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1. INTRODUCTION 

Volatility modelling is one of the most important concepts in financial 
econometrics associated with risk and uncertainty, and therefore it is central 
to asset pricing, portfolio management, option pricing, Value at Risk etc. 
Although directly unobservable, volatility is estimated with parametric and 
non-parametric methods as well as with data sampled at different 
frequencies. Traditionally the most popular method of estimating risk was to 
calculate variance, later on some parametric models for dynamic volatility 
estimation such as GARCH models or stochastic volatility models became 
popular. In recent years the access to databases with intraday financial 
instruments’ prices has led to the development of a new class of methods 
that seem to be powerful in volatility estimation.  

The idea of using intraday data in volatility estimation started in the early 
1980s (Merton 1980), and was then developed in subsequent works (e.g. 
Taylor and Xu 1997). In the seminal paper, Andersen and Bollerslev (1998) 
introduced the concept of realized volatility (RV) as a new measure of risk. 
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They showed that volatility forecasts from the GARCH models are 
reasonable when compared to realized variance, calculated as the sum of 
squares of intradaily returns in a given day, instead of squares of daily 
returns usually used in that time. In fact there is a huge recent literature on 
the importance of realized variance as an ex-post benchmark to volatility 
forecasts from the GARCH models (Andersen and Bollerslev 1998, Doman 
2003, Będowska–Sójka and Kliber 2009).  

Nowadays, when estimating volatility one may choose between at least 
two possible solutions, based on daily or intradaily data. The application of 
intraday data always produces higher costs caused by gathering the data, 
requires a large  amount of data handling and is limited to the assets for 
which data is available. However, intuitively the intradaily data contains 
more information. The use of daily data is much more convenient and 
cheaper, but probably not as informative. The question is, if information 
included in intraday data is useful for volatility modelling and forecasting. 

Realized volatility itself is usually modelled with ARFIMA models (e.g. 
Andersen et al. 2003, Doman 2006, Fuertes and Olmo 2012), as well as the 
heterogeneous autoregressive realized variance models of Corsi (2009) 
(HAR-RV) and the extended HAR-RV-J and HAR-RV-CJ models 
incorporating jumps in the modelling process (e.g. Andersen et al. 2007). In 
the latter approach realized variance, which is a nonparametric measure of 
volatility, is modelled and forecasted with simple parametric models. 

The aim of the paper is to compare the volatility forecasts obtained from 
the methods in which we use two different frequencies: daily data and equally 
sampled intradaily data. Volatility models are often used to characterize 
trading risk. Therefore we evaluate alternative forecasting methods under 
Value at Risk modelling as a natural application of volatility estimates (Giot, 
Laurent 2004). In the literature there is no clear answer as to which approach 
based on daily or intradaily data is better when estimating and forecasting 
volatility. Giot and Laurent (2004) indicated that in the case of stock indices 
and exchange rates an adequate ARCH-type model can deliver as accurate 
VaR forecasts as the models based on realized variance. They compared two 
GARCH class models, GARCH and APARCH with skewed t distribution, to 
ARFIMA models for RV with skewed t distribution. The forecasts are 
compared on the basis of the Kupiec (1995) and the Engle and Manganelli 
(2004) tests. Lunde and Hansen (2005) found no evidence that GARCH(1,1) is 
outperformed by more sophisticated models based on intraday data in an 
analysis of exchange rates, so they conclude that GARCH(1,1) beats other 
models based on intradaily data. McMillan et al. (2008) showed that the use of 
intraday data provides improved daily volatility and VaR forecasts relative to 
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daily data and daily realized variance. Louzis et al. (2011) found that both the 
realized variance and the augmented GARCH models with the filtered 
historical simulation or the extreme value theory quantile estimation methods 
produce equally good VaR forecasts. Fuertes and Olmo (2012) found that the 
ARFIMA models produce better backtesting results than the GARCH models, 
but that the GARCH models prevail in terms of statistical verification. Louzis 
at al. (2013) used extended GARCH models and show that realized measures 
produce precise VaR forecasts. 

In our paper we compare one-step ahead VaR forecasts from GARCH 
class models which are based on daily data and models that use RV 
calculated from intradaily returns. While the above cited papers show 
contrary results for different instruments and markets, there is still a gap in 
the literature concerning the Polish capital market, which is perceived as a 
fast-growing emerging market. Therefore we focus on the blue chip index, 
the WIG20, quoted on the Warsaw Stock Exchange.  

In our research we consider the statistical and regulatory VaR 
performance evaluation methods. The question is which approach, based on 
daily or intradaily data, offers the better volatility forecast. The rest of the 
paper is as follows: in the next section competing volatility models used in 
the study are presented, in Section 2 the data are described, in Section 3 the 
Value at Risk is presented, and the methods of VaR evaluation are described. 
In Section 4 the empirical results are shown. The last section concludes. 

2. COMPETING VOLATILITY MODELS 

The aim of the paper is to compare the volatility forecasts from models 
based on daily data (GARCH class models) with models for volatility 
estimates based on intradaily data (realized variance). First, we characterize 
the GARCH models used in the study, then briefly describe the theoretical 
framework of the realized variance and present models used for modelling 
and forecasting RV. 

2.1. GARCH class models 

A popular approach in time-series analysis in order to capture 
heteroskedasticity and volatility clustering is the application of GARCH 
models. As proposed in the literature (e.g. Beck et al. 2001, McMillan and 
Speight 2007), we consider the simplest symmetric GARCH(p,q) model 
introduced by Engle (1982) and Bollerslev (1986). In our case it is specified 
for daily returns rt in the following manner:  
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We also consider the IGARCH(p,q) model as a representation that is 
close to RiskMetrics. This method was popularized by JP Morgan in 1996 
and since then has been commonly used in the empirical research: 
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In order to capture asymmetry in volatility, we use the GJR-GARCH(p,q) 
model with the specification of Glosten et al. (1993), where the leverage 
effect is represented by γ parameters: 
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As long memory in volatility is one of the stylized facts quoted in the 
literature, the fourth model in this group is FIGARCH(p,d,q), that is capable 
of accommodating the persistence in volatility (Baillie et al. 1996):  

 2 2 2(1 ) ( ) ( )( )d
t t tL L r B L rω σ− Φ = + −  (4) 
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mation it is assumed that tε  is an i.i.d. process with Student t-distribution.  
The forecasts of the conditional variance are obtained on the one-step-

ahead basis and used in Value at Risk forecasts backtesting procedure. 

2.2. Theoretical framework of realized variance and jumps 

We model realized variance as in the works of Andersen et al. (2003, 
2007). The log price is assumed to follow a continuous time jump diffusion 
semi-martingale process: 
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where p(t) is log price, μ(t) is continuous and locally bounded variation 
process, W(t) is a standard Brownian motion, σ(t) is strictly positive 
stochastic volatility process independent from W(t), κ is a jump size and q is 
a counting process with a value of 1 when there is a jump and 0 otherwise 
(Jajuga 2001, Laurent 2010).  

The quadratic variation for cumulative return process is following 
(Andersen et al. 2007): 
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variance, whereas the second part of the sum is describing the jump process. 
In discretely sampled returns with Δ standing for the time that lasts 

between consecutive returns and )()()( ∆−−≡ tptptr , realized variance 
)(∆tRV  is calculated by the summation of squared intradaily returns that are 

observed with given frequency: 
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As the sampling frequency of the return series increases, 0→∆  
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In the absence of jumps, realized variance will be a consistent estimator of 
integrated variance. This result is fundamental for modelling and forecasting 
realized variance (Andersen et al. 2003). However, as jumps are quite 
common in financial returns series, realized variance is not a robust estimator 
of integrated variance. Barndorff–Nielsen and Shephard (2004) introduced 
another measure called bipower variation which is a robust estimate of 
integrated variance. These two, realized variance and bipower variation 

)(∆tBV , allow therefore estimating the jump component in the price process: 

 ∑
<<−

→∆−∆
tst

tt sBVRV
1

2 )()()( κ . (9) 



162 B. BĘDOWSKA-SÓJKA 

  
 

In order to prevent the estimates of squared returns from being negative, 
Barndorff–Nielsen and Shephard (2004) truncated the measurement of 
jumps J at zero: 

 ]0),()(max[ ∆−∆= ttt BVRVJ . (10) 

We will use equation (10) for calculating the jumps used in the HAR-RV-
J model.  

2.3. Models for realized variance 

The realized variance is characterized by long memory (Andersen et al. 
2001) and therefore is often modelled as ARFIMA (m,δ ,s) processes that 
constitute a general class of dynamic processes. A realized variance series 

1 2[ , , ..., ]TRV RV RV RV=  follows an ARFIMA process if: 

 ( )(1 ) ( )t tL L RV Lδ εΦ − = Θ  (11) 

where L is the backshift operator, 2
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mL L L LΦ = −Φ −Φ − −Φ  

and 2
1 2( ) (1 .... )s

sL L L LΘ = −Θ −Θ − −Θ  are respectively the autore-

gressive and moving average polynomials in the lag operator L, (1 )L δ−  is 
the fractional integration operator, δ  is a fractional integration parameter 
and tε  is a stationary process. In the paper of Andersen et al. (2003) they 
found that the value of δ parameter is close to 0.4. In our paper the choice of 
an appropriate ARFIMA model is based on information criteria – finally we 
use the ARFIMA(1,d,0) model. 

Another class of models that take into account the long memory feature is 
the HAR-RV models. In financial markets, either traders are perceived to be 
heterogeneous in the sense of a different horizon of investments (Muller et 
al. 2001), or information arrival is heterogeneous in nature (Andersen and 
Bollerslev 1998). This heterogeneity causes long memory in the series. 
Introduced by Corsi (2009), the heterogeneous autoregressive model of 
realized variance (HAR-RV) considers different volatility components and is 
therefore able to account for long memory and fat tails (Corsi 2009). 

The model HAR-RV is the following (Corsi 2009): 
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where weekly ( w
tRV ) and monthly ( m

tRV ) volatility components are 
obtained as a simple average of daily quantities: 
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Andersen et al. (2007) considered the above model extended to jump 
components (HAR-RV-J) in the following way: 
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This class of models allows easily forecasting realized variance with 
ordinary least squares. The jumps introduced in the model come from 
equation (10). 

3. DATA DESCRIPTION 

In the literature evaluating VaR forecasts in the equity markets, probably 
the most extensively used financial series are from the NYSE or NASDAQ 
markets (e.g. Beck et al. 2013, Fuertes and Olmo 2012, Louzis, 
Xanthopoulos–Sisinis and Refenes 2011). There are also papers where VaR 
is calculated for financial instruments quoted on the Warsaw Stock 
Exchange (e.g. Pipień 2005, Piontek 2007). In extending the scope of 
previous research through the application and comparison of methods for 
data of different frequency, we use the daily and intradaily WIG20 index 
prices. The WIG20 index contains twenty blue chip companies quoted on the 
Warsaw Stock Exchange. On the basis of price data we calculated 
percentage logarithmic returns. The data sample starts on 4th of April, 2007, 
and ends on 21st of April, 2011 which gives altogether 1019 observations. 
The data come from www.stooq.pl.  

We followed Andersen et al. (2007) suggestions to estimate RV as a sum 
of intraday squared returns where night returns are omitted. This approach is 
also motivated by the results of Fuertes and Olmo (2012), who found that 
night return does not improve the out-of-sample forecasts of VaR. In Figure 
1 we present realized variance, RV, together with WIG20 returns. 
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Figure 1. WIG20 returns, realized volatility and logarithm of realized variance.  
 
When calculating realized variance, there is always a question of a proper 

frequency of returns. There is no single rule for that in the literature. 
Dacorogna et al. (1998) used hourly returns for realized variance, Corsi et al. 
(2009) suggested that for very liquid instruments (e.g. foreign exchange) the 
frequency of returns should be 20–30 minutes and for less liquid instruments 
an even lower frequency is recommended. Giot and Laurent (2004) used 5–
minute and 15–minute returns for stock market indices and show that both 
frequencies give similar results. Andersen et al. (2001) and Fuertes and 
Olmo (2012) used 5–minute returns, while Zumbach and Müller (2001) 
applied tick-by-tick data. As the WIG20 index consists of the most liquid 
stocks quoted on the Warsaw Stock Exchange, we focus on realized variance 
based on equally sampled 5–minute returns. Additionally, as the distribution 
of logarithm of realized variance is closer to normal than the distribution of 
realized variance, we consider the former in the study. For calculations we 
used Ox version 6.10 and G@RCH 6.1 (Laurent 2010).  

4. EVALUATING VALUE AT RISK PERFORMANCE 

Value at Risk quantifies the market risk of a portfolio to future market 
fluctuations (Sarma et al. 2004). Usually this is defined as the amount of 
money that might be lost within a given time horizon with a certain 
probability α .  
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In terms of returns, Value at Risk is usually defined as: 

 αα =−≤ ))(( tt VaRrP . (17) 

Here in the paper we consider the conditional approaches that deliver 
forecasts for both tails of distribution in order to measure risk for long 
position and short position at the significance level α . Assuming that 1−Ω t  
stands for information set at the time 1−t , the left tail of distribution (long 
position) is defined as: 

 αα =Ω−≤ − ))(( 1t
l
tt VaRrP  (18) 

whereas the right tail of distribution (short position) is defined as: 

 αα =Ω≥ − ))(( 1t
s
tt VaRrP . (19) 

In evaluating VaR performance, a huge number of methods has been 
proposed (Lopez 1999, Sarma et al. 2003, Pipień 2005, Piontek 2007). 
Sarma et al. (2003) used a two-stage model selection procedure. In the first 
stage, models are tested for statistical accuracy, whereas in the second, 
subjective loss functions are used. In the paper we use a similar procedure. 
As in Giot and Laurent (2004), we consider two tests: the Kupiec test (1995) 
and the Dynamic Quantile Test of Engle and Manganelli (2004). 
Additionally, as in Pipień (2005) and Piontek (2007), we calculated three 
loss functions. Below are described the tests and loss functions we used. 

4.1. The Kupiec Test (1995) 

The Kupiec test requires computing the empirical failure rate which is the 
fraction of excess returns under (for the long position) and over (for the short 
position) the forecasted one-day-ahead VaR. In the case of a correctly 
specified VaR, the fraction of failures f  is equal to the assumed number of 
failures which is identical with the significance level for VaR. 
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The test statistic is: 
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where N is the number of violations (failures) of the reported VaR, and T is 
the number of observations. 

4.2. The Dynamic Quantile Test (Engle and Manganelli 2004)  

This test allows to examine if the present violations of the VaR measure 
are not correlated with the past violations. Let us denote an indicator 
function, ( )tI α , that obtains the value of 1 in the case of ( ( ))l

t t tI r VaR α≤ −  
for a long position and ))(( αs

ttt VaRrI ≥  for a short position, and zero 
otherwise. Engle and Manganelli (2004) proposed to use new variables: 
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where subscripts l and s stand for long and short. The two hypotheses are 
tested jointly: 
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)(:02 αl
tHitH (or )(αs

tHit ) is uncorrelated with the variables included 
in the information set. 

Testing both hypotheses can be done jointly within an artificial 
regression: 

 ttHit ελα += Z)(  (24) 

where Z is a kT ×  matrix with the first column consisting of ones, and the 
next p  columns consisting of past violations ptt HitHit −− ...,,1 . In the 

1−− pk  remaining columns, additional independent variables are included 
(e.g. past returns, the squared past returns, VaR itself etc.). Engle and 
Manganelli (2004) showed that the test statistic DQT satisfies the following 

relation: 2
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4.3. Loss Functions 

The idea of using the loss function in a VaR evaluation comes from 
Lopez (1999). Each loss function presented below reflects the different 
approach of the risk manager. Generally they are constructed in the way that 
they give higher scores when the failure occurs, but each of them takes into 
account the different utility functions of risk managers. The VaR model that 
minimizes the value of the loss functions is considered to be attractive.  

The binomial loss function (BL) proposed by Lopez (1999) penalizes all 
failures equally: 

0, ( )
1, ( )

t tBL
t

t t
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f
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>
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The regulatory loss function (RL) proposed by Sarma et al. (2003) 
reflects the regulator’s utility function by paying attention to the magnitude 
of failures. It is constructed in the following way: 
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The firm loss function (FL) penalizes failures, but at the same time takes 
into account the opportunity cost of capital (Sarma et al. 2003): 
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where the constant c measures the opportunity cost of capital. We assume 
that c = 1.  

5. EMPIRICAL RESULTS

The aim of the paper is to compare the accuracy of one-step ahead VaR 
forecasts from the GARCH class models based on daily data and models that 
incorporate realized variance, RV. First, we estimate models for daily returns 
data and RV data. In both approaches, based on daily and intradaily data, 
one-step-ahead forecasts of volatility are made from 2009.05.05. to 
2011.04.21 (500 forecasts). Each model from those presented in Section 1 is 
re-estimated in a moving window on a daily basis with 519 observations 
used in the models’ estimation. 
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In Tables 1 and 2 we present the results of the Kupiec (1995) and the 
DQT Engle and Manganelli (2004) tests, as well as the loss functions (BL, 
RL, FL) respectively for the long and short position. For the long position, 
the Kupiec test rejects three GARCH class models at 05.0=α  and two of 
RV models at 01.0=α . In the case of the DQT test, only the GJR-GARCH 
model is not rejected at 1.0=α , whereas for 05.0=α  only the HAR 
model is rejected. For 01.0=α , the GARCH, IGARCH and FIGARCH 
models are rejected. In the next step, only the forecasts from the models that 
are not rejected by those tests are considered. For 1.0=α , there remains the 
GJR-GARCH  model  only, while in  the  case  of  05.0=α  the  GJR-GARCH 

Table 1 

Forecasting performance of Value at Risk for the WIG20 index from 2009.05.05 
through to 2011.04.21 – long position 

 Kupiec DQT BL RL FL (k=1) 
Model p-values p-values LF values 

alfa=0.1 
GARCH 0.0072 0.0087 33 75.5349 992.4995 
GJR-GARCH 0.1238 0.1881 40 86.1888 971.8784 
IGARCH 0.0187 0.0056 35 77.3041 995.7068 
FIGARCH 0.0043 0.0096 32 76.4291 1001.2041 
HAR 0.1674 0.0001 41 94.7508 932.0675 
HAR_J 0.1238 0.0006 40 92.1408 931.0289 
ARFIMA 0.1238 0.0051 40 86.4906 965.5161 

alfa=0.05 
GARCH 0.0271 0.1296 15 35.1797 1287.4964 
GJR-GARCH 0.0822 0.3753 17 40.0943 1248.9959 
IGARCH 0.0271 0.1296 15 35.0499 1291.5429 
FIGARCH 0.0142 0.0540 14 37.0870 1287.4478 
HAR 0.6852 0.0324 27 61.5602 1089.6199 
HAR_J 0.3192 0.2207 30 62.7846 1083.9021 
ARFIMA 0.2885 0.1612 20 49.5348 1142.8469 

alfa=0.01 
GARCH 0.3315 0.0000 3 5.9314 1927.4565 
GJR-GARCH 0.3315 0.9636 3 8.3034 1834.7055 
IGARCH 0.3315 0.0000 3 5.8684 1944.9874 
FIGARCH 0.6414 0.0000 4 9.1125 1886.0971 
HAR 0.0077 0.1577 12 25.6395 1419.3939 
HAR_J 0.0199 0.1350 11 23.6312 1417.1897 
ARFIMA 0.3966 0.1260 7 18.8999 1496.8498 

Note: p-values of tests (Kupiec 1995), DQT of Engle and Manganelli 2004) and value 
of loss functions (binomial BL, regulatory RL and firm FL loss functions) for VaR forecasts.  
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model, the HAR-RV-J model and the ARFIMA model are taken into 
consideration. Whereas both binomial and regulatory loss functions indicate the 
GJR-GARCH model as the best one, the firm loss function suggests the 
ARFIMA model, followed by the HAR-RV-J model. For α = 0.01, only the 
GJR-GARCH model and the ARFIMA model are compared. Whereas both 
binomial and regulatory functions have the lowest value in the case of the VaR 
forecasts from the GJR-GARCH model, the minimum value of the firm loss 
function is observed for forecasts from the ARFIMA model. This result is 
similar to the one presented in Fuertes and Olmo (2012). The differences 
between loss functions based on forecasts from these two models are substantial. 

Table 2 

Forecasting performance of Value at Risk for the WIG20 index from 2009.05.05 through to 
2011.04.21 – short position 

Kupiec DQT BL RL FL (k=1) 
Model p-values p-values LF value 

alfa=0.1 
GARCH 0.7642 0.1971 48 116.1794 987.9438 
GJR-GARCH 0.1471 0.1643 60 134.4512 926.6552 
IGARCH 1.0000 0.0562 50 116.6931 987.5746 
FIGARCH 0.7642 0.4418 48 111.6093 986.6236 
HAR-RV 0.5556 0.0788 54 121.7169 934.2006 
HAR-RV-J 0.3063 0.0707 57 127.5004 934.451 
ARFIMA 1.0000 0.2349 50 112.4397 973.4979 

alfa=0.05 
GARCH 1.0000 0.5673 25 56.6272 1263.7540 
GJR-GARCH 0.3192 0.6425 30 65.5180 1180.7613 
IGARCH 0.8384 0.5135 26 56.2624 1266.1681 
FIGARCH 1.0000 0.7896 25 53.2485 1255.9212 
HAR-RV 0.0337 0.0695 36 76.9702 1086.0841 
HAR-RV-J 0.0337 0.0925 36 79.2975 1087.2787 
ARFIMA 0.0792 0.3681 34 71.4913 1133.5788 

alfa=0.01 
GARCH 1.0000 0.9996 5 10.1795 1902.1420 
GJR-GARCH 0.3966 0.9807 7 14.4588 1762.3093 
IGARCH 1.0000 0.9996 5 9.2055 1918.6767 
FIGARCH 0.6414 0.9987 4 7.6099 1862.4444 
HAR-RV 0.0003 0.1394 15 27.9149 1412.3676 
HAR-RV-J 0.0003 0.1394 15 29.3342 1412.2694 
ARFIMA 0.0479 0.7171 10 22.9329 1491.5628 

Note: p-values of tests (Kupiec 1995) and DQT of Engle and Manganelli 2004) and 
value of loss functions (binomial BL, regulatory RL and firm FL loss functions) for VaR 
forecasts. 
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For the short position, the Kupiec test rejects both the HAR-RV and 
HAR-RV-J models at α = 0.05  and α = 0.01, while the DQT test shows no 
autocorrelation in the models under consideration. When comparing the 
values of the loss functions, the results are different. For α = 0.1, the VaR 
forecasts from the FIGARCH model attain the lowest binominal loss 
function, the VaR forecasts from the GARCH model gain the lowest 
regulatory loss function, whereas the lowest firm loss function is observed 
for the VaR forecasts from the GJR-GARCH model. For α = 0.05, the 
lowest value of binomial function is observed in the case of the VaR 
forecasts from the GARCH and FIGARCH models, in the case of regulatory 
loss function the forecasts from the FIGARCH model have the best value, 
while for firm’s loss function the ARFIMA model has the lowest value (both 
HAR-RV and HAR-RV-J with an even lower loss function value are rejected 
by the Kupiec test). When considering the significance level of α = 0.01, 
forecasts from the FIGARCH model allow obtaining lower economic 
losses both for binomial and regulatory loss functions, but again, when 
firm loss function is taken into account the lowest value of the 
function is accomplished for the VaR forecasts from the ARFIMA model.  

Figure 2. WIG20 returns and VaR forecasts at significance level α=0.05 (GJR-GARCH, 
FIGARCH and ARFIMA models) 
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Figure 2 presents the one-step-ahead forecasts of Value at Risk for the 
WIG20 index from the best models, the GJR-GARCH, FIGARCH and 
ARFIMA models, at 05.0=α  significance level for both short and long 
position. The forecasts within the GARCH class models are visually quite 
similar. However there is a clear distinction between the forecasts from the 
GARCH models and the ARFIMA model with the most noticeable 
differences observed in the periods when volatility switches from high to 
low level and in the opposite direction.  

CONCLUSION 

In the paper we consider the evaluation of alternative volatility 
forecasting methods for the purpose of VaR estimation and forecasts within 
a hectic crisis period. The forecasting performance of different models is 
compared in order to indicate the best one. We compare one-step ahead VaR 
forecasts from the GARCH class models which are based on daily data and 
models that use realized variance, RV, calculated from intradaily returns. We 
find that alternative VaR measures obtained from differently sampled data, 
give different VaR forecasts. When looking at statistical accuracy assessed 
by the Kupiec test or the Engle and Manganelli test, some VaR forecasts are 
rejected both when based on daily and intradaily data, leaving in some cases 
only a small number of models to be compared. Taking into account the 
VaR performance in the context of loss functions, when binomial and 
regulatory loss functions are considered, the VaR forecasts from daily data 
(especially the FIGARCH model) are better than those obtained from the 
models for RV, however if we look at the firm loss functions that 
measure the opportunity cost of capital faced by a firm, the models 
based on intradaily data give us better forecasts for both positions. In this 
sense the ARFIMA model generates superior VaR estimates in terms of 
capital efficiency, as this approach minimizes the opportunity cost of capital.  

There is no clear solution as to which approach should be used when 
forecasting VaR. Based on the results of our study, the informational content 
of daily data seems to be sufficient to predict VaR properly, at least as far as 
the regulatory loss function is considered. The presented models based on 
intradaily data, however, open new fields in the search of the most effective 
VaR measures in the sense of firms’ loss functions and opportunity cost of 
capital, even if the costs of gathering and handling the intradaily datasets are 
substantial. Our results illustrate the importance of the intraday approach in 
providing better forecasts of VaR. 
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