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Summary: Survival analysis can be defined as a set of methods where the response of 
interest is the time until a specified event occurred. The most common specified event is 
death and the related time is called survival time or life time in medical sciences. The 
Kaplan Meier estimator is one of the popular methods for precise survival times. It is 
natural that life time is of a continuous nature, therefore it is unrealistic to treat life time 
observations as precise numbers. In [Viertl 2009] it is shown that life time observations 
are not precise numbers, but more or less fuzzy. In this study a Generalized Kaplan Meier 
estimator for fuzzy survival time observations is proposed. 

Keywords: characterizing function, fuzzy numbers, Kaplan Meier estimator, non-precise 
data, survival time. 

1. Introduction 

Statistical modeling for life time data started in the 20th century, and is 
now known as reliability analysis or survival analysis. Reliability 
analysis is mainly concerned with the models of life time data ob-
tained from components and systems in engineering sciences, and 
survival analysis models are mainly concerned with life time data ob-
tained in biological or life sciences.  

Life time, survival time, failure time or event time can simply be 
defined as the waiting time till a specified event occurs. The event 
may be death in life science, failure in engineering sciences, divorce 
in sociology, change of residence in demography, and so on. 

Survival analysis techniques are mainly concerned with predicting 
the probability of response, probability of survival, mean life time, 
and comparing survival functions [Deshpande and Purhit 2005].  
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2. Survival Function 
The survival function is conventionally denoted by 𝑆(·), which is de-
fined as: 

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡)   ∀ 𝑡 ≥ 0. 

Where t is some specified time, T is the stochastic quantity de-
scribing time of death, and “𝑃𝑟” stands for probability. This function 
gives the probability that the unit will survive time t or we can say that 
the event will occur after time t.  

For the survival function it is usually assumed that 𝑆(0) = 1, and 
lim𝑡 → ∞ 𝑆(𝑡) = 0 [Lee and Wang 2003]. 

3. Kaplan Meier Estimator 
Let 0 ≤  𝑡1 ≤ 𝑡2 ≤ 𝑡3 ≤…≤ 𝑡𝑛 be n precise life times from a given 
population, and ni be the number of observations “at risk” at time ti, 
and  di  the  number  of  deaths  at  time ti. If di  denotes  the  number of 

Table 1. Kaplan Meier Survival probabilities 

Time 𝑑𝑖 𝑛𝑖 1 −  
𝑑𝑖
𝑛𝑖

 𝑆(𝑡) 

  0 0 5 1 1 
10 1 5 0.8 0.8 
20 1 4 0.75 0.6 
30 1 3 0.67 0.402 
40 1 2 0.5 0.201 
50 1 1 0 0 

Source: own elaboration. 
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Figure 1. Kaplan Meier Survival Curve 
Source: own elaboration. 
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deaths at time ti, frequently it is either 0 or 1, but tied survival times 
are possible. In that case di may be greater than 1. The Kaplan Meier 
estimate can be expressed as: 

𝑆(𝑡) =  ∏ �1 −  𝑑𝑖
𝑛𝑖
�𝑡𝑖≤𝑡  ∀ 𝑡 ≥ 0 [Kaplan and Meier 1958]. 

For example, if we have five precise complete life time observa-
tions, i.e. 10, 20, 30, 40, 50, then the Kaplan Meier survival probabili-
ties and survival curve are given in Table 1 and Figure 1 respectively. 

4. Fuzzy Information 

Standard statistical procedures like estimation of parameters and 
testing of hypotheses are based on precise numbers. It looks 
unrealistic to represent continuous real variables in the form of precise 
numbers or vectors because exact measurements of real continuous 
variables are not possible, they are more or less fuzzy. Some books 
and research papers have already been written dealing with fuzzy 
observations like [Klir and Yuan 1995; Lee 2005; Viertl and Hareter 
2006; Huang et al. 2006; Wu 2009]. 

Survival time is a non-negative valued variable, and it is already 
shown in [Viertl 2009] that life time observations are not precise 
numbers but more or less fuzzy. Therefore dealing with time analysis 
instead of classical statistical tools, fuzzy numbers approaches are 
more suitable and realistic.  

For fuzzy life time observations, a Generalized Kaplan Meier es-
timator is proposed in this paper.  

5. Fuzzy Numbers 

Let t* be a fuzzy observation with a so-called characterizing function 
ξ(·), which is a function of one real variable obeying the following:  

1. ξ : ℝ → [0;1]. 
2. For all 𝛿 ∈ (0;1] the so-called 𝛿-cut ∁𝛿(t*) ∶= {𝑡 ∈ ℝ : ξ(t) ≥𝛿} 

is a finite union of compact intervals [𝑎δ,𝑗 ;  𝑏δ,𝑗], i.e ∁𝛿(t*) = 
⋃ [𝑎δ,𝑗 ; 𝑏δ,𝑗]𝑘𝛿
𝑗=1  ≠ 𝜙. 

3. The support of ξ(·) is bounded, i.e. supp[ξ(·)]∶= {𝑡 ∈ ℝ : ξ(𝑡) > 
0} ⊆ [a ; b]. 

The set of all fuzzy numbers is denoted by ℱ(ℝ). 
If all 𝛿-cuts of a fuzzy number are non-empty closed bounded in-

tervals, the corresponding fuzzy number is called a fuzzy interval. 



ŚLĄSKI 
PRZEGLĄD 

STATYSTYCZNY 

Nr  13(19) 

10 Muhammad Shafiq, Reinhard Viertl 

6. Fuzzy Vectors 

A n-dimensional fuzzy vector 𝑡∗ is determined by its so-called vector 
characterizing function 𝜁(. , … , . ) which is a real function of n real 
variables 𝑡1 , 𝑡2 , … , 𝑡𝑛 obeying the following three conditions: 

1. 𝜁 :ℝ𝑛 → [0 ; 1]. 
2. For all 𝛿 ∈ (0 ; 1] the so-called 𝛿-cut ∁𝛿�𝑡∗� ∶= {𝑡 ∈ ℝ𝑛 : 

𝜁�𝑡� ≥ 𝛿} is non-empty, bounded, and a finite union of simply con-
nected and closed sets.  

3. The support of 𝜁(. , … , . ) defined by supp [𝜁(. , … , . )] ∶= {𝑡 ∈ ℝ : 
𝜁�𝑡�> 0} is a bounded set. 

The set of all n-dimensional fuzzy vectors is denoted by ℱ(ℝ𝑛).  
Let T be a stochastic quantity with observation space 𝑀𝑇⊆ [0 ; ∞), 

and a sample of size n i.e t1 , t2 , … , tn is considered from it. Each 𝑡𝑖 is 
an element of the observation space and (𝑡1 , 𝑡2 , … , 𝑡𝑛) is an element 
of the so-called sample space 𝑀𝑇

𝑛 which is the Cartesian product of n 
copies of 𝑀𝑇, i.e. 𝑀𝑇

𝑛  ≔ 𝑀𝑇 × 𝑀𝑇 × … × 𝑀𝑇. 
While on the other hand in the case of fuzzy observations, each 

fuzzy observation 𝑡𝑖∗, 𝑖 = 1(1)𝑛 with characterizing function ξi(·) is a 
fuzzy element of 𝑀𝑇 then (𝑡1∗, 𝑡2∗, … , 𝑡𝑛∗) is not a fuzzy element of 𝑀𝑇

𝑛. 
In order to generalize the Kaplan Meier estimator, the aggregation of 
the fuzzy observations into a fuzzy element of the sample space is 
necessary. 

To construct a fuzzy element (fuzzy vector) of the sample space 
𝑀𝑇

𝑛 usually the so-called minimum t-norm is used.  
For the vector-characterizing function of the combined fuzzy sample 

𝑡∗ ≔ (𝑡1 , 𝑡2 , … , 𝑡𝑛)∗ applying the minimum t-norm, i.e. 𝜁(𝑡1 , 𝑡2 , … , 𝑡𝑛) 
= min{ξ1(𝑡1 ), ξ2(𝑡2 ), … , ξn(𝑡𝑛 )} ∀ (𝑡1 , 𝑡2 , … , 𝑡𝑛) ∈  ℝ𝑛, a fuzzy 
element of 𝑀𝑇

𝑛 ⊆ ℝ𝑛 is obtained, whose vector characterizing function 
is 𝜁(. , … , . ). 

Remark: The 𝛿-cuts of the combined fuzzy sample will be ob-
tained as the Cartesian products of the 𝛿-cuts of respective fuzzy ob-
servations, i.e.  

∁𝛿[𝜁(. , … , . )] = ×𝑖=1
𝑛 ∁𝛿[ξi(·)]   ∀ 𝛿 ∈ (0 ; 1] [Viertl 2011]. 

Extension Principle: 
This is the generalization of an arbitrary function 𝑔:𝑀 → 𝑁 for fuzzy 
argument value 𝑎∗ in 𝑀. Let 𝑎∗ be a fuzzy element of 𝑀 with member-
ship function 𝜇:𝑀 → [0 ; 1], then the fuzzy value 𝑦∗ = 𝑔(𝑎∗) is the 
fuzzy element  𝑦∗ in 𝑁 whose membership function 𝜗(·) is defined by  
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𝜗(𝑦): =  �
 𝑠𝑢𝑝{ 𝜇(𝑎) ∶ 𝑎 ∈ 𝑀,𝑔(𝑎) = 𝑦}   if ∃𝑎:𝑔(𝑎) = 𝑦

0 if ∄𝑎:𝑔(𝑎) = 𝑦                                                       
�  ∀ 𝑦 ∈ 𝑁  

[Klir and Yuan 1995]. 

Theorem: For a continuous function 𝑓: ℝ →  ℝ and for a fuzzy 
interval 𝑡∗ the following holds true:  

∁𝛿[𝑓(𝑡∗)] = �min𝑓(𝑡) 𝑡 ∈ ∁𝛿(𝑡∗)  ;  max𝑓(𝑡) 𝑡 ∈ ∁𝛿(𝑡∗) � ∀ 𝛿 ∈ (0 ; 1] 

where min𝑓(𝑡)
 𝑡 ∈ ∁𝛿(𝑡∗)

, 𝑡 ≥ 0 determines the lower end of the 𝛿-cut, and 

max𝑓(𝑡) 𝑡 ∈ ∁𝛿(𝑡∗)  determines the upper end of the 𝛿-cut of the fuzzy 
value 𝑓(𝑡∗) [Viertl 2011]. 

Examples of characterizing functions of fuzzy life times are 
depicted in Figure 2.  
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Figure 2. Fuzzy sample 

Source: own elaboration. 
 
For the generalized Kaplan Meier estimator �̂�∗(𝑡), upper and lo- 

wer 𝛿-level curves are obtained with the help of 𝛿-cuts from the above 
mentioned theorem in the following way:  

∁𝛿(𝑆∗(𝑡)) =  � min𝑆�𝑡� 
 𝑡∈×𝑖=1

𝑛 ∁𝛿� 𝑡𝑖
∗� 

 ;  max𝑆�𝑡�
 𝑡∈×𝑖=1

𝑛 ∁𝛿� 𝑡𝑖
∗� 
�  

with 𝑡 = (𝑡1 , 𝑡2  , … , 𝑡𝑛 ) ∈  [ 0 ;  ∞)𝑛 ∀ 𝛿 ∈  (0 ; 1]. 
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Where min 𝑆�𝑡�
 𝑡∈×𝑖=1

𝑛 ∁𝛿� 𝑡𝑖
∗� 

 is the lower end of the 𝛿-cut which defines the 

lower 𝛿-level curve and max 𝑆�𝑡�
 𝑡∈×𝑖=1

𝑛 ∁𝛿� 𝑡𝑖
∗� 

 is the upper end of the 𝛿-cut 

which defines the upper δ-level curve. 
The above mathematical calculations are made through the follow-

ing algorithm: 
1. The values for 𝛿 are taken from 0 to 1 with an increment  

∆ ∈ (0 ; 1). 
2. For a given value of 𝛿 calculate the δ-cut of the fuzzy combined 

sample 𝑡∗.  
3. Taking minimum and maximum from the 𝛿-cuts to generate hy-

pothetical classical samples. 
4. The Kaplan Meier survival probabilities are calculated and the 

Kaplan Meier survival curves are drawn for fixed 𝛿-level. 
5. Steps 2-4 are performed for each 𝛿 = 0 (∆) 1.  
Example: For the fuzzy life time data given in Figure 2 the lower 

𝛿-level curves and upper 𝛿-level curves of the generalized Kaplan 
Meier estimator are calculated for 𝛿 = 0, 0.2, 0.4, 0.6, 0.8, 1. They are 
depicted in Figure 3. 
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Figure 3. Generalized Kaplan Meier estimator for the fuzzy sample from Figure 

Source: own elaboration. 
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The generalized estimated survival curve (generalized Kaplan 
Meier estimator) is depicted in Figure 3. 

The functions are the lower and upper 𝛿-level curves defined by 
the considered 𝛿-levels. 

7. Conclusion 

The precise measurement of a continuous variable is impossible. 
Survival time observations are usually assumed as precise numbers. 
However, these observations are of a continuous nature and therefore 
survival time observations are more or less fuzzy. Consequently, 
fuzzy numbers are more suitable and realistic to describe real surviv-
al times. In the given study, the classical Kaplan Meier estimator 
based on precise observations is generalized for fuzzy life time ob-
servations.  
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UOGÓLNIONY ESTYMATOR KAPLANA MEIERA  
DLA ROZMYTEGO CZASU PRZEŻYCIA 

Streszczenie: Analiza przeżycia definiowana jest jako zestaw metod badawczych służą-
cych do określenia czasu zajścia pewnego wyspecyfikowanego zdarzenia (losowego).  
W szczególności zdarzeniem takim jest śmierć człowieka. Do estymacji czasu przeżycia 
stosowana jest metoda Kaplana-Mayera. W 2009 r. Viertl wykazał, że czasu życia nie 
można określić precyzyjnie i zaproponował, by stosować liczby rozmyte. W niniejszym 
artykule zaproponowano uogólniony estymator Kaplana-Mayera wykorzystujący obser-
wacje rozmyte.  

Słowa kluczowe: liczby rozmyte, estymatory Kaplana Meiera, dane nieprecyzyjne, czas 
przeżycia. 

 




