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1. Missing data – fundamental concepts
Most statistical methods assume that the characteristics of subjects 
examined are fully observed. In the case of a survey this means that 
every respondent has divulged the information needed to complete the 
whole questionnaire. In practice this happens very rarely, if ever. 
Usually, the researcher is confronted with a unit nonresponse as well as 
an item nonresponse [Balicki 2004]. Thus one can ask how to eliminate 
or at least reduce bias caused by missing data? The answer to this 
question requires an insight into the nature of missingness and an in-
depth analysis of its hypothetical influence on the results of the research.

1.1. Objectives of the analysis

The features of a good method for handling the problem of missing data 
are the following [Rubin 1987, p. 11; Allison 2009, p. 75; Graham 2012, 
p. 5]:

1) minimizing the bias of the parameter estimates, 
2) using the maximum amount of information from the data set 

(increase of efficiency),
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3) producing appropriate estimates of uncertainty (standard errors 
and confidence intervals).

Substantial number of methods for incomplete data sets are based 
on imputation [Little, Rubin 2002, pp. 59–90]. However, is it worth 
emphasizing that imputation itself is not the objective of the analysis. In 
other words, the idea is not about the prediction of missing values but 
about estimation (properties of the estimators) and its sensitivity versus 
the missingness; still, it is advised to check if the imputed values are 
from the specified range. Graphical analysis of the distribution 
(histogram or box-and-whisker plot) of imputed values can be applied 
for that purpose [White 2013, p. 18]. 

1.2. Mechanism leading to missingness

The analysis of the incomplete data set requires an insight into the 
nature of the process which leads to missingness. The basic missingness 
mechanisms distinguished in the statistical literature are the following 
(see [Little, Rubin 2002, pp. 11–13]):
 – missing completely at random (MCAR),
 – missing at random (MAR),
 – not missing at random (NMAR).

We may say that data are MCAR if missingness does not depend on 
both observed and unobserved outcomes. In this case, the observed 
outcomes are a random subsample of the original sample and thus one 
can estimate the parameter of interest without bias. For instance, the 
data are MCAR if the interviewer conducting a budget survey fails to 
reach the respondent due to illness.

The missing completely at random assumption is the most restrictive 
one. If it is rejected, one can assume two mechanisms will remain valid, 
namely MAR or NMAR.

Under MAR assumption, the missingness depends on the observed 
outcomes and not on the unobserved part of the outcome. For example, 
missingness of data on the use of social services possibly depends on 
the social status of a household. The missing at random assumption 
corresponds to the statement that the unobserved data and the observed 
data are related and one can correct for the missingness given the 
observed values. Valid and efficient likelihood-based or Bayesian 
inference about a given parameter requires that the data are MAR and a 
so called separability condition is satisfied [Little, Rubin 2002, pp. 118– 
–122]. If this is the case, we say that the missingness is ignorable. In 
practice it means that “we can construct a valid analysis that does not 
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require us to explicitly include the model for that missing value 
mechanism” [Carpenter, Kenward 2013, p. 34]. MAR assumption is not 
subject to testing. However, we can make it more plausible by putting 
many variables in the imputation model [Allison 2009, p. 74].

In practical settings one can arrive at the case when the missingness 
depends on the unobserved outcomes. In that situation the values are 
said to be not missing at random (NMAR). In order to imagine a 
situation when the NMAR assumption might be plausible we can refer 
to the income questions in budget surveys. These can be considered as 
NMAR because the level of income might possibly influence the 
propensity of its reporting. When the MAR assumption is violated and 
the data are said to be NMAR, the missingness mechanism has to be 
modelled [Allison 2009, p. 74]. Modelling of the missingness 
mechanism requires a deep prior knowledge about the nature of 
missingness. In that case the researcher should conduct a sensitivity 
analysis thus allowing an assessment of the sensitivity of the estimates 
to the assumptions concerning unobserved data. 

2. Methods for handling missingness

When trying to build a taxonomy of missing-data methods we can look 
at them from at least two perspectives: over time and over their type. 
Little and Rubin [2002, pp. 19-20] have grouped the missing-data 
methods into the following categories:
 – Procedures based on completely recorded units.
 – Weighting procedures, the methods which adjust the design weights 

for a nonresponse. The adjustment is based on an estimate of the 
probability of response conditioned by the selection to the sample 
according to the following product rule property of probability of 
two random events [Little, Rubin 2002, p. 46]:
Pr(selection and response)=Pr(selection) · Pr(response|selection).
For the estimate of the completers’ fraction we can take the 

proportion of responding units in a specified subclass.
 – Imputation-based procedures, in which the missing values are filled 

in by a constant (e.g. mean) or by a value observed in a similar ob-
ject (e.g. hot deck, cold deck).

 – Model-based procedures referring to the likelihood or posterior di-
stribution (Bayesian approach) of the observed data. The method is 
applied especially in the case of NMAR data. 
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Since the problem of missing data is not new in statistical analysis,1 
it has recently become popular to speak about traditional and 
contemporary methods for handling missingness. Both types of methods 
are presented and discussed in [Little, Rubin 2002; Molenberghs, 
Kenward 2007; Allison 2009].

2.1. The traditional methods for handling nonresponse in surveys

The following subsection contains a description of traditional methods 
used for data sets with missing values. The list of methods commences 
with the simplest ones (complete-case analysis and available-case 
analysis) in which the missing values are simply discarded from the 
analysis. The remaining methods (dummy variable adjustment, uncon-
ditional mean imputation, regression imputation, stochastic regression 
imputation, hot and cold deck imputation) are based on single imputation.

Complete-case analysis is also known as casewise deletion and 
listwise analysis. This is the simplest method in which we ignore the 
observations with missing data. It is valid only under MCAR. Complete-
case analysis leads to a significant loss of efficiency of the estimators if 
the fraction of missing data is large. 

Available-case analysis (pairwise deletion) includes all cases for 
which the variable or variables of interest are observed. In the case of 
bivariate analysis with r1 observed outcomes for the first variable, and 
r2 outcomes observed for the second one, the estimates of means are 
based on r1 and r2 observations respectively. This method recovers part 
of the information lost in complete-case analysis, however, it yields 
practical and theoretical problems related to the variability of the sample 
base. It is valid under MCAR.

Dummy variable adjustment is a method used in the regression 
analysis. Let us assume we have an outcome variable Y and some 
predictors Xj (j = 1, 2, …, r). For each variable with missing data we are 
creating a dummy missingness indicator variable Mj. The regression 
model includes both X and M. The missing values of X are replaced by a 
constant, for instance, by the mean for non-missing values. The method 
enables use of all the information from the data set, however, it produces 
biased estimates of the regression coefficients, even under MCAR.

1 Ronald Fisher in his work The Design of Experiments [1971, p. 177–180] first pub-
lished in 1935 has suggested the single imputation method of correction for the problem of 
missing values in analysis of variance. Van Buuren [2012, p. 25] has mentioned Allan and 
Wishart [1930] as those who were the first to develop a statistical method to replace  
a missing value.
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A broad class of methods for handling nonresponse in surveys is 
based on single imputation. The basic single imputation methods are 
the following:

Unconditional mean imputation consists of filling in a constant 
value for each missing value. This method leads to an underestimation 
of the variance and thus to confidence intervals that are too short. Under 
MCAR one can correct for the underestimation of variance (see [Rubin 
1987, pp. 13–15]). However, the method distorts the empirical distri-
bution of the variable of interest and does not produce valid estimates 
of covariance.

Regression imputation, in which the missing values are replaced by 
the values predicted by a regression model of the variable with 
missingness on the fully observed variables. The method is problematic 
because it underestimates the standard errors of the estimates and thus 
leads to false (too short) confidence intervals of the parameter estimates. 
Moreover, in practice, it is limited to complete-case analysis of 
predictors. The method leads to consistent estimates of means under 
MCAR and MAR, however, additional assumptions are required in this 
case [Little, Rubin 2002, pp. 63–64].

Stochastic regression imputation is a development of regression 
imputation. The method consists of filling-in missing values with values 
predicted by a regression model corrected by a random deviation. The 
idea behind the method is to eliminate the problem of underestimation 
of uncertainty about the parameter estimates. In the linear regression 
models the residual values are drawn from a normal distribution with a 
zero mean and variances computed for the complete cases. It can be 
shown that in the bivariate model with one fully observed variable Y 
and a second one with MAR data X, the stochastic regression imputation 
leads to consistent estimates of mean, variance of X, and regression 
coefficients of Y on X and X on Y (see [Little, Rubin 2002, pp. 65–66]). 
The main drawback of the method is that it does not incorporate the 
imputation uncertainty which results in too small standard errors of the 
estimates.

The broad class of imputation methods uses the information about 
similarity between the objects under analysis. The two main methods in 
that class are the following: single hot deck imputation, single cold deck 
imputation.

Single hot deck imputation replaces the missing values by values 
observed in similar objects from the same experiment. The single hot 
deck imputation is widely used in surveys in a practical way.
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Single cold deck imputation, in which the missing values are filled 
in by values coming from external sources, for example, from previous 
panels or similar objects from other studies. Since cold deck imputation 
explicitly assumes that some characteristics are stable over time and/or 
space it is a questionable approach.

The main advantage of traditional methods is their simplicity. 
However, their theoretical properties are fairly unsatisfactory mainly 
because they are discarding the uncertainty about the missing data and 
in general they are followed by standard analysis. In results the estimates 
obtained by traditional methods are not statistically valid or at the very 
least not efficient. They use is limited to rare situation when data are 
missing completely at random and the number of missing values is 
trivial. In these circumstances the sample saves its representativeness 
and the parameters of interest can be estimated without bias.

2.2. The current methods for handling nonresponse in surveys

The modern missing-data methods have emerged in response to the 
deficiencies of traditional approaches. Their development was conditio-
ned by the significant increase in computing power dating from the early 
1980s (the beginning of the microcomputer era) to the present day.

We can classify the modern methods into three main groups:
 – likelihood-based methods,
 – multiple imputation, and
 – weighting methods.

2.2.1. Likelihood-based methods

Likelihood-based methods are concerned with inference based on the 
observed data likelihood modelled under specified assumptions. The 
parameters are estimated using maximum likelihood or Bayesian 
estimation. The main drawback of these types of methods is that they 
make the analysis complicated and result in the use of sophisticated 
missing-data models which are beyond the scope of the researcher’s 
interests. However, by using them one becomes more aware in terms of 
the possibility of modelling the missing data mechanism by some 
explicit assumptions which help to understand the influence of non-
response on the results.

In the likelihood-based approach we can distinguish between the 
direct likelihood method and the iterative method involving the expec-
tation maximization (EM) algorithm.



Review of methods for data sets with missing values and practical applications 89
ŚLĄSKI
PRZEGLĄD
STATYSTYCZNY

Nr 12 (18)

2.2.1.1. Direct likelihood method

Direct likelihood method can be applied to models estimated by 
maximum likelihood [Little, Rubin 2002, pp. 97–112]. Basically, the 
idea is to use the available cases but correcting the estimates for the 
uncertainty coming from missing values. The implicit assumption is 
that the data are MAR on given variables. The application of direct 
likelihood method is limited because of its complexity especially in the 
case of non-Gaussian data.

Let us consider a bivariate case. Suppose we have a sample of n 
observations on two variables (Y1, Y2) from bivariate normal distribution. 
Y1 is completely observed and Y2 is observed only for r units. The 
unobserved units {i: r + 1, r + 2, …, n} are MAR. Our aim is to estimate 
μ2, the mean of Y2. Little and Rubin [2002, pp. 135–143] have derived a 
formula for a regression maximum likelihood estimator 2µ̂  of μ2:
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In practice the method is based on standard regression imputation. 
However, unlike the regression imputation the direct likelihood method 
leads to unbiased estimates of standard errors of the estimates, which 
results in valid confidence interval estimates. The large sample  
(1 – α)·100% confidence interval for 2µ̂ is given by:
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where uα  is a critical value form standard normal distribution. The 
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where:
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The direct likelihood method described above can be applied to a 
multivariate case with a monotone missing data pattern [Little, Rubin 
2002, pp. 143–155]. The missing data pattern is said to be monotone if 
the set of variables {Yj: j = 1, 2, …, k} can be ordered in such a way that 
when a missing value appears for an observation on variable Yj all of the 
consecutive variables Yj+1, Yj+2,…, Yk have a missing value for that 
observation. The monotonicity of missingness is required because, as 
mentioned above, in practice the direct likelihood method uses 
regression imputation, which is recursive in this case.

The main drawback of the method is that it assumes that at least one 
variable is fully observed and that the missing data pattern is monotone. 
For the missing-data general patterns the EM algorithm seems an 
attractive computational alternative [Little, Rubin 2002, pp. 164-188].

2.2.1.2. The EM algorithm

The EM algorithm is an iterative counterpart of the direct likelihood 
method. The EM algorithm enables us to identify the maximum 
likelihood estimates (see [Little, Rubin 2002; Schafer 1997; 
Molenberghs, Kenward 2007; Zdobylak, Zmyślona 2004]). It is less 
computational cumbersome than the direct likelihood method. The 
algorithm is based on two major steps: the expectation step (E) in which 
we are calculating the expected value of the log-likelihood for a given 
data and the maximization step (M) in which the log-likelihood is 
maximized. The two steps are repeated till the convergence of the 
algorithm is reached. The main advantage of the EM algorithm, apart 
from its computational simplicity is that it can be used for general 
patterns of missing data. As regards the main drawbacks of the method 
Little and Rubin [Little, Rubin 2002, p. 166] mention problems with 
reaching convergence in data sets with a large fraction of missing values 
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and the difficulties with the M step. Furthermore, the EM algorithm 
does not yield the standard errors of the estimates, thus, additional 
computations are required to produce estimates of the precision of the 
estimation (see [Molenberghs, Kenward 2007, p. 98]).

Let us depict the steps of the algorithm in its general form. Suppose 
we have a data set with n observations and k variables. Let Ynxk = [yij] (i = 
1, 2, …, n; j = 1, 2, …, k) denote the complete data; assuming a presence 
of missing values, complete data set can be divided into an observed 
and unobserved part Ynxk = (Yobs, Ymis). For example, for jth variable with 
r missing values we have {yij

obs: i = 1, 2, …, r} and {yij
mis: i = r + 1, r + 

2, …, n}. Having all variables divided into observed and missing part 
one can determine the missing data patterns as it is shown in Figure 1. 
Each iteration of the EM algorithm consists on computations carried 
out for each pattern separately. In practice, for the case of data set given 
in Figure 1 the expected values of Yij

mis, (Yij
mis)2 and Yij

misYil (for j ≠ l) 
conditional on covariates are calculated for each pattern. These expected 
values are then add up and used to update the parameter estimates.

Pattern Y1 Y2 Y3 Y4

1
2
3
4
5

Figure 1. Example of a missing data pattern. Grey area stands for observed values,  
white stands for missing ones

Source: own elaboration.

In order to describe the EM algorithm let us assume that the aim of 
the analysis is to find the ML estimates of the parameter vector θ. For 
instance it could be a vector of means μ = [μ1 μ2]

T. The EM algorithm is 
based on the following steps:

Step 1. Set the initial value of the θ(0). The value can by calculated 
using a traditional method like complete-case analysis or available-
case analysis.

Step 2. (E step) Calculate the expected value of the log-likelihood 
ln ( | )L θ Y   given the observed data and the current value of θ(t) where t 
denotes the iteration number (t = 0, 1, 2, …, l). For the first iteration we 
set θ(t)=θ(0). For the t-th iteration we have

 
. (10)( )( ) ( )( | ) ln ( | ) | ,t obs tQ E L=θ θ θ Y Y θ  
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Step 3. (M step) Calculate θ(t+1) the parameter vector that maximizes 
the expected log-likelihood ( )( | )tQ θ θ   from the E step. Note that in this 
step we are maximizing the log-likelihood of imputed data set. As  
a result we get:

 
( 1) ( ) ( )( | ) ( | )t t tQ Q+ ≥θ θ θ θ  , for all θ. (11)

With θ(t+1) go to step 2. The cycle repeats until the convergence of 
the algorithm.

As claimed before, the likelihood-based methods do not provide a 
straightforward way to calculate the standard errors of the estimates. In 
order to assess the precision of the estimation we can refer to multiple 
imputation.

2.2.2. Multiple imputation

In the multiple imputation method we replace the missing values by 
several values, say m [Zdobylak, Zmyślona 2004; Zmyślona 2011]. 
Each data set is then analyzed by standard complete-data method, 
yielding m estimates. The estimates are combined in order to make a 
single inference. The uncertainty has two separate sources: the sampling 
variability and variability caused by lack of sufficient knowledge about 
the actual reasons for nonresponse. The sampling variability is 
incorporated by the use of several imputations under one imputation 
model. The nonresponse variability is expressed by the use of several 
imputation models. The main drawback of the method is in its 
complexity and sensitivity to the choice of imputation models. 
Moreover, it is not straightforward if the methods are applied to discrete 
data [Carpenter, Kenward, Vansteelandt 2006, pp. 12–13].

The multiple imputation method is comprised of the two major 
steps: 

Step 1. Define the imputation model. The two basic groups of 
imputation models considered in statistical literature are the regression 
models and models based on the hot deck procedure. In the hot deck 
method units of observation are divided in separate groups with different 
probability of missingness and then the missing values are replaced by 
draws from the observed values made within homogenous groups (see 
for example [Allison 2000; Heitjan, Little 1991]).

Step 2. Analyze the imputed data sets using standard a complete-
data method (e.g. analysis of variance or linear regression). Let m 
denote the number of imputations. Each imputation yields an estimate 
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θd (d = 1, 2, …, m) of the parameter of interest θ and its covariance 
matrix Sd. The combined estimate of θ is defined as the average over the 
θd estimates:

 1

1ˆ
m

d
dm =

= ∑θ θ  . (12)

The estimate of the covariance matrix of θ̂   is given by:
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Component W of the formula (13) reflects the within-imputation 
variability, say the sampling variability. The B component stands for 
the between-imputation variance, a measure of the variability between 
the estimates from different imputations. The test and confidence 
intervals for multiple imputation estimates are based on [Molenberghs, 
Kenward 2007, pp. 108–109]:
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For a scalar parameter θ, assuming large sample sizes, the (1 – α) · 
100% interval estimate is [Little, Rubin 2002, p. 87]:

 ;
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vt Tαθ ± , (19)
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where t denotes the t distribution with v degrees of freedom given by:
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The main advantage of the multiple imputation method is that it 
leads to statistically valid estimates under MAR assumption. The 
method is relatively simple and easy to apply in practice. It enables us 
to control the imputation model and to incorporate the uncertainty about 
the imputed values. The remarkable advantage of multiple imputation 
is that it can be implemented for general patterns of missing data and it 
allows for the sensitivity analysis under different imputation models 
which is critical when dealing with NMAR data. 

2.2.3. Weighting methods

The weighting methods were developed for sampling schemes in which 
each unit selected to the sample represents a specified number of units 
in the population. There are two basic classes of weighting methods:
 – calibration (weighting in sampling schemes) which can be viewed 

as a development of standard sampling methods in which one takes 
into account the fact that units are observed only with a certain pro-
bability (see [Paradysz, Szymkowiak 2007; Szymkowiak 2012]),

 – inverse probability weighted estimating equations – a semiparame-
tric method of correction for missingness in the estimation of linear 
models [Molenberghs, Kenward 2007].

2.2.3.1. Weighting in sampling schemes

Let πi where i = 1, 2, ..., n denotes the selection probability and φi 
denotes the probability of response conditioned by the selection to the 
sample for unit i. The probability of selection and response for unit i is 
equal to πi φi. Let us assume that only r units of the initial sample of size 
n are observed. The Horvitz-Thompson estimator of mean of Y is given 
by [Bracha 1998, pp. 195–198]:
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Suppose the sample units can be divided into groups of equal 
probability of response. The probability of response for sample unit i in 
group j (j = 1, 2, ..., k) can be estimated by:

 
ˆ j

i
j

r
n

ϕ = , (22)

where rj denotes the number of observed units in group j and nj denotes 
the size of group j. For a simple random sample without replacement 
the selection probability i

n
N

π =  is the same for each unit. Assuming 

that the response probabilities of sampled units φi 
are correctly specified 

then the unbiased estimator of the mean of Y is given by:
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is the sample mean for the j group. If Y is missing at random (MAR), 
the estimator (23) is unbiased and its variance and mean square error 
are equal. The variance of (23) is given by [Little, Rubin 2002, p. 47]:
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The (1 – α) · 100% confidence interval for mean of Y can be then 
constructed by:

( )o oy u D yα± ,

where uα  is the 100 (1 – α/2) percentile of standard normal distribution.

2.2.3.2. Inverse probability weighted estimating equations

Suppose our aim is to regress Y on the covariates X1, X2, ..., Xk. The 
vector of observations of unit i is xi = [1 xi1 … xik]

T and the vector of 
parameters is β = [β0 β1 … βk]

T. The linear regression model to be 
estimated is given by:
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T
i i iY ε= +x β  . (26)

Further, let us assume that Y is observed for r out of n sampled units 
and the covariates are fully observed. Define an indicator 1n ×  vector 
M with elements mi = 0 when Y is observed and mi = 0 is missing. 
Moreover, let us assume that Y is MAR on covariates. The response 
probability2 for sampled unit i is [Little, Rubin 2002, pp. 49–50]:

 1 2( 0 | , ,..., )i i kP m x x xϕ = = . (27)

Given the response probabilities one can correct for missingness by 
plugging them into normal equations:
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i i

i i

Y
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∑ x β x β 0
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The solution of (27) in respect of 0 1
ˆ ˆ ˆ ˆ...

T

kβ β β =  β    gives the 
least squares estimators of regression coefficients of (26). If the 
response probability weights are correctly specified i.e. the model 
estimating φi takes into account all variables and interactions which 
influence the response probability, the estimates of β are consistent.

The weighting methods are applied especially when it is necessary 
to take into account the sampling scheme. The disadvantage of this 
group of methods is that they require the proper specification of response 
probabilities φi. Moreover, the efficiency of the weighting methods 
estimates is sensitive to the response rate. Namely, with the decrease of 
responding units, the efficiency of the estimates decrease because the 
estimate is based only on the observed units. In more complex settings 
the calculation of appropriate standard errors requires computationally 
intensive approaches [Little, Rubin 2002, p. 53].

3. Example
In the example the multiple imputation method as well as the complete-
case and available-case methods were used to study the level and 
change of the real disposable income (Yt)

3 of adult members of Polish 
households in 2007, 2009 and 2011.

2 The response probabilities can be estimated by logistic regression model of M on X.
3 Data set is from the panel survey “Diagnoza Społeczna” [Social Diagnosis 2000–

2013]. The nominal income was adjusted according to the Consumer Price Index published 
by GUS [2013].
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The aim of this exemplification is to compare the estimates obtained 
with a use of traditional methods (a complete-case and available-case 
methods) and a multiple imputation method. The application of a 
multiple imputation method will allow us to assess the potential bias of 
a traditional method under the plausible assumption of Yt missing-at-
random.

The analysed data set contains n = 5415 observations4 on the 
following variables:

 – real disposable income in 2007, 2009 and 2011,
 – age of household member in 2011,
 – years spent in education of the household member in 2011,
 – number of people in the household in 2007, 2009 and 2011,
 – working status of the household member in 2007, 2009 and 2011  

(1 = yes, 0 = no).
Let us consider a panel study with Yt (t = 1, 2, ..., l) subject to 

nonresponse. We assume that missingness occurs only for an income 
variable and the predictors used in the imputation model are fully 
observed. Empirical observation shows that income value is likely to be 
missing. In our example, in each wave almost 16% of respondents have 
their income value missing whereas the second least frequently observed 
variable is working status with less than 1% of missing data for each 
wave. In total 154 observations (2.8% of the sample size) were discarded 
from the study so as to make the assumption about missingness on 
income valid. The argument for this approach is that it leads to a 
relatively small loss of information and makes the problem more 
tractable. The patterns of missingness in the final data set are given in 
Table 1.

The analysed data set contains n = 5415 observations. Of these, 
3700 individuals reported the value of income in each wave of survey, 
and 1715 did not (Table 1).

Figures 2 and 3 present the distribution of income respectively for 
the complete-case (CC) and available-case (AC). As we can see, a 
complete-case and available-case analysis of income distribution show 
that the average real disposable income of members of Polish households 
increased comparatively in 2007, 2009 and 2011. Figures 2 and 3 
indicate that the income distribution is more platykurtic in 2009 and 
2011 than at the beginning of the study in 2007. The level of missingness 

4 The original data set is limited to the household members being at least 18 years old 
in 2007 with known working status in the consecutive years of survey (2007, 2009, 2011).
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of income values was 31.7% for complete-cases analysis and appro-
ximately 15.5% in each year for available-case analysis. Thus we can 
expect that in each case the results are biased. 

Figure 2. Distribution of income of surveyed household members – complete-case (CC) 
analysis

Source: own elaboration.

Table 1. Pattern of missing data for income in the consecutive years of the survey  
(grey = observed, white = missing)

Pattern Income in 2007 Income in 2009 Income in 2011 nr* rr**
1 3700 68%
2 355 7%
3 324 6%
4 186 3%
5 400 7%
6 101 2%
7 160 3%
8 189 3%
Total 4565 4556 4584 5415 100%

  *nr – number of observations with reported value of income; 
**rr – percent of observations with reported value of income.

Source: own elaboration based on Social Diagnosis data [2000–2013].
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Figure 3. Distribution of income of surveyed household members – available-case (AC) 
analysis

Source: own elaboration.

In our example the substantive parameter is the average real 
disposable income for any given moment Y

tµ  [Tian 2005]:

 
2(1 )exp( / 2)Y

t t t tµ δ µ σ= - + . (29)

where δt is the fraction of households having zero incomes. The 
distribution of non-zero incomes is said to be lognormal with parameters 
μt and σt

2. The choice of Y
tµ  is driven by the nature of households 

income distribution which has a lognormal shape except for those 
respondents reporting no income5. The factor (1 – δt) captures the 
probability of having positive income. Thus Y

tµ  given by (29) can be 
perceived as conditional expected value of income given that it is 
greater than zero. 

The imputation model applied for that data is based on the fully 
conditional specification (FCS) in which the variables of interest are 

5 In the econometric literature income distribution is commonly approximated by the 
lognormal probability density function (see for example [Kalecki 1945]). However, it is 
often the case that a part of the respondents report zero income for a particular moment of 
observation. The estimate of the average Y

tµ of the random variable Y with set of zeros and 
lognormal distribution for Y > 0 can be found in [Tian 2005].
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imputed iteratively [Van Buuren 2012, pp. 108–116]. The FCS method 
was selected because it can be applied to a general pattern of missing 
data, which is the case of our example (see Table 1). The imputations 
are based on the predictive mean matching in which the values are 
imputed from donors selected according to the regression model [Van 
Buuren 2012, pp. 68–74]. Predictive mean matching ensures that 
imputed values are from the range of the variable of interest. In our 
case it means that imputed values are 0m

ikx ≥ . We are assuming that 
income is MAR. Thus, the imputation model should include the 
variables with which we are correcting for missingness. The general 
idea is to include all the potential predictors in the imputation model. 
However, for large datasets it might be at the very least not that 
efficient. The solution is to use only selected predictors which are 
considered to be related with the variable of interest and with the 
nonresponse on that variable [Van Buuren 2012, pp. 127–128]. The list 
of variables chosen as predictors for the imputation model for real 
disposable income is given on page 97.

Figure 4. Point estimates of the mean income in 2007, 2009 and 2011  
with 95% confidence intervals calculated for complete-cases (CC), available-cases (AC) 
and with use of multiple imputation (MI)

Source: own elaboration.
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The results of the estimation of real disposable income in years 
2007, 2009 and 2011 with use of complete-case, available-case and 
multiple imputation are given in Figure 4 presenting the point estimates 
with 95% confidence interval for the mean real disposable income. As 
we can see on the graph the traditional methods give higher estimates 
compared to the multiple imputation estimates. Assuming income is 
MAR on the given predictors, the traditional methods overestimate the 
mean real disposable income in each of the years studied. In this case 
we can conclude that the respondents with missing incomes are those 
with low incomes.

The method used in the above example considers two possible 
scenarios, namely that income is missing completely at random 
(complete-case and available-case analysis) and that income is missing 
at random (multiple imputation). If one considers that the missingness 
on income depends on its value (which is equivalent to is not missing at 
random assumption) further investigation would be required (see for 
example [Van Buuren 2012, pp. 88–93; Little, Rubin 2002, pp. 321– 
–327, Zmyślona 2006]).

4. Conclusion
In conclusion let us assess the advantages and disadvantages of both 
traditional and modern approaches to the problem of missing-data. The 
main advantage of the traditional methods is in their simplicity which 
makes the analysis and interpretation straightforward [Little, Rubin 
2002, p. 41]. However, in general with the use of traditional methods a 
researcher is unable to get at once unbiased, precise and efficient 
estimates (see [Laurens 1999, p. 39]). The reason is in the very restrictive 
assumptions that have to be made when using the traditional methods, 
like for instance the MCAR assumption. Because of these deficiencies 
the traditional methods cannot be considered as a remedy for the 
missing-data problem. However, they can be viewed as a good starting 
point for the missing data analysis or a part of the sensitivity analysis.

The modern methods for handling survey nonresponse are designed 
to give statistically valid and efficient estimates under the MAR 
assumption which is less restrictive that the MCAR assumption made in 
the case of a complete-case analysis [Molenberghs, Kenward 2007,  
p. 78]. Moreover, they offer the possibility to incorporate the knowledge 
about the missingness which is in the data set and which is possessed by 
the data collector [Rubin 1987, p. 15]. What is more, the modern 
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approaches allow us to model the missingness mechanism and check 
for the impact of posited, still empirically unverifiable assumptions on 
the results [Van Buuren 2012, p. 93]. From the theoretical point of view 
the main drawback of the modern methods lays in their sensitivity to the 
choice of imputation model. Still, one can use several imputation 
models and check the sensitivity of the substantive analysis to the 
choice of imputation model. While this makes the analysis more 
complex [Rubin 1987, pp. 17–18], which is an obvious disadvantage, 
the increase in complexity is significantly reduced by the fact that the 
current methods are widely available in statistical software 
[Molenberghs, Kenward 2007, p. 45].
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PRZEGLĄD METOD ANALIZY NIEKOMPLETNYCH  
ZBIORÓW DANYCH WRAZ Z PRZYKŁADAMI ZASTOSOWAŃ

Streszczenie: Celem opracowania jest przegląd tradycyjnych (usuwanie wierszy, usuwanie 
wierszy parami, imputacja pojedyncza) i współczesnych (metoda największej wiarygod-
ności, imputacja wielokrotna, metody wagowe) metod stosowanych wobec niekompletnych 
zbiorów danych oraz ocena ich użyteczności z punktu widzenia analiz statystycznych.  
W opracowaniu podano podstawowe pojęcia, a także opis podstawowych metod i algoryt-
mów. Metody oceniono, uwzględniając własności estymatorów otrzymywanych na ich 
podstawie. Wybrana metoda (imputacja wielokrotna) zilustrowana została przykładem. 
Przegląd wskazuje na to, że metody współczesne mają przewagę nad metodami tradycyjny-
mi pod względem redukcji obciążenia, precyzji, a także efektywności estymatorów.

Słowa kluczowe: wzorzec brakujących danych, mechanizm brakujących danych, usuwanie 
wierszy, usuwanie wierszy parami, pojedyncza imputacja, metoda największej wiarygod-
ności, imputacja wielokrotna, metody wagowe.




