
INFORMATYKA EKONOMICZNA BUSINESS INFORMATICS 3(33) . 2014
ISSN 1507-3858

Jugoslav Achkoski
Military Academy “General Mihailo Apostlski” – Skopje, Macedonia
e-mail: jugoslav.ackoski@ugd.edu.mk

Vladimir Trajkovik
Ss. Cyril and Methodius University, Skopje, Macedonia
e-mail: vladimir.trajkovik@finki.ukim.mk

DISTRIBUTED SYSTEM RELIABILITY
IN INTELLIGENCE INFORMATION SYSTEM1

Summary: This paper presents the model of Intelligence Information System (IIS) based on
a Service-Oriented Architecture. In this paper we propose the new service’s model, based on
the Intelligence cycle and other systems which are necessary for gathering intelligence
information and data. The paper is mostly focused on the system architecture and services
design as a mainstream for definition of the services. Furthermore, additional attention is
dedicated on the Distributed System Reliability (DSR).

Keywords: Service-Oriented Architecture, service design, Distributed System Reliability
(DSR), Intelligence Information System, system’s architecture.

DOI: 10.15611/ie.2014.3.01

1. Introduction

Intelligence Information System Model gives contribution in Homeland Security
and Civil Military Emerging Risks assessment through the possibility of providing
information in an appropriate way, by implementing pushing and pulling mechanisms
into information systems, selection of data and creation of information from raw data
that can be used in creating intelligence products and dissemination reports for the
authorities.

In the phase of system development, it is crucial to determine appropriate
methodology which should meet different requirements. In this paper we are mostly
focused on describing architecture of the system, service design and Distributed
System Reliability. These three points can be used as pillars for SOA based system
development.

1 Selected parts of this article were published under nonexclusive copyright in Position papers of
the Federated Conference on Computer Science and Information Systems FedCSIS 2014 (see [Achkoski,
Trajkovik 2014]).

10 Jugoslav Achkoski, Vladimir Trajkovik

We take into consideration architecture of the system, because it will give clear
picture on collaboration between system’s entities, applications, programming
interfaces, connection to external systems etc., in each phase of system development.
Each of these components influences successful implementation and integration of
the system. In the Intelligence Information System, which is based on SOA, there are
applications written in different programming languages. The service design should
provide interoperability between applications. It indicates that services written in
different programming languages are capable to communicate. In this connotation,
processing elements (Web servers, application’s servers, sensors for collecting data
and so on) can create distributed environment for sharing information. SOA based
multi-tier approach provides legacy systems to be hooked up in a new infrastructure
where new systems and legacy systems can communicate without complexity in
communication protocol (SOAP messages).

In the phase of creating distributed systems it is crucial to have metrics for
Distributed System Reliability. It provides appropriate distribution of the system’s
components, because introduced algorithm for Distributed System Reliability shows
where the gaps in the systems are. Also, the designers of systems can achieve higher
level of system reliability using the Distributed System Reliability metric. In the
distributed system, each node can present service and each service can present
system, sub-system or processing element. Consequently, each service in the
architecture has certain value of reliability. These values of reliability are very
important for system designers.

The paper is organized as follows. Section 2 presents related work about the
research presented in the paper. Section 3 is dedicated to the architecture of the
system. In Section 3 are presented different levels of the system architecture and how
they are connected. Section 4 presents service design where it is mostly focused on
service interface. Section 5 demonstrates the algorithm for computing Distributed
System Reliability and we implement GEAR as an algorithm for the system
reliability. Finally, in the Section 6, concluding remarks of the paper are presented.

2. Related work

In [Gebhart, Abeck 2011], the quality attributes of loose coupling and autonomy for
services in the context of Service-Oriented Architecture are given. In order for
services to be influenced by these quality attributes, an evaluation should be done
during the phase of development of service design. According to M. Gebhart and
S. Abeck [2011], the recent research is focused on the textual description of the
desired quality attributes and the thereby resulting formalized metrics require more
information than those already available, or are based on theoretical models that
hamper their applicability. In this paper, we present quality indicators for unique
categorization, loose coupling, discoverability and autonomy. Formalized metrics is
created for each quality indicator, in order to measure service candidates and service

Distributed System Reliability in Intelligence Information System 11

design in the Service oriented architecture Modeling Language (SoaML) [OMG
2009], the standardized language for modeling service-oriented architecture. To
illustrate the metrics and to verify their validity, service candidates and service
designs of a campus guide system as developed at the Karlsruhe Institute of
Technology, are evaluated.

In [Dai et al. 2003], a study of service reliability and availability for distributed
systems is presented. The study gives an application example in order to explain
usefulness of the GEAR algorithm. Furthermore, in the paper is presented research
about reliability of modeled centralized heterogeneous distributed system (CHDS).
Also, in the paper is studied implementation of availability function of virtual
machine.

3. Architecture of Intelligence Information System

General architecture of Intelligence Information System prototype is presented in
Figure 1. As a result of system complexity, the solution is presented as a layer model
of architecture.

On the lowest level, IIS prototype has distributed system which consists of
heterogeneous databases. In this case, most important database for IIS is database
which holds data for users who use it. Intelligence center has responsibility for this
database.

Access to a separate database will be made with application logic of module,
which is a part of internal information systems on government institution. This
application should provide interfaces to the integration logic level [Achkoski et al.
2011; Achkoski, Trajkovik 2011].

Integration level is a key level for our IIS model. That level should provide
services through workflow which will be connected with modules of internal
information systems and their transformation into Web services. As a result of
provided Web services, integration level should exposed them into appropriate Web
services registers depending of security level. This level also administers security
polices and polices for exchanging and adopting messages from different sources, in
case of usage in comparable format. Finally, this level is taking care for governance
of the services offered by IIS in a way of transactions when it is needed. In one
sentence: this level is providing the functionality of the services in IIS.

The services should be available for different categories of users. For the purposes
of protecting Intelligence Information System, firewall should be installed behind
this level, which is followed by the level of presentational logic.

The presentation level can be implemented in a form of portal which can offer:
list of Web services over approach to service registries, integration of Web services
with e-mails or directly as far procedure call of the applications (RPC) in a standard
format (XML), but also as an ordinary HTML text for separated union of services –
users.

12 Jugoslav Achkoski, Vladimir Trajkovik

Figure 1. Prototype of Intelligence Information System Architecture

Source: own elaboration.

Exchanging information with external information systems is achievable through
communication network, where IIS model is protected with another additional
firewall. In this way, maximum protection from unexpected system failures is
accomplished [Achkoski et al. 2011; Achkoski, Trajkovik 2011].

4. The concept of service engineering

In the process of service design it is possible to implement services in an existing
platform or in a new one which will be created as a state-of-the-art solution with
straightforward purpose. This distinction is important, because our model allows
Web service to be implemented in both of these cases. Engineering the services in
such a way allows for easy building of novel modules within information systems
architecture and additionally, allows for taking a pace with a contemporary ICT
technology.

We propose coupling as a way for measuring service design. In the Intelligence
Information System achieved desired level of coupling allows for the integration of

Distributed System Reliability in Intelligence Information System 13

subsystems and sensors as service providers with minimum number of connections
between services. For example, if a new sensor is added to the system, the
communication that should be established between sensor and application server or
other processing elements in the system does not imply that every server should
establish communication with the new sensor.

In terms of service granularity (scope of functionality exposed by the services),
it is the most convenient to create coarse-grained interfaces that implement
a complete business process.

The coarse-grained interface should provide access to the data from different
software artifacts and processing elements in the system depending of the user
requirements [Papazoglou, Heuvel 2006]. It indicates that in the IIS sensors and
other hardware components, which should be connected, have to exchange
information in order to provide information for the senior decision makers or other
end users.

These components are based on different programming languages (C++, JAVA,
C and so on) and if the service’s interface is not implemented in the applications,
they could not exchange their data types (see Figure 2).

Figure 2. Exchanging data between applications written in different program languages

Source: own elaboration.

For instance, if application is written in JAVA and interface for this application is
created in JAVA, then application written in C++ could not use this JAVA interface,
because data types (string, integer, float and so on) in JAVA and C++ are not treated

14 Jugoslav Achkoski, Vladimir Trajkovik

in the same way. In our approach, the service’s interface is based on XML, because
applications written in different languages can exchange their data using WSDL
(Web Service Definition Language). WSDL provides interoperability between
applications.

Also, the standalone client application has to have functionality to call Web
services. This functionality is provided by the directories called UDDI. UDDI stands
for Universal Description, Discovery, Integration. This is a registry, where new
businesses create a WS that can be exploited from the terminals or different machines
that can actually query this directory and they can use the WS. First of all, the Web
service should be published with WSDL and after that it can be exploited.

We can stress that each Web service has a public interface, WSDL (Web Services
Description Language), and through simple mechanism called UDDI which is the
directory for services, where machines can access to the published and registered
WS with WSDL and interested parties can locate its public interface via UDDI.

Furthermore, the SOAP (Simple Object Access Protocol) which is a xml based
protocol, provides interface for applications to exchange information via http:// ().

The detailed Web service process follows the scheme in Figure 3.
Discovery – Search UDDI site(s) for the proper Web service.
Description – A description of the selected Web service is returned to the client

application as a Web Services Description Language (WSDL) file.
Proxy creation – A local proxy to the remote service is created. The proxy converts

an object’s means of method invocation into an XML message, and vice versa.

Figure 3. Web service process

Source: own elaboration.

Distributed System Reliability in Intelligence Information System 15

Soap Message Creation – a Soap/XML message is created and sent to the URL
specified in the WSDL file.

Listener – A Soap listener at the host site receives the call and interprets it for the
Web Service.

The Web service performs its function, and returns the result back to the client,
via the listener and the proxy.

The Service-oriented architecture Modeling Language (SoaML) specification
defines UML profile and meta-model for designing services within service-oriented
architecture. Goals of SoaML refer to support activities at the stage of modeling and
designing services and invoke them in model-driven development approach (MDA).
It should support SOA in business and IT perspectives [Elvesæter et al. 2011; Gebhart
et al. 2010].

SoaML specification defines three different types of approaches to specifying
services:
 • The simple interface based approach uses an UML interface to specify a one-

way service interaction [Elvesæter et al. 2011; Gebhart et al. 2010].
 • The service contract based approach extends an UML collaboration to specify

a binary or n-ary service interaction [Elvesæter et al. 2011; Gebhart et al. 2010].
 • The service interface based approach extends a UML class to specify a binary or

n-ary service interaction [Elvesæter et al. 2011; Gebhart et al. 2010].
Different SoaML approaches recommend usage of divided UML parts which

mean that reading SoaML specification is not understandable. Because of the reasons

-End2
*

-End1
*

-E
nd

3
*

simple interfaces

service interfaces service contracts

The Service oriented architecture Modeling
Language (SoaML)

Figure 4. The Service-oriented architecture Modeling Language (SoaML)

Source: own elaboration.

16 Jugoslav Achkoski, Vladimir Trajkovik

previously mentioned, problems in designing information systems emerge in
software engineering [Elvesæter et al. 2011].

A service contract based approach defines service specifications that define
functions of service stakeholders (consumer and provider) and interface that
implements these functions. Interfaces are types of ports in service-oriented
architecture that requires each stakeholder to accomplish its task in the appropriate
service contract [Elvesæter et al. 2011].

The service contract based approach increases the UML collaboration in the
model that present structured part of services’ interactions. It can be used for
specifying services that include contractual obligation, i.e. an agreement between
two or more parties, which is relevant for circumstances of already established
interaction patterns between the participants. These interaction patterns are used for
exchanging messages and specifying interfaces between participants [Elvesæter et
al. 2011].

In order to demonstrate service contract based approach we are using services
that make part of Intelligence Information System. Services should contribute to
defining a binary service contract, a multi-party service contract and a compound
service contract that contributes to explaining service contract based approach. First,
we suppose that Direction service contract can be modeled as two independent

Figure 5. Specification of the Direction service choreography (behavior)

Source: own elaboration.

Distributed System Reliability in Intelligence Information System 17

service contracts. One of them should specify an interaction for placing directions
and another one should specify an interaction for taking directions in the process of
intelligence information collection.

In this example service contract presents packing of two interfaces, providing
that two interfaces are part of one service specification. Furthermore, it is re-
commended that a behavior on service contract is specified, i.e. a service choreography
or a service protocol. Actually, there is a disagreement on whether a specification of
service choreography should be used for understanding design of service interface in
order to support exchanging message. SoaML is agnostic with regard to behavioral
modeling and basically states that any UML behavior, e.g. interaction models,
activity models or state machines, can be used [Elvesæter et al. 2011].

Figure5 shows specification of service choreography using an UML interaction.
It is easy to notice that there is specified conversation between two stakeholders that
exchange messages with each other. In order to achieve this conversation, it is
necessary that two interfaces are implemented on both sides.

The service contract based approach is convenient for specifying interaction
between two or more roles that are introduced for establishing an agreement such as,
for example, a message exchange. Service contract can be also applied as a reusable
specification element, which can be re-used during the design time for connecting
different stakeholders. In addition, this approach supports modeling of multiparty
service contracts including three or more participants, as well as modeling of
compound service contracts where the existing service contract can be used for
defining several granular service contracts [Elvesæter et al. 2011].

5. The Distributed System Reliability
 of the Intelligence Information System

The purpose of the GEAR algorithm is to compute accuracy of distributed computer
system, which actually is composed of memory units, processing elements, and other
hardware and software. Probability of application or service to be accurate executed
in distributed system is called availability of the distributed system.

In one distributed system, the nodes can present memory units, processing
elements and programs (see Figure 6). The nodes can exchange data through
communication network in order to execute a program from separate nodes. Failures
of the communication links or failures of the services in the distributed computer
system decrease the level of system performance and availability of the system. The
level of success of one program in one node in distributed computer system depends
on availability (successful program execution) of all other nodes, which indicates
that the node has to be accessible from all other programs required for the appropriate
program execution and also, communication links should be available without
failures.

18 Jugoslav Achkoski, Vladimir Trajkovik

To compute DSR for IIS, we select GEAR which is dedicated for computing
reliability of links in computer networks. We introduce the following assumptions:
 • RV maintains the information about links in the computer network [Dai et al.

2003];
 • if link is operational, it has value 1 and if not, it has value 0 (faulty) in reliability

expression;
 • the “d” presents link when we do not know whether link is operational or faulty

and it is not in reliability expression;
 • LV has information about the edges that are traversed in the subnetwork [Dai

et al. 2003];
 • each service presents self-contained processing element, and we can assume that

they are self-contained node;
 • the structure of IIS is modeled as a graph and the graph does not have any loops

[Dai et al. 2003; Achkoski, Trajkovik 2011].
In Figure 7 there is presented the graph topology of a distributed system, which

is based on scheme from Figure 6.

Figure 6. The dataflow in the Intelligence Information System – based on SOA

Source: own elaboration.

Distributed System Reliability in Intelligence Information System 19

Figure 7. The graph of the Intelligence Information System – based on SOA

Source: own elaboration.

Table 1. Relations between an edge, a service name and vertices

A Node A service name A link Node vectors
1 End-user x1 1-2
2 Direction x2 2-3
3 Collection x3 3-4
4 Analyzing x4 4-5
5 Dissemination x5 5-2
6 HUMINT x6 3-6
7 OSINT x7 3-7
8 ELINT x8 3-8
9 SIGINT x9 3-9
10 MASINT x10 3-10
11 External System x11 3-11
12 External System x12 3-12
13 External System x13 3-13
14 Dissemination x14 5-1

Source: own elaboration.

To compute the reliability of computer distributed system, the GEAR algorithm
requires both vectors RV and LV to be updated in each iteration at every node. To be
computed these two vectors in the GEAR are implemented simple rules without
complexity.

1 2

3

5

4

6 7 8 9 10

11

12

13

x2

x5

x1

x8 x9 x10

x13

x4

x3

x7x6
x12

x11

x14

20 Jugoslav Achkoski, Vladimir Trajkovik

Figure 8. A complete tree for evaluating DSR in IIS

Source: own elaboration.

1

RV dddddddddddddd
LV 1000000000000

RV ddddddddddddd1
LV 1000100000000

1-5
RV 1dddddddddddd0
LV 1100000000000

1-2

 x14 x1

RV dddd1dddddddd1
LV 1100100000000

5-2
RV ddd10dddddddd1
LV 1001100000000

5-4 2-5 2-3

 x5 x4 x2 x5

RV 1ddd1dddddddd0
LV 1100100000000

RV 11dd0dddddddd0
LV 1110000000000

RV d1dd1dddddddd1
LV 1110100000000

2-3

 x2

A

5-4

 x4

RV 1dd11dddddddd0
LV 1101100000000

B

x9

 x
10

A

RV d1dd1dddddd101
LV 1110100000010

3-12
RV d1dd1ddddd1001
LV 1110100000100

3-11
RV d1dd1dddd10001
LV 1110100001000

3-10
RV d1dd1ddd100001
LV 1110100010000

3-9
RV d1dd1dd1000001
LV 1110100100000

3-8
RV d1dd1d10000001
LV 1110101000000

3-7

RV d1dd1ddddddd11
LV 1110100000001

3-13 RV d1dd1100000001
LV 1110110000000

3-6

 x11 x12 x8 x7

x6

x6

x13

x1
3

x9

 x
10

RV 11dd0dddddd100
LV 1110000000010

3-12
RV 11dd0ddddd1000
LV 1110000000100

3-11
RV 11dd0dddd10000
LV 1110000001000

3-10
RV 11dd0dd100000
LV 1110000100000

3-9
RV 11dd0dd1000000
LV 1110000100000

3-8
RV 11dd0d10000000
LV 1110001000000

3-7

RV 11dd0ddddddd10
LV 1110000000001

3-13 RV 11dd0100000000
LV 1110010000000

3-6

 x11 x12 x8 x7

x6

x6

x13

x1
3

B

Distributed System Reliability in Intelligence Information System 21

To update value of the Reliability Vector we have to follow the two rules [Kumar,
Agrawal 1993; Dai et al. 2003]:

1. The RV updates value about the new edge which is obtained from the value of
parent node and value of vertices where link is traversed from its parent edge.

2. The edges which are on the left side of the first updated edge (previous
statement), will be updated with value of the edge, which is on their left side with
value 0 about the vertices and value 1 about edges, which is traversed from its parent
edge.

The purpose of the LV is to avoid loops in the algorithm, which means that one
node is not traversed more than once [Kumar, Agrawal 1993; Dai et al. 2003].
Updating of this vector is simple, which means that every node has value from the
parent node in the tree and its value represented with 1. Other nodes have value 0,
and they are not connected with the parent node and the vertices of the updated node.

In order to show where in the tree GEAR algorithm stops, we set up bold
rectangles (Figure 8). The tree shows that the vertices in the graph from Figure 6
have ending edges with following numbers: 4, 6, 7, 8, 9, 10, 11, 12, 13. The starting
edge is number 1.

In the each ending edge (bold rectangle) we can note symbols as 1, 0 or d. In the
ending where value is 1 we replaced this value with letter p and everywhere in the
edge where value is 0 we replaced this value with letter q. The symbol d is not
considered in computation because it is not involved in reliability expression. It
allows expression to be created for DSR.

In Figure 8, DSR is calculated with the computation of p, and q. These two
coefficients present the probability of every computer network link to be available
for transferring data between services with probability p = 0.9 (q = 0.1) [Dai et al.
2003]. According to expression (1) and replacement of values p and q, we can obtain
the result for DSR of Intelligence Information System.

DSR = 0.8898.

In conclusion of this section, we have to stress that obtained result about DSR is
not on appropriate level for the above mentioned system. Our intention is to create

DSR = p4q5p14 + p1p4p5q14 + p1p2q5p13q14 + p1p2q5p12q13q14
+p1p2q5p11q12q13q14 + p1p2q5p10q11q12q13q14

+p1p2q5p9q10q11q12q13q14 + p1p2q5p8q9q10q11q12q13q14
+p1p2q5p7q8q9q10q11q12q13q14 + p1p2q5p6q7q8q9q10q11q12q13q14

+p2p5p13p14 + p2p5p12q13p14 + p2p5p11q12q13p14
+p2p5p10q11q12q13p14 + p2p5p9q10q11q12q13p14

+p2p5p8q9q10q11q12q13p14 + p2p5p7q8q9q10q11q12q13p14
+p2p5p6q7q8q9q10q11q12q13p14

22 Jugoslav Achkoski, Vladimir Trajkovik

the system based on Service Oriented Architecture where we can obtain result of
0.977 out of 100%. [Hurwitz et al. 2007]. In conclusion of this section, we have to
stress that obtained result about DSR is not on appropriate level for the above
mentioned system. Our intention is to create the system based on Service Oriented
Architecture where we can obtain the result of 0.977 out of 100% [Hurwitz et al.
2007].

Furthermore, it is possible to increase the level of Distributed System Reliability,
but we have to preplan the graph of computer network infrastructure with different
way of connections between edges end vertices. In addition, we have to preplan the
ending edges where algorithm stops.

6. Conclusion

The implementation of Service-oriented Architecture in Intelligence Information
System increases the intelligence efficiency. Establishing developmental methodology
and model is a basis for building of an efficient information system.

System architecture is explained in order to show general concept of the system
in terms of connectivity between system components, and relationship between
layers. About the system architecture we can freely conclude that level of integration
logic is a basis of the Intelligence Information System. Although, in the system
architecture there are diverse levels, only the level of integration logic is most
significant for Service-oriented Architecture. In the level of integration logic are set
up most important services for appropriate system functioning.

The service design will contribute in building Intelligence Information System
based on a SOA platform because software artifacts can achieve certain level of
interoperability. Therefore, diverse hardware and software can exchange their data
types in order to satisfy Intelligence functions. As a conclusion about service design,
we can stress that core of interoperability relies on XML because WSDL and SOAP
are based on XML.

The DSR provides system’s metric for reliability where many information systems
rely on this metric. This metric provides reliable values for connecting nodes
(processing elements, applications, I/O devices etc.) in distributed system and it can
be exploited in the early stage of information system development. Furthermore, DSR
could be used for gathering testing data further system development and obtained
results will be taken the equations for general metric about quality of service (QoS).

References

Achkoski J., Trajkovik V., 2011, Intelligence Information System (IIS) with SOA-based Information
Systems, [in:] Proceedings of 33rd International Conference on Information Technology Interfaces,
IEEE, Cavtat/Dubrovnik, Croatia.

Distributed System Reliability in Intelligence Information System 23

Achkoski J., Trajkovik V., 2014, Service design and distributed system reliability in Intelligence Infor-
mation System based on Service-Oriented Architecture, [in:] Ganzha M., Maciaszek L., Paprzycki
M. (eds.), Position papers of the 2014 Federated Conference on Computer Science and Informa-
tion Systems, Annals of Computer Science and Information Systems, vol. 3, Polskie Towarzystwo
Informatyczne, Warsaw, Institute of Electrical and Electronics Engineers, New York City,
pp. 211–217.

Achkoski J., Trajkovik V., Davcev D., 2011, Service-Oriented Architecture concept for intelligence
information system development, [in:] Proceedings of 3rd international conferences on advanced
service computing service computation 2011 (IARIA), Rome, Italy.

Dai Y.S, Xie M., Poh K.L., Liu G.Q., 2003, A study of service reliability and availability for distributed
systems, Elsevier, Reliability Engineering & System Safety, vol. 79, no. 1, pp. 103–112, http://dx.
doi.org/10.1016/S0951-8320(02)00200-4.

Elvesæter B., Berre A.-J., Sadovykh A., 2011, Specifying services using the Service oriented architec-
ture Modeling Language (SoaML): A baseline for Specification of Cloud-based Services, [in:]
Proceedings of 1st International Conference on Cloud Computing and Service Science (CLOSER
2011), 7–9 May 2011, http://closer.scitevents.org/.

Gebhart M., Abeck S., 2011, Metrics for evaluating service designs based on SoaML, International
Journal on Advances in Software, vol. 4, no. 1/2, pp. 61–75, http://iariajournals.org/software/.

Gebhart M., Baumgartner M., Oehlert S., Blersch M., Abeck S., 2010, Evaluation of service designs
based on SoaML, [in:] Hall J., Kaindl H., Lavazza L., Buchgeher G., Takaki O. (eds.), Proceedings
of the Fifth International Conference on Software Engineering Advances (ICSEA), pp. 7–13, doi:
10.1109/ICSEA.2010.8.

Hurwitz J., Bloor R., Baroudi C., Kaufman M., 2007, Service Oriented Architecture (SOA) for Dum-
mies, John Wiley & Sons, Hoboken, NJ.

Kumar A., Agrawal D.P., 1993, A generalized algorithm for evaluating distributed-program reliability,
IEEE Trans. Reliability, vol. 42, no. 3, pp. 416–426, doi: 10.1109/24.257825.

OMG, 2009, Service oriented architecture modeling language (SoaML) – specification for the UML
profile and metamodel for services (UPMS), Version 1.0 Beta 1, http://www.uio.no/studier/emner/
matnat/ifi/INF5120/v10/undervisningsmateriale/09-12-09-SoaML.pdf.

Papazoglou M.P., van den Heuvel W.-J., 2006, Service-oriented design and development methodology,
International Journal of Web Engineering and Technology, vol. 2, no. 4, pp. 412–442.

NIEZAWODNOŚĆ SYSTEMU ROZPROSZONEGO
W SYSTEMACH INFORMACJI WYWIADU

Streszczenie: W artykule przedstawiono model Systemu Informacji Wywiadu (Intelligence
Information System), opartego na architekturze zorientowanej na usługi (Service-Oriented
Architecture). Zaproponowano model nowej usługi oparty na cyklu wywiadowczym i innych
systemach, które są niezbędne do gromadzenia informacji i danych wywiadowczych. Skon-
centrowano się głównie na architekturze systemu i projektowaniu usług jako podstawach de-
finiowania usług. Ponadto zwrócono uwagę na niezawodność systemu rozproszonego.

Słowa kluczowe: architektura zorientowana na usługi, projektowanie usług, niezawodność
systemu rozproszonego, System Informacji Wywiadu, architektura systemu.

