POLISH ACADEMY OF SCIENCES - WROCLAW BRANCH

WROCLAW UNIVERSITY OF TECHNOLOGY

ARCHIVES
OF CIVIL AND MECHANICAL
ENGINEERING

Quarterly
Vol. V, No. 3

WROCLAW 2005



ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING

Vol. V 2005 No. 3

Selection of assembly equipment using expert system
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In order to reduce the time of designing technological process and selection of optimal variant of
process with regard to qualitative and economic aspects, expert systems are often used. Computer tech-
niques improve and speed up the selection of assembly devices and also allow us to calculate the costs of
their application in assembly process of a given product. Knowledge and experience of designer who co-
operates with computer system make qualitative and quantitative aids of decision making in different
stage of designing possible. In the paper, the use of techniques of Artificial Intelligence for creation of an
expert system which aids decision making in the planning and selection of the elements of assembly de-
vices like robot and gripper is presented.
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1. Introduction

The design of assembly and the selection of assembly tools constitute a multistage
process which to a large extent determines the quality and price of manufactured ma-
chines. In order to obtain high quality and reliability of the manufactured machine, not
only its individual components must be properly designed and made, but also their as-
sembly and the assembly tools must be proper. The designer’s knowledge and experi-
ence are the key elements which aid (both qualitatively and quantitatively) the design
process and decision making at the different stages of design. The dispersion of
knowledge, its complex structure and the difficult access to it greatly limit its avail-
ability. In this context, the efficient planning of assembly and the selection of
assembly tools assume increasing importance.

To tap the procedural knowledge contained in software tools, the catalogue knowl-
edge stored in databases and the expert knowledge stored in knowledge bases, an ef-
fective tool comprising solution search methodology, the selection of criteria and con-
straints and the determination of sought quantities, their values and directions of their
variation are needed.

To shorten the time required for designing such a complex process as assembly and
to achieve positive economic results, computer techniques and analyses aided by ex-
pert systems, artificial neural networks and relational databases are more and more
often employed. In the design and visualization of assembly processes, expert systems
should collaborate with computer-aided design (CAD) systems, production planning
systems (PPS) and computer-aided assembly process planning (CAAPP) systems.
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By combining all these systems one can shorten the time of process design and se-
lect the optimum solutions for the technological process and for the tooling. The
analysis of the process of optimum selection of the assembly—devices (the robot and
gripper) was conducted for team of valve (see Figure 2).

2. Expert system software tools

An expert system aiding decision making in the planning and selection of assembly
devices (including the estimation of costs connected with the use of the latter) has be-
come an essential tool. Such systems are widely applied in order to solve highly tech-
nical problems requiring expertise and to perform complex tasks requiring great intel-
lectual capacity [1, 2, 3]. Expert systems put forward solutions which the user can ac-
cept or reject and demand another solution.

The effectiveness of an expert system depends mainly on its database and to
a lesser degree on its inference mechanism. The database contains knowledge (in the
form of rules and facts) about the domain to which the problem belongs. The inference
mechanism draws conclusions from the accumulated knowledge, which leads to the
solution of the problem.

The system of GURU developed by the American company MDBS and the Access
97 software for relational databases were used to build an expert system. The system
forms an integrated environment (see Figure 1) which for prescribed conditions and
costs selects assembly devices from a database on the basis of a knowledge base [4,
5] This is illustrated in this paper for the selection of robot and grippers for a simple
machine. GRIPPER and ROBNETEX expert systems and ASSEMBLY database,
which stores catalogue data on robot and grippers, have been developed.

To create an expert system based on a knowledge base one must acquire knowl-
edge from an expert (a human being) in a given field who often finds a solution to
a problem on the basis of information about it and his/her own experience. An expert
system which incorporates recorded expert knowledge in the given field can use this
knowledge repeatedly in an economically effective way without the presence of the
expert.

The power of an expert system to solve a given problem depends largely on the
knowledge encoded in it and to a lesser degree on the formalism and the inference
schemes which it uses. Briefly put, the fuller the knowledge about a given problem,
the faster its solution [3, 5].

3. Expert system for selecting assembly equipment

An efficient system of configuring the assembly workspace should have an inter-
face allowing the user to use advanced A.I. tools without entering their environments
[6, 7, 8].
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The success or failure of an expert system depends to a large extent on the ease of
use and the quality of the user interface. To be user-friendly it must meet several re-
quirements such as:

o the ease of use (it should not require long learning),

e crrors in entered data (facts) should be early detectable and hints on how to cor-
rect them should be offered,

e the expert system’s output should have a form acceptable to the user,

e the queries which the user must answer and the answers to the user’s queries
should be easily understood.

The interface (communication module) used here allows the user to communicate
easily (in a way similar to a natural language) with the computer. The user-friendly
interface is so designed that even users who do not know any programming can im-
mediately use the program. The system which aids the design of a manufacturing
process by automatically selecting an assembly robot or gripper is a component of
a system for selecting assembly equipment for the assembly workspace. The latter is
a hybrid system consisting of an expert system, a neural network, a database, and
a user interface. It contains design data, technological data, knowledge and inference
and association mechanisms needed for the selection of a robot or gripper. Its algo-
rithm is shown in Figure 3.

Input of sought robot’s
or gripper’s parameters

l

-
-+

L Selection of neural network g Expert
2 training data - B system
z
g .
A ' ; :
Selection of robot or gripper for Neural
i prescribed parameters B Network
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output and connection with o  Internet
» Internet directory browser

Fig. 3. Program algorithm

In the first step, the designer of the assembly process interactively enters some pa-
rameters of the sought robot or gripper which are encoded by the program. Then the
expert system, having a knowledge of how to select patterns for neural network train-
ing from the database, is employed. A robot or gripper is selected by means of the
neural network. First, the neural network is trained using data prepared by the expert
system and then the trained neural network receives the sought robot’s parameters. At
the output the information about the type of the selected robot or gripper is obtained.
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The expert system was used to provide patterns for the training of the neural net-
work to the adequate level in the required range.

Data for neural network training are selected from the database on the basis of the
information on the robot’s application domain and its operating conditions assumed by
the designer of the manufacturing process. The expert system’s knowledge base incor-
porates rules according to which proper patterns are selected from the ones stored in
the database.
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Fig. 4. Window for defining source sets for neural network training

A skeleton expert system, called Guru, was used to perform this task. The Qnet
simulator with error back propagation training was used for the implementation of the
neural network (Figure 4).

4. Selection of robot

The ROBNETEX user interface (see Figure 5) was created using the Delphi 3
software environment for the quick development of Windows applications. The inter-
face consists of the following three main parts:

e data input,

e robot selection procedure,

e Internet directory of robots.

To define the sought robot in the ROBNETEX program, three groups of robot fea-
tures, i.e. general, functional and spatial, are specified in the data input part.

General features define the robot’s application domain with regard to the type of
performed jobs and the conditions in which the robot is to work. They are used to re-
duce the number of potential solutions and the amount of neural network training data,
whereby the learning time is considerably shortened.
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Functional features define the sought robot’s design parameters, i.e. the number of
steered axles, the lifting capacity, the workspace size, the positioning accuracy and the
speed of motion.

Spatial features define the way in which the robot can be mounted in the work
area:

e immovable base — the robot secured to the floor or a wall or suspended from the
ceiling,

e movable base — the robot moving (usually) along one axis,

e travelling robot: underhand or moving along one or two axes.

The robot selection part consists of three functions: neural network training data
selection, neural network training and sought robot selection. The neural network
training function is performed by the Qnet neural network simulator.

The directory of robots part has direct links to the Internet directories of robot
manufacturers. By entering the robot’s name and its type we can find the selected ro-
bot in the directory and obtain its numerical and graphical specifications. The program
has links to the robot directories of BOSCH, ABB, Epson, Fanuc and Kuka. For ana-
lyzed team of valve (Figure 2) the system executed the choice of robot of the BOSCH
firm introduced in Figure 5.
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Fig. 5. The choice of robot by ROBOTEX system
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The advantages gained from the ROBNETEX program are as follows:

e simple rules of the knowledge recording in expert system,

« processing of incomplete knowledge through neuronal net,

o taking advantage of literature,

¢ due to extension of base of robots it is possible to widen the range of accessible
robots and the areas of their use,

e the service of the system is easy,

e quick results, low expenditure of work,

¢ no necessity of preview of many catalogues in order to find the solution,

e the possibility of quick selecting the robot demand.

5. Selection of gripper

To realize an assembly process, in which the state-of-the-art robots controlled by
computers are employed, the robots must be equipped with sensors and executors such
as grippers or tools.

In the manipulation process, the robot’s gripping devices are used to perform the
following elementary tasks:

e to grip the object of manipulation in the initial position,

e to hold it during manipulations,

e to release the object of manipulation in the target place.

A proper gripping of the object of manipulation depends on:

e the object’s shape,

e the dimensions of the manipulated part,

e the object’s weight,

e the position of the centre of mass,

¢ the moment of inertia,

e the kind of the object’s material,

¢ the condition of the surface,

¢ the working tolerances of the gripped areas,

e the properties of the surface of gripped areas,

e the dynamic conditions of the manipulation and assembly processes.

As regards the gripper, the gripping of the object is determined by:

¢ the mode of gripping,

e the shape and geometric parameters of the gripping elements,

e the properties of the surface of the gripping elements,

o the force generated by the grippers’ drives,

e the sensors.

For each technological task there exists the optimum gripper design. The selection
of the proper gripper is thus of crucial importance for the process of manipulation.
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The purpose of the GRIPPER expert system is to aid decision making by the engi-
neer during the selection and planning of assembly tools (grippers) for the design of
the assembly of an object. On the basis of the user’s specifications the system will se-
lect the proper gripper from the gripper database to grip the object which is to be as-
sembled. The GRIPPER expert system is one of the subsystems in a global system for
modelling the assembly work zone. The necessary information in the form of a knowl-
edge tree (its fragment is shown in Figure 6) is entered as rules into GURU system. In
the editor, besides writing a rule one must also enter the rule processing parameters.
The rule consists of premise IF with conditions and conclusion THEN with objective
variables. Then the variables must be specified and described. The description will be
displayed when queries about the variables are made during consultation with the
system or when the consultation process is being explained.

The program asks us if we want it to explain why and how and the goal of the con-
sultation was achieved. If the answer is yes (Y by default), the program displays the
explanations shown in Figure 7. It the answer is no (N), the consultation begins again.

The database is an important component of the system aiding the selection of as-
sembly devices. It stores information about the parameters of the devices used in as-
sembly and photographs of them. The gripper database is based on SCHUNK, SOM-
MER and BOSCH catalogues [9].

6. Conclusions

Computer software aiding the production engineer in the design of assembly and
production planning processes plays an increasingly greater role, expanding design
possibilities. An example of such software is the program presented which owing to
the hybridization of the expert system and the artificial neural network makes for bet-
ter and more efficient engineering design.

The main advantages of the presented system of aiding engineering design deci-
sions by employing computer techniques and artificial intelligence methods can be
itemized as follows:

¢ a reduction in design time;

e quick access to the results of work;

e if the initial data are changed, modifications can be easily made even at advanced
stages of design;

¢ a reduction in design costs.

The program in conjunction with similar computer tools for the design of assembly
workspace, including the selection of instrumentation, transport systems, feeders,
gripping devices and so on, brings substantial benefits by reducing process design and
implementation time.
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Wybér wyposazenia montazowego za pomocg systemu ekspertowego

Projektowanie procesu technologicznego montazu oraz dobor wlasciwego oprzyrzadowania
jest dziataniem wieloetapowym, majacym podstawowy wptyw na jako$¢ oraz ceng wytwarza-
nych urzadzen. Wiedza i doswiadczenie konstruktora sa jednymi z czynnikow umozliwiaja-
cych jakosciowe i ilosciowe wspomaganie procesu projektowania. Umozliwiaja one wspoma-
ganie procesu podejmowania decyzji na ré6znych etapach projektowania. Rozproszenie, trudny
dostep 1 ztozona struktura rozpatrywanej wiedzy ograniczaja w znacznym stopniu jej dostep-
nos¢. W tym kontekscie coraz wigkszego znaczenia nabiera efektywne planowanie i dobor od-
powiednich urzadzen montazowych wspomaganych przez systemy doradcze. Jesli uwzglednic
wykorzystanie wiedzy proceduralnej zawartej w narzedziach programowych, wiedzg katalo-
gowa zawarta w bazach danych oraz wiedzg ekspercka zawarta w bazach wiedzy, to konieczne
staje si¢ wykorzystanie efektywnego narzedzia obejmujacego metodyke poszukiwania rozwia-
zania, dobor kryteriow i ograniczen, okreslenie poszukiwanych wielkos$ci oraz ich wartosci lub
kierunkow ich zmian. W artykule przedstawiono budowg takiego systemu oraz wyniki doboru
urzadzen typu robot i chwytak dla okreslonego zespotu zaworu.
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Spectral response of linear system
under Poisson driven pulses

MALGORZATA GLADYSZ, PAWEL SNIADY
Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroctaw

In this paper, the dynamic response of a linear structure to a random train of pulses driven by a Pois-
son process is considered. An analytical method is developed to determine spectral density function of the
response of the structure. Both stationary and non-stationary vibration problems are considered. To as-
sume simple algebraic relations for both cases of response the dynamic influence function has been intro-
duced.

Keywords: structure, train of pulses, spectral analysis

1. Introduction

Analysis of the response of vibratory systems to random train of pulses has re-
ceived a great deal of attention in the past [1-6]. The shapes of the pulses have been
assumed to be the Dirac delta function [1, 3, 11] or arbitrary function and have deter-
ministic or random time duration. The response of a structure subjected to a random
train of pulses is, in general case, a point stochastic filtering process and in particular
a Poisson filtering process [2, 4, 5, 6]. This latter case occurs in the dynamics of high-
way bridges loaded with a vehicular traffic flow [9, 10]. A random train of pulses can
model seismic, para-seismic, acoustic excitations and wind load [11].

In this paper, the dynamic response of a linear structure to a random train of pulses
is considered. An analytical technique is developed to determine spectral density
function of the response of the system.

Many random vibration problems are solved using the spectral analysis method.
This method is applicable only to linear time-invariant system [7, 8]. Both stationary
and non-stationary vibration problems are considered. There are two reasons why the
spectral analysis method is used: the simplicity of the method and the fact that the
spectral density function of the vibration system reflects the energy distribution in the
frequency domain. The frequency domain method is particulary suited to the analysis
of stationary responses of a linear system. It can also be applied to determine non-sta-
tionary responses. For stationary responses there exists a simple algebraic relation
between the input and the output spectrum. When the linear system is excited by
a random train of the pulses driven by a Poisson process there is no such a simple al-
gebraic relation between the input and the output spectrum. To overcome these diffi-
culties the dynamic influence function has been introduced which allows us to assume
also simple algebraic relation for stationary and non-stationary responses.
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2. Spectral density function of pulses train

At the beginning let us consider a time-invariant linear system subjected to the sto-
chastic excitation f(¢). With the normal mode approach, the motion of a linearly elastic
structure can be described by the set of uncoupled equations:

yn(z)+2any}z(t)+a)721y)z(t):pnf(t)7 n:1727 sees (1)

where dots denote differentiation with respect to time.

The covariance function of the structure response to excitation f(#) and its spectral
density function require the knowledge of the spectral density function of that excita-
tion. Let the function f(¢) be a stochastic process, stationary in the extensive meaning
with the random characteristics E[ f(1)], Cy (t2—t1) = Cyf(?).

This stochastic process is assumed to be a train of pulses with random amplitudes
occurring at random times. The process has the form of the following superposition:

N(t)

f@ = 4S1,.T)). ()
k=1

The amplitudes A, of pulses composing the random train inducing vibrations of the
structure, the times ¢ of the pulses activation and the times 7 of their duration are, in
general, random variables. It is assumed here that the amplitudes are mutually inde-
pendent, random variables and their random characteristics are known and constant:

E[4,]1=E[4],  E[4]=E[4"].

It is assumed also that the duration time of any pulse is the same, so 7, = T, for
k=1,2,3, ..

The function S(¢, #, Ti) = S(t, t, Ty) in expression (2) describes the shape of the ™
pulse in the time interval (¢, #,+7;). Here it is assumed that the shape of each pulse
does not depend on the arrival time ¢, but depends on the time distance between the
observation and the arrival of the ™ pulse. So in this case the function S(z, #, Tp) =
S(t - t;) has a form:

S(t—t,) fort, <t<t +T,,

S(Z_tk’TO):{ )

0 for t<t, ort>t, +1T,.

In the next section, some selected examples of the shape function of the pulses
(Figure 1) are considered.

The symbol N(?) in the sum (2) denotes the Poisson process with parameter A that
gives the number of pulses in the time interval (0, f).
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The excitation function £{(¢) is a sum of the pulses loading the structure during ob-
servation. Taking into account the characteristics of the Poisson process the function
f(¢) can be described as:

f@®= IA(r)S(t —7)dN(7). 4)
0

The symbol dN(r) denotes increment of the process N(¢) in the time interval (z,
7+d7)

The general relationships between the covariance function C, (7) and the spectral
density function @ (@) for any stationary stochastic process X () take the form:

®_(0)= % [Cu(@)e™ dr = % [Cu(@)coswrdr,
-0 0

)
C.(r)= J. D (w)e' " dw= 2J. @ (w)coswrdm.

—o0 0

Taking into account the assumptions presented earlier and accepted for the excita-
tion f(¥) its covariance function can be described as:

min(¢;,t,)
Cpltnt)=  [ELL@IES( - )8t -0)A(D)dz
max(t;,t,)-T,
min(t,t,)
=E[£14  [E[S(-7)S(t, -7, ©)

max(fy,1,)-Ty

where ¢, 2T}, t, 2 T}.

For deterministic functions S(¢—#;) and the stationary excitation processes Equation
(6) takes the form:

min(#,t,)
Cpltnt)=Cp(O=EA 1 [S(-0)S(t, —7) de
max (t,t)-Ty
Ty|1|

= E[4*]4 j ST, -|]-0)ST, - 7)dr  for [f<T,, (7)
0
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where |t| =|t1 —t2| and C,(t)=0 for |t|ZTO.
The spectral density function of f(¢), after application of (5), can be obtained from
the expression:

1 K —i® 100
Py () =Z_J;0Cﬂ(77)e " dn =;£Cﬁ(n)coswn dn. (8)

The spectral density functions for some particular forms of excitation can be de-
scribed by the following equations.

a) ﬂ\
f(t)

b) ﬁ\
A
[\ /N -

Y

t
To

V
)
I\l\j
=

Fig. 1. Shape function of the pulses: a) rectangular, b) sinusoidal, c) exponential
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1. When the structure is loaded with the stream of the rectangular pulses (Figure
1a) the function S(z—#) takes the form:

1 for ¢, <ttt +1T,,

S(t_tk):{ ©)

0 for t<t ort>t, +1,

and the spectral density function of impulses and their covariance function can be de-
scribed as (Figure 2):

2
¢ﬂ-(w)=wl(l—cosa)To), (10)
T w
C (1) =E[A1A(T, -|1). (11)
A
? E[A*12T, ﬁ Cal®
-T, Ty T
b) } D, ()
E[AZ]AT—"
T

—4r -2z 2 Y4 )
T T T T

Fig. 2. Spectral density function (a) and covariance function (b) for rectangular pulses
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2. In the case of the structure excited by a series of sinusoidal pulses (Figure 1b):

S(t—t,)= T, (12)

. T
sin p(t—t,), where p=—, fort, <t<t +T,,
0
0 fort<t, ort>t, +T,

the spectral density function of impulses and their covariance function take the form
(Figure 3):

A
2) ELAT, b Cal)

b)

Fig. 3. Spectral density function (a) and covariance function (b) for sinusoidal pulses
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2E[A°]A ?
D, (w) = [A°] (p_w)f(p_i_w)z(l-i—cosa)To), (13)
Cp(0) = E[421 2% Lsi |t|+ (T, = |t))cos pl| (14)
s () =E[A7] 2 psmp o cos p|t||.

3. For the series of exponential pulses (Figure 1c) the functions discussed are de-
scribed by (Figure 4):

a)

B
(=]
H

f=]

-
Y

b) O

Y

Fig. 4. Spectral density function (a) and covariance function (b) for exponential pulses
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U fort, <t<t, +T,
S(t—1,)=1¢ ol ==l o, (15)
fort<t, ort>t, +1,
E[4’14 1 2Ty BT,
D, (w)= l+e 7 =27 coswT|, 16
ﬁ‘( ) (a)2+ﬂ2)[ o] (16)
Cp(t)= E[Az]ii[eﬂt —eﬂ(‘f‘*”ﬂ)]. (17)

3. Spectral analysis of the dynamic system

The frequency domain method is particularly suited to the analysis of stationary re-
sponses of a linear dynamic system (1). It can also be applied to determine non-sta-
tionary responses [12]. For stationary responses there exists simple algebraic relation
between the input and the output spectra [7, 8]. When the linear system is excited by
a random train of pulses driven by a Poisson process there is no such a simple alge-
braic relation between the input and the output spectra. To overcome this difficulty the
dynamic influence function has been introduced, which allows us to assume also
a simple algebraic relationship.

3.1. Stationary response of linear system

Let us consider a structure subjected to a weakly stationary stochastic excitation
f(?). The steady-state solution of Equation (1) is similar to the solution of the case
where an excitation is a weakly stationary process. Assuming that the spectral density
function @, (@) of excitation process f(¢) is known, the spectral density function of

the response @, | (@) is described by relation [7, 8]:
D, (@)=H,(0)H, ()P (), (18)
where an asterisk denotes the complex conjugate.

The complex frequency response function H,(w) is connected with the impulse

response function #4,(¢) by equation:

H, (@) = [h, ()" dt =——L» : (19)
0 w, -0 +2a,0

where the symbol i =+/—1 is the imaginary unit.
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Equation (18) relates the input and the output spectral density functions through
a simple algebraic relationship.

Let us now consider the response of the system (1) excited by the random train of
the pulses driven by a Poisson process. The steady-state solution of Equation (1) in
which the excitation process is described by relation (2) can be obtained in the form of
a Stieltjes stochastic integral with respect to the Poisson process N(¢) as [4]:

tn
7,0 = [ [4@h,(t-£)SE-7) d& dN(D), (20)

—0T

where & (t—7)=Q;' exp[— a,(t— 5)] sinQ (t—¢&) is the impulse response function,
and Q2 =@’ —a is the damped natural frequency.

Let us assume that the random variables A(z) are also independent of the Poisson
process N(¢). The covariance function C, |, (¢,1,) of the response has the form [4]:

t 12

Cy,, () =ELLN[ [ [ (6= &)k, (,-E)S(E -D)S(& -1 dE d&ydr,  (21)

—00 T T

where ¢ = min(z,,¢,) and the symbol E[e] means the expected value.

From relation (21) it is difficult to obtain the general formulae for spectral density
function similar to Equation (18). To overcome this difficulty let us introduce the dy-
namic influence function G, (¢ —7) which is the structure normal mode response at the

time ¢ to the pulse S(z—7). The function G, (¢ —7) can be obtained from the integral:

G, (t=1) =p,,jh,,(z—§)5(.§—r) d¢  fori-Ty<r<i,

G,(t-7)= (22)

7+T

GP(t-1)=p, Ihn(t—f)S(é—r) dé  for0<r<t-T,.
The covariance function for steady-state response of the system assumes the form:

C, (i) = E[42]2 [ G, 006, s -0y dr =E[42]2] 6,016, (1, -1, + &) d
0

—00

=C (-1 =C,,, (©), (23)
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where t =1, —¢,.
Equation (23) can be presented in the form:

hLob

C,,, (O=ELA [ [G,(6,-8)G,(t,-£)5(5 - &) d&, d&,

—00 —00

= B[4 1A[ [ G, (1)G, (1)t +, =m)) dn, dnp,
00

where 6(f) denotes the Dirac delta function.

24)

Relation (24) can be used to find the spectral density function @, |, (@) of the re-

sponse y,(¢).Taking into account Equation (24) and the relationship between the

covariance function and the spectral density function (5) we obtain:

1 K —iot
gDy,, Va (@)= E,[O Cyﬂ Va (e " dt

1 00 00 00 _iw
= E[L14 [ [[G,01)G,(n)5(t+1, —n) e dny dp, dt
275 -0 00
l K —io K i K —iw
=—E[L1[ G, (n)e ™" dn, - [ G, ()€ dn, - [ 5(t)dt
27[ 0 0 —o0

Expression (25) can be presented in the short form which is similar to (18):

_E[4*1A
Bl T

prﬂ Yn (0)) ‘]n (a)) ’ ‘]: (a)) .

The frequency influence function J, (@) has the form:

0 TO o
J (@)= [G, e dn=[GP (e ™ dn+ [GP e dn,
0 0

Ty

and an asterisk denotes complex conjugate.
Relationship (27) can be also presented in the form:

Ty 0

n Ty
Jy(@)=p,[ e[ h(1=&)S(&) ds‘]dn +D, je‘f‘””[ [r,1-5)5) dé]dn.
0 0

0 Ty

(25)

(26)

27

(28)
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3.2. Non-stationary response of linear system

Let us consider now non-stationary vibrations of the system. The response of the
system and its covariance function assume, respectively, the form:

Y,(0)=[ A(©)G, (t~7) dN(2) (29)
0
and

t
C,,., (6:12) = LA IA[ G, (4 ~0)G, (1, ) dr
0

nn

= LAV [ G, (t, =1)G,(t, — 1) 8(r, - 7,) d7, d,, (30)
00

where ¢ = min(¢,,,).
We extend the spectral analysis presented above for stationary vibrations to non-
stationary response of the system using evolutionary spectral density method proposed

by Priestley [12]. The non-stationary stochastic process f{(¢) can be presented in the
form:

f()= TA(z,a))e"w’dX(a)), (31)

where d X(w) is an orthogonal increment of the stationary process X () :

D, (w)do forw=w,=o0,
E[d X (0)d X" (w)] = (@) e (32)
0 for w,# w,

where the asterisk denotes complex conjugate.
The covariance function of the non-stationary process f(f) can be presented in the
form [12]:

Cylti,ty) = ja(tl,a;)a*(tz,a))chX(a))e"”“l"ﬂ do. (33)

—00
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The product ‘I/ﬂ(t,a))=|a(t, a))|2 @, () is known as the evolutionary spectral
density. Let us find the evolutionary spectral density function for the response of the
system given by Equation (29). From Equation (30) we have:

o 11y

C,,,, (h,1) = ELAW [ [ G (6 =7, (6 7)) dr dr, do

-0 0 0

= B[4 ﬂ f G,(&)e " dE - fG,, (&)e RdE, |V da. (34)
0 0

In the above case, the evolutionary spectral density function takes the form:

v, |, (t,w)=E[4*]Aa,(t,0)a,(,0), (35)

where:

a,(t,0)= [G,(&)e " d¢. (36)
0

Taking into account that the dynamic influence function has two different forms
(22), expression (36) can be presented as follows:

t
J.Gn(l)(eg)e_iwsz dé for 0<t<T,,
0

an(t’a)): Tﬂ !

[GO@e ™ dg+ [GP ()¢ ™ dz fori>T,

0 T,

(37)

4. The numerical examples

Let us consider the case where the structure is loaded with the stream of rectangu-
lar pulses (Figure la). The shape functions of pulses, their spectral density function
and covariance function are described by relationships (9), (10) and (11). In this spe-
cial case of the load, function (27) takes the form:

1 oty 1 2a,+iow
J(@)=—(1-e )E_(a oyt | (38)

n
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2_ 2 2
where Q=w,-a, .

The spectral density function of the response y,(¢) (26) is described by the follow-
ing expression:

E[A*12 1

1 o’ —4a’
2, ,, (@) sz—i(Z—Zcos oly) th

(0 -0*)Y +4a’0’ |

(39)

Figures 5, 6, 7 and 8 show the graphs of function (39) dependent on the excitation fre-
quency @ (o =0, 0.5, 1, ..., 30 Hz). The results are presented for the natural fre-

quency @, =5 Hz and the damping ratio &=0.02, where & =, ®,"'. The quantity Ty
is the duration time of a single pulse and 7, =5 T,, where T, =2nw,". It is assumed
here that the coefficient 7 has a value in turn on the graphs: 7 =0.2,0.5,1.0 and 2.0.
We can observe that spectral density function (39) has clear peaks near w=w, if

1 <1 and the distribution of function (39) becomes more mild for 7 =1.0 or 2.0 . Also

0.06 ‘
0.05 | o w
0.04 2z

: 0.03
0.02
0.01
0.00

C-o,, ()

0 2 4 6 10 12 14 16

8
w [Hz]

Fig. 5. The spectral density function for 7 = 0.2 and @, =5 Hz
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1
0.15 o ELAA
0.12 T ox

< 0.09
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Fig. 6. The spectral density function for 77 = 0.5 and w, =5 Hz
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for another values of w, (e.g. @, =10 Hz in Figure 9) the spectrum of function (39)
reveals sharp peaks for @w=w, and centres around this value. Similar graphs were

presented in [6] for variance of the normal mode dependent on duration of the pulses
T,. We can also notice that for the duration of the pulse equal to 7, =0.57, =nw," the
response of the system is the most narrow-band process.

5. Conclusions

The spectral analysis method is suited to the analysis of stationary responses of
a linear dynamic system. Dynamic response of linear system under random train of
pulses driven by a Poisson process constitutes a filtered Poisson process. In this case,
the spectral analysis of the response of linear system cannot be obtained using the
complex frequency response function (18). To overcome this difficulty the dynamic
influence function and the frequency influence function have been introduced. Taking
advantage of these both functions also in the case of non-stationary responses we can
arrive at a simple algebraic relation between the input and the output spectrum.

The relationship describing the spectral density function has the simple form (26)
easy to use in the numerical analysis.
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Gestos¢ widmowa odpowiedzi ukladu liniowego obciazonego seria impulsow

Zaprezentowano analiz¢ widmowa odpowiedzi uktadu liniowego obciazonego losowa seria
impulsow tworzacych proces Poissona. Przedstawiono zwiazki opisujace funkcje gestosci
widmowej i kowariancj¢ dla réznych funkcji ksztattu impulséw. Praca zawiera ogolne rozwia-
zania dla funkcji ggstosci widmowej w przypadku stacjonarnych i niestacjonarnych drgan
uktadu w postaci zwiazkow o prostej budowie, ktdore mozna wykorzysta¢ w analizie nume-
ryczne;j.
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In the paper, the capabilities of the MSC/NASTRAN system in the field of stability analysis of com-
posite laminated shells are critically tested. Two selected benchmark examples of laminated cylindrical
panels under axial compression are examined. The MSC/NASTRAN results obtained either in buckling
analysis or in nonlinear incremental calculations are compared with the solutions available in the litera-
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1. Motivation

In the last few years, structural engineers who use commercial computer systems
for FE structural analysis have considerably increased in number. Among the main
advantages one can recognize the following features of a typical big commercial FEA
system

e a convenient access to the computational module through a graphical interface of
pre- and postprocessors,

¢ wide range of linear and nonlinear analyses offered,

e arich library of elements available in the system.

On the other hand, every user trying to perform any non-standard calculations
meets also disadvantages of a big system, to mention here just a relatively complex
manual and very limited information on a theoretical background. The latter together
with a lack of any access to the source code makes the user see the system as a pro-
verbial black box, where all one knows is the input and the output but few really know
what is happening inside.

The author shares belief that NASTRAN can be treated as a very typical member of
the family of big commercial FEA systems. It happened that the author had to perform
a nonlinear analysis of laminated composite shells with the MSC/NASTRAN system
after a rather short experience with that program. According to promotional materials

1. The MSC/NASTRAN system is a powerful tool in the range of linear and nonlin-
ear analyses of structures.

2. The shell element QUAD4 available in system is suitable to model laminated
shells.
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Trying to verify those promises the author has applied the MSC/NASTRAN system
to recalculate several well-known benchmark examples of large deformation analysis
for composite laminated shells. However, the scope of the present paper is limited to
the stability analysis of laminated cylindrical panel under axial compression as shown
in Figure 1. It is assumed that the curved edge BC is fixed, whereas the boundary con-
ditions at the curved edge AD allow only a rigid translation of the whole rim along the
generatrix. The boundary conditions at the straight edges 4B and CD vary, depending
on the example considered.

compression load

Fig. 1. Composite cylindrical panel under axial compression

One can easily notice an obvious similarity between the problem considered and
the stability analysis of the isotropic cylindrical panel under axial compression being
the classical illustration of the buckling problem with non-symmetric bifurcation point
[1]. The basic difference herein lies in the different boundary conditions and the lay-
ered structure of the panel.

2. Computational model
2.1. Literature review

Numerical analysis of laminated plates and shells has been presented in a large
number of research papers. Due to a limited space of the present report, it is impossi-
ble to list here a comprehensive bibliography of the subject. Let us focus mainly on
review papers, each carrying a long list of references. At the beginning of the nineties
Noor et al. published a series of articles [2, 3] presenting the state-of-the-art with re-
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gard to computational models for laminated shells. Piskunov and Rasskazov [4] sur-
veyed 180 papers to trace an evolution of theoretical models for laminated plates and
shells. The list of references of the cross-sectional article by Qatu [5] contains as many
as 374 positions. An extensive bibliography of the topic can be found also in the re-
cent papers of Carrera [6, 7]. As the Finite Element Method is the predominant tool in
the computational analysis of laminated shells, one may not omit here papers devoted
to the review of shell finite elements [8—10].

It should be emphasized that the topic of stability analysis of cylindrical composite
shells is just a fraction of the subject matter of the aforementioned papers. A review of
the literature dedicated strictly to the buckling analysis of cylindrical laminated shells
can be found, for example, in [11].

2.2. Basic equations in stability analysis

The first approximation to a critical load and a corresponding buckling mode can
be obtained in a linearized buckling analysis [12]. A standard eigenvalue problem to
be solved in such a case can be described by the following equation

[K + K v=0, (1)

where K" is the constitutive stiffness matrix, K’ stands for the stress (geometrical)
stiffness matrix, A is the critical load multiplier, and v symbolizes the eigenvector
representing the buckling mode of the structure. One should notice that Equation (1)
has been obtained with strong linearization assumptions and therefore should not be
applied to examine problems with severe nonlinearities.

The second option is to trace the whole equilibrium path of the structure by means
of the nonlinear incremental analysis [12]. Depending on the algorithm applied, such
a strategy enables one to find singular points of different kind — for example adopting
the arc-length technique based on the application of extended system of equations one
can detect limit points as well as bifurcation points [12]. A governing equation of an
incremental approach in its standard form can be written as

[K,(q@JlAq=R(q),
(2)
’q="q+Aq,

where 'q and *q symbolize the global vector for displacements at the actual and at the
searched configuration, respectively, and Aq represents the increment of displace-
ments. The tangential stiffness matrix K;('q) and the vector of residual forces R('q)
depend on the actual state of deformation.
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2.3. Laminated shells analysis with Nastran

The history of Nastran is almost 40 years long, the first version of the program was
designed in the course of a NASA-sponsored project which still founds its reflection
in the name of the program (NASTRAN = NASA STRuctural ANalysis Program).
The program is available in several different releases offered simultaneously by vari-
ous vendors. The most popular version of the program, the MSC/NASTRAN for Win-
dows [13, 14] distributed by the MacNeal-Schwendler Corporation, has been selected
for use in the present research.

According to promotional materials the MSC/NASTRAN system is a general pur-
pose, computer-aided engineering tool based on Finite Element Method (FEM).
Among different finite elements available in the system one can find a 4-node shell
element QUADA4 that is applicable in a structural analysis of laminated composite
shells. It is quite understandable that details of the FE procedures applied are trade se-
crets of the MSC. One can guess that the current shell element QUAD4 originates
from the shell element proposed by MacNeal in 1978 [15]. QUAD4 appeared to be
one of the most effective low-order FE elements in the analysis of isotropic shells of
the Mindlin—Reissner type [9, 16]. An extension of the QUADA4 element formulation
to the geometrical non-linear analysis is based on the corotational concept [17]. The
layered structure of the shell is considered according to the Classical Lamination The-
ory, 1.e. it is assumed that the laminas are perfectly bonded together (no slip is allowed
between laminas) and each lamina is in a plane stress state. According to the First Or-
der Shear Deformation Theory a linear variation of deformations through the lami-
nated thickness is postulated; however, an appropriate shear correction factor is ap-
plied to fix the error of constant transverse shear strains in contrast to the more realis-
tic parabolic distribution. Stability analysis in MSC/Nastran for Windows is possible
either as a linear buckling (see Equation (1)) or as a nonlinear incremental analysis
(Equation (2)). The latter can be performed with application of arc-length technique
which allows tracing quite complicated equilibrium paths; however, the details of the
procedures offered are not accessible which forces users to adopt the choice of default
parameters.

3. Numerical examples
3.1. Cylindrical panel No. 1 — simply supported straight edges

In the first numerical example, an axial compression of a 16-layer composite cylin-
drical panel is considered assuming that the straight edges AB and CD are simply sup-
ported with the possibility of moving along the generatrix. The lamination scheme can
be described as [45/-45,/45/04]s. Each lamina is made of carbon-epoxy composite
XAS-914C with the following parameters: E,=130-10°kPa, E,=10-10°kPa,

Gup= Gupo= Gp.= 510° kPa and v,,=0.3. The geometry of the panel is characterized
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by the height 2= 16x0.125 =2 mm, the radius R =250 mm, the length L =540 mm
and the opening angle f = 1.6848 rad.

The origin of this, one of the most popular buckling problems of laminated shells,
is referred to the experimental and numerical study by Snell and Morley [18] which
was, however, not available to the author of the present report. Jun and Hong [19] per-
formed a nonlinear buckling analysis using 8-node degenerated shell elements within
Updated Lagrangian formulation. Laschet and Jeusette [20] presented results of linear
and nonlinear buckling analyses obtained with solid-shell multilayered 16-node finite
elements (3 translational DOFs per node). Wagner [21] calculated the linear buckling
load of the panel employing different meshes of 4-node shell elements with reduced
integration and hourglass control. Brank and Carrera [22] applied 4-node mixed ANS
shell elements based on the refined FSDT with finite rotations.

It is quite symptomatic that the descriptions of the analyzed panel given by the au-
thors of the five papers cited above are not quite consistent. There are some differ-
ences in the interpretation of boundary conditions on the straight edges which are de-
scribed as “simply supported” — for instance Jun and Hong [19] and Wagner [21] con-
strained only radial and circumferential translations at all nodes lying on the straight
edges. However, due to the isoparametric formulation of the finite elements applied
this approach does not fix the rotations about the normals to the edge. One can expect
that the deformation of the panel obtained in this model largely depends on the num-
ber of nodes assumed along the straight edges. The details of the boundary conditions
applied by Laschet and Jeusette [20] are not clear — just from the figure given in their
paper one can expect that they applied an additional row of shell elements on both
sides of the panel. Brank and Carrera [22] admitted that they themselves met some
problems with the description of boundary conditions.

The MSC/Nastran has been used to compute the critical load for the examined cy-
lindrical panel applying a linear buckling analysis as well as a non-linear incremental
analysis. The calculations have been performed using uniform meshes of 20x20,
40%40 and 80x80 QUAD4 elements. The results obtained with the MSC/Nastran are
in a good agreement with reference solutions [18-21] as is shown in Table 1. The only
exception is the solution of Brank and Carrera [22] which noticeably differs from all
the others. The difference with respect to the experimental results is contained within
the range of just several per cents. One can observe that an increase in the mesh den-
sity results in a decrease in the buckling load estimated.

As the values of the critical load estimated in the linear buckling analysis are very
close to those obtained from the non-linear incremental analysis, one can conclude
that the pre-buckling deformations do not differ too much from the linear solution. In
these circumstances, one could expect a better agreement between the buckling mode
corresponding to the first eigenvector (Figure 2) and the deformation form determined
in the non-linear analysis (Figure 3).
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Table 1. Buckling load for cylindrical panel with simply supported straight edges

Critical load [kN]
Model Mesh Linear Incremental
buckling analysis
8-node elements
Jun & Hong [19] 8x10 B 1432
16-node elements 8x10 143.9 137.8
Laschet & Jeusette [20] 12x18 140.3 —
4x12 145.6 -
4x16 142.2 —
4'€§:enzlre$?‘]1ts 4x20 140.8 -
& 4x40 140.0 -
4x80 139.6 —
4-node elements
Brank & Carrera [22] 32x32 - 150
20%20 144.56 144.35
QUAD4 MSC/Nastran 40x40 141.56 142.34
80x80 140.34 140.38
[18] Experiment 134

Fig. 2. The first buckling mode, P = 140.34 kN Fig. 3. Deformation at Py, , = 140.38 kN
3.2. Cylindrical panel No. 2 — free straight edges

A 16-layer composite cylindrical panel analysed in the second example is very
similar to that considered above. The main difference lays in the boundary conditions
at the straight edges AB and CD, which now remain free of any support. A buckling of
such a panel made of graphite-epoxy composite AS4/3501-6 had been examined by
Chaplin and Palazotto in [23]. The material parameters taken after [23] are:
E,=135.8-10°kPa, E,=10.9-10°kPa, G,= G,.= 6.4-10°kPa, Gj.=3.2:10°kPa and
Vip=0.276. A geometry of the panel is described by the following data:
h=16x0.127=2.032 mm, R=304.8 mm, L =508 mm and f=1rad. The assumed
layer stacking sequence is [0/45/—45/90];s.

Two different meshes of finite elements have been used in the computations:
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e model A — 24x40 QUAD4 elements,

e model B — 48x80 QUAD4 elements.

The equilibrium paths in the geometrically non-linear analysis traced with the arc-
length control technique are presented in Figure 4.
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Fig. 4. Equilibrium paths for cylindrical panel No. 2

It can be observed in Figure 4 that the graph obtained for model B is very close to that
given in [23]. At the first glimpse, the difference between the graphs for models A and
B seems to result from the variation of the mesh density in those two models. To
verify those findings additional computations have been performed with the own au-
thor’s program for analysis of laminated shells SHLO04 [24]. The results obtained with
SHLO04 for two discretizations: 12%20 and 24%40 8-node elements are almost identical
with those of model A. Since on one hand the formulation incorporated in program
SHLO04 provides a very exact description of the geometry, and on the other hand all
calculations in SHL04 are performed with a double precision, one can suppose that the
different answer for model B can result from the jump between the fundamental and
the post-bifurcation paths. To verify this deduction a linear buckling problem has been
solved in MSC/NASTRAN for the cylindrical shell under consideration. The five low-
est eigenvalues calculated for models A and B are gathered in Table 2.

Numbers presented in Table 2 show that in a case of a linear buckling analysis there
are very little differences between the results for the models A and B. It is also quite
characteristic that, on the contrary to the previous case of the panel No. 1, the lowest
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eigenvalue computed for the panel No. 2 in the linear buckling analysis (24.4 kN)
is significantly smaller than the critical load estimated in the incremental analysis
(52.8 kN for model A and 36.5 kN for the model B). Looking again at the curves in
Figure 4, one can observe that the distinction between the paths obtained for models A
and B starts at the load level near the lowest eigenvalue determined in the linear buck-
ling analysis (24.4 kN). This observation seems to support the opinion that the graph

for model B does not represent the (fundamental) equilibrium path for an ideal struc-
ture.

Table 2. Linear buckling solution for panel No. 2

N Eigenvalues of the buckling load [kN]
Model A Model B
1 24.4326 24.3988
2 27.5549 27.4879
3 28.4660 28.4560
4 29.3149 29.3056
5 36.9095 36.8081
60

— g — P, F244kN
model A, 24x40 QUAD4
model B, 48x80 QUAD4
Chaplin & Palazotto [23]
SHLO4 12x20 8-URI [24]
SHLO4 24x40 8-URI [24]
SHLO4 load imperfection
\ ‘ \ ‘ \
0 0.25 0.5 0.75 1 1.25 15
Displacement u [mm]

Axial load [kN]

Fig. 5. Influence of imperfection in analysis of cylindrical panel No. 2

To decisively verify this suggestion additional computations have been performed
with the program SHLO04, where, additionally, to the axial load a very small load im-
perfection has been introduced taken as a transverse force acting in the middle of the
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panel and equal to 0.0001 fraction of the axial load. The curve representing the imper-
fection case (see Figure 5) almost accurately matches the curve corresponding to
model B, which, in author’s opinion, entirely confirms the hypothesis that numerical
round-off errors appearing in the large MSC/Nastran model B (inaccurate mapping of
geometry and single precision computations) acted as a kind of imperfection which
can direct a solution into the post-bifurcation path. However, on the other hand, it is
important to remark that in a case that is as strongly sensitive to imperfections as the
panel analysed, the results obtained for the ideal structure on no account should be
used to determine the load capacity.

3. Conclusions

Capabilities of the MSC/NASTRAN system for Windows in the field of stability
analysis of composite structures were critically tested. Two selected examples of 16-
layer composite cylindrical panels under axial compression were examined with var-
ied boundary conditions. The results obtained with MSC/NASTRAN for Windows were
compared with the solutions available in the literature. The comparative study pre-
sented in the paper confirmed in full the power of the system to perform an advanced
stability analysis of composite shells either as buckling analysis or as nonlinear incre-
mental calculations. Additionally, it was observed that boundary conditions along the
longitudinal edges significantly affect the bifurcation sensitivity of the panel. It was
also shown that some numerical round-off errors can cause that the solution obtained
in the MSC/NASTRAN jumps from a primary equilibrium path to a post-bifurcation
branch.
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Analiza stateczno$ci kompozytowych paneli cylindrycznych w MSC/NASTRAN

Zanalizowano przydatno$¢ systemu MSC/NASTRAN for Windows w zakresie analizy sta-
tecznosci kompozytowych powlok cylindrycznych. Przedstawiono krotki przeglad literatury
dotyczacej numerycznej analizy powtok warstwowych. Omowiono zasadnicze rdwnania opi-
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sujace problem statecznos$ci konstrukcji w zakresie uogdlnionego zagadnienia wlasnego sta-
tecznos$ci poczatkowej oraz na drodze wyznaczenia pelnej $ciezki rownowagi uktadu z zasto-
sowaniem podejscia przyrostowego. Zaprezentowano podstawowe informacje o systemie
MSC/NASTRAN for Windows ze szczegblnym uwzglednieniem elementu powtokowego
QUADA4. Obliczenia przeprowadzono dla dwoch wybranych przyktadéow paneli cylindrycz-
nych poddanych rownomiernemu $ciskaniu w kierunku tworzacej, dokonujac analizy zar6wno
statecznosci poczatkowej, jak i problemu geometrycznie nieliniowego w procesie przyrosto-
wym. Podstawowa roznica migdzy analizowanymi przyktadami polegata na przyjeciu innych
warunkow podparcia na prostych krawedziach: w przypadku pierwszego badanego panelu
przyjeto swobodne podparcie prostych brzegéw, podczas gdy w drugiej rozpatrywanej po-
wloce proste krawgdzie byly swobodne. Dla obu rozwazanych wariantow przyjegto, ze zakrzy-
wione krawedzie sa utwierdzone, z tym ze jedna z nich ma mozliwos$¢ sztywnej translacji na
kierunku tworzacej. Otrzymane wyniki zestawiono z rozwiazaniami dostgpnymi w literaturze
oraz z rozwigzaniami uzyskanymi za pomoca wilasnego programu SHLO4. Przeprowadzone
badania poréwnawcze w pelni potwierdzity bogate mozliwosci systemu MSC/NASTRAN for
Windows. Zaobserwowano ponadto, ze zmiana warunkéw podparcia na wzdhiznych krawe-
dziach paneli ma decydujacy wplyw na zmiang jej podatnosci na imperfekcje. Jak wykazano
w drugim przyktadzie, numeryczne niedoktadnosci modelu MSC/Nastran w przypadku kon-
strukcji wrazliwej na imperfekcje moga prowadzi¢ do przeskoku rozwiazania na $ciezke pobi-
furkacyjna.
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The influence of cyclic loading on the bond
between concrete and steel bars

JANUSZ PEDZIWIATR
Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroctaw

Research on bond under cyclic loading is usually performed using specimens of a very short bond
length. Results of such a research show very often that bond can be completely destroyed. According to
that, most standards demand some extra anchorage length of steel bars. Different results were obtained by
the author from experiments on long specimens under eccentric tension. If a concrete member is properly
designed for the sake of limit states and fatigue, anchored length of a steel bar can be the same as for or-
dinary concrete members.

Keywords: concrete, cyclic loading, bond, anchorage length, model, experiments

1. Introduction

There are two general types of cyclic loading: high-cyclic (fatigue) and low-cyclic
(earthquake) loads. The aim of this paper was to show some problems of cyclic load-
ing, which is a load history containing many cycles, but at a rather low bond. In Polish
Standards [1], fatigue of construction must be taken into account if a number of cycles
is higher than 5-10° and such loading is greater than 60% of the whole loads. Crane
beams, bridge members, offshore structures are often subjected to such cyclic load-
ings. High-cycle loading mainly influences serviceability limit states. Taking account
of the bond slip, it is important to distinguish two cases of loading — repeated loading
when a sign of loading remains constant and reversed loading in which the sign is
changing.

The bond refers to the phenomenon, which allows transferring load between the
bar and the surrounding concrete. Until the strains in concrete and steel are of the
same value, the bond is perfect and exists owing to adhesion. The secondary bond
starts when a crack appears in a tension zone and there is a relative slip between
a steel bar and the surrounding concrete. The main components of a bond are the bear-
ing pressure against the steel lugs and friction between a bar and concrete. The forces
acting on a surrounding concrete can cause some irreversible changes. The main of
them are those shown in Figure 1. At a relatively low level of loading (bond), a slip of
a bar causes breaking of adhesion at the lug surfaces 1.When slip is getting greater, the
same process takes place in concrete between lugs 2 and some microcracks appear in
the top of a lug 3. When a slip is getting greater, some damages of concrete in com-
pression zone may appear 4, 5.
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Fig. 1. Schematic view of the changes in concrete near a bar caused by bond forces
2. Research on bond under cyclic loading — short review

Generally, all researches on a bond under cyclic loading can be divided into two
groups:

1. Slip-controlled tests, where graduated damage of bond can be seen as a decreas-
ing value of bond stress.

2. Load-controlled tests, where graduated increasing of slip leads to pulling out
a bar from concrete.

In the most experimental researches, specimens shown in Figure 2 were used.
A steel bar was cast axially in a massive concrete cube. The bonded length was too
small (/,<5d,) to ensure the validity of an assumption of a constant value of bond
stress. Such a small bond length causes that the bond phenomenon is not the same as
in the real construction. If concrete cover is bigger than 3d,, a bar is confined very
well and it makes impossible to split a cover. The only mechanism of bond failure is
pulling out a bar from concrete. In a real concrete member, this can happen very
seldom. Besides, some interesting observation can be easily made and lots of
parameters can be taken into account in those kinds of experiments.

- Plastic tube
N
N F
10d, [ s B :F —>
v N
\ 10d, | 50, 5d, | 5dy | 380 |

Fig. 2. A schematic view of a typical specimen for bond test

Rehm and Eligehausen [2] were ones of the first, who tested the bond behaviour
under cyclic loads using lots of specimens being pulled out (more than 308). They
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used cylinder member where the basic bond length was equal to 3d, and a concrete
cover was greater than 4d,. Only the bond failure due to shearing of concrete between
ribs was possible. Two concrete mixtures and three bar diameters (but of almost the
same related rib area f.~0.075) were used. During tests, a progressive increasing of
slip measured at unloaded end was observed. Ultimate values of those slips (at failure)
depended on a level of loading but in each case were greater than 0.5 mm. For loads
causing the bond stress less than 0.657 ., €ven more than 10° cycles did not lead to
bond failure. In all cases, the dependence between a slip and a logarithm of load cy-
cles was linear.

The most interesting conclusion from their experiments is that the repeated load
has a similar influence on bond slip and on pure concrete. This means that the fatigue
characteristic of the concrete between lugs is one of the most important factors. They
also suggest that if the upper load is smaller than about 50% of the ultimate load for
bond failure under monotonic loading, no fatigue failure of bond can occur.

As was said, the tests on concrete members with short embedded lengths (7, <5d})
allow establishing the following relationships between a slip and a bond stress:
7, = 15(4), where 4 (or s) is a slip of a steel bar. Many of the results of experiments on
cyclic load have similar forms. It is interesting to answer the following questions:

e [s it possible to describe a bond behaviour under cyclic loading using only
7, = 15(4) relationship for monotonic loads and additionally a damage parameter de-
pending on number of cycles?

e How can be taken into account an influence of rib geometry?

e Can 7, = 75(4) function, for monotonic loading, be used for establishing bond fail-
ure criterion for cyclic loads?

Some interesting conclusions drawn for a slip behaviour under cyclic loading at the
constant value of a load (bond) were presented by Balazs [3]. There were three phases
in slip increasing. At first, an increment in a slip was decreasing, then its value was
constant and when the total value of slip reached s, (see Figure 3), each next incre-
ment was higher. This led to a complete pulling out a bar from concrete. That process
took place, if the bond length was rather small, i.e. <5d,, and the residual slip oc-
curred at a free end of a bar.

If a bonded length was longer (/,=18d,, or [,=24d,), each slip at a free end oc-
curred and after some cycles the total value of the slip became constant [3]. We can
say that for these embedded lengths there is no possibility to destroy a bond by pulling
out a bar from concrete. Of course, this does not mean that at small values of concrete
covers we can be sure that they are prevented from splitting.

During slip-controlled tests, bond degradation is observed as a decreasing value of
a force (bond stress). The deterioration of a bond stress strongly depends on a value of
slip excursion [4]. If it is less than lug spacing, there is any possibility to completed
bond failure. Residual value of a bond is strictly connected with frictional part of
bond. It decreases during each cycle in an asymptotic way because of polishing con-
crete but its final value is higher than zero.
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For cyclic loading, it is very important to distinguish bond resistance components
and to describe the rules governing their behaviours under cycles of loading.

r'y
T
Ty 4 b
Th,max A---=---m=-m=m==3 ol !
: x7=1
! v ]
[ /
i / f
: / ]
1
] ! I
i !
T i [ N A
B Y [ —— [ P ——
LTES i : 4 .
' ; » ]
§ 83 s (A) 4

Fig. 3. Relationship 7, = 7,(4) for monotonic and cyclic loadings

That very short review of experimental and theoretical researches leads to the
following conclusions:

¢ All tests and theories deal with a problem of bond failure caused by pulling out
a bar from concrete and forces are acting directly on that bar.

e In some tests, cyclic loading causes bond failure, but there are also results show-
ing that after a lot of cycles a bond stress is greater than zero and a bar cannot be
pulled out from concrete.

e There is no test for checking the second mode of bond failure — splitting of con-
crete cover.

e Boundary conditions of bond during tests are very far from these of a real con-
crete structure.

3. Research program and theoretical results

In our research, the specimens similar to that shown in Figure 4 were used [5, 6].
The length of each specimen was 700 mm. This allowed several cracks to appear as in
a real structure. The main experimental parameters were steel bar diameter and con-
crete cover (concrete member diameter). Almost a half of specimen was covered with
an elastooptical surface. This allowed us to see the changes in concrete strains on
a whole surface and both appearance and development of cracks.

The elastooptical surface allowed confirming the previous theoretical research on
internal cracks. In Figure 5, such a crack which started from a steel bar and penetrates
through a member and outside is seen.

The materials used in the preparation of concrete were ordinary Portland cement,
natural sand and graded gravel of 8§ mm maximum size with a water to cement ratio of
0.5. An average concrete cubic strength was in a range of 28-35 MPa after 28 days. An
average tension splitting strength ranged from about 2.5 to 3.2 MPa and the modulus
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of elasticity for a first monotonic loading was found to be approximately 31 GPa. One
day after casting all specimens were stored in water for a week and later covered with
water and laid in a box to avoid a shrinkage influence.

elastooptical surface gauges on concrete
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gauges on a bar
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Fig. 4. Schematic view of a specimen used in bond test

Internal crack

l

Fig. 5. The view of cracks in a member — top crack is an internal crack and bottom is a primary crack [7]

Strain gauges of a 15-mm base were glued to a priori mould bars one next to an-
other. Their number varied from 19 to 21 for different specimens. Data from those
gauges allowed checking strains distribution in a bar with a quite good accuracy. In
the next step, the changes of a bond stress could be established using the following
formule:
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R (1)
4 XX
Relationship (1) stands for a differential equation describing bond stress in function
of steel stress changes. Since the distances between gauges were small, the above ap-
proximation is good enough. The value of 7,; concerns a cross-section between x; and
x:+1. It is also possible to calculate 7,(x) in a different way. Direct data from gauges can
be approximated by a continuous function and then one can differentiates it. The re-
sults from both methods are very similar, but usage of Equation (1) is more
comfortable. Some electric gauges were situated on a concrete to observe the changes
in strains. Their location depended on a kind of phenomenon, which was tested. Some
of the most interesting are as follows:

e Additional strains in concrete caused by bond forces. Those tests needed gauges
situated in several cross sections at different distances from a crack. In every of those
places three or more gauges were glued at different distances from a steel bar axis.
This allowed us to establish clearly the value of those additional strains in a function
of 7,(x), a distance x from a crack and distance y from a bar axis.

e Direction of bond stress. In those tests the rosette gauges were used. They were
glued as near to a steel bar as possible in three different cross sections.

e Changes in concrete strains during arising and developing of cracks. Optical
methods are very useful to look after the strain changes in a large surface. They visu-
alize the phenomenon but, on the other hand, the elastooptical surface changes the
properties of a tension concrete. The strain gauges were glued in two rows parallel to
a bar axis.

e Changes of neutral axis. In that case, strain gauges were situated at the convex
part of a specimen in three different cross-sections to check the influence of a distance
from cracked cross-section.

Most of experimental researches deal with a monotonic loading, but several of
them allow us to show the influence of cyclic loading. There were two basic loading
histories:

e Cyclic loading between maximum and minimum levels of load.

e Monotonic loading to a level very close to yielding of a steel bar and next partial
unloading and cyclic loading.

Researches were conducted with a strength machine where a slip of a bar was un-
der control.

4. Theoretical backgrounds

The changes in concrete surrounding a steel bar (Figure 1) describe a situation
where a slip has a great value. Such damages and irreversible changes take place if
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a slip value is of the same order as a distance between ribs of a bar. Polish steel 34 GS
of d, = 14 and 16 mm was used in research and axial distances equalled 7 mm and 10
mm, respectively. This means that irreversible changes are possible if a slip is at least
in the a range of 0.7-1.0 mm. Such a great value of a slip is often observed in test on
specimens of a very small bond length. In a real concrete structure under service load
it is impossible. The main slip occurs in a cracked cross-section and is limited by
a half of a crack width. Even in the worst situation, it is smaller than 0.15 mm, if
a member is properly designed. So we can assume that at service level of load, bond
forces cannot cause significant damage like crushing concrete. Only some micro-
cracks can appear near tops of the lugs and discontinuity on tension part of lugs. The
only exception takes place very close a crack. A significant strain concentration was
observed there during research. Due to an elastooptical surface it was seen that the
phenomenon is limited to a distance of about 2d, only. Since a bond length is much
longer, in practical aspect the damages in that area can be neglected.

If we assume that irreversible changes in concrete are of minor importance, the
bond phenomenon under cyclic loading can be described as follows. Let a bar of
a length /, and a diameter dj, be fixed at one end and be loaded with a force Fj. Its
elongation Ay(x) under the stress oy =4F,/(n df) is equal to:

%m=%@—m )

where x =0 at loaded end. In a similar bar embedded in a concrete, a part of a force F)
is transferred from a bar to the surrounding concrete which causes graduated
decreasing of a steel stress. According to the theory presented earlier [4] it can be
described by the following equation:

o(x)=o0, exp(-2gx’ /d,). 3)

In that situation, a bar elongation will be less:
o,
4,(x) =E°J.exp(—,2goc2 /d,)da. 4

A relative difference between those elongations is equal to:

I,
jexp(—z ga’/d,)da. (5)

X

A=A
4,(x) L, —x

B(x) =
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In Equation (5), g is a bond parameter (m ). It depends on a value of gy, but during
cyclic loading the changes of steel stress in a cracked cross-section are small enough
to assume that g is constant. This implies that in any point x =x;, the value of § is also
constant. Particularly, this means that for any cycle a residual slip can be evaluated
from Equation (6):

4}(x)= 43 (0) (). (6)

Residual slip causes development of residual strains in steel and concrete. Steel bar
is under tension and concrete under compression. Residual strains in a bar can be cal-
culated from the following equation:

A(x) _o,(x=0)
&  E

N

1= 0]+ [28(x) - 1]exp(-2gx? 1,)}. %)

Es,r(x) =

The actual value of a steel strain is a sum of residual strain and strain caused by the
latest loading.

The function (5) is increasing which means that remaining relative strain in steel
has the smallest value of cracked cross-section and the biggest one at the end of bond
length. In Figure 6, the distributions of two strains at different values of the parameter
g are shown. A dotted line represents a smaller value. Since after unloading the bigger
strains remain in the cross-section lying far from a crack, during the next loading cycle
the strains in steel are getting more uniformly distributed along the bonded length
which can be seen in Figure 7. Dotted line is represents the first cycle.

0,25

relative remaining strain

distance from the crack,cm

Fig. 6. Dependence of relative residual steel strain on the distance from a crack
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Fig. 7. Strain distribution at the first loading and after a full cycle

Theoretical model leads to some interesting conclusions:
e Residual stress at cracked cross-section is equal to o’ = aéﬂz (x=0) and it de-

pends on the bond parameter g. The smaller the value of g, the smaller the value of re-
sidual stress in steel. This means that relatively higher values of residual stresses occur
at smaller values of stress. In consequence, the value of steel stress in cracked cross-
section stabilizes practically very quickly after few cycles.

e Since larger increasing of steel stress occurs in cross-sections lying farer from
a cracked section, the steel stress distribution is getting to be more uniform. This
causes decreasing of a bond stress, particularly in the area next to a cracked cross-sec-
tion. The point of a bond peak value is moving away towards to an end of bond length.

¢ During each cycle the slip of steel bar is growing at much higher rate than the
steel stress in crack. Relatively large values of residual slip occur in the cross-section
lying at a large distance from crack. Similar to the behaviour of steel stresses, rela-
tively high values of residual slips occur for smaller values of stress.

From practical point of view, it is important to estimate the final values of steel
stress and slip of a steel bar. As we assume that the bond parameter g is constant, the
stresses in steel at cracked cross-section will create the following sequence: oy,
ootoo B7(0), gty fA(0)+ oo f4(0), ... If a number of cycles tends to infinity, the steel
stress can be calculated from the formule:

© (o

E0) v
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In the same way, we can calculate the final values of slip and residual slip at the
point x =x,. The crack width can be interpreted as a double value of total slip (actual
and residual). Its ultimate value after cycle loading can be estimated as:

W =

w_z{ "%ﬁ’ﬂ_w L pp ©)
-5 1-8

=w, l_lg2

The value of crack width calculated from (9) overestimated its real value for, as
was mentioned earlier, during cycles the loading values of g and f decrease slightly.
Formulas (5) to (9) are valid if cyclic loading takes place between steel stresses equal
to 0=0p and ¢=0. If lower level of loading is greater than zero, the rule of
superposition can be used. Residual slip at stress ¢ =0,>0 can be calculated from
Equations (5)—(7) substituting o, for 4o, and using bond parameter g adequate for o;.

5. Some experimental results

All the results obtained from tests on specimen described in chapter 2 were very
similar independently of a bar diameter or a kind of steel. Even if a level of loading is
relatively high, neither significant changes of steel strain distribution nor of bond after
several cycles were observed. We can say that in a concrete member with typical rein-
forcement and bond length determined by crack spacing, any damages of bond did not

ocCcCur.
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Fig. 8. Typical strain distributions measured during test at high level of loading

A typical steel strain distribution measured in an eccentric tension member is
shown in Figure 8 (the values of strain in all figures are multiplied by 10°). It is worth
noticing that stress in steel in cracked cross-sections is much higher than at servicing
level of loading and it is only slightly lower than yielding. Even so, an increase in steel
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strain during cycles is very small. In Figure 9, the distributions of that strain in two
cross-sections are shown. It is easy to see that an increase in strain is in both sections
very small, but in a cracked cross-section (Figure 9b) it is significantly smaller than in
the point in the middle of cracks (Figure 9a). The changes observed in width of crack
confirm that an increase in steel strain during cycles is very small and does not
influence bond dramatically (Figure 10a). Such results are in agreement with the
theoretical model presented. They confirm all predicted trends in the behaviour of
steel strain and bond stress under cyclic loading. In most cases, theoretical results are
more conservative, i.e. they lead to a higher increase in crack width.
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Fig. 9. Strain distribution near a local minimum (a) and maximum (b)

Besides the main trends, it is worth perceiving some other interesting phenomena.
In every cycle, curves of loading are similar, but they differ from the curves of
unloading. During one full cycle the curve representing loading is below an analogous
curve representing following unloading. It is another evidence that the whole process
is asymptotic. The same behaviour can be observed in respect to a width of crack
(Figure 10Db).

In some tests, where a crack width in the first cycle was greater than 0.35 mm,
some significant changes in bond stress distribution were observed. A typical example
is shown in Figure 11. The curves represent the bond stress distribution near a crack
(x~=24.2 cm) for loading path (solid lines) and unloading (dotted lines) at two levels of
loading. Theses pictures based on the strain measured can lead to some interesting
conclusions:

¢ In every case, the distribution of bond stress near a crack during loading is strictly
convex, while during unloading has a concave part.
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o At loading part of cycle, there is a clear point of maximum bond stress situated
fairly near a cracked cross-section.

e During unloading this peak value has almost the same value but it is situated
rather far from the crack (peak moves away).

¢ During unloading path a bond stress decreases in a region near a crack, but it in-
creases at farer distance from it, so total bond forces remain the same.
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Such an observation can be made only if a specimen is long enough for several
cracks to appear.

Such results seem to be strange if we compare them with the data well known from
the literature. Most of them suggest that under cyclic loading there is a great increase
both in steel strain and in width of crack. Especially this it refers to the first cycle.
Those differences can be explained quite easily if we take into consideration the influ-
ence of a specimen kind on the results obtained. As was already mentioned, most tests
were carried out on specimens of very short embedded length where a slip of a bar at
its free end is measured. Sometimes, if a test is connected with the changes of a crack
width, the specimens with artificial crack are used. That crack is made mechanically.
Its width and depth are chosen arbitrarily. Such a procedure makes measurement eas-
ier since a position of a crack is known. On the other hand, such a crack in a real
structure corresponds to a well-established level of loading. If a performed crack has a
large depth or width, it may occur that it fits in with much higher level of loading than
that used for cyclic loading. In such a case, there is a great difference in a specimen
behaviour between the first and the second cycles. During the first cycle (loading) arti-
ficial crack does not influence much the steel strain in cracked cross-section and its
neighbourhood. Unloading path differs, since only a part of a crack can be closed and
that part corresponds to actual level of loading. The remaining width is much greater if
a specimen was not cracked before testing. In consequence, a remaining strain in
a steel bar is also higher. During the second cycle the strain in a bar is a sum of the re-
maining strain and the actual strain and is higher than an equivalent strain in a non-
precracked member. In the next cycle, a specimen exhibits the behaviour like a mem-
ber under certain loading but with an inadequate residual stress.
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Fig. 12. Typical curves representing steel strain during the test in which
a specimen was loaded to higher level than during cyclic loading
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The situation is even worse if a specimen is a concrete member with a very short
embedded length. In that case, a front of a specimen is an ideal crack including the
whole cross-section. The width of such a “crack” is unknown and a hypothetical
loading responsible for that is also unknown. The remaining slip and steel strain after
the first cycle cannot even be estimated theoretically.

The hypothesis of a great influence of a specimen kind on the results of cyclic
loading was verified. Some typical specimens were loaded to a certain level, then par-
tially unloaded and later that lower level of load was tested under cyclic loading. In
Figure 12, the results of such testing are shown. That specimen was loaded to 18 kN
and then tested under cyclic loading in a range of 0—10 kN. A “series 1” represents the
first loading to 10 kN. Then the specimen was loaded to 18 kN, unloaded to zero and
again loaded to 10 kN — “series 3”. There is a significant difference in steel strains
between those cycles. As was said, it is caused by a residual stress connected with the
load equal to 18 kN. In the next cycle that remaining stress does not change and fol-
lowing lines lie near each other (“series 3”” and “series 5”). That phenomenon was ob-
served in all tests if a specimen was loaded to the value higher than a level of cyclic
loading. This can explain similar results reported in literature, obtained from the
members with artificial crack or a short length.

6. Conclusions

Several kinds of important concrete structures work under cyclic loading. They are
designed using traditional methods based on the theory of linear stresses, which makes
their safety margin very large, much larger than that in limit states methods. Addition-
ally, the standards require some extra anchorage length for bars in those structures.
Such conservative recommendations are based on the results obtained from tests sug-
gesting that cyclic loading can easily lead to bond failure and very significant increase
in width of cracks.

The author’s theoretical and experimental research suggests that in a real structure
cyclic loadings are not responsible for such dangerous phenomena. In correctly de-
signed concrete structure, typical development of length will be good enough. Bond
deterioration is rather small which is connected with a relatively small decrease in
maximum value of bond stress and its movement away from cracked cross-section.
The highest changes in steel strain take place in a region of the middle between adja-
cent cracks and do not pose any danger for a member. They only cause a certain
growth of crack width. A theoretical way of estimating that increment of width was
presented. It is worth noticing that at higher levels of loading (greater crack width) an
increase is smaller than at a small initial width.

A way of testing has a great influence on experimental results. In some cases, the
embedded part of a structure was so long as to guarantee the existence of a point
where a slip was equal to zero. Results of those tests were similar to the ones
presented above — there was not bond failure [8]. When the tests were carried out on
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specimens with a very short bond length, the results were completely different. After
some cycles a bond was broken. If a test was slip-controlled, a bond stress diminished
to residual value. If a test was force-controlled, a bar was pulled out from a specimen.

In really existing structures designed properly, according to standard recommenda-
tions, a bond failure cannot occur. Cyclic loading cannot pull out a bar from sur-
rounding concrete nor split a concrete cover. The only considerable effect is the in-
crease in a crack width, but it is not very drastic.
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Whplyw obcigzen cyklicznych na przyczepnos$é stali do betonu

Badania wptywu historii obciazenia, podobnie jak i inne testy, przeprowadza si¢ gléwnie na
elementach, w ktorych dhugo$¢ odcinka przyczepnosci jest bardzo mata. Jest to bardzo wy-
godne, jezeli chodzi o prowadzenie badan, ale uzyskane rezultaty sa mato wiarygodne. Gdy
bada si¢ wptyw obciazen cyklicznych na przyczepnosé, wtedy dochodzi si¢ do wniosku, ze
kolejne cykle tak ostabiajg przyczepnosé, ze w ostatecznos$ci ulega ona catkowitemu zniszcze-
niu.

Wtasne badania prowadzono na diugich elementach mimosrodowo rozciaganych i zgina-
nych. Ich wymiary gwarantowaly powstawanie stanu zarysowania analogicznego do istnieja-
cego w rzeczywistych konstrukcjach. Usytuowanie odpowiednio frezowanej stali zbrojeniowej
bezposrednio przy powierzchni elementu umozliwiato bezposredni pomiar zmian odksztalcen
w stali. Te pomiary stanowity podstawe do analizy zjawiska przyczepnosci traktowanego jako
mechanizm transferu sity ze stali do otaczajacego betonu.

Wyniki takich badan uprawniaja do stwierdzenia, ze konstrukcje poddane dziataniu obcia-
zen wielokrotnie zmiennych, zaprojektowane zgodnie z wymaganiami normy, nie sa narazone
na zniszczenie mechanizmow wspolpracy stali 1 betonu. Oznacza to w szczegdlnosci, ze zby-
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teczne jest zalecane przez normg 50% zwigkszanie dlugosci zakotwienia pretow uzytych
w tych konstrukcjach.

W pracy podano réwniez uproszczony model teoretyczny pozwalajacy sledzi¢ zmiany od-
ksztalcen w stali podczas obciazen cyklicznych oraz oblicza¢ zmiany szerokosci rozwarcia rys.
Wyniki teoretyczne sa zgodne z rezultatami badan, ale sytuuja si¢ po stronie bezpieczne;.

Whioski ptynace zar6wno z badan, jak i rozwazan teoretycznych moga pomdc w racjonal-
nym projektowaniu konstrukcji zelbetowych poddanych dziataniu obciazen wielokrotnie
zmiennych.
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In this paper, the dynamic characteristics of a timber frame structure are given based on microtremor
measurements. The microtremor was measured in two stages of construction. In the first stage, the col-
umns, the beams and the floors are constructed, and in the second stage the bearing walls are added to
them.

Moreover, a natural frequency obtained by this microtremor measurement was compared with the
analytical solution obtained by using the rigid bar element with the springs for bending in both ends.

Keywords: full-scale timber frame structure, microtremor measurement, natural frequency, frame analysis

1. Introduction

In 1995, many timber structures in Japan were damaged by the Hanshin Great
Earthquake, and the research on timber structures has been developed gradually. The
frame structure has a high flexibility for the floor planning, and it is appropriate for
Skeleton-Infill Housing. Therefore, realization of the timber frame structure is to be
expected in near future. But, the jointing techniques with strong stiffness are required
in order to resist horizontal force such as seismic force.

We have proposed a jointing technique using round bars and drift pins. We also
carried out the bending test on the beam—column joints and the column base joints.
Then we verified the rotation rigidity and the bending strength [1, 2]. Furthermore, we
conducted the tension test on the drift-pin-joint and the compressive grain test as ele-
mentary experiments for the moment resisting elements. Next, the moment resisting
elements of the joint and spring elements were modelled, and the relation between the
bending moment and the rotational angle of joints was calculated. Then we can grasp
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the relationship between elementary experiments and bending experiments of joints
[3].

In this paper, the results of the microtremor measurements for an actual building
based on the timber frame structure are summarized. The microtremor was measured
in two construction stages. In the first stage, the columns, the beams and the floors
were constructed, and in the second stage, the bearing walls were added to them.

2. Outline of the building by the timber frame structures

The building to be measured is bi-directional timber frame structure with 4 m and
6 m spans. The general views of this building are shown in Figure 1 and Figure 2, and
the list of main structural materials is given in Table 1. Laminated Veneer Lumber
(LVL) was used as a main structural material. The round bars and drift pins are used
in the beam—column joints and in the column base joints shown in Figure 3.
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Fig. 1. The framing plan and the skeleton of the building
(dotted line: installation position of the bearing wall)
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Fig. 2. View of the building (left: the framework stage, right: the framework-wall stage)

Table 1. The list of main structural materials

Round Bar ¢35.0

Drift Pin ¢ 16.0

Fig. 3. The beam—column joint

Material classification . . . Cross section
Structual . L Mechanical grade classification . .
(wood classification: radiata . . widthxheight
part . (Japanese industrial standard) .
pine) (unit: mm)
Sill LVL for structural 80E 105x105
Column LVL for structural 110E 360%360
Girder LVL for structural 110E 150x480
Beam LVL for structural 110E 105%240
Floor ply- Plywood for structural - thickness: 28.0
wood
Exterior Plywood for structural - thickness: 9.0
plywood
Column
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3. Microtremor measurement
3.1. Outline of the measurement

The microtremor is measured in two construction stages. In the first stage, the col-
umns, the beams and the floors are constructed (henceforth, it is called the framework
stage), and in the second stage, the bearing walls are added to them (henceforth, it is
called the framework-wall stage). Moreover, the static experiment is conducted in
each stage, the microtremor is measured before and after that static experiment. The
stages are divided into the following four patterns:

I. The framework stage before the static experiment.

II. The framework stage after the static experiment.

III. The framework-wall stage before the static experiment.

IV. The framework-wall stage after the static experiment.

The microtremors are measured on one side of the building. And they are measured
in the directions of 4-m spans and 6-m spans. The microtremors are measured by ser-
vomotor accelerometer of Tokyo Sokuhin Co., Ltd. The vibration data is recorded for
60 seconds. The accelerometers are set on the foundation level, the second floor level,
and the top level of the building.

3.2. The results of the microtremor measurement

A natural frequency of the building structure is obtained by using spectrum analy-
sis. The vibration data is shown in Figure 4 as an example, and Figure 5 shows each
Fourier spectrum in the framework stage before the static experiment, in the 4-m span
direction. The natural frequencies for all the stages are listed in Table 2.
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Fig. 4. An example of the vibration data
(above: the top level, below the second floor level)
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Table 2. The natural frequencies (in Hz)

Framework stage Framework-wall stage
Static experiment Before After Before After
4-m span direction 5.91 5.30 747 6.91
6-m span direction 5.86 5.86 6.08 5.83

The difference in the Fourier spectrum before and after static experiments in the
framework stage for 4-m span direction is approximately 10%. On the other hand, this
difference for 6-m span direction is negligibly small because of non-loading direction
in the static experiment.

4. Numerical analysis of the natural frequencies

As the rotational rigidity of the joints is very small compared to the flexural rigidity
of the column and the beam in a timber frame structure, the dynamic behaviour of the
timber structure is almost exclusively determined by the rotational rigidity of the
joints. Therefore, the natural frequency of two-storey framed structure is represented
by the rigid bar model.

4.1. Derivation of a natural frequency using the rigid bar model

The two-storey and one-span model is considered (see Figure 6).

If the horizontal force of the top level P acts on the two-storey and one-span model,
the horizontal displacement ¢ is calculated by the slope-deflection method, following
Equations (1) and (2):

e the horizontal displacement of the second-floor level,

_oy i’
a, 12E1,’

(M

1

e the horizontal displacement of the top level
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H2
5, =% , )
a, 12E,1,
where

ay =36E2 12 H? k k2 +18E 1, E,I,Hk,{2E, 1,3k, + k, )+ kk, L}
+ ELTN6E, I, + ky L){6E, 1, (k, + 2k, )+ kyk, L},

a, = P(ISEZIZH kk? +12E I} (6E, I, + k,LY
+9E 1 E,I,Hk,(18E, Lk, +8E, Ik, +3kk,L)
+ ENITH(6E,L, + kyL)30E, Lk, + 78,1k, +5kk,L)),

o, = PBOEZZH kK2 + 24E I (6E, L, + koL )
+8ELIEH?(6E, I, + k,L)3E, I, (4k, + 5k, )+ 2k k,L)
+9E,1,E,1,H?k,(42E, 1k, +10E, Lk, + Tk, L)),
in which A means the height of the storey, /;, I, are the geometrical moments of inertia

of the sections, F|, E, are the values of Young’s modulus of the members and ki, &,
stand for the spring constant of the joints.
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Fig. 6. The two-storey and one-span model

If the rigid bar model (the flexural rigidity EI — o) is applied to Equations (1)
and (2), the horizontal displacement is computed by the following equations:
e the horizontal displacement of the second-floor level J;



Study on dynamic characteristic of timber frame structure 65

lim 6,=——P, (3a)

e the horizontal displacement of the top level o,,

2
lim &, =—21_p. (3b)
Bl v ky + 2k,

The storey rigidities k; and k&, from these equations are expressed by the following
equation:

k, +2k
Kl:KZZ#—i_KW’ (4)
where K,, means the rigidity added by the bearing wall.

If the natural frequency is computed based on the two-degree-of-freedom system
model and taking into account the storey rigidity obtained from Equation (4), it is
given by the following equation:

|k + 26, +Hsz)(m1 T om, —fm +4m, )

:E 2H?mm,

f )

In the case without bearing wall, K,, is omitted.
4.2. Comparison of model results with the results of microtremor measurements

In the numerical analysis of the natural frequencies, the rotation rigidities of the
beam—column joint and the column base joint are approximately 6000 kNm/rad. and
12500 kNm/rad., respectively. And the wall rigidity K,, obtained in static experiment
carried out on the bearing wall whose tangential rigidity at the origin of the envelope
is adopted is 3.93 kN/mm. The natural frequencies and experimental ones obtained by
the microtremor measurement are given in Table 3.

Table 3. Comparison of the analytical and experimental results (in Hz)

Static experiment Framework stage Framework-wall stage
Before | After Before | After
4-m span Analysis 5.48 6.38
direction Microtremor 591 | 5.30 7.47 | 6.91
6-m span Analysis 5.48 5.48
direction Microtremor 586 |  5.86 608 | 583
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In the framework stage, there is a close correspondence between the natural fre-
quencies obtained by the analysis of the rigid bar model and by the microtremor
measurements. However, in the framework-wall stage for the 4-m span direction, the
caluculated natural frequency is approximately by 10% lower compared to measure-
ments. It is considered that the rigidity of the bearing wall is underestimated.

5. Conclusions

In this paper, we presented the results of the microtremor measurement of the tim-
ber frame structure and the natural frequencies were verified by their comparison with
the analytical frequencies obtained based on the rigid bar model.

The natural frequencies of the timber frame structure expressed by the microtremor
measurement ranged from 5.30 to 5.91 Hz in the framework stage and from 6.91 to
7.47 Hz in the framework-wall stage in the 4-m span direction. And the natural fre-
quency was reduced by approximately 10% after the static experiment.

The natural frequency was computed based on the rigid bar model and then com-
pared with the microtremor measurements. In the framework stage there was a close
correspondence between the computed and measured results. In the frame-wall stage
in 4-m span direction, the natural frequency was approximately by 10% lower com-
pared with the measurements. It is considered that the rigidity of the bearing wall is
underestimated.
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Badania dynamicznej charakterystyki drewnianej
konstrukcji ramowej poddanej mikrowstrzasom

Przedstawiono wyniki pomiaréw przemieszczen i czgstotliwosci drgan spowodowanych
mikrowstrzasami podczas wznoszenia drewnianej konstrukcji nosnej budynku. Wielkosci te
byly mierzone w dwoch etapach realizacyjnych: w pierwszym po wykonaniu szkieletu kon-
strukcji sktadajacego si¢ ze stupow, belek i stropéw oraz drugim po dodaniu do tego szkieletu
$cian no$nych usztywniajacych. Ponadto w kazdym z tych etapéw przeprowadzono doswiad-
czenia statyczne polegajace na badaniach wytrzymato$ciowych zlaczy, przy czym przemiesz-
czenia i czgstotliwos$ci drgan mierzono przed i po tych doswiadczeniach statycznych. Przepro-
wadzono cztery nastgpujace rodzaje badan dynamicznych:

I : badanie dynamiczne szkieletu przed badaniami statycznymi,

II: badanie dynamiczne szkieletu po badaniach statycznych,

II1: badania dynamiczne konstrukcji szkieletu + §ciana przed badaniami statycznymi,

IV: badania dynamiczne konstrukcji szkieletu + §ciana po badaniach statycznych.

Czgstotliwos¢ drgan mierzono na poziomie posadowienia, stropu nad parterem i na pozio-
mie stropu nad drugim pigtrem. Czgstotliwos¢ drgan wiasnych otrzymano stosujac analizg
spektralng. W pracy podano wartosci czgstotliwosci drgan wiasnych zmienionych podczas
podanych wyzej rodzajow badan oraz wartosci tych czestotliwosci uzyskane w wyniku analizy
numerycznej dwupigtrowej jednonawowej konstrukcji ramowej przy wykorzystaniu modelu
sztywnego preta. Uzyskano stosunkowo dobra zgodnos¢ wynikow badan otrzymanych dzigki
zastosowaniu tych metod dla przypadku etapu szkieletu konstrukcji, w przypadku za$ kon-
strukcji szkieletu ze $ciang usztywniajacg czgstotliwos¢ drgan wlasnych otrzymana w wyniku
analizy jest okoto 10% nizsza niz uzyskana w pomiarach.
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Strain and stress patterns in the normal cross-sections of
bended gypsum elements

S. KLIN
Agricultural University of Wroctaw , P1. Grunwaldzki 24, 50-363 Wroctaw

The study presents the results of examining the distribution of strains and stresses in the normal cross-
sections of bended gypsum beams, dry prepared, made of building gypsum pastes at water-to-gypsum
(W/G) ratios equal to 0.5, 0.6, 0.8, 1.0 and 1.5. The strain was measured by the strain gauge method,
whereas deflections of the beams were measured with displacement sensors. Strain distributions were
found to be almost linear at the effort level of o4/f,, = 0.9, which is according to the Bernoulli
distribution. The limit values for strains in the cracking zone were determined from the formula

£y, =46.24 f£°888.10‘5, Various patterns of internal forces, i.e. stresses in the bended normal cross-
sections, were analyzed. The following calculation schemes were assumed: a triangular one in the
compression zone and rectangular one in the cracking zone. The pattern developed on the basis of original

test results conforms to the Murashev theory formulated for concrete cross-sections. The formula for the

representative tensile strength of bended gypsum elements was proposed as fa=0.56f,, =0.5741,,>

where fy, is the standard strength, as for elastic materials. The elastic/plastic bending index for gypsum
cross-sections was proposed as WgeP = Wge /0.58 = 1.7496Wg‘,, where: Wge =ph*/6, as for elastic

materials. The formula for bending capacity of gypsum cross-sections was suggested in the form of
M, =W,/ g”t :

Keywords: gypsum, bending strength, strain, limit load capacity

1. Introduction

Gypsum is one of the commonly used building materials characterized by many
outstanding features. Currently, gypsum products — wide range of dry mortars and pre-
fabricated gypsum plaster boards — dominate in the inside building finishing operations.

In the past decades, after the World War II, in the time of the cement deficiency
due to a considerable destruction of the building industry, structural walls of many
dwelling houses were made of gypsum pastes, mortars and concrete by casting and
shuttering method with hollow masonry units [3, 16] or planks [15] made of gypsum.
The “Pras-Gips” process was used for erection of large-size partition walls [18]. For
the analysis of designs and processes used for building the gypsum houses see the
reference studies [9, 17].

In the period of 1985-1997, in Poland some new structural systems were dev-
eloped and officially implemented in dwelling building industry. In such systems,
concrete or reinforced concrete skeletons were located in vertical channels formed in
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load-bearing walls by arrangement of special hollow masonry units made of gypsum.
For design solutions, in chronological order, see [20, 29, 13, 24, 25, 2]. The concrete
load bearing structures were not exposed to possible creeping in the case of accidental
damping of the gypsum hollow blocks. Therefore, the problem of possible loss of
strength of gypsum units used in such hybrid structures became less important.

Nevertheless in the building industry, the strength of gypsum remained still
important. The buildings with structural walls made of gypsum erected in past decades
[16, 9] (among others 110 dwelling houses in 1.6dz, in Batuty and Rokita Nova
districts, 26 two-storey houses made of gypsum planks in Zgorzelec, houses built in
the vicinity of Busk, including those erected in the period of 1922-1939 and still
lived-in, buildings erected and occupied in Wroctaw, Warsaw, near Pinczéw and
Rawa Mazowiecka) require continuous inspection and maintenance. Currently, due to
complete lack of prescriptive regulations concerning the methods of calculation or
assessment of load capacity of gypsum walls, we are in the state of technical and legal
paralysis. There are no possibilities of determining statics and strength of these
buildings, usually necessery for repair purposes, for structural survey, for evaluation
of safety or for determination of the procedures needed in the case of emergency, e.g.
extinguishing house fire with water. Our current standards established for brickworks
[21, 22] cannot be applied to structures made of gypsum.

This issue refer to gypsum houses not only in Poland, but also in other European
countries [16], in particular to the former Soviet Union area, where gypsum was used
in building [3, 31].

Currently, in the conditions of wide application of the gypsum plaster board in
finishing work, there are no standards of calculation of safety factors to be considered
in the case of underslung floors, built-in lofts and execution of ceilings. The mono-
graph by Hanusch [5] provides the methods for calculation of strength of vertical
partitions in multilayer walls with gypsum plaster board shielding based on very
simplified theory of elasticity adopted for such multi-layer elements.

The considerations presented in the study are aimed at providing a scientific basis
for future defining the strength and safety standards required for the application of
gypsum elements in well-founded cases. The tests and analyzes refer to the elements
in dry conditions. In the conditions of moisture, creeping of gypsum under permanent
and variable loads plays the decisive role. Determination of strength limits for such
cases is a separate scientific problem, which should be solved to enable qualitative and
quantitative assessment of the actions to be taken in cases of accidental moistening or
flooding a part of a building. Contributory studies of other authors [6, 27, 28] have
not clarified these issues.

2. Examination methods

The examinations were carried out using the building-grade gypsum [(-CaSOy
0.5H,0 made of natural raw materials by its calcination in rotary kilns, currently
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available in the market, marked with the laboratory code numbers 2-02 and 2-03. For

mineral composition of the gypsum see the Table.

Table. Mineral composition of the building grade gypsum

Components Percentage [%]
Gypsum No. 2-02 | Gypsum No. 2-03

Gypsum hemihydrate (CaSO,4-0.5H,0) 80.87 82.43
Anhydrite IIT (CaSO,) 0.00 0.00
Stabilized anhydrite II (CaSOy) 2.80 1.78
Anhydrite II (CaSOy,) 0.31 0.26
Gypsum dihydrate (CaSO42H,0) 4.67 4.26
Inactive substances 10.46 10.74
Moisture 1.20 0.71

The tests were carried out with the beams 4 cm x 4 cm x 16 cm and similar beams
6 cm x 10 cm x 50 cm made of gypsum pastes at water-to-gypsum (W/G) ratios from
0.4 to 1.5. Deformation in the bended cross-sections was measured with extensometer
sensors (Figure 1), and deflection was measured at the same time with displacement
Sensors.

extensometer sensors
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Fig. 1. a) Arrangement of loads and extensometer sensors on the bended dry beams made of building
gypsum; b) the strain values ¢ in the cross-section of the beam made of gypsum paste at W/G = 0.6:
04— bending stress in the beam, f,,;, — total yield stress (fracture), A. — compression zone,

A, — tension zone
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3. Examination of strain and stress patterns in the normal
cross-sections of the gypsum beams bended

The examples of strain and stress patterns in the normal cross-sections of the
beams made of pastes at /G ranging from 0.5 to 1.5 and the load levels of oz / fon

equal to 0.3, 0.6 and 0.9 are given in Figure 2.
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Fig. 2. Distribution of strain values ¢ in the normal cross-sections of bended dry beams made of building
gypsum: g, — normal stress in the bended beam (1), f,,, — bending strength, W/G — water-to-gypsum ratio
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Tensile stress in bended samples was calculated according to the following stan-
dard formula:

oM
O = (1)

Each series of beams manufactured at the same W/G ratio underwent a pilot test, in
which their strength f,,, for brittle fracture was determined. The beams were examined
with bonded wire strain gauges. The deformation ¢ at three load levels, i.e. at og / fon
equal to 0.3, 0.6 and 0.9, was measured.

Results of the examination shown in Figure 2 suggest that in the whole load range
(gt / fo 1s from 0.3 to 0.9) the validity of the Bernoulli distribution may be assumed:
flat cross-sections prior and after the strain. However, the bottom tension fibers have
the tendency to deform to a greater extent (partial plasticizing). In the whole range of
consecutively increasing loads, the neutral axis of the cross-section was maintained, at
the technical accuracy, in the geometric center of the beam cross-section. The ratio of
the deformation area in the compression zone 4. to the area of the tension zone A,
expressed as

P=—r 2

varies within the range from 0.877 to 0.945. Therefore, as the rule, the tensile area
prevailed over the compression area in the upper zone. In the whole series of the
examinations at W/G = 0.5, 0.6, 0.8, 1.0, 1.5, the results of measurements are
qualitatively similar.

Figure 3 presents the o—¢ diagrams for the outermost fibers in the bend tests. In

Figure 3a, there are collected the o—¢ :g:b diagrams for the outermost fibers compressed,

Figure 3b shows the 6—¢ , diagrams for the outermost fibers tensioned, for the 6 x 10

x 50 cm beams and for the 4 x 4 x 16 cm beams made of gypsum paste at W/G
ranging from 0.5 to 1.5. The outermost points form an envelope of the ultimate tension

values &, ,

which — in the actual conditions of the tests — varied within the range of:

max &, =&y, =(4.5 ~5.6)-107* for the 6 cm x 10 cm x 50 cm beams,

max &, =&y, = (5.0-6.7)-107* for the 4 cm x 4 cm x 16 cm beams.

For the bended plates made of dental gypsum obtained at /G ranging from 0.6 to

1.0 Denkiewicz [1] obtained similar &, values that varied from 5.5-107 to

gtb
6.0-107*.
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Based on statistical analysis, there was determined an ultimate value of deforma-
tion ability for the tension zone ¢, of the bended beams made of building gypsum

pastes within a wide range of W/G ratios and for compression strength fg.. At the

correlation factor of R*=0.9892 it is as follows:
max &, = &, =46.24 1. "% 107, (3)
where max e, =&, is the extreme deformation of the outermost tension “fibres” in

the bended element, f;. stands for the compression strength of the pastes.
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Fig. 3. Function diagrams o — ¢ for the outermost fibers of bended dry beams made of building gypsum:
a) and ¢) curves of €gb for the outermost compressed fibers, b) and d) curves of &_, ob for the outermost

tension fibers, W/G — water-to-gypsum ratio
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Figure 4a presents experimental strength functions of the building gypsum 2-03,
namely the compression strength f,. = f(®) and the bending strength f,,, = f(®). Figure
4a shows a considerable reserve of load capacity in the compression zone compared to

g, that

gth,max — “gtu
increase together with increasing fq» and are correlated with f,., strength values, are
shown as the function. Figure 4 presents also elastic constants of gypsum determined
for the outermost fibers according to the following formulas:

e clastic constant in the compression zone

rather poor strength of the tension zone. In Figure 4b, the values of ¢

Ao

N

_ 29 4)

gb B (
Agy,

e clastic constant in the tension zone

_ Ao

gb ~ — (5)
Aty

The constants E, and E,, increase monotonically as the function of diminishing

ratios W/G, quite similar to compression strength values f,. = f(w). That is why the
correlation E,, = f(f,.) may be determined in the way similar to the standard

procedure used in theory of concrete (Godycki [4], Kaminski [7, 8]).
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Fig. 4. Dependence of strength of dry cured pastes made of building gypsum 2-03 upon the ratios W/G:
Jq» — bending strength, f,. — compressive strength (a); diagrams of the deformations ¢ and

elastic constants E for cured gypsum pastes at various ratios W/G (b): E;b — deformability module

for the outermost compression fibers, Ey -~ deformability module for the outermost tension fibers,

&

b max = Egn ultimate deformation values for the bottom fibers of the bended beams
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4. Distribution of internal forces and bending capacity of
gypsum beams cross-sections

Figure 5 shows analytical distribution of internal forces in the bended gypsum
elements. The linear distribution of internal forces shown as @ in Figure 5 enables
determination of the tensile stress of the bending o, and the ultimate strength values

Jan for the outermost fibers at the experimentally determined breaking moment A,. In
diagram @, which illustrates standard relation (1), the breaking moment M, is
equalized by the moment of internal forces M, according to the following relation:

M, =M, =0.1667bh’f,, . (6)
A *P” A=A =434MPa fgc @
' T T 1 c a A
lg=39cm | glotl 1 — 2=
AN A N N
z PNz
SIE_SO%M b=6cm fgtb asﬂmpq Lﬁfg*bﬂn?w’ﬂ
W/G = 06 , el
fgc =11,76 MPa Mqy=M=01667bh fgtb  M,= 01458 bhfgtb{Mn
M,/ M, = 08746
©) 8G g, =438 MPa
Ggc® 4,34 lPa
= k pj;v,e_"‘c_
. _hg; . z=]0583h
- —E -
L0p N,

ffgt=3.0,5fgtb=0,5747 fgtb =
fgtb | | = 2,482MPa
My=M =M, 5=M2[M1=1,14338

Fig. 5. Diagram of distribution of internal forces in the bended dry gypsum beam obtained at W/G = 0.6

However, the tensile strength at bending f,;, determined from relation (6) is
considerably higher than tensile strength of gypsum determined in the tests of the axial
tension f,, or in the tests of splitting of cylinder samples f;, . The results of my own

experiments suggest that — according to the analysis of data as in Figure 6 — the
proportion of f;, to the tensile strength at bending f,, (calculated from formula (1)) in

the following form:
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e
1= == 4 7
“=7, AV (7)

may be approximated to a linear form, a; = f( f,.), as follows:

Q =0.62—0.01fgc. (8)
m ‘
. oo =flfge) 6B (D oy = fgt / fgtb
0.8 / xX2 =flfgc)GM (D Ko = fgt / fgtb
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Fig. 6. Graphical data for approximation of the function o =f"4/fon, = f ( fg) for dry building gypsum
(original test results) and of the function ¢, = fo;/fon, = f ( fgc) for the gypsum “Molda Normal” (based
on the results obtained by Wianecki [30])

From the analysis of the results shown in Figure 6 we can conclude that the value
of o, for gypsum pastes having the compression strength f,. < 12.0 MPa (equivalent to
WI/G > 0.6 for the building gypsum binder GB-N1) amounts to:

a>05 for £, <12.0MPa, WIG>0.6. (9)

Based on the results of Wianecki [30], the relation o = fo/fen = f( foo) for the
French gypsum “Molda Normal” may be expressed by (Figure 5):

a, s _0.62-0.0035 fo: (10)

8¢

The values of «, vary between 0.6 and 0.53 in a wide range of compression strength,
namely for f,. between 2 and 22 MPa.

If we assume that the outermost fibers may carry tensile stress equal to
04 =0.5f,,, we can conclude that the internal force pattern seems like the diagram

@ in Figure 5, provided that we also assume a full plasticization of the tensile zone
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according to the classic theory of Muraszew. This theory was developed for the
elements with cement binders based on the analysis of bending capacity, according
both to the contemporary standards of the Council for Mutual Economic Aid (RWPG,
Ryzynski [20]) and the new EU standards (Kaminski et al. [7, 8]). The value of the
internal force M, calculated for such a scheme is smaller than actual breaking moment:

M, =0.1458bh’ f,,, <M.
M, :M, =0.8746.

(11)

The diagram @ in Figure 5 illustrates the pattern of internal forces calculated
analytically in the bended gypsum beam. The pattern agrees with the following
experimental facts found objectively:

1. The neutral axis is located in the middle of height of the beam (according to the
results of examinations as in Figure 2).

2. The breaking moment of the internal forces M; equals to the value of the
moment M, found experimentally.

The conditions assumed for the force pattern as in the diagram @ in Figure 5
suggest the possibility of determining the representative calculated tensile strength of
cured gypsum bended f7, (as dry) in the following form:

[ =805, =0.5747 f,,, (12)

where the correction coefficient J increases the stresses both in the compression and in
the tensile zones to meet the condition of M; = M,; the coefficient 6 = M,/M, =
1.14338.

The cracking moment M,, equal to the moment M,, which breaks the dry bended
beam made of not-reinforced gypsum may be calculated from the formula:

Mr :Ml’l :Wgepfg”t’ (13)

where W,,, stands for the elastoplastic bending strength factor.
The Wy, values were calculated in the following analyzes:
e condition of strength:

" 6MH .
M, <SW,,, fo=We,6-05f )y =W,,5-0.5 YR (14)

gep

e after division of the both sides by M, one obtains:

1<, 505 (15)
W

gep
ge
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where W, is an “elastic” bending strength factor equal to:
Wee =—; (16)

e after transformation of formula (15), the searched value of the elastic/plastic
bending strength factor W, may be obtained in the following form:

W@
W = o= BWoe =1.7496W,. (17)

After substitution of Equation (17) for Equation (16), one can obtain the searched
formula for the W,,, factor, namely:

bh* 5
W, :1.7496T=0.2916bh . (18)

gep

The relation derived based on original results of bending tests carried out with dry
gypsum beams proved to be identical with that used in the standard of concrete
structures [23] for calculation of cross-sections of bended plain concrete beams.

Finally, after substitution of (18) for (14), one can obtain the following formula for
the load capacity of the bended cross-sections of dry gypsum elements:

" 2 rn
M, =W, f"=02916bh>f". (19)

After making use of the results of our own strength determination studies [12], fon =
f(G/W), according to the following formula:

S =1.5330""7, (20)
the calculated value of tension strength at bending may be determined by the relation:

fu =0.5747f,,, =0.5747-1.5330" " = 0.880'"" [MPa], (1)

where @' =G /W stands for a dimensionless parameter.
In this way, load capacity of bended dry beams, made of building gypsum at the
determined parameter G/ may be obtained by:

1.77
M, =0.2916bh° f;, = 0.2916bh ~O.88(%} -10°
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1.77
= 0.256bh2(%j -10° [kNm], (22)

where:
b, h — width and height of the gypsum beam cross-section [m],
0.88 — numerical parameter of Equation (22) [MPa],
10° — conversion factor, MPa = 10° kN/m”’.

5. Summary and conclusions

Load distribution in normal cross-sections of bended dry gypsum elements is
almost linear; however, the deformations on the tension side &, exceed those of the

+
ge?

This results from a natural tendency of the tensile fibers to plasticize, which is
equivalent to plastic flow. In such approximation, one can assume the validity of the
Bernoulli distribution: flat cross-sections prior and after loading. The ultimate
deformability of the outermost tensile fibers in the tensile zone, determined in the
form of relation (3), has a considerable heuristic value and gives information about
ultimate deformation ability of dry gypsum.

An important result of the study is determination of the moduli of elasticity for

outermost compressed fibers &,., which is in accordance with &, =1.14+1.065, .

outermost fibers of the bended gypsum elements: in the compression zone E;b and

in the tension zone E_, (Figure 4b).

The analyzes of internal force distribution in the cross-sections of the bended
gypsum beams proved that reliable calculation results follow the diagram @ Figure 5,
i.e. there occurs full plasticization of the tensile zone. Identical scheme was found by
Muraszew [19, 26] for the bended concrete cross-sections. The representative tensile
strength of bended gypsum f, !t (relation (12)), and elastic/plastic bending strength

factor Wy (relations (17) and (18)) are the original findings on these phenomena in
gypsum cross-sections.

The general relations (19) and (22), which describe the load capacity of bended
elements in normal cross-sections as a function of dimensions of the cross-section and
of the W/G ratio, are of a considerable heuristic and practical value in the case of
interpolation of test results for gypsum construction models.
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Rozklad odksztalcen i naprezen w przekrojach
normalnych zginanych elementéw gipsowych

Przedstawiono wyniki badan rozktadu odksztalcen i naprgzen w przekrojach normalnych
zginanych belek gipsowych w stanie suchym. Belki te wykonano z zaczyndéw gipsu budow-
lanego o W/G = 0,5, 0,6; 0,8; 1,0 1 1,5. Odksztalcenia zmierzono metoda tensooporowa, a ugig-
cia belek — za pomoca czujnikdéw przemieszczen. Stwierdzono prawie liniowe rozklady od-
ksztatce zgodnie z zasada Bernouliego dla poziomu wytezen az do o,/f, = 0,9. OkreSlono
graniczne  wartoSci  odksztalcen w  strefie rozciaganej w  postaci  zaleznosci

E gy = 46,24 f. ;0888 -107°. Dokonano analizy réznych schematéw rozktadu sit wewnetrznych,

czyli naprezen w zginanych przekrojach normalnych. Przyjeto obliczeniowy schemat: trojkatny
w strefie $ciskanej i prostokatny w strefie rozciaganej. Ustalony na podstawie badan wtasnych
rozktad jest zgodny z teoria Muraszewa opracowana dla przekrojow betonowych. Okreslono
reprezentatywna wytrzymalos$¢ gipsu na rozciaganie przy zginaniu f, é’, =050, ath = 0,574 f atb >
gdzie f,, 0znacza wytrzymato$¢ normatywna jak dla materiatoéw sprezystych. Ustalono sprezy-
sto-plastyczny wskaznik wytrzymatosci na zginanie dla przekrojow gipsowych w postaci
zwiazku W, =W, /0,56 =1.7496 W,

gep ge’

Ustalono zalezno$¢ okreslajaca no$no$¢ przekrojow gipsowych na zginanie w postaci
_ "

Mn - Wgepfgt :

gdzie: W,, = bh* /6 jak dla materiatéw sprezystych.
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boundary element method approach
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Composite structures consisting of thin reinforced laminas, modelled as orthotropic bodies, are con-
sidered. The problem of the optimal shape is examined within the scope of sensitivity and optimization
theories, particular consideration being given to shape sensitivity and optimal shape design. The boundary
element method (BEM) approach has been formulated and implemented in the computer code, which al-
lows the problem to be solved numerically. The design of the optimal shape for the specimen which was
used to test the composite material under biaxial stress conditions is presented as a numerical example.
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1. Introduction

Flat composite structures, laminates consisting of thin reinforced laminas, are con-
sidered. Each of the laminas is modelled as an orthotropic body, and one of the princi-
pal directions is parallel to the reinforcement of the laminas. In the laminate, any indi-
vidual laminas of identical orthotropic properties are mutually rotated in such a way
that the laminate as a homogeneous body is an orthotropic body.

In the paper, the optimal shape problem is examined within the scope of sensitivity
and optimization theories, particular consideration being given to the shape sensitivity
and optimal shape design. This is one of the most difficult problems dealt with in op-
timization theories. Analytical solutions can be obtained only for some simple prob-
lems, and that is why use is commonly made of numerical methods such as FEM,
FDM and BEM. In the case of shape sensitivity analysis, the boundary element
method becomes an especially favourable numerical technique owing to the properties
of the discrete models. The parameters of the discrete model are located on the bound-
ary of the domain, and any change in the location of the boundary during the optimi-
zation process is noticed by these parameters in a natural way. Each change in the lo-
cation of the boundary entails modification of the discrete model. In the past few
years, the optimizations of construction shape as well as relevant sensitivity analysis
have been the subject of numerous scientific researches [1, 2]. The results of those in-
vestigations were used for the needs of the study reported on in this paper.

The objective of the study was to investigate the BEM algorithm. The BEM ap-
proach was formulated and implemented in the computer code, which allows the
problem to be solved numerically. The optimal shape design for the specimen which
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was used to test the composite material under biaxial stress conditions is presented as
a numerical example [3].

2. Physical model of the composite material

The composite material specimen (Figure 1) is the subject of optimization. It is
used for investigating the biaxial state of stress. The specimen consists of identical
thin laminas connected and uniaxially reinforced. Two laminas are assumed to lie in
the centre of the specimen ©; and 8 laminas in the other area Q. The laminas in the
laminate are arranged alternately according to the direction of reinforcement [0°, 90°]
with reference to the direction x;.

e
2ic (D test zone

(@ arm zone

10c

|

|
@

i

!

4
-—- symmetry axis —-}—-

%2 laminas 8 laminas "~

20c N

™ |

q

Fig. 1. Static scheme of composite material specimen

It has been assumed that the physical model of a single lamina is an orthotropic
elastic-ideally plastic material in a plane state of stress. For each lamina, a local coor-
dinate system {Xx,,X,} compatible with the principal directions of orthotropy is de-
fined and standard descriptions of the fields of stress and strain in the vector form are
adopted:

>
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= oi, /0%, , (1)

, &) |on, /%, + o0,/ 0%,

(e}

Il

Q>
[,

m>

Il

>



Optimization of composite structure shape with boundary element method approach 85

where two of the first coordinates of the stress vector indicate normal stresses in the
directions x, and x,, respectively, and the third coordinate is shear stress. The strain
vector is defined by the linear Cauchy equations (1).

The material is a Hooke’s body in the range of elastic deformations, and the
constitutive equations for the »™ lamina in the local coordinate system take the form:

A TA A (ONSNNG!
O O, O, O &
Grp =0y Opn O &, = 6" =Q"g", )
P 0 0 Ok &
where
R E R E R R R R R
1= —, O0,= i, O =051 =v0s =v51Q11, O =Gias (3)

1=v,vy 1=v,vy

and E,E,,v,,,G,, are material constants of the material of the lamina.

We assume the global coordinate system {x,,x,}, and ¢’ and & stand for the

stress and strain vectors of the n™ lamina in this system. The transformation equations
for expressing stresses in an {x,,x,} global coordinate system in terms of stresses in

a {X;,X,} local coordinate system take the form [9]

o™ =T, 5", (4)
where

cos’ 0 sin’ @ —2sinf@cosl
T, = sin? @ cos® @ 2sinfcosd | ®)]

sinfcos® —sinfcosd cos’ @ —sin’ @
The angle 6 is the angle from the global x;-axis to the local X, -axis of the n"

lamina in anticlockwise direction.
By virtue of similarly, the strain transformation equations are

e =T/ e". (6)

Making use of expressions (4) and (6) the constitutive Equations (2) for the »n™
lamina in the global coordinate system can be written as
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s\ = T(,,)Q(n)T(Z,;)S(n) — Q(”)S(n), (7)
where
O On O
Q(n) = T(n)Q(")T(Z) = Q21 sz Q23 (8)
Oy Oy 0O
in which

Oy, =0, cos* 0+2(0,, +20,,)sin* Ocos® O+ Q,, sin* 6,
0O, = (QAll + sz —4QA66)sin2 Ocos’ 0+ le(sin4 0+ cos” 0),
0,, = 0y, sin* 0+ 2(0,, +20,,)sin> Ocos® O+ Q,, cos* 0,

O = (Qll - le - 2Q66)Sin O cos’ 6+ (Qn - sz + 2Q66)Sin3 fcos0,
Oy =01 — 01y — 2044 )sin” 0c0s 0 +(0y, — Oy, +204)sin O cos’ 6,
O = (Q11 + sz - 2Q12 - 2Q66) sin? Ocos> 0 + Q66(sin4 6+ cos* 0).

If o and g are stress and strain vectors of the laminate, then for the connected
laminas we can write

e"=¢ for n=12,.,N 9)

and

G:Licw) =L§:Q(”)s(”) _ Q. (10)
Nn:l Nn:l

where N is the number of laminas in the laminate, and

1 N
Q=->Q". (an
N n=1
Because of the symmetrical arrangement of the laminas in the laminates, the matrix
Q is also symmetrical and the laminate after homogenization is an orthotropic body, in

which the axes x; and x, are the principal axes of orthotropy.
It is assumed that the failure of each lamina follows the Tennyson failure criterion
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[4]. The function of this yield criterion at the stress space is

A A N A2 A2 ) A A
Ao, + A0, + A0 + 4,07 + A,,05 + AiO4 +24,,0,0,

+34,,616, +341,6,65 +34,446,6¢ +34,46,65 =1. (12)

The values of the elasticity coefficients and those of the tensor coefficients in
Equation (12) for the 3M SP288-T300 GRE composite material have been obtained by
Tennyson [4] (see Table 1 and Table 2). It is assumed that the failure of the laminate
will occur if the state of stress in one of the laminas reaches the failure surface (the
first ply failure criterion).

Table 1. The elasticity coefficients for the 3M SP288-T300 GRE composite material

E, [GPa]

E, [GPa]

Gy [GPa]

Vi2

141.34

9.650

4.095

0.26

Table 2. The failure criterion coefficients for the 3M SP288-T300 GRE composite material

A; [MPa'] A4, [MPa™'] Ag [MPa'] | Ay [MPa?] | 4y, [MPa?] | Ag [MPa?]

—3.602¢—4 1.503e-2 0.0 8.921e—7 8.280e-5 1.088c—4
A1 [MPa”] Arp [MPa] App [MPa ] Ags [MPa ] Az [MPa ]
—4.697¢—6 —8.842¢-10 ~1.550e-8 —1.272¢-8 —3.130e—7

For further analysis we defined the relative effort measure (REM) of a laminate.
The algorithm for determining this measure is as follows:
e we perform statical analysis to obtain the state of strain for a laminate €, and with

Equation (9) we have ¢ =¢ for n=1.2,...,N,

e we calculate the strain and stress in individual laminas, €",6"™ (n=12,...,N),
using Equations (6) and (2),

e incorporating the term (n)é(") into Equation (12), we obtain

Byl + Byl + B, =1 for n=12,.,N. (13)

The REM () is the value of the minimal positive root of Equation (13). This

)

measure is a multiplier of the stress vector such that the point & y(”)é'(” in the stress

space lies on the yield surface of one of the laminas.

3. Formulation of the optimization problem

For the composite samples under study, the optimization problem can be formu-
lated as follows: we have to calculate the dimensions of the specimen in such a way
that the difference in the effort measure between the domain £; and the domain Qy
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takes a maximal value. In that case, the probability of specimen failure in the domain
Qy will be minimal.
We assumed the objective function in the form of the following stress criterion:

Y/:é/)(/)(l) —é/;ﬁ?), (14)

max

where ¢ yo(l) denotes the REM at the central point of the specimen and ¢ ;, stands for

the maximal REM in the domain €y (arm zones).
The relative dimensions of the specimen are assumed as design parameters

b:(bl,bz)TE(f,a)Tz(i,ﬁj : (15)

c C

where the dimensions 7, @ and ¢ are shown in Figure 1.

At the same time we assume that the loads of the specimen satisfy the following
relations:

g1 = const.,

b= /4 €0,1).
4. BEM algorithm for static analysis of the construction

Consider a weightless orthotropic body occupying a plane domain Q =0, U,
bounded by the boundary I'=7ul,ul;Ul,, (Figure2). On the boundary /7,

homogeneous kinematic boundary conditions in the direction normal to the boundary
are applied; on the boundary 77, the loads depicted in Figure 1 are applied; the
boundary 73 is free, and the boundary /7 separates the subdomains.

Xy

Fig. 2. Discrete model of the domains
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The starting point of start tor the algorithm is the Somiliano integral equation [5]:

Cu(&)= J‘G(x.éj}t(x)dﬁ - J‘F(jx.gj)u(jxj)dr. (16)
r r

which 1s equivalent to the set of differential equations describing the plane problem.
Equation (16) detines the displacement vector of the point ¢ and relates it to the dis-
placements and traction forces on the boundary I". The function matrixes G(x.8) and
F(x.&) are functions of a fundamental solution and matrix C depends on the boundary
smoothness. The fundamental solution for an orthotropic plane body has been found
by Butterfield and Tomlin [6], who made use of Lekhnitskit’s solution [7].

The algorithm reduced to the numerical solution of the integral Equation (16). The
main elements of the algorithm in the direct version are presented as tollows:

a) A finite dimension numerical model is matched to the domain I". The boundary
of each subdomain @y and Qr 1s divided into disjoint elements I, (e=12,..,¢), with
nodal pomnts x* (¢ =1,2.....a). Note that on the common boundary of the subdomains
[, there are formally double elements and nodal points. For the numerical model it is
assumed that the common elements and nodal points belonging to &y and &y overlap.
With such a behavioural pattern it is convenient to formulate the boundary conditions.

b) The mam parameters of the problem are the displacements u* and the traction
forces t* in the nodal points (Figure 2). The nodal points are regularly arranged inside
the element. not at the ends of the element. The position of the nodal points at the ends
of the element may complicate the algorithm.

¢) The displacement functions u(x) and the traction torces t(x) on the boundary I
are composed of local approximations of these functions; thus

u(x):Na(x)uaN 17
(
tx)=N,(x)t",

where N, (x) is a polynomial base function connected with the nodal point x* This
function 1s nonzero only if the element includes a nodal pont x* (x7 I ) 1he
functions u(x) and t{x) in Equation (17) are continuous on the boundary elements. On
the boundaries of the elements there are finite discontinuities of these functions as
a consequence of the assumed location of the nodal pomnts inside the elements only
(not on the element boundaries).

d) For each of the subdomains @, (h=L11) we write Equation (16), assuming that

E=E"=x"cQ,:

Cu(E”)= J’G(x.g“)Nﬂ(x)tﬁ dr - J’F(x.g“)Nﬁ(x)uﬁ dr. (18)

Th Th
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a)
for ¢=12, .., h=11IL

Using the notations

e jF(jx_ga)Nﬁ(x)dF +C55.

I

34 :fG(x.gv«)Nﬁ(x)dF. (19)
I

1l oo

T 2lo 1

Equation (18) may be written in the form
Fiu’ -GgtY =0. (20)

Expression (20) presents a set of 2& linear algebraic equations including 4@ nodal
parameters.

b) Using kinematic and kinetic boundary conditions as well as compatible condi-
tions on the boundary I; we may solve the set of Equations (20) and determine the
nodal parameters u® and ¢* for oz =12..... a

b) Then we calculate the displacement, strain and stress at any point of the domain
Qé (h=11I). The displacement was obtained using Equation (16). The stress 6(x)
was established in terms of the differential quotient on the basis of the calculated
displacements in the vicinity of the point x.

1. BEM algorithm for sensitivity analysis of the construction shape

The optimization problem formulated in Section 3 refers to the search for the opti-
mal shape of the construction for which the objective function i1s maximal. Below
a general algorithm 1s formulated to calculate the sensitivity of the construction when
the boundary domain 1s changed.

For a fixed set of design variables b = (b), b;)”, the body occupies a domain Q with
the boundary I". If one of the design variables changes by about db;, the body takes up
a domain &2, with the boundary I The transition from the configuration £ to the con-
figuration ©2; can be written in the form of an equation of motion for a body

x, =T(x, 1), (2
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where 7 is a time parameter, and thus for 7 =0 we have x_ =x.
The velocity of change of the configuration is given by

dx_  0T(x,7)
o) = - , 22
v(X,7) 77 3 (22)
hence
X, (X,7)=X+7V(X,7). (23)

Since the dead load is lacking, the state of stress in the domain Q; at the time 7 =0
depends exclusively on the functions on the boundary 7, (displacements and load trac-
tions). In this case, the objective function ¥ determined by Equation (14) may be
written in the form of a functional:

V= [g.(x)dl.. (24)

I’z

The functions in Equation (21) need to be written with reference to the initial con-
figuration (for the time 7 =0). If we assume the following notation:
¢ n(x) denotes the normal vector on the boundary 7,

ox, 0x.

J J

¢ J= {ﬂ:l =I+ {ﬂ} =I+1D 1is the transformation matrix,

ov; . . .
¢ D= {—’} stands for the transformation velocity matrix,

Xj

then Equation (24) can be written in the form [8]:

V=g (x+ w(x))|J|HJ—TanF , (25)
I

where |||| is euclidean norm and J™7 = (J -l )T .

If the velocity v(x) is normal to /', the material derivative of the functional (25) for
=0 is given by

_av
dr

TI

= [ [(0)+ g(x)(div v(x)— (D m))]dl

=0

= _[[g'(x) +Vg(x)" v(x) +Hg(x)(v(x)" m)]dI’
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= J [£'(x)+(Ve(x)" n+ Hg(x))(v(x) m)]dT, (26)

where:
H is a curvature of the boundary line,

g(x)=g'(x)+ Vg’ v(x) is a material derivative of the function g(x),
g'x)= llng[M} is a partial derivative of the function g(x).
T—> T

The material derivative ¥' can be identified with the design sensitivity of the con-
struction if the following conditions are fulfilled:
a) the function T(x,7) in Equation (14) must be a linear function of 7 for xe I,

which means that the trajectory of each point x on the boundary is a segment and that
velocity v(x) is independent of z,
b) the boundary line x_ = T(x,7) should correspond with the change of the design

variable, i.e. 0b, =7 .
If the above conditions are fulfilled, then

p=p =7 27)
ob,

1. Numerical realization of the optimization problem

Making use of the algorithm described in Section 5, we developed our own pro-
gram which enabled static analysis and optimization of linear elastic composite con-
structions in the plane state of stress. With this program we optimized the construction
shown in Figure 1. The discrete BEM model is depicted in Figure 2. Calculations were
carried out with two-nodal elements.

The optimal parameters were determined by iteration, using the algorithm de-
scribed in Section 5. In the parameter, space by, was adopted as the starting point. In
the iteration process, further points in the parameter space were determined by the
gradient of the objective function (2), first of all the rates of the design variables were
assumed according to the expression

Sb, = a2 (28)
ob,

where « is an arbitrary constant.

The path of the sequence of the design parameters obtained by the optimization
procedure is shown in Figure 3. For the purpose of control, the functional ¥ at selected
grid points of the parameter space was determined and the isolines of ¥ were shown
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(as in paper [3]).
The calculations were done by means of the author’s computer program.

3= alc ¥ isoline
T 6
10+ 5 -
\ + 4
\ 09—+ 3
point of start
; \ b = (2.0, 1.0) e e
\ 08-+1
1
2
\ \\ \
optimal point
b, = (2.39, 0.34)
4 5
0
1 2 3 T=rlc

Fig. 3. Isolines of the functional ¥ in the space of design parameters

2. Conclusions

In the paper, the algorithm of the boundary element method for shape optimization
has been formulated. The subject to be optimized is an ortotropic body, which consists
of identical thin laminas working in the plane stress state. There is a failure criterion
for each lamina as a function of the limit surface in the stress space. The first ply fail-
ure criterion has been assumed.

The design variables of the defined optimization problem are the geometric pa-
rameters of the body shape. The change of the shape in the course of the optimization
process is defined by the transformation expression (21) in the form of a motion equa-
tion on the assumption that velocity is constant and the velocity vector is perpendicu-
lar to the body boundary. The design sensitivity of the objective function is described
by Equation (26). It should be noted that the first component of the integrand is a de-
rivative of the function g related to the design variables, the remaining components
being directly dependent on the displacement of the boundary.

The example under analysis confirms the efficiency of the BEM algorithm pre-
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sented. The results obtained in the study reported on in this paper are consistent with
those attained in our previous research [3]. It is an indirect proof of the correctness of
the algorithm formulated.
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Optymalizacja ksztaltu kompozytowej konstrukeji
w ujeciu metody elementéw brzegowych

Przedmiotem analizy byta kompozytowa konstrukcja ztozona z cienkich warstewek zbrojo-
nych wtoknami weglowymi. Badano problem optymalnego ksztattowania konstrukcji kompo-
zytowej w ujeciu teorii wrazliwosci 1 optymalizacji. Opracowano algorytm numerycznego
rozwiazania zadania z wykorzystaniem metody elementéw brzegowych. Jako przyktad zasto-
sowania tego algorytmu wyznaczono optymalny ksztalt probki materiatu kompozytowego
przeznaczonej do dwuosiowych badan wytrzymatosciowych. Obliczenia numeryczne wyko-
nano, korzystajac z autorskiego programu komputerowego.
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