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Selection of assembly equipment using expert system 

B. REIFUR, T. JANKOWSKI 
Wrocław University of Technology, Wybrzeże Wyspiańskiego 25, 50-370 Wrocław 

In order to reduce the time of designing technological process and selection of optimal variant of 
process with regard to qualitative and economic aspects, expert systems are often used. Computer tech-
niques improve and speed up the selection of assembly devices and also allow us to calculate the costs of 
their application in assembly process of a given product. Knowledge and experience of designer who co-
operates with computer system make qualitative and quantitative aids of decision making in different 
stage of designing possible. In the paper, the use of techniques of Artificial Intelligence for creation of an 
expert system which aids decision making in the planning and selection of the elements of assembly de-
vices like robot and gripper is presented. 

Keywords: robot, gripper, assembly, expert systems 

1. Introduction 

The design of assembly and the selection of assembly tools constitute a multistage 
process which to a large extent determines the quality and price of manufactured ma-
chines. In order to obtain high quality and reliability of the manufactured machine, not 
only its individual components must be properly designed and made, but also their as-
sembly and the assembly tools must be proper. The designer’s knowledge and experi-
ence are the key elements which aid (both qualitatively and quantitatively) the design 
process and decision making at the different stages of design. The dispersion of 
knowledge, its complex structure and the difficult access to it greatly limit its avail-
ability. In this context, the efficient planning of assembly and the selection of 
assembly tools assume increasing importance. 

To tap the procedural knowledge contained in software tools, the catalogue knowl-
edge stored in databases and the expert knowledge stored in knowledge bases, an ef-
fective tool comprising solution search methodology, the selection of criteria and con-
straints and the determination of sought quantities, their values and directions of their 
variation are needed. 

To shorten the time required for designing such a complex process as assembly and 
to achieve positive economic results, computer techniques and analyses aided by ex-
pert systems, artificial neural networks and relational databases are more and more 
often employed. In the design and visualization of assembly processes, expert systems 
should collaborate with computer-aided design (CAD) systems, production planning 
systems (PPS) and computer-aided assembly process planning (CAAPP) systems. 
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Fig. 1. Components of expert system for assembly work zone design 

 

Fig. 2. Analyzed team of valve 
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By combining all these systems one can shorten the time of process design and se-
lect the optimum solutions for the technological process and for the tooling. The 
analysis of the process of optimum selection of the assembly–devices (the robot and 
gripper) was conducted for team of valve (see Figure 2). 

2. Expert system software tools 

An expert system aiding decision making in the planning and selection of assembly 
devices (including the estimation of costs connected with the use of the latter) has be-
come an essential tool. Such systems are widely applied in order to solve highly tech-
nical problems requiring expertise and to perform complex tasks requiring great intel-
lectual capacity [1, 2, 3]. Expert systems put forward solutions which the user can ac-
cept or reject and demand another solution. 

The effectiveness of an expert system depends mainly on its database and to  
a lesser degree on its inference mechanism. The database contains knowledge (in the 
form of rules and facts) about the domain to which the problem belongs. The inference 
mechanism draws conclusions from the accumulated knowledge, which leads to the 
solution of the problem. 

The system of GURU developed by the American company MDBS and the Access 
97 software for relational databases were used to build an expert system. The system 
forms an integrated environment (see Figure 1) which for prescribed conditions and 
costs selects assembly devices from a database on the basis of a knowledge base [4, 
5]. This is illustrated in this paper for the selection of robot and grippers for a simple 
machine. GRIPPER and ROBNETEX expert systems and ASSEMBLY database, 
which stores catalogue data on robot and grippers, have been developed. 

To create an expert system based on a knowledge base one must acquire knowl-
edge from an expert (a human being) in a given field who often finds a solution to  
a problem on the basis of information about it and his/her own experience. An expert 
system which incorporates recorded expert knowledge in the given field can use this 
knowledge repeatedly in an economically effective way without the presence of the 
expert. 

The power of an expert system to solve a given problem depends largely on the 
knowledge encoded in it and to a lesser degree on the formalism and the inference 
schemes which it uses. Briefly put, the fuller the knowledge about a given problem, 
the faster its solution [3, 5]. 

3. Expert system for selecting assembly equipment 

An efficient system of configuring the assembly workspace should have an inter-
face allowing the user to use advanced A.I. tools without entering their environments 
[6, 7, 8]. 
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The success or failure of an expert system depends to a large extent on the ease of 
use and the quality of the user interface. To be user-friendly it must meet several re-
quirements such as: 

• the ease of use (it should not require long learning), 
• errors in entered data (facts) should be early detectable and hints on how to cor-

rect them should be offered, 
• the expert system’s output should have a form acceptable to the user, 
• the queries which the user must answer and the answers to the user’s queries 

should be easily understood. 
The interface (communication module) used here allows the user to communicate 

easily (in a way similar to a natural language) with the computer. The user-friendly 
interface is so designed that even users who do not know any programming can im-
mediately use the program. The system which aids the design of a manufacturing 
process by automatically selecting an assembly robot or gripper is a component of  
a system for selecting assembly equipment for the assembly workspace. The latter is  
a hybrid system consisting of an expert system, a neural network, a database, and  
a user interface. It contains design data, technological data, knowledge and inference 
and association mechanisms needed for the selection of a robot or gripper. Its algo-
rithm is shown in Figure 3. 

 

Fig. 3. Program algorithm 

In the first step, the designer of the assembly process interactively enters some pa-
rameters of the sought robot or gripper which are encoded by the program. Then the 
expert system, having a knowledge of how to select patterns for neural network train-
ing from the database, is employed. A robot or gripper is selected by means of the 
neural network. First, the neural network is trained using data prepared by the expert 
system and then the trained neural network receives the sought robot’s parameters. At 
the output the information about the type of the selected robot or gripper is obtained. 
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The expert system was used to provide patterns for the training of the neural net-
work to the adequate level in the required range. 

Data for neural network training are selected from the database on the basis of the 
information on the robot’s application domain and its operating conditions assumed by 
the designer of the manufacturing process. The expert system’s knowledge base incor-
porates rules according to which proper patterns are selected from the ones stored in 
the database. 
 
 

 

Fig. 4. Window for defining source sets for neural network training 

A skeleton expert system, called Guru, was used to perform this task. The Qnet 
simulator with error back propagation training was used for the implementation of the 
neural network (Figure 4). 

4. Selection of robot 

The ROBNETEX user interface (see Figure 5) was created using the Delphi 3 
software environment for the quick development of Windows applications. The inter-
face consists of the following three main parts: 

• data input, 
• robot selection procedure, 
• Internet directory of robots. 
To define the sought robot in the ROBNETEX program, three groups of robot fea-

tures, i.e. general, functional and spatial, are specified in the data input part. 
General features define the robot’s application domain with regard to the type of 

performed jobs and the conditions in which the robot is to work. They are used to re-
duce the number of potential solutions and the amount of neural network training data, 
whereby the learning time is considerably shortened. 
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Functional features define the sought robot’s design parameters, i.e. the number of 
steered axles, the lifting capacity, the workspace size, the positioning accuracy and the 
speed of motion. 

Spatial features define the way in which the robot can be mounted in the work 
area: 

• immovable base – the robot secured to the floor or a wall or suspended from the 
ceiling, 

• movable base – the robot moving (usually) along one axis, 
• travelling robot: underhand or moving along one or two axes. 
The robot selection part consists of three functions: neural network training data 

selection, neural network training and sought robot selection. The neural network 
training function is performed by the Qnet neural network simulator. 

The directory of robots part has direct links to the Internet directories of robot 
manufacturers. By entering the robot’s name and its type we can find the selected ro-
bot in the directory and obtain its numerical and graphical specifications. The program 
has links to the robot directories of BOSCH, ABB, Epson, Fanuc and Kuka. For ana-
lyzed team of valve (Figure 2) the system executed the choice of robot of the BOSCH 
firm introduced in Figure 5. 
 
 

 
 
 
 
 
 
 
 
 

 

 

Fig. 5.  The choice of robot by ROBOTEX system  
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The advantages gained from the ROBNETEX program are as follows:  
• simple rules of the knowledge recording in expert system, 
• processing of incomplete knowledge through neuronal net, 
• taking advantage of literature, 
• due to extension of base of robots it is possible to widen the range of accessible 

robots and the areas of their use, 
• the service of the system is easy,  
• quick results,  low expenditure of work, 
• no necessity of preview of many catalogues in order to find the solution, 
• the possibility of quick selecting the robot demand. 

5. Selection of gripper 

To realize an assembly process, in which the state-of-the-art robots controlled by 
computers are employed, the robots must be equipped with sensors and executors such 
as grippers or tools. 

In the manipulation process, the robot’s gripping devices are used to perform the 
following elementary tasks: 

• to grip the object of manipulation in the initial position, 
• to hold it during manipulations, 
• to release the object of manipulation in the target place. 
A proper gripping of the object of manipulation depends on: 
• the object’s shape, 
• the dimensions of the manipulated part, 
• the object’s weight, 
• the position of the centre of mass, 
• the moment of inertia, 
• the kind of the object’s material, 
• the condition of the surface, 
• the working tolerances of the gripped areas, 
• the properties of the surface of gripped areas, 
• the dynamic conditions of the manipulation and assembly processes. 
As regards the gripper, the gripping of the object is determined by: 
• the mode of gripping, 
• the shape and geometric parameters of the gripping elements, 
• the properties of the surface of the gripping elements, 
• the force generated by the grippers’ drives, 
• the sensors. 
For each technological task there exists the optimum gripper design. The selection 

of the proper gripper is thus of crucial importance for the process of manipulation. 
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Fig. 6. Knowledge tree for gripper selection 

 

Fig. 7. Screens of CHWYTAK program elements 
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The purpose of the GRIPPER expert system is to aid decision making by the engi-
neer during the selection and planning of assembly tools (grippers) for the design of 
the assembly of an object. On the basis of the user’s specifications the system will se-
lect the proper gripper from the gripper database to grip the object which is to be as-
sembled. The GRIPPER expert system is one of the subsystems in a global system for 
modelling the assembly work zone. The necessary information in the form of a knowl-
edge tree (its fragment is shown in Figure 6) is entered as rules into GURU system. In 
the editor, besides writing a rule one must also enter the rule processing parameters. 
The rule consists of premise IF with conditions and conclusion THEN with objective 
variables. Then the variables must be specified and described. The description will be 
displayed when queries about the variables are made during consultation with the 
system or when the consultation process is being explained. 

The program asks us if we want it to explain why and how and the goal of the con-
sultation was achieved. If the answer is yes (Y by default), the program displays the 
explanations shown in Figure 7. It the answer is no (N), the consultation begins again. 

The database is an important component of the system aiding the selection of as-
sembly devices. It stores information about the parameters of the devices used in as-
sembly and photographs of them. The gripper database is based on SCHUNK, SOM-
MER and BOSCH catalogues [9]. 

6. Conclusions 

Computer software aiding the production engineer in the design of assembly and 
production planning processes plays an increasingly greater role, expanding design 
possibilities. An example of such software is the program presented which owing to 
the hybridization of the expert system and the artificial neural network makes for bet-
ter and more efficient engineering design. 

The main advantages of the presented system of aiding engineering design deci-
sions by employing computer techniques and artificial intelligence methods can be 
itemized as follows: 

• a reduction in design time; 
• quick access to the results of work; 
• if the initial data are changed, modifications can be easily made even at advanced 

stages of design; 
• a reduction in design costs. 
The program in conjunction with similar computer tools for the design of assembly 

workspace, including the selection of instrumentation, transport systems, feeders, 
gripping devices and so on, brings substantial benefits by reducing process design and 
implementation time. 
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Wybór wyposażenia montażowego za pomocą systemu ekspertowego  

Projektowanie procesu technologicznego montażu oraz dobór właściwego oprzyrządowania 
jest działaniem wieloetapowym, mającym podstawowy wpływ na jakość oraz cenę wytwarza-
nych urządzeń. Wiedza i doświadczenie konstruktora są jednymi z czynników umożliwiają-
cych jakościowe i ilościowe wspomaganie procesu projektowania. Umożliwiają one wspoma-
ganie procesu podejmowania decyzji na różnych etapach projektowania. Rozproszenie, trudny 
dostęp i złożona struktura rozpatrywanej wiedzy ograniczają w znacznym stopniu jej dostęp-
ność. W tym kontekście coraz większego znaczenia nabiera efektywne planowanie i dobór od-
powiednich urządzeń montażowych wspomaganych przez systemy doradcze. Jeśli uwzględnić 
wykorzystanie wiedzy proceduralnej zawartej w narzędziach programowych, wiedzę katalo-
gową zawartą w bazach danych oraz wiedzę ekspercką zawartą w bazach wiedzy, to konieczne 
staje się wykorzystanie efektywnego narzędzia obejmującego metodykę poszukiwania rozwią-
zania, dobór kryteriów i ograniczeń, określenie poszukiwanych wielkości oraz ich wartości lub 
kierunków ich zmian. W artykule przedstawiono budowę takiego systemu oraz wyniki doboru 
urządzeń typu robot i chwytak dla określonego zespołu zaworu. 
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Spectral response of linear system 
under Poisson driven pulses 

MAŁGORZATA GŁADYSZ, PAWEŁ ŚNIADY 
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław 

In this paper, the dynamic response of a linear structure to a random train of pulses driven by a Pois-
son process is considered. An analytical method is developed to determine spectral density function of the 
response of the structure. Both stationary and non-stationary vibration problems are considered. To as-
sume simple algebraic relations for both cases of response the dynamic influence function has been intro-
duced. 

Keywords: structure, train of pulses, spectral analysis 

1. Introduction 

Analysis of the response of vibratory systems to random train of pulses has re-
ceived a great deal of attention in the past [1–6]. The shapes of the pulses have been 
assumed to be the Dirac delta function [1, 3, 11] or arbitrary function and have deter-
ministic or random time duration. The response of a structure subjected to a random 
train of pulses is, in general case, a point stochastic filtering process and in particular  
a Poisson filtering process [2, 4, 5, 6]. This latter case occurs in the dynamics of high-
way bridges loaded with a vehicular traffic flow [9, 10]. A random train of pulses can 
model seismic, para-seismic, acoustic excitations and wind load [11]. 

In this paper, the dynamic response of a linear structure to a random train of pulses 
is considered. An analytical technique is developed to determine spectral density 
function of the response of the system. 

Many random vibration problems are solved using the spectral analysis method. 
This method is applicable only to linear time-invariant system [7, 8]. Both stationary 
and non-stationary vibration problems are considered. There are two reasons why the 
spectral analysis method is used: the simplicity of the method and the fact that the 
spectral density function of the vibration system reflects the energy distribution in the 
frequency domain. The frequency domain method is particulary suited to the analysis 
of stationary responses of a linear system. It can also be applied to determine non-sta-
tionary responses. For stationary responses there exists a simple algebraic relation 
between the input and the output spectrum. When the linear system is excited by 
a random train of the pulses driven by a Poisson process there is no such a simple al-
gebraic relation between the input and the output spectrum. To overcome these diffi-
culties the dynamic influence function has been introduced which allows us to assume 
also simple algebraic relation for stationary and non-stationary responses. 
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2. Spectral density function of pulses train 

At the beginning let us consider a time-invariant linear system subjected to the sto-
chastic excitation f(t). With the normal mode approach, the motion of a linearly elastic 
structure can be described by the set of uncoupled equations: 

)()(2)( )(
2 tfpytyty ntnnnnn =++ ωα &&& ,       n = 1, 2, …, (1) 

where dots denote differentiation with respect to time. 
The covariance function of the structure response to excitation f(t) and its spectral 

density function require the knowledge of the spectral density function of that excita-
tion. Let the function f(t) be a stochastic process, stationary in the extensive meaning 
with the random characteristics E[ f(t)], Cff (t2–t1) = Cff f(t). 

This stochastic process is assumed to be a train of pulses with random amplitudes 
occurring at random times. The process has the form of the following superposition: 

.),,()(
)(

1
∑
=

=
tN

k
kkk TttSAtf  (2) 

The amplitudes Ak of pulses composing the random train inducing vibrations of the 
structure, the times tk of the pulses activation and the times Tk of their duration are, in 
general, random variables. It is assumed here that the amplitudes are mutually inde-
pendent, random variables and their random characteristics are known and constant: 

][][ AEAE k = ,       . ][][ 22 AEAE k =

It is assumed also that the duration time of any pulse is the same, so Tk = T0 for 
k = 1, 2, 3, ... 

The function S(t, tk, Tk) = S(t, tk, T0) in expression (2) describes the shape of the k th 
pulse in the time interval (tk, tk+T0). Here it is assumed that the shape of each pulse 
does not depend on the arrival time tk, but depends on the time distance between the 
observation and the arrival of the k th pulse. So in this case the function S(t, tk, T0) = 
S(t – tk) has a form: 

⎩
⎨
⎧

+><
+≤≤−

=−
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0

0
0 Ttttt

TtttttS
TttS

kk

kkk
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In the next section, some selected examples of the shape function of the pulses 
(Figure 1) are considered. 

The symbol N(t) in the sum (2) denotes the Poisson process with parameter λ that 
gives the number of pulses in the time interval (0, t). 
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The excitation function f(t) is a sum of the pulses loading the structure during ob-
servation. Taking into account the characteristics of the Poisson process the function 
f(t) can be described as: 

.)()()()(
0
∫ −=
t

dNtSAtf τττ  (4) 

The symbol dN(τ) denotes increment of the process N(t) in the time interval (τ, 
τ+dτ) 

The general relationships between the covariance function )(τxxC  and the spectral 
density function )(ωxxΦ  for any stationary stochastic process X(t) take the form: 

,cos)(
π
1)(

π2
1)(

0
∫∫
∞∞

∞−

− == τωττττω ωτ dCdeCΦ xx
i

xxxx   

 (5) 

.cos)(2)()(
0

∫ ∫
∞

∞−

∞

== ωωτωωωτ ωτ dΦdeΦC xx
i

xxxx  

Taking into account the assumptions presented earlier and accepted for the excita-
tion f(t) its covariance function can be described as: 

∫
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where  ., 0201 TtTt ≥≥
For deterministic functions S(t–tk) and the stationary excitation processes Equation 

(6) takes the form: 

∫
−

−−==
),(min

),(max
21

2
21

21

021

)()(][)(),(
tt

Ttt
ffff dtStSAEtCttC τττλ  

                           ,for)()(][ 0
0

00
2

0

TtdTStTSAE
tT

<−−−= ∫
−

τττλ  (7) 



 
 
 

M. GŁADYSZ, P. ŚNIADY 
 
18 

where 21 ttt −=  and 0for0)( TttC ff ≥= . 
The spectral density function of f(t), after application of (5), can be obtained from 

the expression: 

.cos)(
π
1)(
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The spectral density functions for some particular forms of excitation can be de-
scribed by the following equations. 
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Fig. 1. Shape function of the pulses: a) rectangular, b) sinusoidal, c) exponential 
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1. When the structure is loaded with the stream of the rectangular pulses (Figure 
1a) the function S(t–tk) takes the form: 
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and the spectral density function of impulses and their covariance function can be de-
scribed as (Figure 2): 
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Fig. 2. Spectral density function (a) and covariance function (b) for rectangular pulses 
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2. In the case of the structure excited by a series of sinusoidal pulses (Figure 1b): 
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the spectral density function of impulses and their covariance function take the form 
(Figure 3): 
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Fig. 3. Spectral density function (a) and covariance function (b) for sinusoidal pulses 
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3. For the series of exponential pulses (Figure 1c) the functions discussed are de-
scribed by (Figure 4): 
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Fig. 4. Spectral density function (a) and covariance function (b) for exponential pulses 
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3. Spectral analysis of the dynamic system 

The frequency domain method is particularly suited to the analysis of stationary re-
sponses of a linear dynamic system (1). It can also be applied to determine non-sta-
tionary responses [12]. For stationary responses there exists simple algebraic relation 
between the input and the output spectra [7, 8]. When the linear system is excited by  
a random train of pulses driven by a Poisson process there is no such a simple alge-
braic relation between the input and the output spectra. To overcome this difficulty the 
dynamic influence function has been introduced, which allows us to assume also  
a simple algebraic relationship. 

3.1. Stationary response of linear system 

Let us consider a structure subjected to a weakly stationary stochastic excitation 
f(t). The steady-state solution of Equation (1) is similar to the solution of the case 
where an excitation is a weakly stationary process. Assuming that the spectral density 
function )(ωffΦ  of excitation process f(t) is known, the spectral density function of 
the response )(ω

nn yyΦ  is described by relation [7, 8]: 

),()()()( * ωωωω ffnnnyny ΦHHΦ =  (18) 

where an asterisk denotes the complex conjugate. 
The complex frequency response function )(ωnH  is connected with the impulse 

response function  by equation: )(thn

∫
∞

−

+−
==

0
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nti
nn i
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where the symbol 1−=i  is the imaginary unit. 



 
 
 

Spectral response of linear system under Poisson driven pulses  
 

23 

Equation (18) relates the input and the output spectral density functions through  
a simple algebraic relationship. 

Let us now consider the response of the system (1) excited by the random train of 
the pulses driven by a Poisson process. The steady-state solution of Equation (1) in 
which the excitation process is described by relation (2) can be obtained in the form of 
a Stieltjes stochastic integral with respect to the Poisson process N(t) as [4]: 

∫ ∫
∞−

−−=
t

nn dNdSthAty
η

τ

τξτξξτ )()()()()( , (20) 

where  is the impulse response function, 
and  is the damped natural frequency. 

[ ] )(sin)(exp)( 1 ξξατ −−−=− − tΩtΩth nnnn
222
nnnΩ αω −=

Let us assume that the random variables A(τ) are also independent of the Poisson 
process N(t). The covariance function  of the response has the form [4]: ),( 21 ttC

nn yy

τξξτξτξξξλ
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τ

dddSSththAEttC
t

nnyy nn 21212211
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1 2
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where  and the symbol E[•] means the expected value. ),min( 21 ttt =
From relation (21) it is difficult to obtain the general formulae for spectral density 

function similar to Equation (18). To overcome this difficulty let us introduce the dy-
namic influence function )( τ−tGn  which is the structure normal mode response at the 
time t to the pulse )( τ−tS . The function )( τ−tGn  can be obtained from the integral: 
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The covariance function for steady-state response of the system assumes the form: 
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where . 12 ttt −=
Equation (23) can be presented in the form: 
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where δ (t) denotes the Dirac delta function. 
Relation (24) can be used to find the spectral density function )(ω

nn yyΦ  of the re-

sponse .Taking into account Equation (24) and the relationship between the 
covariance function and the spectral density function (5) we obtain: 
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Expression (25) can be presented in the short form which is similar to (18): 
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The frequency influence function )(ωnJ  has the form: 

,)()()()(
0

0
)2(

0

)1(

0

ηηηηηηω ωηωηωη deGdeGdeGJ
T

i
n

T
i

n
i

nn ∫∫∫
∞

−−
∞

− +==  (27) 

and an asterisk denotes complex conjugate. 
Relationship (27) can be also presented in the form: 
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3.2. Non-stationary response of linear system 

Let us consider now non-stationary vibrations of the system. The response of the 
system and its covariance function assume, respectively, the form: 

∫ −=
t
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where . ),min( 21 ttt =
We extend the spectral analysis presented above for stationary vibrations to non-

stationary response of the system using evolutionary spectral density method proposed 
by Priestley [12]. The non-stationary stochastic process f(t) can be presented in the 
form: 
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where )(ωXd  is an orthogonal increment of the stationary process )(ωX : 
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where the asterisk denotes complex conjugate. 
The covariance function of the non-stationary process f(t) can be presented in the 

form [12]: 
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The product )(),(),( 2 ωωω XXff ΦtatΨ =  is known as the evolutionary spectral 
density. Let us find the evolutionary spectral density function for the response of the 
system given by Equation (29). From Equation (30) we have: 
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In the above case, the evolutionary spectral density function takes the form: 
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Taking into account that the dynamic influence function has two different forms 
(22), expression (36) can be presented as follows: 
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4. The numerical examples 

Let us consider the case where the structure is loaded with the stream of rectangu-
lar pulses (Figure 1a). The shape functions of pulses, their spectral density function 
and covariance function are described by relationships (9), (10) and (11). In this spe-
cial case of the load, function (27) takes the form: 
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where . 222
nnnΩ αω −=

The spectral density function of the response yn(t) (26) is described by the follow-
ing expression: 
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Figures 5, 6, 7 and 8 show the graphs of function (39) dependent on the excitation fre-
quency ω  (ω  = 0, 0.5, 1, …, 30 Hz). The results are presented for the natural fre-
quency ω n = 5 Hz and the damping ratio =ξ 0.02, where . The quantity T1−= nnωαξ 0 
is the duration time of a single pulse and T nTη=0

1−ω, where T . It is assumed 
here that the coefficient 

π2= nn

η  has a value in turn on the graphs: 0.2and0.1,5.0,2.0=η . 
We can observe that spectral density function (39) has clear peaks near nωω =  if 
η    

 

 

 and the distribution of function (39) becomes more mild for 0.2or0.1=η1< . Also   
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for another values of nω  (e.g. Hz10=nω  in Figure 9) the spectrum of function (39) 
reveals sharp peaks for nωω =

1−

 and centres around this value. Similar graphs were 
presented in [6] for variance of the normal mode dependent on duration of the pulses 
T0. We can also notice that for the duration of the pulse equal to  the 
response of the system is the most narrow-band process. 

0 π5.0 == nnTT ω

5. Conclusions 

The spectral analysis method is suited to the analysis of stationary responses of 
a linear dynamic system. Dynamic response of linear system under random train of 
pulses driven by a Poisson process constitutes a filtered Poisson process. In this case, 
the spectral analysis of the response of linear system cannot be obtained using the 
complex frequency response function (18). To overcome this difficulty the dynamic 
influence function and the frequency influence function have been introduced. Taking 
advantage of these both functions also in the case of non-stationary responses we can 
arrive at a simple algebraic relation between the input and the output spectrum. 

The relationship describing the spectral density function has the simple form (26) 
easy to use in the numerical analysis. 
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Gęstość widmowa odpowiedzi układu liniowego obciążonego serią impulsów 

Zaprezentowano analizę widmową odpowiedzi układu liniowego obciążonego losową serią 
impulsów tworzących proces Poissona. Przedstawiono związki opisujące funkcję gęstości 
widmowej i kowariancję dla różnych funkcji kształtu impulsów. Praca zawiera ogólne rozwią-
zania dla funkcji gęstości widmowej w przypadku stacjonarnych i niestacjonarnych drgań 
układu w postaci związków o prostej budowie, które można wykorzystać w analizie nume-
rycznej. 
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Stability analysis of cylindrical 
composite shells in MSC/Nastran  

I. KREJA 
Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-952 Gdańsk, Poland 

In the paper, the capabilities of the MSC/NASTRAN system in the field of stability analysis of com-
posite laminated shells are critically tested. Two selected benchmark examples of laminated cylindrical 
panels under axial compression are examined. The MSC/NASTRAN results obtained either in buckling 
analysis or in nonlinear incremental calculations are compared with the solutions available in the litera-
ture. 

Keywords: composite shells, buckling, FE analysis 

1. Motivation 

In the last few years, structural engineers who use commercial computer systems 
for FE structural analysis have considerably increased in number. Among the main 
advantages one can recognize the following features of a typical big commercial FEA 
system 

• a convenient access to the computational module through a graphical interface of 
pre- and postprocessors,  

• wide range of linear and nonlinear analyses offered,  
• a rich library of elements available in the system.  
On the other hand, every user trying to perform any non-standard calculations 

meets also disadvantages of a big system, to mention here just a relatively complex 
manual and very limited information on a theoretical background. The latter together 
with a lack of any access to the source code makes the user see the system as a pro-
verbial black box, where all one knows is the input and the output but few really know 
what is happening inside.  

The author shares belief that NASTRAN can be treated as a very typical member of 
the family of big commercial FEA systems. It happened that the author had to perform 
a nonlinear analysis of laminated composite shells with the MSC/NASTRAN system 
after a rather short experience with that program. According to promotional materials  

1.  The MSC/NASTRAN system is a powerful tool in the range of linear and nonlin-
ear analyses of structures.  

2.  The shell element QUAD4 available in system is suitable to model laminated 
shells.  
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Trying to verify those promises the author has applied the MSC/NASTRAN system 
to recalculate several well-known benchmark examples of large deformation analysis 
for composite laminated shells. However, the scope of the present paper is limited to 
the stability analysis of laminated cylindrical panel under axial compression as shown 
in Figure 1. It is assumed that the curved edge BC is fixed, whereas the boundary con-
ditions at the curved edge AD allow only a rigid translation of the whole rim along the 
generatrix. The boundary conditions at the straight edges AB and CD vary, depending 
on the example considered. 

R

L
h

u

compression load

w

A

B C

D

 
Fig. 1. Composite cylindrical panel under axial compression 

One can easily notice an obvious similarity between the problem considered and 
the stability analysis of the isotropic cylindrical panel under axial compression being 
the classical illustration of the buckling problem with non-symmetric bifurcation point 
[1]. The basic difference herein lies in the different boundary conditions and the lay-
ered structure of the panel. 

2. Computational model 

2.1. Literature review 

Numerical analysis of laminated plates and shells has been presented in a large 
number of research papers. Due to a limited space of the present report, it is impossi-
ble to list here a comprehensive bibliography of the subject. Let us focus mainly on 
review papers, each carrying a long list of references. At the beginning of the nineties 
Noor et al. published a series of articles [2, 3] presenting the state-of-the-art with re-
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gard to computational models for laminated shells. Piskunov and Rasskazov [4] sur-
veyed 180 papers to trace an evolution of theoretical models for laminated plates and 
shells. The list of references of the cross-sectional article by Qatu [5] contains as many 
as 374 positions. An extensive bibliography of the topic can be found also in the re-
cent papers of Carrera [6, 7]. As the Finite Element Method is the predominant tool in 
the computational analysis of laminated shells, one may not omit here papers devoted 
to the review of shell finite elements [8–10].  

It should be emphasized that the topic of stability analysis of cylindrical composite 
shells is just a fraction of the subject matter of the aforementioned papers. A review of 
the literature dedicated strictly to the buckling analysis of cylindrical laminated shells 
can be found, for example, in [11]. 

2.2. Basic equations in stability analysis 

The first approximation to a critical load and a corresponding buckling mode can 
be obtained in a linearized buckling analysis [12]. A standard eigenvalue problem to 
be solved in such a case can be described by the following equation  

0vKK =+ ][ )()con( σλ , (1) 

where K(con) is the constitutive stiffness matrix, K(σ) stands for the stress (geometrical) 
stiffness matrix, λ is the critical load multiplier, and v symbolizes the eigenvector  
representing the buckling mode of the structure. One should notice that Equation (1) 
has been obtained with strong linearization assumptions and therefore should not be 
applied to examine problems with severe nonlinearities.  

The second option is to trace the whole equilibrium path of the structure by means 
of the nonlinear incremental analysis [12]. Depending on the algorithm applied, such 
a strategy enables one to find singular points of different kind – for example adopting 
the arc-length technique based on the application of extended system of equations one 
can detect limit points as well as bifurcation points [12]. A governing equation of an 
incremental approach in its standard form can be written as 

)()]([ 11 qRqqK =∆T , 
 (2) 

qqq ∆+=12 , 

where 1q and 2q symbolize the global vector for displacements at the actual and at the 
searched configuration, respectively, and ∆q represents the increment of displace-
ments. The tangential stiffness matrix KT (1q) and the vector of residual forces R(1q) 
depend on the actual state of deformation.  
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2.3. Laminated shells analysis with Nastran 

The history of Nastran is almost 40 years long, the first version of the program was 
designed in the course of a NASA-sponsored project which still founds its reflection 
in the name of the program (NASTRAN = NASA STRuctural ANalysis Program). 
The program is available in several different releases offered simultaneously by vari-
ous vendors. The most popular version of the program, the MSC/NASTRAN for Win-
dows [13, 14] distributed by the MacNeal-Schwendler Corporation, has been selected 
for use in the present research.  

According to promotional materials the MSC/NASTRAN system is a general pur-
pose, computer-aided engineering tool based on Finite Element Method (FEM). 
Among different finite elements available in the system one can find a 4-node shell 
element QUAD4 that is applicable in a structural analysis of laminated composite 
shells. It is quite understandable that details of the FE procedures applied are trade se-
crets of the MSC. One can guess that the current shell element QUAD4 originates 
from the shell element proposed by MacNeal in 1978 [15]. QUAD4 appeared to be 
one of the most effective low-order FE elements in the analysis of isotropic shells of 
the Mindlin–Reissner type [9, 16]. An extension of the QUAD4 element formulation 
to the geometrical non-linear analysis is based on the corotational concept [17]. The 
layered structure of the shell is considered according to the Classical Lamination The-
ory, i.e. it is assumed that the laminas are perfectly bonded together (no slip is allowed 
between laminas) and each lamina is in a plane stress state. According to the First Or-
der Shear Deformation Theory a linear variation of deformations through the lami-
nated thickness is postulated; however, an appropriate shear correction factor is ap-
plied to fix the error of constant transverse shear strains in contrast to the more realis-
tic parabolic distribution. Stability analysis in MSC/Nastran for Windows is possible 
either as a linear buckling (see Equation (1)) or as a nonlinear incremental analysis 
(Equation (2)). The latter can be performed with application of arc-length technique 
which allows tracing quite complicated equilibrium paths; however, the details of the 
procedures offered are not accessible which forces users to adopt the choice of default 
parameters. 

3. Numerical examples 

3.1. Cylindrical panel No. 1 – simply supported straight edges 

In the first numerical example, an axial compression of a 16-layer composite cylin-
drical panel is considered assuming that the straight edges AB and CD are simply sup-
ported with the possibility of moving along the generatrix. The lamination scheme can 
be described as [45/-452/45/04]S. Each lamina is made of carbon-epoxy composite 
XAS-914C with the following parameters: Ea = 130·106 kPa, Eb = 10·106 kPa, 
Gab = Gac = Gbc = 5·106 kPa and νab = 0.3. The geometry of the panel is characterized 
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by the height h = 16×0.125 = 2 mm, the radius R = 250 mm, the length L = 540 mm 
and the opening angle β = 1.6848 rad.  

The origin of this, one of the most popular buckling problems of laminated shells, 
is referred to the experimental and numerical study by Snell and Morley [18] which 
was, however, not available to the author of the present report. Jun and Hong [19] per-
formed a nonlinear buckling analysis using 8-node degenerated shell elements within 
Updated Lagrangian formulation. Laschet and Jeusette [20] presented results of linear 
and nonlinear buckling analyses obtained with solid-shell multilayered 16-node finite 
elements (3 translational DOFs per node). Wagner [21] calculated the linear buckling 
load of the panel employing different meshes of 4-node shell elements with reduced 
integration and hourglass control. Brank and Carrera [22] applied 4-node mixed ANS 
shell elements based on the refined FSDT with finite rotations. 

It is quite symptomatic that the descriptions of the analyzed panel given by the au-
thors of the five papers cited above are not quite consistent. There are some differ-
ences in the interpretation of boundary conditions on the straight edges which are de-
scribed as “simply supported” – for instance Jun and Hong [19] and Wagner [21] con-
strained only radial and circumferential translations at all nodes lying on the straight 
edges. However, due to the isoparametric formulation of the finite elements applied 
this approach does not fix the rotations about the normals to the edge. One can expect 
that the deformation of the panel obtained in this model largely depends on the num-
ber of nodes assumed along the straight edges. The details of the boundary conditions 
applied by Laschet and Jeusette [20] are not clear – just from the figure given in their 
paper one can expect that they applied an additional row of shell elements on both 
sides of the panel. Brank and Carrera [22] admitted that they themselves met some 
problems with the description of boundary conditions. 

The MSC/Nastran has been used to compute the critical load for the examined cy-
lindrical panel applying a linear buckling analysis as well as a non-linear incremental 
analysis. The calculations have been performed using uniform meshes of 20×20, 
40×40 and 80×80 QUAD4 elements. The results obtained with the MSC/Nastran are 
in a good agreement with reference solutions [18–21] as is shown in Table 1. The only 
exception is the solution of Brank and Carrera [22] which noticeably differs from all 
the others. The difference with respect to the experimental results is contained within 
the range of just several per cents. One can observe that an increase in the mesh den-
sity results in a decrease in the buckling load estimated.  

As the values of the critical load estimated in the linear buckling analysis are very 
close to those obtained from the non-linear incremental analysis, one can conclude 
that the pre-buckling deformations do not differ too much from the linear solution. In 
these circumstances, one could expect a better agreement between the buckling mode 
corresponding to the first eigenvector (Figure 2) and the deformation form determined 
in the non-linear analysis (Figure 3). 



 
 
 

I. KREJA 
 
36 

Table 1. Buckling load for cylindrical panel with simply supported straight edges 
Critical load [kN] 

Model Mesh Linear 
buckling 

Incremental 
analysis 

8-node elements 
Jun & Hong [19] 8×10 – 143.2 

16-node elements  
Laschet & Jeusette [20] 

8×10 
12×18 

143.9 
140.3 

137.8 
– 

4-node elements 
Wagner [21] 

4×12 
4×16 
4×20 
4×40 
4×80 

145.6 
142.2 
140.8 
140.0 
139.6 

– 
– 
– 
– 
– 

4-node elements  
Brank & Carrera [22] 32×32 – 150 

QUAD4 MSC/Nastran 
20×20 
40×40 
80×80 

144.56 
141.56 
140.34 

144.35 
142.34 
140.38 

[18] Experiment 134 
 
   

  
Fig. 2. The first buckling mode, Pcrit = 140.34 kN Fig. 3. Deformation at Pmax t = 140.38 kN 

3.2. Cylindrical panel No. 2 – free straight edges 

A 16-layer composite cylindrical panel analysed in the second example is very 
similar to that considered above. The main difference lays in the boundary conditions 
at the straight edges AB and CD, which now remain free of any support. A buckling of 
such a panel made of graphite-epoxy composite AS4/3501-6 had been examined by 
Chaplin and Palazotto in [23]. The material parameters taken after [23] are: 
Ea = 135.8·106 kPa, Eb = 10.9·106 kPa, Gab = Gac = 6.4·106 kPa, Gbc = 3.2·106 kPa and 
νab = 0.276. A geometry of the panel is described by the following data: 
h = 16×0.127 = 2.032 mm, R = 304.8 mm, L = 508 mm and β = 1 rad. The assumed 
layer stacking sequence is [0/45/–45/90]2S. 

Two different meshes of finite elements have been used in the computations: 
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• model A – 24×40 QUAD4 elements, 
• model B – 48×80 QUAD4 elements. 
The equilibrium paths in the geometrically non-linear analysis traced with the arc-

length control technique are presented in Figure 4. 
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Fig. 4. Equilibrium paths for cylindrical panel No. 2 

It can be observed in Figure 4 that the graph obtained for model B is very close to that 
given in [23]. At the first glimpse, the difference between the graphs for models A and 
B seems to result from the variation of the mesh density in those two models. To 
verify those findings additional computations have been performed with the own au-
thor’s program for analysis of laminated shells SHL04 [24]. The results obtained with 
SHL04 for two discretizations: 12×20 and 24×40 8-node elements are almost identical 
with those of model A. Since on one hand the formulation incorporated in program 
SHL04 provides a very exact description of the geometry, and on the other hand all 
calculations in SHL04 are performed with a double precision, one can suppose that the 
different answer for model B can result from the jump between the fundamental and 
the post-bifurcation paths. To verify this deduction a linear buckling problem has been 
solved in MSC/NASTRAN for the cylindrical shell under consideration. The five low-
est eigenvalues calculated for models A and B are gathered in Table 2.  

Numbers presented in Table 2 show that in a case of a linear buckling analysis there 
are very little differences between the results for the models A and B. It is also quite 
characteristic that, on the contrary to the previous case of the panel No. 1, the lowest 
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eigenvalue computed for the panel No. 2 in the linear buckling analysis (24.4 kN)  
is significantly smaller than the critical load estimated in the incremental analysis 
(52.8 kN for model A and 36.5 kN for the model B). Looking again at the curves in 
Figure 4, one can observe that the distinction between the paths obtained for models A 
and B starts at the load level near the lowest eigenvalue determined in the linear buck-
ling analysis (24.4 kN). This observation seems to support the opinion that the graph 
for model B does not represent the (fundamental) equilibrium path for an ideal struc-
ture. 
 
Table 2. Linear buckling solution for panel No. 2 

 
 
 
 
 
 
 

Eigenvalues of the buckling load [kN] N Model A Model B 
1 24.4326 24.3988 
2 27.5549 27.4879 
3 28.4660 28.4560 
4 29.3149 29.3056 
5 36.9095 36.8081 
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P  = 24.4 kN1
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Fig. 5. Influence of imperfection in analysis of cylindrical panel No. 2 

To decisively verify this suggestion additional computations have been performed 
with the program SHL04, where, additionally, to the axial load a very small load im-
perfection has been introduced taken as a transverse force acting in the middle of the 
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panel and equal to 0.0001 fraction of the axial load. The curve representing the imper-
fection case (see Figure 5) almost accurately matches the curve corresponding to  
model B, which, in author’s opinion, entirely confirms the hypothesis that numerical 
round-off errors appearing in the large MSC/Nastran model B (inaccurate mapping of 
geometry and single precision computations) acted as a kind of imperfection which 
can direct a solution into the post-bifurcation path. However, on the other hand, it is 
important to remark that in a case that is as strongly sensitive to imperfections as the 
panel analysed, the results obtained for the ideal structure on no account should be 
used to determine the load capacity. 

3. Conclusions 

Capabilities of the MSC/NASTRAN system for Windows in the field of stability 
analysis of composite structures were critically tested. Two selected examples of 16-
layer composite cylindrical panels under axial compression were examined with var-
ied boundary conditions. The results obtained with MSC/NASTRAN for Windows were 
compared with the solutions available in the literature. The comparative study pre-
sented in the paper confirmed in full the power of the system to perform an advanced 
stability analysis of composite shells either as buckling analysis or as nonlinear incre-
mental calculations. Additionally, it was observed that boundary conditions along the 
longitudinal edges significantly affect the bifurcation sensitivity of the panel. It was 
also shown that some numerical round-off errors can cause that the solution obtained 
in the MSC/NASTRAN jumps from a primary equilibrium path to a post-bifurcation 
branch. 
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Analiza stateczności kompozytowych paneli cylindrycznych w MSC/NASTRAN 

Zanalizowano przydatność systemu MSC/NASTRAN for Windows w zakresie analizy sta-
teczności kompozytowych powłok cylindrycznych. Przedstawiono krótki przegląd literatury 
dotyczącej numerycznej analizy powłok warstwowych. Omówiono zasadnicze równania opi-
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sujące problem stateczności konstrukcji w zakresie uogólnionego zagadnienia własnego sta-
teczności początkowej oraz na drodze wyznaczenia pełnej ścieżki równowagi układu z zasto-
sowaniem podejścia przyrostowego. Zaprezentowano podstawowe informacje o systemie 
MSC/NASTRAN for Windows ze szczególnym uwzględnieniem elementu powłokowego 
QUAD4. Obliczenia przeprowadzono dla dwóch wybranych przykładów paneli cylindrycz-
nych poddanych równomiernemu ściskaniu w kierunku tworzącej, dokonując analizy zarówno 
stateczności początkowej, jak i problemu geometrycznie nieliniowego w procesie przyrosto-
wym. Podstawowa różnica między analizowanymi przykładami polegała na przyjęciu innych 
warunków podparcia na prostych krawędziach: w przypadku pierwszego badanego panelu 
przyjęto swobodne podparcie prostych brzegów, podczas gdy w drugiej rozpatrywanej po-
włoce proste krawędzie były swobodne. Dla obu rozważanych wariantów przyjęto, że zakrzy-
wione krawędzie są utwierdzone, z tym że jedna z nich ma możliwość sztywnej translacji na 
kierunku tworzącej. Otrzymane wyniki zestawiono z rozwiązaniami dostępnymi w literaturze 
oraz z rozwiązaniami uzyskanymi za pomocą własnego programu SHL04. Przeprowadzone 
badania porównawcze w pełni potwierdziły bogate możliwości systemu MSC/NASTRAN for 
Windows. Zaobserwowano ponadto, że zmiana warunków podparcia na wzdłużnych krawę-
dziach paneli ma decydujący wpływ na zmianę jej podatności na imperfekcje. Jak wykazano  
w drugim przykładzie, numeryczne niedokładności modelu MSC/Nastran w przypadku kon-
strukcji wrażliwej na imperfekcje mogą prowadzić do przeskoku rozwiązania na ścieżkę pobi-
furkacyjną. 
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The influence of cyclic loading on the bond 
between concrete and steel bars 
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Research on bond under cyclic loading is usually performed using specimens of a very short bond 
length. Results of such a research show very often that bond can be completely destroyed. According to 
that, most standards demand some extra anchorage length of steel bars. Different results were obtained by 
the author from experiments on long specimens under eccentric tension. If a concrete member is properly 
designed for the sake of limit states and fatigue, anchored length of a steel bar can be the same as for or-
dinary concrete members. 

Keywords: concrete, cyclic loading, bond, anchorage length, model, experiments  

1. Introduction 

There are two general types of cyclic loading: high-cyclic (fatigue) and low-cyclic 
(earthquake) loads. The aim of this paper was to show some problems of cyclic load-
ing, which is a load history containing many cycles, but at a rather low bond. In Polish 
Standards [1], fatigue of construction must be taken into account if a number of cycles 
is higher than 5·105 and such loading is greater than 60% of the whole loads. Crane 
beams, bridge members, offshore structures are often subjected to such cyclic load-
ings. High-cycle loading mainly influences serviceability limit states. Taking account 
of the bond slip, it is important to distinguish two cases of loading – repeated loading 
when a sign of loading remains constant and reversed loading in which the sign is 
changing. 

The bond refers to the phenomenon, which allows transferring load between the 
bar and the surrounding concrete. Until the strains in concrete and steel are of the 
same value, the bond is perfect and exists owing to adhesion. The secondary bond 
starts when a crack appears in a tension zone and there is a relative slip between  
a steel bar and the surrounding concrete. The main components of a bond are the bear-
ing pressure against the steel lugs and friction between a bar and concrete. The forces 
acting on a surrounding concrete can cause some irreversible changes. The main of 
them are those shown in Figure 1. At a relatively low level of loading (bond), a slip of 
a bar causes breaking of adhesion at the lug surfaces 1.When slip is getting greater, the 
same process takes place in concrete between lugs 2 and some microcracks appear in 
the top of a lug 3. When a slip is getting greater, some damages of concrete in com-
pression zone may appear 4, 5.   
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Fig. 1. Schematic view of the changes in concrete near a bar caused by bond forces 

2. Research on bond under cyclic loading – short review  

Generally, all researches on a bond under cyclic loading can be divided into two 
groups: 

1.  Slip-controlled tests, where graduated damage of bond can be seen as a decreas-
ing value of bond stress. 

2.  Load-controlled tests, where graduated increasing of slip leads to pulling out  
a bar from concrete. 

In the most experimental researches, specimens shown in Figure 2 were used.  
A steel bar was cast axially in a massive concrete cube. The bonded length was too 
small (lb ≤ 5db) to ensure the validity of an assumption of a constant value of bond 
stress. Such a small bond length causes that the bond phenomenon is not the same as 
in the real construction. If concrete cover is bigger than 3db, a bar is confined very 
well and it makes impossible to split a cover. The only mechanism of bond failure is 
pulling out a bar from concrete. In a real concrete member, this can happen very 
seldom. Besides, some interesting observation can be easily made and lots of 
parameters can be taken into account in those kinds of experiments. 

 

Fig. 2. A schematic view of a typical specimen for bond test 

Rehm and Eligehausen [2] were ones of the first, who tested the bond behaviour 
under cyclic loads using lots of specimens being pulled out (more than 308). They 
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used cylinder member where the basic bond length was equal to 3db and a concrete 
cover was greater than 4db. Only the bond failure due to shearing of concrete between 
ribs was possible. Two concrete mixtures and three bar diameters (but of almost the 
same related rib area fr ≈ 0.075) were used. During tests, a progressive increasing of 
slip measured at unloaded end was observed. Ultimate values of those slips (at failure) 
depended on a level of loading but in each case were greater than 0.5 mm. For loads 
causing the bond stress less than 0.65τb,max, even more than 106 cycles did not lead to 
bond failure. In all cases, the dependence between a slip and a logarithm of load cy-
cles was linear.  

The most interesting conclusion from their experiments is that the repeated load 
has a similar influence on bond slip and on pure concrete. This means that the fatigue 
characteristic of the concrete between lugs is one of the most important factors. They 
also suggest that if the upper load is smaller than about 50% of the ultimate load for 
bond failure under monotonic loading, no fatigue failure of bond can occur.    

As was said, the tests on concrete members with short embedded lengths (lb ≤ 5db) 
allow establishing the following relationships between a slip and a bond stress: 
τb = τb(∆), where ∆ (or s) is a slip of a steel bar. Many of the results of experiments on 
cyclic load have similar forms. It is interesting to answer the following questions: 

• Is it possible to describe a bond behaviour under cyclic loading using only 
τb = τb(∆) relationship for monotonic loads and additionally a damage parameter de-
pending on number of cycles? 

• How can be taken into account an influence of rib geometry? 
• Can τb = τb(∆) function, for monotonic loading, be used for establishing bond fail-

ure criterion for cyclic loads? 
Some interesting conclusions drawn for a slip behaviour under cyclic loading at the 

constant value of a load (bond) were presented by Balazs [3]. There were three phases 
in slip increasing. At first, an increment in a slip was decreasing, then its value was 
constant and when the total value of slip reached s1 (see Figure 3), each next incre-
ment was higher. This led to a complete pulling out a bar from concrete. That process 
took place, if the bond length was rather small, i.e. ≤ 5db, and the residual slip oc-
curred at a free end of a bar. 

If a bonded length was longer (lb = 18 db or lb = 24db), each slip at a free end oc-
curred and after some cycles the total value of the slip became constant [3]. We can 
say that for these embedded lengths there is no possibility to destroy a bond by pulling 
out a bar from concrete. Of course, this does not mean that at small values of concrete 
covers we can be sure that they are prevented from splitting. 

During slip-controlled tests, bond degradation is observed as a decreasing value of 
a force (bond stress). The deterioration of a bond stress strongly depends on a value of 
slip excursion [4]. If it is less than lug spacing, there is any possibility to completed 
bond failure. Residual value of a bond is strictly connected with frictional part of 
bond. It decreases during each cycle in an asymptotic way because of polishing con-
crete but its final value is higher than zero.   
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For cyclic loading, it is very important to distinguish bond resistance components 
and to describe the rules governing their behaviours under cycles of loading.  

        

BB) 

 

Fig. 3. Relationship τb = τb(∆) for monotonic and cyclic loadings 

That very short review of experimental and theoretical researches leads to the 
following conclusions: 

• All tests and theories deal with a problem of bond failure caused by pulling out  
a bar from concrete and forces are acting directly on that bar.  

• In some tests, cyclic loading causes bond failure, but there are also results show-
ing that after a lot of cycles a bond stress is greater than zero and a bar cannot be 
pulled out from concrete.   

• There is no test for checking the second mode of bond failure – splitting of con-
crete cover. 

• Boundary conditions of bond during tests are very far from these of a real con-
crete structure.  

3. Research program and theoretical results 

In our research, the specimens similar to that shown in Figure 4 were used [5, 6]. 
The length of each specimen was 700 mm. This allowed several cracks to appear as in 
a real structure. The main experimental parameters were steel bar diameter and con-
crete cover (concrete member diameter). Almost a half of specimen was covered with 
an elastooptical surface. This allowed us to see the changes in concrete strains on  
a whole surface and both appearance and development of cracks. 

The elastooptical surface allowed confirming the previous theoretical research on 
internal cracks. In Figure 5, such a crack which started from a steel bar and penetrates 
through a member and outside is seen.  

The materials used in the preparation of concrete were ordinary Portland cement, 
natural sand and graded gravel of 8 mm maximum size with a water to cement ratio of 
0.5. An average concrete cubic strength was in a range of 28–35 MPa after 28 days. An 
average tension splitting strength ranged from about 2.5 to 3.2 MPa and the modulus 
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of elasticity for a first monotonic loading was found to be approximately 31 GPa. One 
day after casting all specimens were stored in water for a week and later covered with 
water and laid in a box to avoid a shrinkage influence. 

 

Fig. 4. Schematic view of a specimen used in bond test 

 

Fig. 5. The view of cracks in a member – top crack is an internal crack and bottom is a primary crack [7] 

Strain gauges of a 15-mm base were glued to a priori mould bars one next to an-
other. Their number varied from 19 to 21 for different specimens. Data from those 
gauges allowed checking strains distribution in a bar with a quite good accuracy. In 
the next step, the changes of a bond stress could be established using the following 
formule: 
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Relationship (1) stands for a differential equation describing bond stress in function 
of steel stress changes. Since the distances between gauges were small, the above ap-
proximation is good enough. The value of τb,j concerns a cross-section between xi and 
xi+1. It is also possible to calculate τb(x) in a different way. Direct data from gauges can 
be approximated by a continuous function and then one can differentiates it. The re-
sults from both methods are very similar, but usage of Equation (1) is more 
comfortable. Some electric gauges were situated on a concrete to observe the changes 
in strains. Their location depended on a kind of phenomenon, which was tested. Some 
of the most interesting are as follows: 

• Additional strains in concrete caused by bond forces. Those tests needed gauges 
situated in several cross sections at different distances from a crack. In every of those 
places three or more gauges were glued at different distances from a steel bar axis. 
This allowed us to establish clearly the value of those additional strains in a function 
of τb(x), a distance x from a crack and distance y from a bar axis.  

• Direction of bond stress. In those tests the rosette gauges were used. They were 
glued as near to a steel bar as possible in three different cross sections. 

• Changes in concrete strains during arising and developing of cracks. Optical 
methods are very useful to look after the strain changes in a large surface. They visu-
alize the phenomenon but, on the other hand, the elastooptical surface changes the 
properties of a tension concrete. The strain gauges were glued in two rows parallel to  
a bar axis. 

• Changes of neutral axis. In that case, strain gauges were situated at the convex 
part of a specimen in three different cross-sections to check the influence of a distance 
from cracked cross-section. 

Most of experimental researches deal with a monotonic loading, but several of 
them allow us to show the influence of cyclic loading. There were two basic loading 
histories: 

• Cyclic loading between maximum and minimum levels of load. 
• Monotonic loading to a level very close to yielding of a steel bar and next partial 

unloading and cyclic loading. 
Researches were conducted with a strength machine where a slip of a bar was un-

der control.  

4. Theoretical backgrounds 

The changes in concrete surrounding a steel bar (Figure 1) describe a situation 
where a slip has a great value. Such damages and irreversible changes take place if  
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a slip value is of the same order as a distance between ribs of a bar. Polish steel 34 GS 
of db = 14 and 16 mm was used in research and axial distances equalled 7 mm and 10 
mm, respectively. This means that irreversible changes are possible if a slip is at least 
in the a range of 0.7–1.0 mm. Such a great value of a slip is often observed in test on 
specimens of a very small bond length. In a real concrete structure under service load 
it is impossible. The main slip occurs in a cracked cross-section and is limited by  
a half of a crack width. Even in the worst situation, it is smaller than 0.15 mm, if  
a member is properly designed. So we can assume that at service level of load, bond 
forces cannot cause significant damage like crushing concrete. Only some micro-
cracks can appear near tops of the lugs and discontinuity on tension part of lugs. The 
only exception takes place very close a crack. A significant strain concentration was 
observed there during research. Due to an elastooptical surface it was seen that the 
phenomenon is limited to a distance of about 2db only. Since a bond length is much 
longer, in practical aspect the damages in that area can be neglected. 

If we assume that irreversible changes in concrete are of minor importance, the 
bond phenomenon under cyclic loading can be described as follows. Let a bar of  
a length lb and a diameter db be fixed at one end and be loaded with a force F0. Its 
elongation ∆0(x) under the stress σ0 = 4F0 /(π db

2) is equal to: 

)()( 0
0 xl

E
x∆ b

s
−=

σ ,               (2) 

where x = 0 at loaded end. In a similar bar embedded in a concrete, a part of a force F0  
is transferred from a bar to the surrounding concrete which causes graduated 
decreasing of a steel stress. According to the theory presented earlier [4] it can be 
described by the following equation: 
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In that situation, a bar elongation will be less: 
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A relative difference between those elongations is equal to: 
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In Equation (5), g is a bond parameter (m–1). It depends on a value of σ0, but during 
cyclic loading the changes of steel stress in a cracked cross-section are small enough 
to assume that g is constant. This implies that in any point x = xi, the value of β is also 
constant. Particularly, this means that for any cycle a residual slip can be evaluated 
from Equation (6): 

).()()( 0 xx∆x∆ ii
r β=                (6) 

Residual slip causes development of residual strains in steel and concrete. Steel bar 
is under tension and concrete under compression. Residual strains in a bar can be cal-
culated from the following equation: 

[ ] [ ]{ })/2exp(1)(2)(1)0()()( 22
, b

s
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E
x
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=
=

∆
= ββσε .     (7) 

The actual value of a steel strain is a sum of residual strain and strain caused by the 
latest loading.  

The function (5) is increasing which means that remaining relative strain in steel 
has the smallest value of cracked cross-section and the biggest one at the end of bond 
length. In Figure 6, the distributions of two strains at different values of the parameter 
g are shown. A dotted line represents a smaller value. Since after unloading the bigger 
strains remain in the cross-section lying far from a crack, during the next loading cycle 
the strains in steel are getting more uniformly distributed along the bonded length 
which can be seen in Figure 7. Dotted line is represents the first cycle.  
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Fig. 6. Dependence of relative residual steel strain on the distance from a crack 
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Fig. 7. Strain distribution at the first loading and after a full cycle 

Theoretical model leads to some interesting conclusions: 
• Residual stress at cracked cross-section is equal to  and it de-

pends on the bond parameter g. The smaller the value of g, the smaller the value of re-
sidual stress in steel. This means that relatively higher values of residual stresses occur 
at smaller values of stress. In consequence, the value of steel stress in cracked cross-
section stabilizes practically very quickly after few cycles. 

)0(2
0 == xii

r βσσ

• Since larger increasing of steel stress occurs in cross-sections lying farer from  
a cracked section, the steel stress distribution is getting to be more uniform. This 
causes decreasing of a bond stress, particularly in the area next to a cracked cross-sec-
tion. The point of a bond peak value is moving away towards to an end of bond length. 

• During each cycle the slip of steel bar is growing at much higher rate than the 
steel stress in crack. Relatively large values of residual slip occur in the cross-section 
lying at a large distance from crack. Similar to the behaviour of steel stresses, rela-
tively high values of residual slips occur for smaller values of stress. 

From practical point of view, it is important to estimate the final values of steel 
stress and slip of a steel bar. As we assume that the bond parameter g is constant, the 
stresses in steel at cracked cross-section will create the following sequence: σ0, 
σ0+σ0 β2(0), σ0+σ0 β2(0)+ σ0 β 4(0), ... If a number of cycles tends to infinity, the steel 
stress can be calculated from the formule: 

( ) .01 2
0

0 β
σσ

−
=∞                (8) 
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In the same way, we can calculate the final values of slip and residual slip at the 
point x = x0. The crack width can be interpreted as a double value of total slip (actual 
and residual). Its ultimate value after cycle loading can be estimated as: 
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++
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The value of crack width calculated from (9) overestimated its real value for, as 
was mentioned earlier, during cycles the loading values of g and β decrease slightly. 
Formulas (5) to (9) are valid if cyclic loading takes place between steel stresses equal 
to σ= σ0 and σ= 0. If lower level of loading is greater than zero, the rule of 
superposition can be used. Residual slip at stress σ= σ1>0 can be calculated from 
Equations (5)–(7) substituting σs for ∆σs and using bond parameter g adequate for σ1. 

5. Some experimental results 

All the results obtained from tests on specimen described in chapter 2 were very 
similar independently of a bar diameter or a kind of steel. Even if a level of loading is 
relatively high, neither significant changes of steel strain distribution nor of bond after 
several cycles were observed. We can say that in a concrete member with typical rein-
forcement and bond length determined by crack spacing, any damages of bond did not 
occur.  
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Fig. 8. Typical strain distributions measured during test at high level of loading 
 
A typical steel strain distribution measured in an eccentric tension member is 

shown in Figure 8 (the values of strain in all figures are multiplied by 106). It is worth 
noticing that stress in steel in cracked cross-sections is much higher than at servicing 
level of loading and it is only slightly lower than yielding. Even so, an increase in steel 
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strain during cycles is very small. In Figure 9, the distributions of that strain in two 
cross-sections are shown. It is easy to see that an increase in strain is in both sections 
very small, but in a cracked cross-section (Figure 9b) it is significantly smaller than in 
the point in the middle of cracks (Figure 9a). The changes observed in width of crack 
confirm that an increase in steel strain during cycles is very small and does not 
influence bond dramatically (Figure 10a). Such results are in agreement with the 
theoretical model presented. They confirm all predicted trends in the behaviour of 
steel strain and bond stress under cyclic loading. In most cases, theoretical results are 
more conservative, i.e. they lead to a higher increase in crack width. 
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Fig. 9. Strain distribution near a local minimum (a) and maximum (b) 

Besides the main trends, it is worth perceiving some other interesting phenomena. 
In every cycle, curves of loading are similar, but they differ from the curves of 
unloading. During one full cycle the curve representing loading  is below an analogous 
curve representing following unloading. It is another evidence that the whole process 
is asymptotic. The same behaviour can be observed in respect to a width of crack 
(Figure 10b).  

In some tests, where a crack width in the first cycle was greater than 0.35 mm, 
some significant changes in bond stress distribution were observed. A typical example 
is shown in Figure 11. The curves represent the bond stress distribution near a crack 
(x ≈ 24.2 cm) for loading path (solid lines) and unloading (dotted lines) at two levels of 
loading. Theses pictures based on the strain measured can lead to some interesting 
conclusions: 

• In every case, the distribution of bond stress near a crack during loading is strictly 
convex, while during unloading has a concave part. 
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• At loading part of cycle, there is a clear point of maximum bond stress situated 
fairly near a cracked cross-section.  

• During unloading this peak value has almost the same value but it is situated 
rather far from the crack (peak moves away). 

• During unloading path a bond stress decreases in a region near a crack, but it in-
creases at farer distance from it, so total bond forces remain the same. 
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Fig. 10. Changes of crack width during cycles 
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Fig. 11. Bond stress distribution near a crack 
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Such an observation can be made only if a specimen is long enough for several 
cracks to appear. 

Such results seem to be strange if we compare them with the data well known from 
the literature. Most of them suggest that under cyclic loading there is a great increase 
both in steel strain and in width of crack. Especially this it refers to the first cycle. 
Those differences can be explained quite easily if we take into consideration the influ-
ence of a specimen kind on the results obtained. As was already mentioned, most tests 
were carried out on specimens of very short embedded length where a slip of a bar at 
its free end is measured. Sometimes, if a test is connected with the changes of a crack 
width, the specimens with artificial crack are used. That crack is made mechanically. 
Its width and depth are chosen arbitrarily. Such a procedure makes measurement eas-
ier since a position of a crack is known. On the other hand, such a crack in a real 
structure corresponds to a well-established level of loading. If a performed crack has a 
large depth or width, it may occur that it fits in with much higher level of loading than 
that used for cyclic loading. In such a case, there is a great difference in a specimen 
behaviour between the first and the second cycles. During the first cycle (loading) arti-
ficial crack does not influence much the steel strain in cracked cross-section and its 
neighbourhood. Unloading path differs, since only a part of a crack can be closed and 
that part corresponds to actual level of loading. The remaining width is much greater if 
a specimen was not cracked before testing. In consequence, a remaining strain in  
a steel bar is also higher. During the second cycle the strain in a bar is a sum of the re-
maining strain and the actual strain and is higher than an equivalent strain in a non-
precracked member. In the next cycle, a specimen exhibits the behaviour like a mem-
ber under certain loading but with an inadequate residual stress. 

 
Fig. 12. Typical curves representing steel strain during the test in which 

 a specimen was  loaded to higher level than during cyclic loading 
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The situation is even worse if a specimen is a concrete member with a very short 
embedded length. In that case, a front of a specimen is an ideal crack including the 
whole cross-section. The width of such a “crack” is unknown and a hypothetical 
loading responsible for that is also unknown. The remaining slip and steel strain after 
the first cycle cannot even be estimated theoretically. 

The hypothesis of a great influence of a specimen kind on the results of cyclic 
loading was verified. Some typical specimens were loaded to a certain level, then par-
tially unloaded and later that lower level of load was tested under cyclic loading. In 
Figure 12, the results of such testing are shown. That specimen was loaded to 18 kN 
and then tested under cyclic loading in a range of 0–10 kN. A “series 1” represents the 
first loading to 10 kN. Then the specimen was loaded to 18 kN, unloaded to zero and 
again loaded to 10 kN – “series 3”. There is a significant difference in steel strains 
between those cycles. As was said, it is caused by a residual stress connected with the 
load equal to 18 kN. In the next cycle that remaining stress does not change and fol-
lowing lines lie near each other (“series 3” and “series 5”). That phenomenon was ob-
served in all tests if a specimen was loaded to the value higher than a level of cyclic 
loading. This can explain similar results reported in literature, obtained from the 
members with artificial crack or a short length. 

6. Conclusions  

Several kinds of important concrete structures work under cyclic loading. They are 
designed using traditional methods based on the theory of linear stresses, which makes 
their safety margin very large, much larger than that in limit states methods. Addition-
ally, the standards require some extra anchorage length for bars in those structures. 
Such conservative recommendations are based on the results obtained from tests sug-
gesting that cyclic loading can easily lead to bond failure and very significant increase 
in width of cracks.  

The author’s theoretical and experimental research suggests that in a real structure 
cyclic loadings are not responsible for such dangerous phenomena. In correctly de-
signed concrete structure, typical development of length will be good enough. Bond 
deterioration is rather small which is connected with a relatively small decrease in 
maximum value of bond stress and its movement away from cracked cross-section. 
The highest changes in steel strain take place in a region of the middle between adja-
cent cracks and do not pose any danger for a member. They only cause a certain 
growth of crack width. A theoretical way of estimating that increment of width was 
presented. It is worth noticing that at higher levels of loading (greater crack width) an 
increase is smaller than at a small initial width. 

A way of testing has a great influence on experimental results. In some cases, the 
embedded part of a structure was so long as to guarantee the existence of a point 
where a slip was equal to zero. Results of those tests were similar to the ones 
presented above – there was not bond failure [8]. When the tests were carried out on 
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specimens with a very short bond length, the results were completely different. After 
some cycles a bond was broken. If a test was slip-controlled, a bond stress diminished 
to residual value. If a test was force-controlled, a bar was pulled out from a specimen.  

In really existing structures designed properly, according to standard recommenda-
tions, a bond failure cannot occur. Cyclic loading cannot pull out a bar from sur-
rounding concrete nor split a concrete cover. The only considerable effect is the in-
crease in a crack width, but it is not very drastic.  
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Wpływ obciążeń cyklicznych na przyczepność stali do betonu 

Badania wpływu historii obciążenia, podobnie jak i inne testy, przeprowadza się głównie na 
elementach, w których długość odcinka przyczepności jest bardzo mała. Jest to bardzo wy-
godne, jeżeli chodzi o prowadzenie badań, ale uzyskane rezultaty są mało wiarygodne. Gdy 
bada się wpływ obciążeń cyklicznych na przyczepność, wtedy dochodzi się do wniosku, że 
kolejne cykle tak osłabiają przyczepność, że w ostateczności ulega ona całkowitemu zniszcze-
niu.  

Własne badania prowadzono na długich elementach mimośrodowo rozciąganych i zgina-
nych. Ich wymiary gwarantowały powstawanie stanu zarysowania analogicznego do istnieją-
cego w rzeczywistych konstrukcjach. Usytuowanie odpowiednio frezowanej stali zbrojeniowej 
bezpośrednio przy powierzchni elementu umożliwiało bezpośredni pomiar zmian odkształceń 
w stali. Te pomiary stanowiły podstawę do analizy zjawiska przyczepności traktowanego jako 
mechanizm transferu siły ze stali do otaczającego betonu. 

Wyniki takich badań uprawniają do stwierdzenia, że konstrukcje poddane działaniu obcią-
żeń wielokrotnie zmiennych, zaprojektowane zgodnie z wymaganiami normy, nie są narażone 
na zniszczenie mechanizmów współpracy stali i betonu. Oznacza to w szczególności, że zby-
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teczne jest zalecane przez normę 50% zwiększanie długości zakotwienia prętów użytych  
w tych konstrukcjach. 

W pracy podano również uproszczony model teoretyczny pozwalający śledzić zmiany od-
kształceń w stali podczas obciążeń cyklicznych oraz obliczać zmiany szerokości rozwarcia rys. 
Wyniki teoretyczne są zgodne z rezultatami badań, ale sytuują się po stronie bezpiecznej. 

Wnioski płynące zarówno z badań, jak i rozważań teoretycznych mogą pomóc w racjonal-
nym projektowaniu konstrukcji żelbetowych poddanych działaniu obciążeń wielokrotnie 
zmiennych.  
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In this paper, the dynamic characteristics of a timber frame structure are given based on microtremor 
measurements. The microtremor was measured in two stages of construction. In the first stage, the col-
umns, the beams and the floors are constructed, and in the second stage the bearing walls are added to 
them. 

Moreover, a natural frequency obtained by this microtremor measurement was compared with the 
analytical solution obtained by using the rigid bar element with the springs for bending in both ends. 

Keywords:  full-scale timber frame structure, microtremor measurement, natural frequency, frame analysis 

1. Introduction 

In 1995, many timber structures in Japan were damaged by the Hanshin Great 
Earthquake, and the research on timber structures has been developed gradually. The 
frame structure has a high flexibility for the floor planning, and it is appropriate for 
Skeleton-Infill Housing. Therefore, realization of the timber frame structure is to be 
expected in near future. But, the jointing techniques with strong stiffness are required 
in order to resist horizontal force such as seismic force. 

We have proposed a jointing technique using round bars and drift pins. We also 
carried out the bending test on the beam–column joints and the column base joints. 
Then we verified the rotation rigidity and the bending strength [1, 2]. Furthermore, we 
conducted the tension test on the drift-pin-joint and the compressive grain test as ele-
mentary experiments for the moment resisting elements. Next, the moment resisting 
elements of the joint and spring elements were modelled, and the relation between the 
bending moment and the rotational angle of joints was calculated. Then we can grasp 
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the relationship between elementary experiments and bending experiments of joints 
[3]. 

In this paper, the results of the microtremor measurements for an actual building 
based on the timber frame structure are summarized. The microtremor was measured 
in two construction stages. In the first stage, the columns, the beams and the floors 
were constructed, and in the second stage, the bearing walls were added to them. 

2. Outline of the building by the timber frame structures 

The building to be measured is bi-directional timber frame structure with 4 m and  
6 m spans. The general views of this building are shown in Figure 1 and Figure 2, and 
the list of main structural materials is given in Table 1. Laminated Veneer Lumber 
(LVL) was used as a main structural material. The round bars and drift pins are used 
in the beam–column joints and in the column base joints shown in Figure 3. 
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Fig. 1. The framing plan and the skeleton of the building 
(dotted line: installation position of the bearing wall) 
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Fig. 2. View of the building (left: the framework stage, right: the framework-wall stage) 

Table 1. The list of main structural materials 

Structual 
part 

Material classification 
(wood classification: radiata 

pine) 

Mechanical grade classification 
(Japanese industrial standard) 

Cross section 
width×height 

(unit: mm) 

Sill LVL for structural 80E 105×105 

Column LVL for structural 110E 360×360 

Girder LVL for structural 110E 150×480 

Beam LVL for structural 110E 105×240 

Floor ply-
wood Plywood for structural – thickness: 28.0 

Exterior 
plywood Plywood for structural – thickness: 9.0 

 
 

Round Bar  ø35.0 

Drift Pin ø 16.0

Column

Beam 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The beam–column joint 
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3. Microtremor measurement 

3.1. Outline of the measurement  

The microtremor is measured in two construction stages. In the first stage, the col-
umns, the beams and the floors are constructed (henceforth, it is called the framework 
stage), and in the second stage, the bearing walls are added to them (henceforth, it is 
called the framework-wall stage). Moreover, the static experiment is conducted in 
each stage, the microtremor is measured before and after that static experiment. The 
stages are divided into the following four patterns: 

I.  The framework stage before the static experiment. 
II.  The framework stage after the static experiment. 

III.  The framework-wall stage before the static experiment. 
IV.  The framework-wall stage after the static experiment. 
The microtremors are measured on one side of the building. And they are measured 

in the directions of 4-m spans and 6-m spans. The microtremors are measured by ser-
vomotor accelerometer of Tokyo Sokuhin Co., Ltd. The vibration data is recorded for 
60 seconds. The accelerometers are set on the foundation level, the second floor level, 
and the top level of the building. 

3.2. The results of the microtremor measurement 

A natural frequency of the building structure is obtained by using spectrum analy-
sis. The vibration data is shown in Figure 4 as an example, and Figure 5 shows each 
Fourier spectrum in the framework stage before the static experiment, in the 4-m span 
direction. The natural frequencies for all the stages are listed in Table 2. 
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Fig. 4. An example of the vibration data 
(above: the top level, below the second floor level) 
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Fig. 5. The Fourier spectrum (left: the second floor level, right: the top level) 

Table 2. The natural frequencies (in Hz) 
 Framework stage Framework-wall stage 

Static experiment Before After Before After 
4-m span direction 5.91 5.30 7.47 6.91 
6-m span direction 5.86 5.86 6.08 5.83 

 
The difference in the Fourier spectrum before and after static experiments in the 

framework stage for 4-m span direction is approximately 10%. On the other hand, this 
difference for 6-m span direction is negligibly small because of non-loading direction 
in the static experiment. 

4. Numerical analysis of the natural frequencies 

As the rotational rigidity of the joints is very small compared to the flexural rigidity 
of the column and the beam in a timber frame structure, the dynamic behaviour of the 
timber structure is almost exclusively determined by the rotational rigidity of the 
joints. Therefore, the natural frequency of two-storey framed structure is represented 
by the rigid bar model. 

4.1. Derivation of a natural frequency using the rigid bar model 

The two-storey and one-span model is considered (see Figure 6). 
If the horizontal force of the top level P acts on the two-storey and one-span model, 

the horizontal displacement δ is calculated by the slope-deflection method, following 
Equations (1) and (2): 

•  the horizontal displacement of the second-floor level, 

2
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1
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•  the horizontal displacement of the top level 
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in which H means the height of the storey, I1, I2 are the geometrical moments of inertia 
of the sections, E1, E2 are the values of Young’s modulus of the members and k1, k2 
stand for the spring constant of the joints. 

 

Fig. 6. The two-storey and one-span model 

If the rigid bar model (the flexural rigidity ) is applied to Equations (1) 
and (2), the horizontal displacement is computed by the following equations: 

EI →∞

•  the horizontal displacement of the second-floor level δ1 
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•  the horizontal displacement of the top level δ2, 
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2E I
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=
+ 2 .                                                                                                (3b) 

The storey rigidities k1 and k2 from these equations are expressed by the following 
equation:  

1 2
1 2 2

2
w

k kK K K
H
+

= = + ,            (4) 

where Kw  means the rigidity added by the bearing wall. 

If the natural frequency is computed based on the two-degree-of-freedom system 
model and taking into account the storey rigidity obtained from Equation (4), it is 
given by the following equation: 

( )( )2 22
1 2 1 2 1 2

2
1 2

2 21
2 2

wk k H K m m m m
f

H m mπ

+ + + − +
=

4
.         (5) 

In the case without bearing wall, Kw is omitted. 

4.2. Comparison of model results with the results of microtremor measurements 

In the numerical analysis of the natural frequencies, the rotation rigidities of the 
beam–column joint and the column base joint are approximately 6000 kNm/rad. and 
12500 kNm/rad., respectively. And the wall rigidity Kw obtained in static experiment 
carried out on the bearing wall whose tangential rigidity at the origin of the envelope 
is adopted is 3.93 kN/mm. The natural frequencies and experimental ones obtained by 
the microtremor measurement are given in Table 3. 

Table 3. Comparison of the analytical and experimental results (in Hz) 
Framework stage Framework-wall stage Static experiment Before After Before After 

Analysis 5.48 6.38 4-m span 
direction Microtremor 5.91 5.30 7.47 6.91 

Analysis 5.48 5.48 6-m span 
direction Microtremor 5.86 5.86 6.08 5.83 
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In the framework stage, there is a close correspondence between the natural fre-
quencies obtained by the analysis of the rigid bar model and by the microtremor 
measurements. However, in the framework-wall stage for the 4-m span direction, the 
caluculated natural frequency is approximately by 10% lower compared to measure-
ments. It is considered that the rigidity of the bearing wall is underestimated. 

5. Conclusions 

In this paper, we presented the results of the microtremor measurement of the tim-
ber frame structure and the natural frequencies were verified by their comparison with 
the analytical frequencies obtained based on the rigid bar model. 

The natural frequencies of the timber frame structure expressed by the microtremor 
measurement ranged from 5.30 to 5.91 Hz in the framework stage and from 6.91 to 
7.47 Hz in the framework-wall stage in the 4-m span direction. And the natural fre-
quency was reduced by approximately 10% after the static experiment. 

The natural frequency was computed based on the rigid bar model and then com-
pared with the microtremor measurements. In the framework stage there was a close 
correspondence between the computed and measured results. In the frame-wall stage 
in 4-m span direction, the natural frequency was approximately by 10% lower com-
pared with the measurements. It is considered that the rigidity of the bearing wall is 
underestimated. 
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Badania dynamicznej charakterystyki drewnianej 
konstrukcji ramowej poddanej mikrowstrząsom 

 Przedstawiono wyniki pomiarów przemieszczeń i częstotliwości drgań spowodowanych 
mikrowstrząsami podczas wznoszenia drewnianej konstrukcji nośnej budynku. Wielkości te 
były mierzone w dwóch etapach realizacyjnych: w pierwszym po wykonaniu szkieletu kon-
strukcji składającego się ze słupów, belek i stropów oraz drugim po dodaniu do tego szkieletu 
ścian nośnych usztywniających. Ponadto w każdym z tych etapów przeprowadzono doświad-
czenia statyczne polegające na badaniach wytrzymałościowych złączy, przy czym przemiesz-
czenia i częstotliwości drgań mierzono przed i po tych doświadczeniach statycznych. Przepro-
wadzono cztery następujące rodzaje badań dynamicznych:  
 I : badanie dynamiczne szkieletu przed badaniami statycznymi, 
 II: badanie dynamiczne szkieletu po badaniach statycznych, 
 III: badania dynamiczne konstrukcji szkieletu + ściana przed badaniami statycznymi, 
 IV: badania dynamiczne konstrukcji szkieletu + ściana po badaniach statycznych. 
 Częstotliwość drgań mierzono na poziomie posadowienia, stropu nad parterem i na pozio-
mie stropu nad drugim piętrem. Częstotliwość drgań własnych otrzymano stosując analizę 
spektralną. W pracy podano wartości częstotliwości drgań własnych zmienionych podczas 
podanych wyżej rodzajów badań oraz wartości tych częstotliwości uzyskane w wyniku analizy 
numerycznej dwupiętrowej jednonawowej konstrukcji ramowej przy wykorzystaniu modelu 
sztywnego pręta. Uzyskano stosunkowo dobrą zgodność wyników badań otrzymanych dzięki 
zastosowaniu tych metod dla przypadku etapu szkieletu konstrukcji, w przypadku zaś kon-
strukcji szkieletu ze ścianą usztywniającą częstotliwość drgań własnych otrzymana w wyniku 
analizy jest około 10% niższa niż uzyskana w pomiarach. 
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Strain and stress patterns in the normal cross-sections of  
bended gypsum elements  

S. KLIN 
Agricultural University of Wrocław , Pl. Grunwaldzki 24, 50-363 Wrocław 

The study presents the results of examining the distribution of strains and stresses in the normal cross-
sections of bended gypsum beams, dry prepared, made of building gypsum pastes at water-to-gypsum 
(W/G) ratios equal to 0.5, 0.6, 0.8, 1.0 and 1.5. The strain was measured by the strain gauge method, 
whereas deflections of the beams were measured with displacement sensors. Strain distributions were 
found to be almost linear at the effort level of σgt /fgt = 0.9, which is according to the Bernoulli 
distribution. The limit values for strains in the cracking zone were determined from the formula 

. Various patterns of internal forces, i.e. stresses in the bended normal cross-

sections, were analyzed. The following calculation schemes were assumed: a triangular one in the 
compression zone and rectangular one in the cracking zone. The pattern developed on the basis of original 
test results conforms to the Murashev theory formulated for concrete cross-sections.   The formula for the 
representative tensile strength of bended gypsum elements was proposed as 

50888.0 1024.46 −⋅= gcgtb fε

gtbgtbgt fff 574.05.0 ==′′ δ , 

where fgtb is the standard strength, as for elastic materials. The elastic/plastic bending index for gypsum 
cross-sections was proposed as W gegegep WW 7496.15.0/ == δ , where: W , as for elastic 

materials. The formula for bending capacity  of gypsum cross-sections was suggested in the form of 
. 

6/2bhge =

gtgepn fWM ′′=

Keywords: gypsum, bending strength, strain, limit load capacity 

1. Introduction  

Gypsum is one of the commonly used building materials characterized by many 
outstanding features. Currently, gypsum products – wide range of dry mortars and pre-
fabricated gypsum plaster boards – dominate in the inside building finishing operations. 

In the past decades, after the World War II, in the time of the cement deficiency 
due to a considerable destruction of the building industry, structural walls of many 
dwelling houses were made of gypsum pastes, mortars and concrete by casting and 
shuttering method with hollow masonry units [3, 16] or planks [15] made of gypsum. 
The “Pras-Gips” process was used for erection of large-size partition walls [18]. For 
the analysis of designs and processes used for building the gypsum houses see the 
reference studies [9, 17]. 

In the period of 1985–1997, in Poland some new structural systems were dev-
eloped and officially implemented in dwelling building industry. In such systems, 
concrete or reinforced concrete skeletons were located in vertical channels formed in 
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load-bearing walls by arrangement of special hollow masonry units made of gypsum. 
For design solutions, in chronological order, see [20, 29, 13, 24, 25, 2]. The concrete 
load bearing structures were not exposed to possible creeping in the case of accidental 
damping of the gypsum hollow blocks. Therefore, the problem of possible loss of 
strength of gypsum units used in such hybrid structures became less important. 

Nevertheless in the building industry, the strength of gypsum remained still 
important. The buildings with structural walls made of gypsum erected in past decades 
[16, 9] (among others 110 dwelling houses in Łódź, in Bałuty and Rokita Nova 
districts, 26 two-storey houses made of gypsum planks in Zgorzelec, houses built in 
the vicinity of Busk, including those erected in the period of 1922–1939 and still 
lived-in, buildings erected and occupied in Wrocław, Warsaw, near Pińczów and 
Rawa Mazowiecka) require continuous inspection and maintenance. Currently, due to 
complete lack of prescriptive regulations concerning the methods of calculation or 
assessment of load capacity of gypsum walls, we are in the state of technical and legal 
paralysis. There are no possibilities of determining statics and strength of these 
buildings, usually necessery for repair purposes, for structural survey, for evaluation 
of safety or for determination of the procedures needed in the case of emergency, e.g. 
extinguishing house fire with water. Our current standards established for brickworks  
[21, 22] cannot be applied to structures made of gypsum.  

This issue refer to gypsum houses not only in Poland, but also in other European 
countries [16], in particular to the former Soviet Union area, where gypsum was used 
in building [3, 31]. 

Currently, in the conditions of wide application of the gypsum plaster board in 
finishing work, there are no standards of calculation of safety factors to be considered 
in the case of underslung floors, built-in lofts and execution of ceilings. The mono-
graph by Hanusch [5] provides the methods for calculation of strength of vertical 
partitions in multilayer walls with gypsum plaster board shielding based on very 
simplified theory of elasticity adopted for such multi-layer elements.  

The considerations presented in the study are aimed at providing a scientific basis 
for future defining the strength and safety standards required for the application of 
gypsum elements in well-founded cases. The tests and analyzes refer to the elements 
in dry conditions. In the conditions of moisture, creeping of gypsum under permanent 
and variable loads plays the decisive role. Determination of strength limits for such 
cases is a separate scientific problem, which should be solved to enable qualitative and 
quantitative assessment of the actions to be taken  in cases of accidental moistening or 
flooding a part of a building.  Contributory studies of other authors  [6, 27, 28] have 
not clarified these issues. 

2. Examination methods 

The examinations were carried out using the building-grade gypsum β-CaSO4· 
0.5H2O made of natural raw materials by its calcination in rotary kilns, currently 
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available in the market, marked with the laboratory code numbers 2-02 and 2-03. For 
mineral composition of the gypsum see the Table. 

Table. Mineral composition of the building grade gypsum 
Percentage [%] Components Gypsum No. 2-02 Gypsum No. 2-03 

Gypsum hemihydrate (CaSO4·0.5H2O) 
Anhydrite III (CaSO4) 
Stabilized anhydrite II (CaSO4) 
Anhydrite II (CaSO4) 
Gypsum dihydrate (CaSO4·2H2O) 
Inactive substances 
Moisture 

80.87 
0.00 
2.80 
0.31 
4.67 
10.46 
1.20 

82.43 
0.00 
1.78 
0.26 
4.26 
10.74 
0.71 

The tests were carried out with the beams 4 cm × 4 cm × 16 cm and similar beams  
6 cm × 10 cm × 50 cm made of gypsum pastes at water-to-gypsum (W/G) ratios from 
0.4 to 1.5. Deformation in the bended cross-sections was measured with extensometer 
sensors  (Figure 1), and deflection was measured at the same time with displacement 
sensors. 

 

Fig. 1. a) Arrangement of loads and extensometer sensors on the bended dry beams made of building 
gypsum; b) the strain values ε in the cross-section of the beam made of gypsum paste at W/G = 0.6:  

σgtb – bending stress in the beam, fgtb – total yield stress  (fracture), Ac – compression zone,  
At – tension zone 
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3. Examination of strain and stress patterns in the normal  
cross-sections of the gypsum beams bended 

The examples of strain and stress patterns in the normal cross-sections of the 
beams made of pastes at W/G ranging from 0.5 to 1.5 and the load levels of σgtb / fgtb   
equal to 0.3, 0.6 and 0.9 are given in Figure 2. 
 

 
Fig. 2. Distribution of strain values ε in the normal cross-sections of bended dry beams made of building 

gypsum: σgtb – normal stress in the bended beam (1), fgtb – bending strength, W/G – water-to-gypsum ratio 
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Tensile stress in bended samples was calculated according to the following stan-
dard formula: 

.6
2bh

M
gtb =σ                       (1) 

Each series of beams manufactured at the same W/G ratio underwent a pilot test, in 
which their strength fgtb for brittle fracture was determined. The beams were examined 
with bonded wire strain gauges. The deformation ε at three load levels, i.e. at σgtb / fgtb  
equal to 0.3, 0.6 and 0.9, was measured.  

Results of the examination shown in Figure 2 suggest that in the whole load range 
(σgtb / fgtb is from 0.3 to 0.9) the validity of the Bernoulli distribution may be assumed: 
flat cross-sections prior and after the strain. However, the bottom tension fibers have 
the tendency to deform to a greater extent (partial plasticizing). In the whole range of 
consecutively increasing loads, the neutral axis of the cross-section was maintained, at 
the technical accuracy, in the geometric center of the beam cross-section. The ratio of 
the deformation area in the compression zone Ac to the area of the tension zone At 
expressed as 

t

c
c A

A
=ρ                                                                                                           (2) 

varies within the range from 0.877 to 0.945. Therefore, as the rule, the tensile area 
prevailed over the compression area in the upper zone. In the whole series of the 
examinations at W/G = 0.5, 0.6, 0.8, 1.0, 1.5, the results of measurements are 
qualitatively similar.  

Figure 3 presents the  σ–ε diagrams for the outermost fibers in the bend tests.  In 
Figure 3a, there are collected the σ–ε  diagrams for the outermost fibers compressed, 

Figure 3b shows the σ–ε  diagrams for the outermost fibers tensioned, for the 6 × 10 
× 50 cm beams and for the 4 × 4 × 16 cm beams made of gypsum paste at W/G 
ranging from 0.5 to 1.5. The outermost points form an envelope of the ultimate tension 
values  , which – in the actual conditions of the tests – varied within the range of: 

+
gb

−
gb

−
gtbε

max  for the 6 cm × 10 cm × 50 cm beams, 410)6.55.4( −− ⋅−== gtugtb εε

max  for the  4 cm × 4 cm × 16 cm beams. 410)7.60.5( −− ⋅−== gtugtb εε
For the bended plates made of dental gypsum obtained at W/G ranging from 0.6 to 

1.0 Denkiewicz [1] obtained similar  values that varied from  to 

. 

−
gtbε 4105.5 −⋅

4100.6 −⋅
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Based on statistical analysis, there was determined an ultimate value of deforma-
tion ability for the tension zone of the bended beams made of building gypsum 
pastes within a wide range of W/G ratios and for compression strength f

−
gtbε

gc. At the 
correlation factor of  R2 = 0.9892 it is as follows: 

,1024.46max 50888.0 −− ⋅== gcgtugtb fεε                                                           (3) 

where  is the extreme deformation of the outermost tension “fibres” in 
the bended element, f

gtugtb εε =−max

gc stands for the compression strength of the pastes. 

 
Fig. 3. Function diagrams εσ −  for the outermost fibers of bended dry beams made of building gypsum: 

a) and c) curves of  for the outermost compressed fibers, b) and d) curves of  for the outermost 

tension fibers, W/G – water-to-gypsum ratio 

+
gbε −

gbε
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Figure 4a presents experimental strength functions of the building gypsum 2-03, 
namely  the compression strength fgc = f(ω) and the bending strength fgtb = f(ω). Figure 
4a shows a considerable reserve of load capacity in the compression zone compared to 
rather poor strength of the tension zone. In Figure 4b, the values of that 
increase together with increasing f

gtugtb εε =−
max,

gtb and are correlated with fgc, strength values, are 
shown as the function. Figure 4 presents also elastic constants of gypsum determined 
for the outermost fibers according to the following formulas: 

• elastic constant in the compression zone 

,+
+

∆
∆

=
gb

gbE
ε
σ                       (4) 

• elastic constant in the tension zone 

.−
−

∆
∆

=
gb

gbE
ε
σ                       (5) 

The constants  and  increase monotonically as the function of diminishing 
ratios W/G, quite similar to compression strength values f

+
gbE −

gbE

gc = f(ω). That is why the 
correlation )( gcgb ffE =  may be determined in the way similar to the standard 
procedure used in theory of concrete (Godycki [4], Kamiński [7, 8]). 

 
Fig. 4. Dependence of strength of dry cured pastes made of building gypsum 2-03 upon the ratios W/G:  

fgb – bending strength, fgc – compressive strength (a); diagrams of the deformations ε and  
elastic constants E for cured gypsum pastes at various ratios W/G (b): – deformability module 

 for the outermost compression fibers, – deformability module for the outermost tension fibers, 

– ultimate deformation values for the bottom fibers of the bended beams  

+
gbE

−
gbE

gtugb εε =−
max,
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4. Distribution of internal forces and bending capacity of 
gypsum beams cross-sections 

Figure 5 shows analytical distribution of internal forces in the bended gypsum 
elements. The linear distribution of internal forces shown as  in Figure 5 enables 
determination of the tensile stress of the bending gtbσ  and the ultimate strength values  
fgtb for the outermost fibers at the experimentally determined breaking moment Mn. In 
diagram , which illustrates standard relation (1), the breaking moment Mn is 
equalized by the moment of internal forces M1 according to the following relation: 

gtbn fbhMM 2
1 1667.0== .                   (6) 

 
Fig. 5. Diagram of distribution of internal forces in the bended dry gypsum beam  obtained at W/G = 0.6 

However, the tensile strength at bending fgtb determined from relation (6) is 
considerably higher than tensile strength of gypsum determined in the tests of the axial 
tension fgt or in the tests of splitting of cylinder samples gtf ′ . The results of my own 
experiments suggest that – according to the analysis of data as in Figure 6 – the 
proportion of gtf ′  to the tensile strength at bending fgtb (calculated from formula (1)) in 
the following form: 
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)(1 gc
gtb

gt ff
f
f

=
′

=α                     (7) 

may be approximated to a linear form, α1 = f ( fgc), as follows: 

.01.062.01 gcf−=α                     (8) 

 
Fig. 6. Graphical data for approximation of the function  α1 = f 'gt /fgtb = f ( fgc) for dry building gypsum 
(original test results) and of the function α2 = fgt /fgtb = f ( fgc) for the gypsum “Molda Normal” (based  

on the results obtained by  Wianecki [30]) 
 

From the analysis of the results shown in Figure 6 we can conclude that the value 
of α1 for gypsum pastes having the compression strength fgc < 12.0 MPa (equivalent to 
W/G > 0.6 for the building gypsum binder GB-N1) amounts to: 

α1 > 0.5      for  fgc < 12.0 MPa,      W/G > 0.6.              (9) 

Based on the results of Wianecki [30], the relation α2 = fgt /fgtb = f ( fgc) for the 
French gypsum “Molda Normal” may be expressed by (Figure 5): 

.0035.062.02 gc
gc

gt f
f
f

−==α                 (10) 

The values of α2 vary between 0.6 and 0.53 in a wide range of compression strength, 
namely for fgc between 2 and 22 MPa. 

If we assume that the outermost fibers may carry tensile stress equal to 
gtbgt f5.0=σ , we can conclude that the internal force pattern seems like the diagram 

 in Figure 5, provided that we also assume a full plasticization of the tensile zone 
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according to the classic theory of Muraszew. This theory was developed for the 
elements with cement binders based on the analysis of bending capacity, according 
both to the contemporary standards of the Council for Mutual Economic Aid (RWPG, 
Ryżyński [20]) and the new EU standards (Kamiński et al. [7, 8]). The value of the 
internal force M2 calculated for such a scheme is smaller than actual breaking moment: 

.8746.0:

1458.0

2

,
2

2

=

<=

n

ngtb

MM

MfbhM
                (11) 

The diagram  in Figure 5 illustrates the pattern of internal forces calculated 
analytically in the bended gypsum beam. The pattern agrees with the following 
experimental facts found objectively: 

1. The neutral axis is located in the middle of height of the beam (according to the 
results of examinations as in Figure 2). 

2. The breaking moment of the internal forces M3 equals to the value of the 
moment Mn found experimentally. 

The conditions assumed for the force pattern as in the diagram  in Figure 5 
suggest the possibility of determining the representative calculated tensile strength of 
cured gypsum bended  (as dry) in the following form: gtf ′′

,5747.05.0 gtbgtbgt fff ==′′ δ                 (12) 

where the correction coefficient δ increases the stresses both in the compression and in 
the tensile zones to meet the condition of M3 = Mn; the coefficient δ = M2 /M1 = 
1.14338. 

The cracking moment Mr, equal to the moment Mn, which breaks the dry bended 
beam made of not-reinforced gypsum may be calculated from the formula: 

,gtgepnr fWMM ′′==                   (13) 

where Wgep stands for the elastoplastic bending strength factor. 
The Wgep values were calculated in the following analyzes: 
• condition of strength: 

;65.05.0 2bh
MWfWfWM n

gepgtbgepgtgepn ⋅=⋅=′′≤ δδ            (14) 

• after division of the both sides by Mn one obtains: 

,15.01
ge

gep W
W ⋅≤ δ                   (15) 
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where Wge is an “elastic” bending strength factor equal to: 

;
6

2bhWge =                     (16) 

• after transformation of formula (15), the searched value of the elastic/plastic 
bending strength factor Wf may be obtained in the following form: 

.7496.1
5.0 gege
ge

gep WW
W

W === β
δ

               (17) 

After substitution of Equation (17) for Equation (16), one can obtain the searched 
formula for the Wgep factor, namely: 

.2916.0
6

7496.1 2
2

bhbhWgep ==                (18) 

The relation derived based on original results of bending tests carried out with dry 
gypsum beams proved to be identical with that used in the standard of concrete 
structures [23] for calculation of cross-sections of bended plain concrete beams. 

Finally, after substitution of (18) for (14), one can obtain the following formula for 
the load capacity of the bended cross-sections of dry gypsum elements: 

.2916.0 2
gtgtgepn fbhfWM ′′=′′=                 (19) 

After making use of the results of our own strength determination studies [12], fgtb = 
f(G/W), according to the following formula: 

,533.1 77.1ω′=gtbf                    (20) 

the calculated value of tension strength at bending may be determined by the relation: 

77.1. 88.0533.15747.05747.0 ωω ′=′⋅==′′ 771
gtbgt ff [MPa],         (21) 

where WG /=′ω  stands for a dimensionless parameter. 
In this way, load capacity of bended dry beams, made of building gypsum at the 

determined parameter G/W may be obtained by: 

3
77.1

22 1088.02916.02916.0 ⋅⎟
⎠
⎞

⎜
⎝
⎛⋅=′′=
W
GbhfbhM gtn      
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3
77.1

2 10256.0 ⋅⎟
⎠
⎞

⎜
⎝
⎛=
W
Gbh [kNm],               (22) 

where:  
b, h – width and height of the gypsum beam cross-section [m],  
0.88 – numerical parameter of Equation  (22) [MPa], 
103 – conversion factor, MPa = 103 kN/m2. 

5. Summary and conclusions 

Load distribution in normal cross-sections of bended dry gypsum elements is 
almost linear; however, the deformations on the tension side  exceed those of the 

outermost compressed fibers , which is in accordance with . 
This results from a natural tendency of the tensile fibers to plasticize, which is 
equivalent to plastic flow. In such approximation, one can assume the validity of the 
Bernoulli distribution: flat cross-sections prior and after loading. The ultimate 
deformability of the outermost tensile fibers in the tensile zone, determined in the 
form of relation (3), has a considerable heuristic value and gives information about 
ultimate deformation ability of dry gypsum. 

−
gtε

+
gcε +− ÷= gcgt εε 06.114.1

An important result of the study is determination of the moduli of elasticity for 
outermost fibers of the bended gypsum elements: in the compression zone   and 

in the tension zone  (Figure 4b). 

+
gtbE

−
gtbE

The analyzes of internal force distribution in the cross-sections of the bended 
gypsum beams proved that reliable calculation results follow the diagram  Figure 5, 
i.e. there occurs full plasticization of the tensile zone. Identical scheme was found by  
Muraszew [19, 26] for the bended concrete cross-sections. The representative tensile 
strength of bended gypsum  (relation (12)), and elastic/plastic  bending strength 
factor W

gtf ′′

f (relations (17) and (18)) are the original findings on these phenomena in 
gypsum cross-sections. 

The general relations (19) and (22), which describe the load capacity of bended 
elements in normal cross-sections as a function of dimensions of the cross-section and 
of the W/G ratio, are of a considerable heuristic and practical value in the case of 
interpolation of test results for gypsum construction models. 
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Rozkład odkształceń i naprężeń w przekrojach  
normalnych zginanych elementów gipsowych 

Przedstawiono wyniki badań rozkładu odkształceń i naprężeń w przekrojach normalnych 
zginanych belek gipsowych w stanie suchym. Belki te wykonano z zaczynów gipsu budow-
lanego o W/G = 0,5; 0,6; 0,8; 1,0 i 1,5. Odkształcenia zmierzono metodą tensooporową, a ugię-
cia belek – za pomocą czujników przemieszczeń. Stwierdzono prawie liniowe rozkłady od-
kształceń zgodnie z zasadą Bernouliego dla poziomu wytężeń aż do σgt/fgt = 0,9. Określono 
graniczne wartości odkształceń w strefie rozciąganej w postaci zależności 

. Dokonano analizy różnych schematów rozkładu sił wewnętrznych, 
czyli naprężeń w zginanych przekrojach normalnych. Przyjęto obliczeniowy schemat: trójkątny 
w strefie ściskanej i prostokątny w strefie rozciąganej. Ustalony na podstawie badań własnych 
rozkład jest zgodny z teorią Muraszewa opracowaną dla przekrojów betonowych. Określono 
reprezentatywną wytrzymałość gipsu na rozciąganie przy zginaniu 

=gtbε − 50888,0 −

fff 574,05,0 =

1024,46 ⋅gcf

gtbgtbgt =′′ δ , 
gdzie fgtb oznacza wytrzymałość normatywną jak dla materiałów sprężystych. Ustalono spręży-
sto-plastyczny wskaźnik wytrzymałości na zginanie dla przekrojów gipsowych w postaci 
związku gegegep WWW 7496.15,0/ == δ , gdzie:  jak dla materiałów sprężystych. 
Ustalono zależność określającą nośność przekrojów gipsowych na zginanie w postaci 

. 

6/bhWge =
2

fWM ′′= gtgepn
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Optimization of composite structure shape with  
boundary element method approach 

PIOTR KONDERLA 
Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław 

Composite structures consisting of thin reinforced laminas, modelled as orthotropic bodies, are con-
sidered. The problem of the optimal shape is examined within the scope of sensitivity and optimization 
theories, particular consideration being given to shape sensitivity and optimal shape design. The boundary 
element method (BEM) approach has been formulated and implemented in the computer code, which al-
lows the problem to be solved numerically. The design of the optimal shape for the specimen which was 
used to test the composite material under biaxial stress conditions is presented as a numerical example.   

Keywords: optimization, sensitivity, composite material, boundary element method, orthotropic body 

1. Introduction 

Flat composite structures, laminates consisting of thin reinforced laminas, are con-
sidered. Each of the laminas is modelled as an orthotropic body, and one of the princi-
pal directions is parallel to the reinforcement of the laminas. In the laminate, any indi-
vidual laminas of identical orthotropic properties are mutually rotated in such a way 
that the laminate as a homogeneous body is an orthotropic body. 

In the paper, the optimal shape problem is examined within the scope of sensitivity 
and optimization theories, particular consideration being given to the shape sensitivity 
and optimal shape design. This is one of the most difficult problems dealt with in op-
timization theories. Analytical solutions can be obtained only for some simple prob-
lems, and that is why use is commonly made of numerical methods such as FEM, 
FDM and BEM. In the case of shape sensitivity analysis, the boundary element 
method becomes an especially favourable numerical technique owing to the properties 
of the discrete models. The parameters of the discrete model are located on the bound-
ary of the domain, and any change in the location of the boundary during the optimi-
zation process is noticed by these parameters in a natural way. Each change in the lo-
cation of the boundary entails modification of the discrete model. In the past few 
years, the optimizations of construction shape as well as relevant sensitivity analysis 
have been the subject of numerous scientific researches [1, 2]. The results of those in-
vestigations were used for the needs of the study reported on in this paper.  

The objective of the study was to investigate the BEM algorithm. The BEM ap-
proach was formulated and implemented in the computer code, which allows the 
problem to be solved numerically. The optimal shape design for the specimen which 
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was used to test the composite material under biaxial stress conditions is presented as 
a numerical example [3].   

2. Physical model of the composite material 

The composite material specimen (Figure 1) is the subject of optimization. It is 
used for investigating the biaxial state of stress. The specimen consists of identical 
thin laminas connected and uniaxially reinforced. Two laminas are assumed to lie in 
the centre of the specimen ΩI and 8 laminas in the other area ΩII. The laminas in the 
laminate are arranged alternately according to the direction of reinforcement [00, 900] 
with reference to the direction x1. 

 
Fig. 1. Static scheme of composite material specimen 

It has been assumed that the physical model of a single lamina is an orthotropic 
elastic-ideally plastic material in a plane state of stress. For each lamina, a local coor-
dinate system {  compatible with the principal directions of orthotropy is de-
fined and standard descriptions of the fields of stress and strain in the vector form are 
adopted:  
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where two of the first coordinates of the stress vector indicate normal stresses in the 
directions , respectively, and the third coordinate is shear stress. The strain 
vector is defined by the linear Cauchy equations (1). 

21 ˆ  and ˆ xx

The material is a Hooke’s body in the range of elastic deformations, and the 
constitutive equations for the nth lamina in the local coordinate system take the form:  

,ˆˆˆ
ˆ
ˆ
ˆ

ˆ00
0ˆˆ
0ˆˆ

ˆ
ˆ
ˆ

)()()(

)(

6

2

1

)(

66

2221

1211
)(

6

2

1
nnn

nnn

Q
QQ
QQ

εσ Q=⇒
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

ε
ε
ε

σ
σ
σ

      (2) 

where 

,ˆ,ˆˆˆˆ,
1

ˆ,
1

ˆ
1266112122122112

2112

2
22

2112

1
11 GQQQQQEQEQ ====

−
=

−
= νν

νννν
           (3) 

and  121221 ,,, GEE ν  are material constants of the material of the lamina. 
We assume the global coordinate system , and  stand for the 

stress and strain vectors of the n
},{ 21 xx )()(   and nn εσ

th lamina in this system. The transformation equations 
for expressing stresses in an global coordinate system in terms of stresses in  
a  local coordinate system take the form [9]  
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}ˆ,ˆ{ 11 xx

,ˆ )(
)(

)( n
n

n σσ T=  (4) 

where 

.
sincoscossincossin
cossin2cossin
cossin2sincos

22

22

22

)(
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−

−
=

θθθθθθ
θθθθ
θθθθ

nT  (5) 

The angle θ is the angle from the global x1-axis to the local -axis of the n1x̂ th 
lamina in anticlockwise direction. 

By virtue of similarly, the strain transformation equations are  

)(
)(

)(ˆ nT
n

n εε T= .     (6) 

Making use of expressions (4) and (6) the constitutive Equations (2) for the nth 
lamina in the global coordinate system can be written as 
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 If  and  are stress and strain vectors of the laminate, then for the connected 
laminas we can write 

σ ε

Nnn ,...,2,1for        )( == εε  (9) 

and 
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where N is the number of laminas in the laminate, and 
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Because of the symmetrical arrangement of the laminas in the laminates, the matrix 
Q is also symmetrical and the laminate after homogenization is an orthotropic body, in 
which the axes  are the principal axes of orthotropy. 21  and xx

It is assumed that the failure of each lamina follows the Tennyson failure criterion 
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[4]. The function of this yield criterion at the stress space is 
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The values of the elasticity coefficients and those of the tensor coefficients in 
Equation (12) for the 3M SP288-T300 GRE composite material have been obtained by 
Tennyson [4] (see Table 1 and Table 2). It is assumed that the failure of the laminate 
will occur if the state of stress in one of the laminas reaches the failure surface (the 
first ply failure criterion). 

 
Table 1. The elasticity coefficients for the 3M SP288-T300 GRE composite material 

E1   [GPa] E2   [GPa] G12   [GPa] ν12
141.34 9.650 4.095 0.26 

 
Table 2. The failure criterion coefficients for the 3M SP288-T300 GRE composite material 

A1  [MPa–1] A2  [MPa–1] A6  [MPa–1] A11  [MPa–2] A22  [MPa–2] A66  [MPa–2] 
–3.602e–4 1.503e–2 0.0 8.921e–7 8.280e–5 1.088e–4 
A12  [MPa–2] A112  [MPa–3] A122  [MPa–3] A166  [MPa–3] A266  [MPa–3] 
–4.697e–6 –8.842e–10 –1.550e–8 –1.272e–8 –3.130e–7 

 
For further analysis we defined the relative effort measure (REM) of a laminate. 

The algorithm for determining this measure is as follows: 
•  we perform statical analysis to obtain the state of strain for a laminate ε, and with 

Equation (9) we have  ,,...,2,1for        )( Nnn == εε

•  we calculate the strain and stress in individual laminas, ,  
using Equations (6) and (2), 

),...,2,1( ˆ,ˆ )()( Nnnn =σε

•  incorporating the term   into Equation (12), we obtain )(
)( ˆ n

n σζ

.,...,2,1for      1)(1
2

)(2
3

)(3 NnBBB nnn ==++ ζζζ                                                            (13) 

The REM ζy (n) is the value of the minimal positive root of Equation (13). This 
measure is a multiplier of the stress vector such that the point  in the stress 
space lies on the yield surface of one of the laminas. 

)(
)( ˆ n

ny σζ

3. Formulation of the optimization problem  

For the composite samples under study, the optimization problem can be formu-
lated as follows: we have to calculate the dimensions of the specimen in such a way 
that the difference in the effort measure between the domain ΩI and the domain ΩII 
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takes a maximal value. In that case, the probability of specimen failure in the domain 
ΩII will be minimal. 

We assumed the objective function in the form of the following stress criterion: 

,max
)II(

0
)I( yyΨ ζζ −=  (14) 

where  denotes the REM at the central point of the specimen and  stands for 
the maximal REM in the domain Ω

0
)I(yζ

max
)II(yζ

II (arm zones). 
 The relative dimensions of the specimen are assumed as design parameters 

( ) ,,),(, 21

T
TT

c
a

c
rarbb ⎟

⎠
⎞

⎜
⎝
⎛=≡=b  (15) 

where the dimensions r, a and c are shown in Figure 1. 
At the same time we assume that the loads of the specimen satisfy the following 

relations: 
q1 = const., 
β = 〉〈∈ 1,0/ 12 qq . 

4. BEM algorithm for static analysis of the construction 

Consider a weightless orthotropic body  occupying a plane  domain   
bounded by the boundary  (Figure 2). On the boundary Γ

III ΩΩΩ ∪=
,4321 ΓΓΓΓΓ ∪∪∪= 1, 

homogeneous kinematic boundary conditions in the direction normal to the boundary 
are applied; on the boundary Γ4, the loads depicted in Figure 1 are applied; the 
boundary Γ3 is free, and the boundary Γ1 separates the subdomains. 

 
Fig. 2. Discrete model of the domains 
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where τ is a time parameter, and thus for 0=τ  we have .xx =τ  
The velocity of change of the configuration is given by 

,),(),(
τ

τ
τ

τ

∂
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==
xTxxv

d
dτ  (22) 

hence 

).,(),( ττττ xvxxx +=                                                                                        (23) 

Since the dead load is lacking, the state of stress in the domain Ωτ at the time 0=τ  
depends exclusively on the functions on the boundary Γτ (displacements and load trac-
tions). In this case, the objective function Ψ  determined by Equation (14) may be 
written in the form of a functional: 

∫=
τΓ

τττ dΓΨ .)(xg                                                                                                       (24) 

The functions in Equation (21) need to be written with reference to the initial con-
figuration (for the time 0=τ ). If we assume the following notation:   

♦ n(x) denotes the normal vector on the boundary Γ, 
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T   is  the transformation matrix, 
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x
vD  stands for  the transformation velocity matrix, 

then Equation (24) can be written in the form [8]: 

∫ −+=
Γ

dΓΨ nJJxvx Tg ))(( ττ , (25) 

where   ...   is euclidean norm and  ( )TT 1−− ≡ JJ . 
If the velocity v(x) is normal to Γ, the material derivative of the functional (25) for 
0=τ  is given by 
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                     (26) ,)])())(Hg()g(()(g[∫ +∇+′=
Γ

TT dΓnxvxnxx

where: 
H is a curvature of the boundary line, 

)()(')( xvxx Tggg ∇+=&  is a material derivative of  the function g(x), 

⎥⎦
⎤

⎢⎣
⎡ −

≡
→ τ

τ )()(lim)('
0

xxx ggg
τ

 is a partial derivative of  the function g(x). 

The material derivative Ψ ' can be identified with the design sensitivity of the con-
struction if the following conditions are fulfilled:  

a) the function ),( τxT  in Equation (14) must be a linear function of τ for Γ∈x , 
which means that the trajectory of each point x on the boundary is a segment and that 
velocity v(x) is independent of τ,   

b) the boundary line ),( ττ xTx =  should correspond with the change of the design 
variable, i.e. τδ =ib . 

If the above conditions are fulfilled, then 

.''
i

i b
ΨΨΨ

∂
∂

=≡  (27) 

1. Numerical realization of the optimization problem 

Making use of the algorithm described in Section 5, we developed our own pro-
gram which enabled static analysis and optimization of linear elastic composite con-
structions in the plane state of stress. With this program we optimized the construction 
shown in Figure 1. The discrete BEM model is depicted in Figure 2. Calculations were 
carried out with two-nodal elements. 

The optimal parameters were determined by iteration, using the algorithm de-
scribed in Section 5. In the parameter, space b0 was adopted as the starting point. In 
the iteration process, further points in the parameter space were determined by the 
gradient of the objective function (2), first of all the rates of the design variables were 
assumed according to the expression 

,
i

i b
Ψb

∂
∂

= αδ  (28) 

where α is an arbitrary constant.  
The path of the sequence of the design parameters obtained by the optimization 

procedure is shown in Figure 3. For the purpose of control, the functional Ψ at selected 
grid points of the parameter space was determined and the isolines of Ψ were shown 
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(as in paper [3]). 
The calculations were done by means of the author’s computer program.  

 

 

Fig. 3. Isolines of the functional Ψ in the space of design parameters 

2. Conclusions 

In the paper, the algorithm of the boundary element method for shape optimization 
has been formulated. The subject to be optimized is an ortotropic body, which consists 
of identical thin laminas working in the plane stress state. There is a failure criterion  
for each lamina as a function of the limit surface in the stress space. The first ply fail-
ure criterion has been assumed. 

The design variables of the defined optimization problem are the geometric pa-
rameters of the body shape. The change of the shape in the course of the optimization 
process is defined by the transformation expression (21) in the form of a motion equa-
tion on the assumption that velocity is constant and the velocity vector is perpendicu-
lar to the body boundary. The design sensitivity of the objective function is described 
by Equation (26). It should be noted that the first component of the integrand is a de-
rivative of the function g related to the design variables, the remaining components 
being directly dependent on the displacement of the boundary. 

The example under analysis confirms the efficiency of the BEM algorithm pre-



 
 
 

P. KONDERLA 
 
94 

sented. The results obtained in the study reported on in this paper are consistent with 
those attained in our previous research [3]. It is an indirect proof of the correctness of 
the algorithm formulated. 
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Optymalizacja kształtu kompozytowej konstrukcji  
w ujęciu metody elementów brzegowych 

Przedmiotem analizy była kompozytowa konstrukcja złożona z cienkich warstewek zbrojo-
nych włóknami węglowymi. Badano problem optymalnego kształtowania konstrukcji kompo-
zytowej w ujęciu teorii wrażliwości i optymalizacji. Opracowano algorytm numerycznego 
rozwiązania zadania z wykorzystaniem metody elementów brzegowych. Jako przykład zasto-
sowania tego algorytmu wyznaczono optymalny kształt próbki materiału kompozytowego 
przeznaczonej do dwuosiowych badań wytrzymałościowych. Obliczenia numeryczne wyko-
nano, korzystając z autorskiego programu komputerowego.  
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