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Summary: In this paper were presented the results of the application of quasi-simulation 
methods to analysis the impact of the occurrence of systematic gaps on the accuracy of inter 
and extrapolative forecasts for time series with seasonal fluctuations. Forecasts were built 
on the basis of predictors based on descriptive models with seasonally changing parameters. 
Theoretical considerations will be illustrated by the empirical example. The models estima-
tion and construction of inter- and extrapolative forecasts were done with R and Statistica 10.
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Streszczenie: W pracy przedstawione zostały wyniki wykorzystania metod quasi-symulacyj-
nych do badania wpływu częstości występowania luk systematycznych na dokładność pro-
gnoz inter- oraz ekstrapolacyjnych w szeregu czasowym z wahaniami sezonowymi. Prognozy 
były budowane na podstawie predyktorów opartych na modelach przyczynowo-opisowych 
z sezonowo zmieniającymi się parametrami. Rozważania o charakterze teoretycznym zosta-
ły zilustrowane przykładem empirycznym. Obliczenia związane z szacowaniem modeli oraz 
budową prognoz inter- i ekstrapolacyjnych przeprowadzono w środowisku R oraz z wykorzy-
staniem pakietu Statistica 10.

Keywords: prognozowanie brakujących danych, modele przyczynowo-opisowe, luki syste-
matyczne.

1. Introduction

The application of classical time series models to the modeling and forecasting of 
economic seasonal variables with random fluctuations and gaps can make forecasts 
biased. Acceptable forecasts can be provided by predictors based on descriptive 
models with parameters changing seasonally.
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In this paper, for the forecasting there will be used descriptive models with 
constant parameters for: independent variable (X1t) and the time variable, and 
seasonally changing parameters describing the periodic seasonal fluctuations by:
• trigonometric polynomial (model P1):
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 The occurrence of systematic gaps can complicate the process of modeling 
when seasonality is described by the trigonometric polynomial. These complications 
include [Zawadzki (ed.) 2003]:
 – null variance of the harmonic components, 
 – collinear components of some of them, 
 – occurrence of the linear combinations of some of the components.

The harmonics components with null variance will be skipped in the modeling 
process. However, in the case of the second and third case, it will be necessary 
to estimate, based on the number of gaps, a multiple model versions for sets of 
components that are not linear combinations of the other components. These 
model versions will be indistinguishable by the statistical characteristics: standards 
errors and coefficients of determination, but they will differ by errors of inter and 
extrapolative forecasts.

Earlier empirical research has shown that in the case of model P2 for certain 
combinations of gaps, it is also necessary to estimate several versions of the models 
(see: [Zawadzki (ed.) 1999]).

Interpolation forecasts are calculated for periods where gaps occurred. This 
period will be used in the estimation of model parameters. If the gaps in the time 
series were created by erasing single observations, the accuracy of forecasts can be 
calculated. Forecasts of extrapolative forecasts (ex post or ex ante), refer to periods 
beyond the estimation period.
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2. Empirical Example

Quasi-simulation methods will be used to study the impact of the occurrence of 
systematic gaps on the accuracy of inter and extrapolative forecasts. Six variants of 
systematic gaps will be analyzed (in brackets are given the numbers of combinations):
• W1 – 1 month in year (12 combinations with 5 gaps),
• W2 – 2 months in year (66 combinations with 10 gaps),
• W3 – 3 months in year (220 combinations with 15 gaps),
• W4 – 4 months in year (495 combinations with 20 gaps),
• W5 – 5 months in year (792 combinations with 25 gaps),
• W6 – 6 months in year (924 combinations with 30 gaps).

The application of descriptive models in forecasting missing data will be 
illustrated using the example of the monthly production of geothermal energy in 
the period 2005-2010 in one of the geotherms located in the Zachodniopomorskie 
voivodship. Data from 2005-2009 were used to build the models, while the year 
2010 was used for the empirical verification of the forecasts. The average monthly 
air temperature during the same period was chosen as the independent variable . 

Figure 1 presents the dependent variable (solid line) and the independent variable 
(dashed line).
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Fig. 1. Production of geothermal energy in 2005-2010 and recorded average air temperature

Source: Data Bank of the Department of Applied Mathematics in Economics ZUT.
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Figure 1 shows that between the dependent and independent there is a strong 
negative correlation – the minimum values of first of them are corresponding to the 
maxima of the second one. The value of the Pearson linear correlation coefficient 
between these two variables is -0.975.

In Table 1 there are presented the seasonal indicators and seasonal components 
of the production of geothermal energy in the analyzed period.

Table 1. Seasonal indicators and seasonal components of the production 
of geothermal energy

Months Seasonal indicators Seasonal 
components [GJ]

January 213.6 16.2
February 192.7 12.8
March 155.4 7.8
April 89.9 –1.4
May 33.5 –9.3
June 23.6 –10.8
July 22.0 –10.9
August 22.0 –10.9
September 29.9 –9.8
October 94.3 –0.8
November 143.7 6.0
December 179.4 11.2
Minimum 22.0 –10.9
Maximum 213.6 16.2
Range 191.6 27.1

Source: own calculations.

Geothermal energy is mainly used for heating. Indicators for energy production 
fall below 100 for periods from late spring to early autumn (May − September). 
Seasonal lows (22.0%) were recorded for July and August. Values higher than 
100 occurred to: January, February, March, November and December. The highest 
value (213.6) was obtained for January. Large difference between the minimum and 
maximum values of the seasonal indicators (over 191 p.p.) indicates that seasonal 
fluctuations are very strong.

Due to the large amplitude of seasonal fluctuations of the independent variable, 
to assess the accuracy of the forecasts the weighted mean absolute percentage error 
(WMAPE) was used, given by the formula (see: [Szmuksta-Zawadzka, Zawadzki 
2012]):
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 where:
 – yt − real value,
 – *

ty  − forecast,
 – MAE – mean absolute error,
 – r − horizon of forecast.

As the weights there were used the shares of the values of energy productions in 
month t in the total sum.

Table 2 shows information about the average weighted mean absolute percentage 
error of the interpolation forecasts and the average level of the coefficients of 
determination for six variants of systematic gaps. 

Table 2. Average weighted mean absolute percentage error of interpolation forecasts 
and the average level of the coefficient of determination of the models and variants of gaps

Model W1 W2 W3 W4 W5 W6

P1
average R2 0,99 0,99 0,99 0,99 0,99 0,99

average error 21,64 18,99 19,32 22,29 24,16 26,25

P2
average R2 0,99 0,99 0,99 0,99 0,99 0,99

average error 35,64 24,43 20,47 19,40 18,97 19,34

Source: own calculations.

Table 2 shows that despite the very good fit of models to real data (average 
R2≈0,99), the average errors of interpolation forecasts were higher than 20 p.p. 
Significantly lower average errors for variants W1-W3, ranging from 18,99% to 
21,64%, were obtained for model P1. For other variants model P2 was more efficient 
− forecast errors in this case are ranging from 18.97% to 19.40%.

The average errors of forecasts for model P1 were rising with the increasing of 
the number of gaps, and for model P2 in general, the errors had a downward trend. 
Only for the variant W6, the error was 0,37 p.p. higher than in variant W5. It can be 
assumed that the lower level of average errors of interpolation forecasts for model P2 
has its source in the estimation of a much smaller number of equations. These model 
versions have the same properties (SE, R2), but different errors of forecasts (see also 
[Oesterreich 2012a]).

To check this assumption, Table 3 presents selected descriptive statistics 
of empirical distributions of the weighted mean absolute percentage error of 
interpolation forecasts for the six analyzed variants gaps.
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Table 3. Selected descriptive statistics of the empirical distributions of weighted mean absolute 
percentage error of interpolation forecasts for the six analyzed variants gaps

M
od

el

Va
ria

nt
s Number 

of model 
versions

SD CV
[%]

Skew-
ness Q1 Me Q3 Min Max Range

P1

W1 12 22.96 106.13 1.04 3.26 12.92 35.71 1.87 68.64 66.77

W2 69 20.95 110.32 2.69 7.98 11.62 22.86 2.91 109.75 106.83

W3 249 20.04 103.69 4.92 9.09 13.76 22.36 3.79 206.63 202.84

W4 629 20.03 89.83 6.59 11.39 17.38 26.41 4.25 268.81 264.57

W5 1209 16.12 66.72 3.92 14.13 20.69 28.87 5.79 191.81 186.03

W6 1835 16.58 63.18 6.36 17.41 23.01 30.62 7.67 349.07 341.40

P2

W1 12 40.24 112.93 0.95 4.93 12.65 67.16 1.99 105.50 103.51

W2 66 26.75 109.51 2.00 7.88 14.81 27.42 2.66 113.13 110.47

W3 220 17.56 85.74 3.15 11.06 15.76 23.01 3.45 112.36 108.91

W4 499 11.79 60.76 3.46 12.37 16.83 22.12 4.75 114.14 109.38

W5 816 8.28 43.66 2.42 13.78 17.07 22.39 6.05 97.70 91.65

W6 991 7.50 38.75 1.83 14.62 17.88 22.25 7.44 64.31 56.87

Source: own calculations.

A comparison of the numbers of estimated versions of the models indicates 
that for both models we estimated more model versions than the number of gaps in 
combinations. However, the values for model P1 was significantly higher than for 
model P2 − for variant W6 it almost doubled.

The maximum errors of forecasts for model P1 were lower than the errors for 
model P2. For both models, the coefficients of variation of errors show a downward 
trend but for model P2 it was much stronger. The distributions of the weighted mean 
absolute percentage error of interpolation forecasts were characterized by a very 
strong right-sided asymmetry. 

Figures 2 and 3 present the empirical distributions of the weighted mean absolute 
percentage error of interpolation forecasts for both models and variants of gaps: W2, 
W4 and W6.

Figures 2 and 3 show that the empirical distributions of the weighted mean 
absolute percentage error of interpolation forecasts had long-right-sided „tails”. The 
dominants of distributions were shifting to the right, which indicates that the levels 
of errors of forecasts were increasing with the increase of the number of gaps.

Table 4 presents the average weighted mean absolute percentage error of 
extrapolative forecasts for the six variants of the gaps. The information in the table 
was complemented by the error of forecasts estimates for the full data series (without 
gaps).
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Fig. 2. Empirical distributions of weighted mean absolute percentage error of interpolation forecasts 
for model P1 

Source: own calculations.

Fig. 3. Empirical distributions of weighted mean absolute percentage error of interpolation forecasts 
for model P2 

Source: own calculations.

Table 4. The average weighted mean absolute percentage error of extrapolative forecasts 
for the six variants of the gaps

Model Full series
Variants of gaps

W1 W2 W3 W4 W5 W6
P1 14.11 14.06 15.99 18.67 23.54 27.70 33.01
P2 15.74 17.12 19.27 22.21 25.48 28.62 31.59

Source: own calculations.
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The table shows that the average errors of extrapolative forecasts have a clear 
upward trend with an increasing number of gaps. For model P1, average errors were 
ranging from 14,06% (W1) to 33,01 (W6). For model P2 and variants W1-W5 the 
errors were higher, from 0,92 p.p. (W5) to 3,54 p.p. (W3), than in model P1. Only 
in the last variant of gaps the errors for model P2 were lower by 1.42 p.p. than for 
model P1.

A comparison of the average error of extrapolative forecast for data with and 
without gaps shows that a slightly lower error only (0,05 p.p.) was obtained for 
model P1 and variant W1. In this case the gaps acted as the „filter” which removes 
outliers from the time series (see: [Oesterreich 2012b]).

Table 5 presents selected descriptive statistics of the empirical distributions of 
the weighted mean absolute percentage error of extrapolative forecasts for the six 
analyzed variants of gaps.

Table 5. Selected descriptive statistics of the empirical distributions of weighted mean absolute 
percentage error of extrapolative forecasts for the six variants of gaps

M
od

el

Va
ria

nt
s Number 

of model 
versions

SD CV
[%]

Skew-
ness Q1 Me Q3 Min Max Range

P1

W1 12 1.03 7.36 –1.22 13.96 14.18 14.53 11.65 15.51 3.87

W2 69 3.75 23.48 2.06 13.98 15.18 16.99 11.29 30.75 19.46

W3 249 6.80 36.39 3.24 14.97 16.69 20.14 11.07 68.13 57.05

W4 629 10.77 45.73 2.83 16.80 20.28 27.09 10.48 116.62 106.13

W5 1209 12.33 44.49 1.80 19.02 24.64 32.44 10.50 106.41 95.91

W6 1835 17.18 52.04 5.52 22.72 30.18 38.65 11.68 360.66 348.98

P2

W1 12 3.41 19.90 1.37 15.18 15.74 18.42 13.42 24.75 11.34

W2 66 4.71 24.45 0.92 15.61 17.75 22.13 13.03 32.51 19.48

W3 220 6.31 28.40 1.38 17.50 20.92 25.10 11.86 49.50 37.64

W4 499 7.82 30.71 1.46 20.22 23.74 28.83 12.70 62.87 50.17

W5 816 8.97 31.35 1.31 22.70 26.59 32.43 14.42 64.38 49.96

W6 991 9.83 31.11 1.08 24.15 29.57 36.40 15.79 64.88 49.09

Source: own calculations.

The information in the table show that the maximum values of errors of forecasts 
for model P1 were rising much faster than for model P2. Distributions of extrapolative 
forecasting errors were also characterized by a strong right-sided asymmetry.

However, unlike the distributions of errors of the interpolation forecast, the 
standard deviations and coefficients of the variation of errors of the extrapolative 
forecast were rising with the increase in the number of vulnerabilities. 
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The maximum errors of forecasts were higher for model P1. For the variant with 
the highest shares of gaps the difference between the models reached almost 300 
p.p. The main reason of this are the characteristics of the harmonics variables used 
in model P1 (see: [Oesterreich 2012a; Zawadzki (ed.) 1999]) .

Figure 4 presents the empirical distributions of the weighted mean absolute 
percentage error of the extrapolative forecasts for model P1 and the six variants of 
gaps.

Fig. 4. Empirical distributions of weighted mean absolute percentage error of extrapolative forecasts 
for model P2 

Source: own calculations.

The shapes of distributions indicate the presence of a strong right-sided 
asymmetry caused by very high errors of extrapolative forecast obtained for some 
combinations of gaps. The analyzed distributions were shifting to the right which 
indicates that errors of extrapolative forecasts were rising with the increase of the 
number of gaps.

3. Conclusions

1. The total estimated versions of the models, especially for model P1, was 
generally much higher than the number of possible combinations of gaps, which was 
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the consequence of the occurrence of the collinear and of the linear combinations of 
harmonics components.

2. The increase of the number of systematic gaps caused the empirical distributions 
of errors of inter and extrapolative forecast shifting to the right side of the axis. They 
were also characterized by a high right-sided asymmetry.

3. The average errors of extrapolative forecasts for both models and most variants 
of the gaps were significantly higher than the errors obtained for the complete series, 
only for model P1 and variant W1 the error of forecasts was approximately 0,05 p.p. 
lower.
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