not very
common, leads now to a mail-relay vulnerability often abused by spammers.
A spammer that has poor Internet connectivity (either in terms of a poor
bandwidth or if his IP address is filtered by anti-spam filters) may connect to
a vulnerable e-mail system and inject his spam messages there. The vulner-
able MTA server will accept such a message and try to deliver it to all the
recipients, even if they are not located on the server’s system. Each such a
message is addressed to many recipients, so the spammer saves a lot of his
bandwidth, as all of the burden of delivering the messages is taken by the
cooperating MTA (see fig. 4.12).
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Figure 4.12: Spamming through an open relay
This is due to the “open relay” server configuration, which has been the de-

fault mode of operation on many servers until around 2005, when finally most
of the typical MTA programs changed their policy by distributing sources and
precompiled binaries with default configs that disallowed such a behaviour.
Other factors that add to this problem are the lack of authorization when
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submitting email from clients and impossibility of user identification which
further encourages e-mail spoofing.

Mail Protocols
E-mail system uses different protocols for different tasks. MTAs connect
to each other using SMTP or ESMTP. The same protocols are also used for
initial mail submission from clients to servers. From the server’s point of view
there is no indication and no distinction whether it is the client or another
server who is connecting. As a result, clients are over-trusted and may in
fact submit messages with any headers, as servers do not have reliable ways
of checking whether the given From: addresses are legitimate, so e-mail
spoofing and other types of attack are possible.

Some attempts to stop e-mail abuse try to do reverse-checking of the
addresses, but this technique has a limited usability now, as spammers have
learned to use only valid addresses.
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Malware
Malware programs are computer viruses, trojans or any other software that
intentionally interfere with other programs to disrupt their functions or ex-
ploit their vulnerabilities and propagate to other systems without the user’s
consent.

5.1 Viruses
Viruses are the malware programs that try to replicate themselves by attach-
ing their code to other executable programs in a system. Once an infected
program is run, the virus code is executed and tries to infect other programs
found on disk.

Viruses are usually associated with programs distributed in binary form,
loaded from untrusted sources, such as shareware archives, usenet groups,
etc. They may take different forms – in the beginning they were usually
some programs that infected MSDOS/MS-Windows binary programs and
got transferred through floppy disks either attached to specific files or to
the boot sectors. Later, with the changes in media technology, the favorite
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way for virus spreading became the CDs – again with the binary programs
distributed this way, and with a new armor – autorun scripts. Nowadays most
of the viruses get sent over the e-mail and are based on mail client bugs
to actually run the e-mail attachments without user permission and against
system defense mechanisms.

Computer viruses may actually appear in any file which is in some way
“executed”, whether it is a direct assembly code or an interpreted language.
So, even though these may not be so popular, the viruses may appear in:

◦ PostScript files which are automatically interpreted and contain com-
mands to be executed by an interpreter lacking security checks.

◦ Web server applets executing at client side, in browser context, if they
are able to modify files or spawn new processes.

◦ MIME-encoded mail, containing automatically executed programs (IE
bugs: .exe, .bat and .pif files with .gif extension, still being executed
automatically, without any warnings.

◦ Macro-based viruses in various multi-platform tools, such as Staroffice,
MS-Office, etc. This includes also JavasScript embedded in PDF files or
any other file format.

Protection against viruses involves both active prevention and “damage con-
trol” – i.e. active scanning of any potentially dangerous code before it has a
chance to run, as well as data integrity checks of the installed programs and
pro-active checking, usually based on virus signatures.

In Unix systems the virus problem is almost non-existent, as proper file
permissions in the system setup prevent users from modifying system-owned
binaries, and due to varying system architectures and different hardware
platforms, it is not easy for a virus to spread out from one system to another.
However, it may still be possible to infect some user-owned programs on most
popular hardware platforms (e.g. a Linux system running on PC hardware),
so a few precautions should be taken at least:
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◦ Avoiding non-standard directories in your path (especially “.” – i.e. the
current directory)

◦ Avoiding running code loaded from untrusted sources.
◦ Keeping safe permissions on directories (no group/other write permis-

sion).

It is also worth noting, that very often, the erratic behaviour of a program is
not a virus, but a result of poor programming and software bugs.

5.2 Trojan Horses
Even though the viruses do not affect the email servers, the incoming mail is
automatically scanned for viruses just to protect the clients running their mail
browser on unprotected client workstations. The attachments are scanned for
virus signatures and even if they are compressed and packed using archivers
such as ZIP or ARJ, they are unpacked first, to really find any malicious con-
tent.

Malware authors also try to outsmart these automated checks, and as al-
ways, the weakest link to attack is the people. So for example the attached ZIP
archives may be password protected to prevent the automatic archive open-
ing by the anti-virus software, but the password for the archive is attached
in the text or graphical form with an explanation that may look like ”Your
requested file is attached. The password is...”.

The unlocked archive contains an executable program, which is then run
by a user, infecting his system. As the active cooperation from the user is
needed, such a program is called a trojan horse.

67



5.3. WORMS

5.3 Worms
Computer viruses propagate in passive way – they cannot survive on their
own, but need a program or a file they can attach to and spread to other
programs when their host is executed. They may also infect other computers,
but mainly when transferred by e-mail, or when the infected program is
copied from one system to another and then executed.

Computer worms, on the other hand, actively seek ways to propagate
to other computers by exploiting know vulnerabilities in some programs or
typical configuration problems.

Worms need some security holes in order to propagate, so the protection
against them is basically the same as protection against break-ins. This in-
cludes monitoring the system for unusual activities, such as rapidly increasing
umber of emails sent, skyrocketing CPU usage, rapidly growing size of the
log files and number of logged errors – especially the ones that are generated
by identd which show unusual number of outgoing connections.

5.4 Phishing attacks
The term phishing comes from joining together two words – password and
fishing and describes the fraudulent actions of setting up fake servers col-
lecting sensitive information from unsuspecting users – such as passwords
(hence the name), usernames, credit card numbers, authorization tokens for
bank operations, etc. Phishing attacks are usually targeted at popular social
web sites, auction sites, online banks, but also the IT departments of various
big institutions.

In the sample e-mail shown in fig. 5.1 the link is shown twice – once
in the mail body where it looks like the Amazon reference (but in fact is a
link name), and second time – in the “References” section, where all links are
expanded to show their actual targets. This is how textual e-mail clients (such
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From: "Amazon.com" <account-update@amazon.com>

Subject: Revision to Your Amazon.com Account

Amazon Information

We are contacting you to inform you that our Account Review

Team identified some unusual activity in your account. In

accordance with Amazon’s User Agreement and to ensure that

your account has not been compromised, access to your account

was limited. Your account access will remain limited until this

issue has been resolved. This process is mandatory, and if not

completed within the nearest time your account or credit card

may be subject for temporary suspension. To securely confirm

your Amazon information please click on the link bellow:

[1]https://www.amazon.com/cgi-bin/webscr?cmd=login-run

We encourage you to log in and perform the steps necessary to

restore your account access as soon as possible. Allowing your

account access to remain limited for an extended period of time

may result in further limitations on the use of your account

and possible account closure.

References

1. http://96.10.247.13/evo/www.amazon.com/index.html

Figure 5.1: Phishing e-mail targeting Amazon.com users

as MUTT or PINE) show such e-mails. Webmail-type browsing in FIREFOX or
INTERNET EXPLORER will show just the name, and the actual link target will
be shown in the browser status line only when the mouse cursor is over the
link name. And even not for certain, as some bugs in INTERNET EXPLORER
may truncate the link being shown, or some special characters in the link
may cause only the trailing part of the link being visible, and that part may
look like the normal link.
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5.5 Backdoors
Historically, backdoors (or trapdoors) are pieces of code in a program or an
operating system, that allow a ”shortcut” access for programmers, to make
debugging easier. Debugging is a tedious task, requiring a repetition of par-
ticular actions to set-up a desired state of an application in which the problem
may be reproduced and then studied. A backdoor may be then a special com-
mand or a hidden feature that leads exactly to that testing point, or at least
makes some repeating steps easier to do by skipping over them. This of-
ten includes logging to the system, providing passwords, accessing particular
database records, or in general – setting a particular state of the whole pro-
gram using some shortcut, that skips other parts of the application that would
normally get executed.

Nowadays however, the term “backdoors” has moved its meaning rather
to new and intentional holes in system security planted there by the attacker
in the sole purpose to (possibly) make accessing this system easier in the
future, especially if the original hole used for breaking-in is discovered and
plugged in.

Usually, a backdoor is also hidden, and planted in non-obvious way.
A typical backdoor may for example replace a LOGIN, TELNETD, FTPD, RSHD

or any other network service program, so that a replaced version of that
program will work perfectly normal under usual circumstances, but will also
grant access to a computer system if some special user/password combination
is provided (not listed in system’s /etc/passwd file. In order to further hide
changes made to the system, a rootkit may be also installed% .

There are many ways to install a backdoor. A replaced version of login,
telnetd, ftpd, rshd or other network service program may allow an attacker
to login without a password. Something added in .rhosts, .ssh/authorized keys
or other access control file will have a similar effect. Changed owner of some
directories or files (e.g. /etc), allows file deletion or modification in future.

Some other ways of installing a backdoor include:
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◦ Added aliases in the mail system, allowing remote execution of pro-
grams.

◦ Added harmless-looking network service, allowing remote access.
◦ Installed a suid program giving a shell with root access when some

conditions are met.
◦ Tweaked /etc/exports or /etc/fstab files, allowing NFS mounts by unau-

thorized hosts and modifying files or running suid programs.
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Firewalls
Most of the operating systems come with lots of features enabled by default.
Many of these features appear to get some security holes discovered sooner
or later, and even for services appearing to be secure, many default configu-
rations cause serious security problems.

Computer systems need constant patching and software updating to keep
them current and safe.

Unexperienced systems administrators are tempted to install “just every-
thing” and then forgetting or not knowing what to uninstall. Installing a
firewall around them does not protect from local exploits, but at least keeps
”remote” intruders out.

If any security hole gets discovered for some needed service, the system
administrator has some extra time to correct the problem, as the exploitable
service is not immediately seen to the outside world.
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6.1 Firewall types
Firewalls vary in their design and the level on which they operate. Most
commonly used are operating on layers 3 and 4 or the OSI model, the more
sophisticated ones do also packet inspection, interpreting the contents of the
higher layers.

6.1.1 Stateless firewall
Simple firewalls use unsophisticated mechanism called packet filtering to de-
cide what traffic should be allowed to go through. The criteria for allowing
or disallowing a particular packet may be based on:

◦ Protocol type (UDP, TCP, ICMP, ARP, etc.)
◦ Source or destination port number (for TCP or UDP)
◦ Source IP address
◦ Destination IP address
◦ Packet type: SYN, SYN/ACK, data, ICMP echo, FIN, etc.
◦ Some specific IP options (e.g. fragmentation)

As this kind of filtering considers each packet independently of all other
packets, it is also called stateless filtering or a stateless firewall. It is use-
ful for simple protection, but there are more advanced network scanning
techniques, such as stealth scanning, which will succeed in passing through
a stateless firewall.

6.1.2 Stateful firewall
Modern network scanning attacks often use packet forging and spoofing
techniques to get past a firewalled system. Such attacks easily get through,
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if the only criteria is based on as single packet characteristics. To prevent
these more sophisticated attacks the firewall must keep track of all the in-
coming and outgoing packets and then update its state table, which contains
the information about all known connections (for TCP) and packet flows (for
UDP and ICMP). By default, a stateful firewall blocks all packets and has
special rules only for connection-initiating packets, i.e. in TCP – the packets
that have the SYN flag set. If such a packet is allowed (i.e. the connection
may be initiated in the given direction – from, or to a protected network),
and the actual connection is really established (appropriate packets are ob-
served) the firewall automatically adds allow rules for packets belonging to
that connection. These rules are in operation until the connection is closed
(a packet with a FIN flag is observed) or there are no packets exchanged for
a predefined time.

6.2 IPTABLES and NETFILTER
IPTABLES and NETFILTER is a framework for packet mangling, outside the
normal Berkeley socket interface. It is used to set up, maintain, and inspect
the tables of IP packet filter rules in the Linux kernel (starting with version
2.4.x).

A firewall using IPTABLES is defined by means of tables containing chains
through which packets are checked. There are several predefined tables,
such as filter, nat or mangle, each containing a number of predefined
chains, such as INPUT, FORWARD and OUTPUT for the filter table. Each chain
is a list of rules which can match a set of packets. The flow of the packets
through the filter table is shown in fig. 6.1.
Each rule of the chain specifies what to do with a packet that matches. A
firewall rule specifies criteria for a packet, and a target. If the packet does
not match, the next rule in the chain is the examined; if it does match, then
the next rule is specified by the value of the target, which can be the name
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Figure 6.1: Packet flow through the filter table.

of a user-defined chain or one of the special values ACCEPT, DROP, QUEUE, or
RETURN.

The ACCEPT rule accepts the packet and stops further processing. The DROP
means that the packet should not be allowed, so it gets discarded without any
message sent to the sender. QUEUE passes the packet to user-space filters, if
they are supported by the kernel, and RETURN stops traversing this chain and
resumes at the next rule in the previous (calling) chain. If the end of a built-in
chain is reached or a rule in a built-in chain with target RETURN is matched,
the target specified by the chain policy determines the fate of the packet.

Filter rules may be added to specified chains by means of the iptables
command. The -P option defines a default chain policy (i.e. what to do with
packets that do not match any specific rule in a specified chain), while the -I
and -A options insert and append rules to a particular chain.

A minimalistic IPTABLES firewall based mostly on the DROP policy is shown
in fig. 6.2. The -P option sets the policy for a specified table, the filter table
being the default. After setting the default policies for all tables a specific
ACCEPT rule is added to the INPUT chain with the -A option. In this particular
case, the rule applies to all packets coming from the eth1 interface whose
source address belongs to the network 10.0.0.0/24. These packets will be
accepted while all other packets will be handled by the default DROP policy.
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iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -t nat -P POSTROUTING DROP

iptables -t mangle -P OUTPUT DROP

iptables -A INPUT -i eth1 -s 10.0.0.0/24 -j ACCEPT

Figure 6.2: Simple IPTABLES firewall based on DROP policy

Another firewall example is shown if fig. 6.3. The configuration shown
assumes that there are two network interfaces named eth0 and eth1 and
eth1 is the internal network. After defining default DROP policies the next two
commands specifically allow TCP packets coming from the outer interface
be forwarded if they are addressed for a SMTP server at host 156.17.1.5 or a
WWW server at host 156.17.1.1. The -p option specifies the IP protocol such
as TCP, UDP, ICMP. Options such as --dport or --sport (destination and
source ports) are protocol-specific and valid only for TCP or UDP, while -s
and -d (source and destination IP) are valid for any IP protocol. The last rule
allows all “returning” packets from the SMTP/WWW servers that traverse
the firewall in the opposite direction.

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -A FORWARD -i eth0 -p tcp --dport 80 -d 156.17.1.1 -j ACCEPT

iptables -A FORWARD -i eth0 -p tcp --dport 25 -d 156.17.1.5 -j ACCEPT

iptables -A FORWARD -i eth1 -j ACCEPT

Figure 6.3: Simple IPTABLES firewall for SMTP and WWW services

The last example shows the typical difficulty with the typical stateless fire-
walls – it is necessary not only to define rules for packets coming to specific
services, but also for the returning packets – the ones sent from the actual
server back to the client. If local clients are allowed to connect to the outside
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world, things get even more complicated, but may be sorted out using the
--syn option, that matches only the TCP packets that have the SYN flag set.
Such packets are sent from the client to the server when the connection is
being established, and may be used to determine the direction of the connec-
tion, i.e. where are the client and the server located. A sample setup allowing
all connection from the local network and only the incoming connections for
the SMTP server is shown in fig. 6.4.

iptables -P INPUT DROP

iptables -P FORWARD ACCEPT

iptables -A FORWARD -p tcp --dport 25 -d 156.17.1.5 --syn -j ACCEPT

iptables -A FORWARD -p tcp -s 156.17.1.0/24 -i eth1 --syn -j ACCEPT

iptables -A FORWARD -p tcp --syn -j DROP

Figure 6.4: IPTABLES firewall allowing only incoming SMTP and all outgoing
TCP traffic

The first -A option adds a rule for the incoming SMTP connections the
server. The second rule allows all connections originatin from the network
156.17.1.0/24 (the local network). The last rule drops all TCP packets trying
to establish a new connection that did not match the previous two rules, and
all the remaining packets (i.e. other protocols or TCP packets belonging to
the already established connection) are passed through the default FORWARD
chain policy, which has been set to ACCEPT.

This however still allows stealth scanning to take place. Modern network
scanners such as NMAP [Lyo09] use this mode to bypass simple filtering rules
by sending TCP packets in the established state instead of the typical con-
nection requests with the SYN flag set. If the port is open, the target host
will respond with the TCP packet with the RST flag set, and if the port is
closed, we should get an ICMP type 3 response (i.e. “port unreachable”). The
connection to such a service cannot be established as the firewall will still
prevent it, but at least the attacker can be sure that there is a potential attack
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point that he may try to reach by some other means.

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -A FORWARD -p tcp --dport 21 -d 156.17.1.21 -m state \

--state NEW,ESTABLISH -j ACCEPT

iptables -A FORWARD -i eth1 -p tcp -d 156.17.1.21 --sport 20 \

--state RELATED -m state -j ACCEPT

iptables -A INPUT -p tcp -m state --state INVALID -j LOG \

--log-level error

Figure 6.5: Stateful firewall using IPTABLES

Prevention of stealth scanning is possible with stateful packet inspection
as shown in fig. 6.5. The first rule after the typical policy setup allows all
packets coming to the FTP server on port 21 that are either establishing a new
connection (the NEW state) or continue a connection established earlier (the
ESTABLISHED state). The -m flag tells IPTABLES to modify the state table each
time a matching packet is passed. This means also the packet inspection, so if
a PORT command is spotted inside a FTP packet, the forthcoming connection
from server’s port 20 (data transfer) will also be allowed as a RELATED packet.
The last line deals with all packets that do not match any valid connection in
the state table (the INVALID state) by dropping them and logging as network
scan attempts.

For more examples on using IPTABLES and FWSNORT, see [Ras07]. A deep
analysis of firewall design principles and different architectures can be found
in [CZ95].
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Cryptography
There are numerous reasons why we cannot trust computer systems to store
or transmit data securely and without being vulnerable to eavesdropping
or malicious alteration. There are however techniques that can help us to
achieve both security and privacy even when using a system that cannot be
trusted. For this purpose, cryptography comes in handy.

Cryptography has many usages:
◦ Data encryption can protect data stored on your system even if other

people have access to your computer.
◦ Encrypted data can be safely transmitted over the network and even if

this is intercepted by somebody, the contents is still safe.
◦ Encryption can be used to detect accidental or intentional alteration of

your data.
◦ Electronic signatures can be used to verify if the author of the document

you have is really the one who you think it is.
However, it is not the universal remedy for all the problems we may have
with data security, as it cannot prevent you or anybody else from deleting
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your files, or from leaking some sensitive information when exposed to some
social engineering techniques.

Also, it is important to watch what is installed in a computer system you
use – if an attacker is able to replace the encryption program with its own, he
may have access to the plain text version of your files. And a lot depends on
the quality of the cryptographic software being used – not only if it uses the
right encryption algorithms and proper size of keys, but also how it handles
temporary files, whether it leaves traces of its actions for anybody to read,
etc.

7.1 Basics
Cryptography uses bit manipulation techniques to mangle the data in such
a way, that its original contents cannot be seen anymore, but it can be re-
stored when handled properly. Different methods for encrypting the data
may be used, that differ in their quality and immunity to various attack meth-
ods. More secure algorithms usually require more processing power, so it
is always a trade-off between the quality of protection that some algorithm
can provide and the time that is needed to protect the data. Also – some
algorithms are more suitable to particular applications and other ones may
be better when the usage pattern changes.

The following sections describe different methods of operation that are
used by encryption algorithms.

7.2 Stream ciphers
Stream ciphers convert plaintext to ciphertext bit by bit by XOR-ing the input
stream with a continuously changing “running key”. For that they need a key
stream generator (see fig. 7.1(a)), which given some initial value of a limited
length (such as 64 or 256 bits) creates a continuous never-ending stream of
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cipher key bits k1, k2, ..., ki. These are in turn EX-ORed (added modulo 2) with
the stream of plaintext bits p1, p2, ..., pi, and that creates a ciphered bitstream
ci = pi ⊕ ki which may be sent over the insecure channel. After reception,
the plaintext is calculated as pi = ci⊕ki – the key bitstream on both ends has
to be exactly the same.

For cryptoanalytical immunity, the system should not start from a “zero”
state after a reset, but from a changing initialization vector or a different key.

Because of this reset condition, stream ciphers are better suited for con-
tinuous bitstream transmissions between 2 parties, rather than occasional
message transmission.

Although it may seem that the keystream generated from a key looks like
a random noise, it is important to remember, that the keystream generator
is a periodic function. Its period is very long, as its length is the key factor
to the security of the system.
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Figure 7.1: Stream ciphers – basic encryption modes

7.3 Block ciphers
These types of algorithms convert plaintext to ciphertext in blocks of a fixed
length (depending on actual algorithm, e.g. 64 or 128 bits). Even if we need
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to send just few bits of data (e.g. a keystroke or a single byte) we need to
fill the whole block, as the encryption process will manipulate many bits at
once. They are easier to implement than stream ciphers, but their minimal
block length requirement may be a disadvantage – e.g. in a character-oriented
transmission of an interactive terminal data.

Block ciphers may operate in different modes. The earliest modes (ECB,
CBC, OFB, and CFB have been defined in [Nat80] for DES which was the
standard block cipher at that time, but the modes apply to any block cipher.
These have been revised as new block ciphers appear and the CTR mode
has been introduced in [Dwo01] when AES has been accepted as the new
standard block cipher. Some other modes, such as XTS-AES or CTS are
either cipher-specific or experimental and not yet approved for wider usage.
Table 7.1 lists the most common block cipher modes of operation.

The ECB mode of operation is the simplest one, but does not perform
well for repeatable data. If the same plaintext is encrypted in different blocks
of input data, the resulting blocks will be the same, so even if the encryp-
tion cannot be broken, there is a clear information that this data has been
sent before. Assuming some common patterns (streams of zeros in various
common formats of documents or some other common patterns in picture
formats) may further lead to simplified cryptoanalysis. It is also possible for
an attacker to record the encrypted transmission and send it later (this is
called the replay attack) – for example, sending again the same data from
the ATM machine without even understanding what is being sent may be
still enough to repeat the recorder transaction and successfully withdraw the
money.

CBC mode (as well as other modes) helps to overcome this kind of at-
tack by chaining all blocks together – i.e. each block depends on all other
blocks that has been sent so far, so encrypting the same plaintext several
times results in different cipherblocks. It is simply done by XOR-ing each
plaintext block fed to the encryptor with the cipherblock obtained in the pre-
vious round. This however means that if a single encrypted block is lost
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Mode Description
ECB
Electronic Code Book

Each plaintext block is encoded independently of
other blocks

CBC
Cipher Block Chaining

Instead of just the plaintext, the algorithm is fed with
the XOR of the plaintext and the previous ciphertext.

CFB
Cipher Feedback

Input is processed n bits at a time (les then or equal
to the block size). Previous ciphertext is used as
input to produce the pseudorandom data which is
then xored with current plaintext.

OFB
Output Feedback

Similar to CFB, except the input is not the final ci-
phertext, but the output of the DES encryptor (i.e.
before XOR-ing it with the plaintext)

CTR
Counter

Every plaintext block in XORed with an encrypted
counter, which is incremented with each block

CTS
Ciphertext Stealing

Used in addition to ECB or CBC for padding the last
plaintext block with the high order bits of the second
to last cipherblock (stealing it from the output). The
new full last block is then encrypted and exchanged
with the stolen cipherblock, truncated by removing
the stolen bits, so that the overall message length
does not change.

Table 7.1: Block cipher modes of operation

or altered during transmission, it will be not possible to decrypt the rest of
the transmission. A little modification of this mode called Output Feedback
Mode (OFB, see fig. 7.2) helps overcoming this problem by moving where
this chaining information is attached – if a single block is malformed, it will
be lost and impossible to decrypt, but the synchronisation is regained with
the next block.

85



7.4. SYMMETRIC CRYPTOGRAPHY

ciphertext 
transnission

key

encrypt

buffer

blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah

plain text

(a) CBC mode

ciphertext 
transnission

key

encrypt

buffer

blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah

plain text

(b) OFB mode

Figure 7.2: Comparison between CBC and OFB block encryption modes

7.4 Symmetric cryptography
Encryption in symmetric key cryptography takes some arbitrary length in-
put, called a plaintext and using a key (which is a small piece of data kept in
secret) converts it to ciphertext, which does not resemble the original plain-
text in any way. In order to get the plaintext back from the ciphertext, the
reverse process has to be applied, again – with the same key as the parameter.

7.4.1 Algorithms
Below is a short summary of the most popular symmetric key algorithms:
ROT13

Not a real encryption system, but still used in Usenet news or discussion
groups to obscure the contents of some jokes or other material consid-
ered offensive. This is a simple substitution code, doing a ‘shift by 13
positions’, i.e. a becomes n, b becomes o, etc. (and also n becomes a and
so on...). For example: Unpxref bs gur jbeyq, havgr! Qvfyrpgvpf bs
gur jbeyf, hagvr!

crypt
Traditional UNIX system encryption, based on German Enigma engine,
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using variable length key. It contains a checksum, so there are pro-
grams to automatically try decrypting and verifying a message, so it is
not secure. To add to the confusion, there is a secure one-way hash
function called crypt, used for password encryption, so do not confuse
the two.

DES – Data Encryption Standard
Developed in 1970s by National Bureau of Standard Technology in USA
and IBM. Uses 56-bit keys and is not considered safe today. Introduced
in [Nat77], current definition in [Nat99].

Triple DES or 3DES
DES applied three times with different keys each time (as a pipeline:
encrypt with key 1, decrypt with key 2, encrypt again with key 3), giving
the actual key size of 168 bits. Much more secure, but still vulnerable
to some attacks known nowadays.

RC2, RC4 and RC5
All developed by Ronald Rivest around 1990s, kept secret for some
time, then revealed in anonymous postings to Usenet in 1994-1996. All
appear to be reasonably strong. RC2 and RC5 are block ciphers, RC4
is a stream cipher. RC2 and RC4 allow keys of size 1 to 2048 bits, RC5 –
no limit. All “export” versions until recently were limited to 40-bit keys.

IDEA
International Data Encryption Algorithm, developed in Zurich, then
patented. Uses 128-bit key. Used by PGP program, SSH and many
other security applications. There are implementations freely available
outside US, although software patents may make it unusable inside US.

Skipjack
A secret algorithm developed by NSA using a 80-bit key.

Blowfish
Skipjack alternative. Variable length key, between 32 and 448 bits. De-
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veloped in open-source community in 1993 and still being checked for
strength. Already used in many security programs.

AES – Advanced Encryption Standard
AES Current standard for symmetric encryption, adopted in 2001 by
NIST as a DES successor (FIPS 197 standard [FIP01]), after a 5-year
standardization process by means of a public competition. Originally
published as Rijndael. Uses fixed length keys of size 128, 192 or 256
bits and block size of 128 bits. The block is organized as 4× 4 bytes, on
which SubBytes, ShiftRows and MixColumns operations are done in a
number of rounds (from 10 to 14, based on the key size). Due to the
relatively good performance, AES can be used on lots of different hard-
ware, including embedded platforms and even slow 8-bit smartcards.

7.5 Public Key Cryptography
Symmetric key cryptography is fine, when we can securely exchange keys
and prepare for the communication beforehand. In Internet applications
where we want to establish secure transmission with the other side that we
have connected for the first time, this is not feasible – in order to safely
exchange the encryption key, we need to have some encrypted/safe commu-
nication channel in the first place, otherwise someone might steal out key
and decode the following communication.

In asymmetric or public key it is possible to exchange information over
the public channel in such a way, that some of it remains secret, i.e. known
only to the communicating parties, and cannot be derived from what has been
seen on the public channel. This comes at a cost of a much greater complex-
ity of the algorithms and much slower implementations that the symmetric
cryptography uses, but consequently, it can be used to safely exchange some
information which may become a temporary session key for a symmetric

88



CHAPTER 7. CRYPTOGRAPHY

encryption algorithm, so the impact on the overall communication speed will
be minimal.

7.5.1 Diffie-Helmann algorithm
This algorithm provides a way of safe exchange of a shared secret key over
the insecure communications channel and is one of the earliest examples of
asymmetric cryptography. The secret established in this way may be later
used as a symmetric key in a subsequent communication that uses a sym-
metric key cipher.

Mathematical foundations are based on the relative difficulty of calculating
discrete algorithm and easiness of calculating powers and modulo divisions.

Two parties need to agree on two large integer numbers n and g, such
that 1 < g < n. These numbers do not need to be secret. Two users – Alice
and Bob can exchange them over a public channel.

1. Alice chooses a large random integer x and calculates:
X = gx mod n (7.1)

2. Bob chooses a large random integer y and calculates:
Y = gy mod n (7.2)

3. Alice sends X to Bob, Bob sends Y to Alice. Both x and y are kept
secret.

4. Alice calculates
k = Y x mod n (7.3)

5. Bob calculates
k′ = Xy mod n (7.4)
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From (7.3) and (7.2) we get
k = Y x mod n

= (gy mod n)x mod n

= ((gy
x

) mod n) mod n

= gxy mod n

In a similar way from (7.4) and (7.1) we get
k′ = gxy mod n

so Alice and Bob are now in possession of the same number k = k′, and
nobody who has overheard the transaction can reconstruct this number, as
x and y are kept secret and only n, g, X and Y were made available.

7.5.2 Message Digest Functions
Message digest functions are also called hash functions or cryptographic
checksum functions. They take the input of arbitrary length and produce
a fixed size small amount of data in a predefined deterministic way, so if
the same input is processed again, it will generate exactly the same output
as the first pass, but as the function works one-way only, it is not feasible
to recreate the original text from the output, or even find another text, that
gives the same output. Another basic feature of all hash functions is good
propagation of changes throughout the algorithm, so even a small change in
input data changes significant part of the output (or the whole of it), so it is
not possible to predict what to change and retain the same output value.

Typical output of the hash function varies between 90 and 256 bits which
makes a brute force attack impractical and hard to perform.

Given the above characteristics, the hash functions are mainly useful in
digital signature and data integrity checking applications. Cryptographic sign-
ing of a large document could be a very time consuming process. So to speed
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things up, a document digest (a hash) is created first through a hash function,
and only this hash (which is shorter from the original by orders of magnitude)
is then signed. When signature is to be checked, the document in question is
parsed (again) through the same hash function to obtain its digest first, and
then the calculated digest is compared to the signed and verified digest. If
they do not match, or if the digest signature is invalid, the document might
have been tampered with, otherwise it must be the same as the original.

There are various hash functions differing in speed and their potential
usability for different tasks. Below is a summary of the most commonly used
functions:

MD2, MD4, and MD5
Most widely used functions, producing 128 bit hash values. MD2 pub-
lished in RFC 1319 [Kal92], with no known weaknesses, but rather slow.
MD4 published in RFC 1186 [Riv90] and RFC1320 [Riv92a] – fast, com-
pact and optimized for little-endian machines (such as Intel/Zilog pro-
cessors). Some potential attacks on it can be possible, which lead to the
development of MD5 (RFC 1321 [Riv92b]) – a bit slower, but much more
secure and the most widely used so far.

SHA
Related to MD4 algorithm, but produces 160 bits of output.

HAVAL
Modification of MD5, with output varying between 92 and 256 bits and
adjustable number of internal rounds. May be used to produce hash
values faster than MD5 (but possibly weaker) or slower but more se-
curely.

SNEFRU
Produces 128 or 256 bits of code. Can make variable number of inter-
nal rounds, but analysis shows that 4-round SNEFRU has some basic
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weaknesses, where the recommended 8-round SNEFRU is significantly
slower than MD5 or HAVAL.

7.5.3 Digital signatures
Public key cryptography may also be used for message authentication, i.e.
tampering prevention. In order to encrypt a message using an asymmetric
system, one should use the recipient’s public key for the encryption, so that
it may only be decrypted with a matching private key.

Private key

Public key

blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah

blah blah blah
blah blah blah
blah blah blah

--
sdgweknzzsv
asdvawoinvi

blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah
blah blah blah

plaintext signed
plaintext

plaintext

verificationsigning
ok

Figure 7.3: Digital signature

Let’s consider what happens if a private key is used for encryption (see
fig. 7.3). The public key needed to decrypt such a message is, by definition –
public, so everybody in the world may get access to it and decrypt the mes-
sage. In terms of privacy, the encryption is worthless. But the fact, that the
public key can be used for the decryption means, that the matching private
key had to be used for “encrypting” this message, and as the key is private
and known only to its owner, it must have been signed by him.

7.5.4 Algorithms
Asymmetric cryptography algorithms vary in their usage – they may be used
for secure key exchange over an insecure channel, for creating signatures
and verifying data integrity of messages sent through e-mail or exchanged
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over the untrusted media. Below is a summary of the most popular algo-
rithms of public key cryptography:

Diffie-Hellman
A system for exchanging keys between two or more parties. Not an
encryption system itself, but a way of secure exchange over a public
channel. Widely used as a basis for establishing session key using pri-
vate key cryptography.

RSA
Named after its developers from MIT university: Ronald Rivest, Adi
Shamir and USC Professor: Leonard Adleman. May be used for en-
cryption or for making signatures. Any length is available for keys
(secure keys start with 512 bits).

ElGamal
Can be used in a similar way as RSA. Based on exponentiation and
modular arithmetic.

DSA
Digital Signature Algorithm. Developed by NSA, and used for signatures
only (although it is possible to use it for encryption too). Sometimes
called DSS. Any key length is possible, but adopted standards use lengths
of 512-1024 bits.
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Chapter 8

Secure programming
Many security problems come from improper configuration or unwanted
interaction between different programs, but may of them are actually conse-
quences of errors in software development – laziness of the programmers,
lack of experience, tight schedules and deadlines that have to be met, or just
the underestimated role of software testing.

The “Top 25 most dangerous software errors” document [Cor10] lists the
most dangerous programming problems considered today that may lead to
serious software vulnerabilities. The short summary of these errors is shown
in table 8.1. It includes various aspects of programming, from specifics of
various programming languages, to WEB-programming and constructing
database queries, so the given scores are influenced mostly by the impact
on the overall security, which puts a clear stress on WWW access and parts
of programming techniques which are WEB-related. Another notable WEB-
oriented document s the OWASP Testing Guide [The09]. Nevertheless, it is
equally important to avoid the well-known problems when writing programs
that will be compiled and run in any operating system, no matter if they are
WWW-accessible or run as standalone programs.

When considering shell programming and writing standalone programs,
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the most common errors include problems that allow exploiting set-uid pro-
grams, such as:

◦ buffer overflows
◦ signal disposition and process group setup
◦ printf () format string attacks
◦ relative path in exec()
◦ /tmp or other publicly writable directory race conditions
There are many general rules for safe programming and techniques. One

of the very basic ones requires processes to operate on the least possible level
of required privileges and dropping them whenever they are not needed.
Other ones assume that both programmers and users can make errors, and
it is the responsibility of a computer program to properly deal with all kinds of
problems with data sanity checks, for example by checking various assertions
throughout the execution of the program.

The defensive programming techniques cover the whole process of soft-
ware design that covers such aspects, as writing down the required function-
ality, splitting the whole program into functional objects, reducing the design
complexity, writing and testing pieces of software as they are written, writing
usable documentation, and finally – writing software that is reusable, bug-free,
predictable and running properly in spite of its unforeseeable usage.

Proper software writing techniques include:
◦ dropping extra privileges when they are not needed,
◦ ‘black list’ of functions that should never be used in suid programs,
◦ adhering to the specification of the program,
◦ keeping in mind the re-usability of code and proper documentation,
◦ proper testing of all components of a written program.
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Score Name
1 346 Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’)
2 330 Improper Neutralization of Special Elements used in an SQL Com-

mand (SQL Injection)
3 273 Buffer Copy without Checking Size of Input (Classic Buffer Over-

flow)
4 261 Cross-Site Request Forgery (CSRF )
5 219 Improper Access Control (Authorization)
6 202 Reliance on Untrusted Inputs in a Security Decision
7 197 Improper Limitation of a Pathname to a Restricted Directory (Path

Traversal)
8 194 Unrestricted Upload of File with Dangerous Type
9 188 Improper Neutralization of Special Elements used in an OS Com-

mand (OS Command Injection)
10 188 Missing Encryption of Sensitive Data
11 176 Use of Hard-coded Credentials
12 158 Buffer Access with Incorrect Length Value
13 157 Improper Control of Filename for Include/Require Statement in

PHP Program (PHP File Inclusion)
14 156 Improper Validation of Array Index
15 155 Improper Check for Unusual or Exceptional Conditions
16 154 Information Exposure Through an Error Message
17 154 Integer Overflow or Wraparound
18 153 Incorrect Calculation of Buffer Size
19 147 Missing Authentication for Critical Function
20 146 Download of Code Without Integrity Check
21 145 Incorrect Permission Assignment for Critical Resource
22 145 Allocation of Resources Without Limits or Throttling
23 142 URL Redirection to Untrusted Site (Open Redirect)
24 141 Use of a Broken or Risky Cryptographic Algorithm
25 138 Race Condition

Table 8.1: Top 25 programming errors according to [Cor10]
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8.1 Buffer overflow
Most of currently used programming languages provides support for tables
or other structures whose elements can be iterated, as well as local variables
and recursion, which impose a certain model of architecture of the memory
usage in a program. First of all, it is divided into separate segments: the
program code, the data and the stack. As some variables are stored on the
stack (i.e. variables declared as local inside a function or a code block), it is
really important to check boundaries of any write operations that may operate
on locally declared tables or vectors. Let’s consider a function definition as
shown in fig. 8.1.

int sample(int n, char *ptr) {

int i;

char tab[100];

sprintf(buf, "Read %d samples from %s\n", n, ptr);

...

}

Figure 8.1: Buffer overflow problem

This function may be called with any parameters, so when the sprintf () func-
tion gets called it will happily copy whatever is passed as the second param-
eter to the buffer allocated on the stack. The buffer’s size is set to 100 bytes
and some of these will be allocated for the printed text, so effectively, there
remains about 80 bytes for the remaining data. If the string passed by the ptr
parameter is longer, the sprintf () will not stop, but continue copying the bytes
past the end of the tab buffer, overwriting whatever is there – the variable
i, the function frame and the function return address, so when finally the
function will end, the program execution will not be transferred to the place
where the function was called, but to some random memory location.

Buffer overrun problem gained widespread attention after being published
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in the Phrack magazine in 2001 [Ale01] but it seems it is still one of the most
important, but still overlooked, problems in writing applications.

The problem may manifest itself in many different situations, whenever
some data is being copied between memory locations without the proper
boundary checking. It is especially dangerous if the data is copied from
standard input (stdin), program parameters (argv) or environment variables
(getenv()), as it enables an attacker to easily control what is being copied to
the overwritten stack and actually exploit the error by supplying a specially
crafted shellcode – a piece of assembly code placed on the stack which when
executed, runs a shell, possibly with the privileges obtained from the program
with a buffer overrun problem.

The actual copying in a dangerous way may be done by different means,
some of which include:

◦ using strcpy() instead of strncpy(),
◦ using gets() instead of fgets(),
◦ improper usage of sscanf (),
◦ improper usage of pointers and wrong loop ending conditions.

History shows that most of the programs had this kind of problem. A lot
of open source programs have been cleaned from dangerous system calls
once buffer overflows gained widespread attention, but still a lot of problems
may exist undetected in closed source programs or even open source that is
not maintained very actively. In some cases it may be even easier to find an
exploit for a buffer overrun bug hidden in a program than fix it, as it is quite
simple to analyse its binary version, looking for calls to functions such as
gets() or strcpy(). They need to be listed explicitly in order to allow dynamic
linking of system libraries. Any calls to these functions found in a program
are a clear invitation for further analysis and writing an exploit.
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8.2 File permissions
File permissions play an important role in securing access to various system
resources as well as individual user files and should not be overlooked when
writing any application. Very often temporary files are needed by programs,
which are usually created in the /tmp directory – if they are readable by
anybody, some internal state of the program may be revealed, and if the pro-
grammer did not care about the umask value and created a file with world-
write permissions, anybody else may disrupt the execution of the program
by modifying such a temporary file.

The basic rules about file permissions when writing programs is to keep
the permissions to the minimum – i.e. only enough that the program works
properly and within the defined specification, but not more. So it may respect
the default umask (i.e. defined by the user running a program) when creating
output files, but for temporary files or any other transient operations it is safer
to set the umask to 066 so that anybody else will not be able to read/write
these files. If the program needs special privileges and is run in suid mode,
even more care has to be taken for accessing files and producing aby output.
Access to files that are supposed to be world-readable should be done only
after dropping special privileges (by using the seteuid() function). Failing to
do so may result in race conditions (see section 8.6) or problems related to
symbolic links usage.

Some well known permission problems are specific to particular versions
of the operating system and some are rather the effect of lazy programming
and may appear everywhere. Older systems allowed deleting files owned
by other people if they were placed in publicly writable directories, such as
/tmp, as the world-write access bit set for such a directory allows it. Modern
systems still may allow this, but the sticky bit (+t) set on the directory makes
these operations safe, i.e. disallowing any file manipulation of files owned by
other users. This also helps reducing risks of race conditions, but still some
other measures have to be taken to prevent them from happening.
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Default umask needs to be changed especially in servers – the programs
that once executed, will run endlessly in a loop, waiting for clients to connect.
Also it is worth knowing, that if a server is run from the system startup scripts
(located in /etc/rc?.d directories), its umask value will probably be set to 0,
so a server program should not assume anything and set this value to some
more appropriate value, regardless of the initial value.

8.3 Default directories and relative paths
For programs that run as a service or a system daemon (i.e. once started,
they do not exit, but service new clients as they appear) it is usually desirable
to provide some way of reinitialisation or re-checking of the initial state.
Typically, if such a process receives a SIGHUP signal, it will reopen all log files,
re-read its config file and generally – restart its operations. As the program
name is kept in argv[0], the simplest way is to use this name in the execv()
or execvp() call (so that all initial parameters are also preserved). However, if
the program has been started with a relative path, or from a path which was a
symlink in the /tmp directory, this may lead to actually starting a completely
different program if that symlink has been changed in the meantime.

In suid programs care must be taken to drop all special privileges before
proceeding with any of the exec() system calls – if the privileges are really
needed, the exec() function will take care of them (i.e. grant them on execu-
tion of a file read from the disk), while not dropping them may lead to using
them in a program that should be run as normal user.

8.4 Passing parameters and quoting
When one process calls another as a subprocess or as external application,
special care has to be taken to passing parameters. In most cases spaces
are treated as a separator between parameters, minus sign is treated as an
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option indicator, and some characters such as < or * may have a special
meaning when interpreted by shell. Single and double quotes group param-
eters changing their interpretation and other characters (e.g. %) will indicate
special coding when used in CGI-encoded strings. For these reasons it is
vital to realize what kinds of programs are passing parameters and how they
should be quoted and possibly cleaned of dangerous characters, so that their
interpretation is really what was intended.

8.5 Uninitialized variables and default values
Languages such as PERL, AWK, PHP and shell scripts allow using variables
which come into existence by just referencing them. Such variables are
usually initialized to ‘zero’ or null string, but it is easy to forget about the
proper initialization or confuse the uninitialized zero value with an intentional
zero value.

Another problem comes from the fact, that the type of such a variable is
automatically assigned at the first use of the variable, so if it is first used as an
integer, but later referred as string, the results may be not what the program
author intended.

Other languages (such as C, C++) still allow usage of uninitialized values
– it is possible to declare a variable then use its (undefined) value before
assigning it first. Some compilers produce compilation-time warnings in such
situations, but it is not always possible to detect such problems. Assuming that
such a variable will have a value of 0 may be true 99 times out of 100, but
leads to unpredictable results.

8.6 Race condition
Race condition happens when two or more processes try to access some file
or data in a way, that is dependent on the actual timing of these processes
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(and thus – unpredictable) rather then on some well-defined conditions.
Examples may include accessing a region of shared memory or writing

to a file by several processes. To avoid the possible data corruption the op-
erating system provides tools such as semaphores and file locking and in
general – a well-defined interface that guarantees atomicity of critical oper-
ations when needed. Semaphores allow mutual exclusion of processes for
sections of the program that need to be executed atomically – i.e. uninter-
rupted, from the point of view of other processes that may want to modify
the same region of memory, or a record in a database. Threaded applica-
tions may use semaphores or monitors and conditional variables for that. For
file access, file locking mechanisms may be used, such as flock() or lockf ()
which grant exclusive access to the whole file or its fragment (defined by the
starting offset and length).

However, one of the moments that is too often forgotten is the moment
of actually opening a file, especially when a file is opened for writing, and
even more important – by processes running with special privileges (i.e. suid
programs).

Typical abuse involving race conditions includes symbolic links created
in temporary directories. A symlink is a special file that points to another
file in a filesystem (potentially: a different file system). Every operation on
a symlink (i.e. opening it, reading, writing or overwriting) works actually on
a file that it points to, except unlink() and rename() (or rm and mv) which
removes/renames the link, not the target file. Removing a file may cause the
link to become invalid (pointing to a nonexistent file), but removing a link and
then immediately creating one pointing to another file is a potential security
threat.

Consider a typical situation shown in fig. 8.2, when a process wants to
open a temporary file in /tmp directory. If the file already exists, it will be
overwritten. If the running process is running with euid=0, it may overwrite
any file in /tmp directory. If that file happens to be a symlink, it may actually
overwrite any file anywhere. So one might want to ensure that the file does
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not exist when we try to open it for writing, or if it exists, it is not a symlink.
The process first tries to check if the file exists with a stat() system call (fig.

8.3). If the call succeeds (returning a file info) or fails for any reason other
than that the file does not exist, the error message is printed using perror()
and the program is aborted. Otherwise the file is created with fopen() system
call.
The problem now lies in a tiny moment between these two operations. There
is no guarantee that there will not be a context switch just before the fopen()
call, and if that happens, another process may create a file or a symlink with
the given filename. Even if we open the file in append mode, just in case,
then check again after opening if it is not a symlink and possibly reopen with

FILE * fp=fopen("/tmp/temp1", "w");

if (fp==0) {

fprintf(stderr, "Error creating temporary file\n");

exit(1);

}

fprintf(fp, "........");

Figure 8.2: Symlink abuse threat

#define FNAME "/tmp/temp1"

struct stat buf;

if (stat(FNAME, buf)==0 || errno!=ENOENT) {

perror("creating temp file");

exit(1);

}

FILE * fp=fopen(FNAME, "w");

if (fp==0) {

fprintf(stderr, "Error creating temporary file\n");

exit(1);

}

fprintf(fp, "........");

Figure 8.3: Symlink race condition
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a different name, the problem still remains. The only solution is to actually
use a system call that will atomically create the file if it did not exist, or fail if
the name already existed. For that purpose either open() or creat() system
calls may be used, as both of them allow flags O CREAT and O EXCL. Using
both of these flags ensures creation of the file by the calling process or an
error reported if for some reason the file could not be created. Later the file
descriptor of type int may be transformed to a FILE* descriptor needed in
stdio-style functions by calling fdopen(), as shown in fig. 8.4.

#define FNAME "/tmp/temp1"

int fd=open(FNAME, O_CREAT | O_EXCL, 0600);

if (fd<0) {

perror("creating temp file");

exit(1);

}

FILE *fp=fdopen(fd, "w");

fprintf(fp, "........");

Figure 8.4: Safe creation of a temporary file

Some final notes on writing secure programs that avoid race conditions:

◦ Use creat() or open() with a O TRUNC parameter when creating new files.
◦ When creating files in publicly writable directories, such as /tmp, ignore

the mktemp() function and use nstead open() with O CREAT and O EXCL
options to create the file, but also ensure the file did not exist earlier in
one atomic operation.

◦ Use stat() on a file descriptor of the already open file, instead of fstat()
or lstat() and giving the file reference by file name.
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8.7 Further reading
Command line problems and proper interpretation of quoting and escaping
special characters is discussed in [Wau01] and in the book [McG06]. Secure
programming cookbook [VM03] provides a lot of examples of how to write
proper code. Secure coding: principles and practices. [GV03] describes a lot
of bad and good practices of code development as well as security architecture
principles and testing methodology.
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