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Abstract. The paper is devoted to the multivariate measures of dependence. In contrast to 

the classical approach, where the pairs of variables are studied, we investigate the depend-

ence of more than two variables. We mainly consider the measures based on copulas. These 

are the multivariable generalizations of the known coefficients of such correlation as 

Spearman’s rho, Kendall’s tau, Blomquist’s beta and Gini’s gamma. We present the defini-

tions, the constructions and the basic properties of such multivariate measures of depend-

ence. The case of large number of dimension, greater than two, presents more complica-

tions. We have several different versions of such generalization in this case and the lower 

bound of the values of such measures of dependence are close to zero. We also study the 

multivariate tail dependences. The last part of the paper is devoted to the estimation of 

multivariable versions of Spearman’s rho coefficient. 
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1. Introduction 

In many practical investigations, when we study the dependence be-

tween the pair of variables, we use some coefficients of correlation, e.g. 

Spearman’s rho or Kendall’s tau. In contrast of such an approach, we will 

investigate the dependence of more than two variables in this paper. We 

study the measures of dependence based mainly on copulas mainly and we 

generalize the known coefficients of correlation to more dimensions. 

The multivariable case, when the dimension is greater than two, is sig-

nificantly different from the two-dimensional case. For instance, three pair-

wise strict, negative dependent (countermonotonic) random variable do not 

exist. This fact implies that these measure of dependence do not take value  
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–1 and for the greater dimensions the lower bound of the values of such 

measures is close to zero. 

First we introduce the basic notion and properties connected with copu-

las and multivariable measures of dependence. Next we present the general-

izations of the basic coefficients of correlation: Spearman’s rho, Kendall’s 

tau, Blomquist’s beta and Gini’s gamma. We also study the multivariate tail 

dependences and the estimations of multivariate measures of dependence, 

mainly Spearman’s tau. 

2. Copulas 

Let X = (X1, …, Xd) be a random vector, where d ≥ 2. The dependent 

structure of X can be described by the copula. Copula C is the link between 

marginal Fi, where i = 1, …, d, and the joint F cumulative distribution func-

tions [Genest, MacKay 1986; Nelsen 2006]: 

F(x1, …, xd) = C(F1(x1) …, Fd(xd)). 

We assume that these cumulative distribution functions are continuous, so 

the copula is univocally determined in this case. 

The independent joint distribution is described by the following, simple 

copula: 

(u) = u1 … ud, 

where u = (u1, …, ud). For two random variables X1, X2 all the copulas 

satisfy the following inequalities: 

W(u1, u2) ≤ C(u1, u2) ≤ M(u1, u2), 

where copulas W(u1, u2) = max(u1 + u2 – 1, 0) and M(u1, u2) = min(u1, u2) 

are called respectively a lower and upper Frechet-Hoeffding bounds. If 

random variables X1, X2 have copula M then they are strict, positive depend-

ent (comonotonic) and for copula W we obtain the strict, negative depend-

ence (countermonotonic).  

The upper bound M can be generalized to higher dimensions: 

M(u) = min(u1, …, ud). 

We obtain the d-dimensional copula in this case. But the lower bound 

W(u) = max(u1 + … + ud – n + 1, 0) 

is not the copula for d > 2. Every d-dimensional copula C satisfies the fol-

lowing relations: 

W(u) ≤ C(u) ≤ M(u). 
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There is a fundamental difference between the two cases, and the greater 

number of dimensions. When d > 2 the function W(u) is not the copula and 

there do not exist three random vectors pairwise strict, negative dependent. 

The copula: 

 1 1

1 1( ) ( ), , ( ) ,d dC u u u      

where  is the cumulative distribution function of d-dimensional elliptical 

distribution and i are the marginal elliptical cumulative distribution func-

tions is called a elliptical copula. So, we can obtain the Gaussian, t-Student 

or logistic copulas. 

The d-dimensional copula C can be treated as a cumulative distribution 

function focuses on the [0, 1]
2
 with the marginal uniform distributions, 

because 

C(u) = P(U1 ≤ u1, …, Ud ≤ ud), 

where Ui = Fi(Xi). Its survival function is equal 

( )C u  = P(U1 > u1, …, Ud > ud). 

Using the marginal survival functions ( )iF x = P(Xi > x) we can define the 

survival copula    in the following way 

 1 1 1( , , ) ( ), , ( )d d dF x x Č F x F x . 

So, we have 

( )Č u  P(1 – U1 ≤ u1, …, 1 – Ud ≤ ud) =C (1 – u1, …, 1 – ud). 

We can order the copulas using the following two relations (Schmid et al. 

2010): 

C1   C2      C1(u) ≤ C2(u), 

C1    C2      C1(u) ≤ C2(u)  and  1C (u) ≤  2( )C u . 

These orders are based on the natural order of copulas and its survival func-

tions.  

The Archimedean copula [Nelsen 2006]: 

C(u) = –1
((u1) + … + (ud)) 

is a simple example of a copula induced by the generator . The generator  

is a continuous strictly decreasing function from [0, 1] to [0, ] such that 
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(0) = and (1) = 0 and its inverse  
–1

 is completely monotonic, i.e. 

1( 1) ( ) 0
k

k

k

d
t

dt
   for all t and k = 0, 1, 2, … 

3. Basic properties of the measures of dependence 

Let d be the class of all d-dimensional random vectors. A measure of 

dependence p is a functional 

p:  d    D  R. 

Thus it assigned a real number to every random vector X. This is a generali-

zation of the measures of dependence, e.g. the coefficients of correlation, of 

two random variables to a large number of dimensions.  

The Archimedean copula is generated by the one function  only, so we 

usually obtain the same value of the measure of dependence for every pair 

of variables for many cases, i.e. p(Xi, Xj) = p(Xk, Xl). We can use the two-

dimensional measure of dependence p in a multivariate case, when d > 2: 

p(X1, …, Xd) = p(X1, X2) 

in this situation. 

Another simple example of the measure of dependence is the mean ps of 

two-dimensional measures of dependence pij of all pairs of variables, i.e. 

ps(X) =
2

( , ).
( 1)

ij i j

i j

p X X
d d 

  

Now we present a list of properties that a “good” measure of depend-

ence should satisfy (see [Wolf 1980; Taylor 2007; Dolati, Ubeda-Flores 

2006; Schmid et al. 2010]). 

W Well-definedness: The measure p is well-defined for every random 

vector X and it is univocally determined by the copula, i.e. p(X) = p(C). 

So, such a measure is invariant with respect to its marginal distribu-

tions. 

P Invariance with respect to permutations: For every permutation  we 

obtain 

p(X1, … , Xd) = p(X(1), … , X(d)). 

N Normalization 

N1 If random variables Xi are independent then  p(X) = p() = 0. 

N2 If random variables Xi are strict, positive dependent, i.e. they have 

copula M, then p(X) = p(M) = 1. 
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M Monotonicity 

M1 If  C1   C2  then  p(C1) ≤ p(C2). 

M2 If  C1    C2  then  p(C1) ≤ p(C2). 

T  Behavior under transformation: For every monotonic transformation 

Ii we have 

p(X1, … , Xd) = p(I1(X1), … , Id(Xd)). 

C  Continuity: If Xn is a sequence of random vectors with copulas Cn and 

if  lim ( )n
n

C C


u u  for all u  then  lim ( )n
n

p C p C


 . 

4. The Pearson’s correlation coefficient 

The Pearson’s correlation coefficient r is a classical, most popular two-

dimensional measure of dependence. It is defined by the known formula 

 
 

 
1 2

1 2

1 2

cov ,
, ,

( )

X X
r X X

V X V X
  

where covariance cov(X1, X2) = E(X1 – E(X1))( X2 – E(X2)).  

It does not satisfy property W, because it depends on the marginal dis-

tribution: 

         1 2 1 1 2 2 1 1 2 2 1 2cov , ( ( , ) Π( , ))X X C F x F x F x F x dx dx




 ∬  

and copula does not univocally determine the Pearson’s coefficient. Also, it 

is not invariant under monotonic transformation (property T). For instance 

we have 

r((X1), ( X2)) =
1 2( , )

arcsin
6 2

r X X  
 
 

, 

where  is a standard, normal distribution function.  

The Pearson’s coefficient does not satisfy property N2. Let random var-

iables X1 and X2 have lognormal distribution: X1 ~ LN(0, 1), X2 ~ LN(0, ), 

then the smallest rmin and greatest rmax values of this coefficient are equal  

rmin = r(e
Z
, e

–Z
) =

 
2

1

( 1) 1

e

e e





 

 
, 
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rmax = r(e
Z
, e

Z
) = 

 
2

1
,

( 1) 1

e

e e







 
 

where Z ~ N(0, 1) (see Figure 1 and [Embrechts, McNeil, Straumann 2002]). 

The Pearson coefficient takes value 1 when the random variables have 

the same distribution, i.e.  = 1, only and for  > 4 all the values of this 

coefficient are close to 0. 

 

 
Fig. 1. The smallest and greatest values of Pearson’s coefficient of correlation  

for the lognormal random variables 

Source: [Embrechts, McNeil, Straumann 2002]. 

We see that the Pearson’s coefficient of correlation is not a good uni-

versal measure of dependence. It is the measure of the linear dependence 

only. It is not uniquely determined by a copula, so we do not present its 

multidimensional version. 

5. Spearman’s rho 

Spearman’s rank correlation coefficient can be defined in the                        

two-dimensional case by the following formula: 

-1 

-0,5 

0 

0,5 

1 

0 1 2 3 4 5 
σ 
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 
    

     
1 1 2 2

1 2

1 1 2 2

,
, .

cov F X F X
X X

V F X V F X
   

We can present the equivalent versions of it [Nelsen 1996; Schmid et al. 

2010]: 

 

1 1 1 1

1 2 1 2 1 2 1 2
0 0 0 0

1 1 1 1

1 2 1 2 1 2 1 2
0 0 0 0

1 1

1 2 1 2

0 0

1 1

1 2 1 2

0 0

( , ) Π( , )
( )

( , ) Π( , )

12 ( , ) 3

12 ( , ) 3.

C u u du du u u du du
C

M u u du du u u du du

C u u du du

u u dC u u







 

 

   

   





 (1) 

Spearman’s rho can be interpreted as the distance from independent 

copula . It satisfies the aforementioned properties and 
6

arc sin
2

r




 
  

 
 

for the Gaussian copula. 

We present two versions of the multivariate Spearman’s rho [Schmid 

et al. 2010]: 

  [0,1] [0,1]

1

[0,1]
[0,1] [0,1]

( ) Π( ) 1
2 ( ) 1

2 1( ) Π( )

d d

d

d d

d

d

C d d d
C C d

dM d d


  
   

    

 


 

u u u u
u u

u u u u
, 

 2

[0,1]

1
2 Π( ) ( ) 1

2 1 d

d

d

d
C dC

d


 
  

  
 

 u u . 

These are the extensions of (1). We can also use the average of the two 

versions: 

 
   1 2

3 .
2

C C
C

 



  

These versions coincide when dimension d = 2 or copula C is radially 

symmetric, i.e. C Č . When d = 3, then 3 is equal to the average pairwise 

Spearman’s rho coefficient, i.e. 3 = s = (12 + 13 + 23)/3, where ij = 

(Xi, Xj). The value of multivariate coefficients i is limited from below and 

above by 
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 
 

2 1 !
1.

!(2 1)

d

id

d
C

d d


 
 

 
 

The graph of the lower bound of such coefficient is presented in Figure 2. 

 

Fig. 2. The graph of the lower bound of the values of the coefficients i 

Source: own elaboration. 

We can see that for dimension d ≥ 10 the lower bound is close to zero. 

Spearman’s rho takes in practice the nonnegative values only in this case. 

The value –1 is obtained for the bivariate case, only. This is due to the fact, 

that three pairwise, countermonotonic random variables do not exist.  

6. Kendall’s tau 

Let the random vectors (X1, X2) and (Y1, Y2) be independent and identi-

cally distributed. The Kendall’s tau correlation coefficient can be defined in 

the two-dimensional case in the following way [Nelsen 2006]: 

(X1, X2) = P((X1 – Y1)(X2 – Y2) > 0) – P((X1 – Y1)(X2 – Y2) < 0). 

It is the probability of concordance minus the probability of discordance.  

We can give the equivalent definition based on the copula [Nelsen 

2006]: 

-1 

-0,8 

-0,6 

-0,4 

-0,2 

0 

0 5 10 15 
d 
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     
2[0,1]

4 , , 1.C C u v dC u v    

For bivariate Archimedean copulas, this coefficient can be calculated from 

the generator : 

 
1

0

( )
4 1

( )C

C t
C dt

t







   

and for the Gaussian copula we have  2arc sin / .r   

Let X, Y be independent and identically distributed d-dimensional ran-

dom vectors. Joe proposed the following multivariable version of Kendall’s 

tau coefficient [Joe 1990]: 

     1 1 ,

( 1)/2

, ,    , 
d

k d k d k

k d

w P D D B 

   

  X   (2) 

where Di = Xi – Yi and Bk,d-k  R
d
 be the subset of x   R

d
 with k negative 

components and d – k positive. This is the family of generalizations of                      

two-dimensional Kendall’s tau. The coefficients wk are chosen so that 1 

satisfies “good” properties. All such choices of wk give us the multivariate 

version of Kendall’s tau. 

  

Fig. 3. The graph of the lower bound of the values of the coefficient 2 

Source: own elaboration. 

-1 

-0,8 

-0,6 

-0,4 

-0,2 

0 
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d 
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When wd =1 and 
1

1

2 1
k d

w


 


 for k < d, then we have the following 

multivariate version of Kendall’s tau coefficient [Nelsen 1996]: 

     2 1

[0,1]

1
2 1 .

2 1 d

d

d
C C dC



 
  

 
 

 u u  

For d =3 it is equal to the average pairwise Kendall’s tau  

s = (12 + 13 + 23)/3, 

where ij = (Xi, Xj) and it satisfies the following relations [Schmid et al. 

2010]: 

 21

1
1.

2 1d
C




 


 

The graph of the lower bound of coefficient 2 is presented in Figure 3. 

The values of the lower bound are greater than in Spearman’s rho case. 

For d ≥ 8 these values are practically equal to zero in this case. 

7. Other measures of dependence 

Blomquist’s beta is a measure based on the median. Let Zi = Xi – Me(Xi), 

the bivariate Blomquist’s beta is defined by formula [Blomqvist 1950] 

(X1, X2) = P(Z1Z2 > 0) – P(Z1Z2 < 0). 

Now we present the version of this measure based on the copula [Schmid et 

al. 2010] 

  

1 1 1 1 1 1 1 1
, Π , , ,

1 12 2 2 2 2 2 2 2
4 , 1.

1 1 1 1 1 1 1 1 2 2
, Π , , ,

2 2 2 2 2 2 2 2

C C

C C

M M



       
         

           
                  
       

  (3) 

This coefficient can be interpreted as a normalized difference between 

copula C and the independence copula  at (1/2, 1/2). 

Formula (3) let us construct the multidimensional version of 

Blomquist’s beta coefficient [Schmid et al. 2010]: 
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 
1

1

1

1 1 1 1
Π

2 1 12 2 2 2
2 ,

1 1 1 1 2 1 2 2
Π

2 2 2 2

d
d

d

C C

C C C

M M








       
                                                 

       

where 
1 1 1

, ,
2 2 2

 
  
 

  

If dimension d = 3, then Blomquist’s beta is equal to the average pair-

wise values of this coefficient and it satisfies the similar relations as in 

Kendall’s tau case [Schmid et al. 2010]: 

 21

1
1.

2 1d
C




 


 

When copula C is radially symmetric, then we obtain the simple formula: 

 
1

1
2 1

2
.

2 1

d

d

C

C


 
 

 


 

Gini’s gamma coefficient is based on the extremal copulas [Nelsen 

1996]: 

1 1

1 2 1 2 1 2

0 0

1 1 1 1

1 2 1 2 1 2 1 2 1 2 1 2

0 0 0 0

( ) 4 ( ( , ) ( , )) ( , ) 2

4 ( ( , ) ( , )) ( , ) ( ( , ) ( , )) Π( , ) ,

C M u u W u u dC u u

A u u A u u dC u u A u u A u u d u u

   

 
    

 



 

 

where A(u) = (M(u) + W(u))/2. 

The multivariable version of Gini’s gamma takes the form [Schmid 

et al. 2010]: 

 
   

 

        
0,1

1

d

C A A dC a d
b d a d


 
   
 
 
 u u u , 

where 

 
 

      
   00,1

1 1 1
Π ( 1)

1 2 1 ! 2 1 !d

d
i

i

d
a d A A d

id d i

 
       

   
 u u u  

and 
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 
 

      
1

10,1

1
1 .

4 !d

d

i

b d A A dM
i





    u u u  

For d = 3 Gini’s gamma is equal to the average pairwise values of this coef-

ficient. 

8. Multivariate tail dependence 

Recently, we may notice an increased interest in the analysis of extreme 

values, mainly in finance and insurance, e.g. insurance of the catastrophic 

claims [Embrechts, Kluppelberg, Mikosch 1997; Embrechts, Lindskog, 

McNeil 2001]. For bivariate cases, we can study dependence in the extreme 

values using the coefficients of tail dependence. 

The coefficient of lower tail dependence [Sibuya 1960] is defined by 

the following formula: 

 
 

    

 

0

1 1

1 1 2 2
0

1 2
0

,
lim

lim |   

lim |  ,

L
u

u

u

C u u
C

u

P X F u X F u

P U u U u




 







  

  

 

where Ui = Fi(Xi) and the coefficient of upper tail dependence by 

  1 2
1 1

1 2 ( , )
lim lim ( |  )

1
U

u u

u C u u
C P U u U u

u


 

 
   


  

Frahm [2006] proposed the following version of multivariate coeffi-

cient of lower tail dependence 

 

   

0

1 1
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While another version was done by Schmid and Schmidt [2007]: 
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This is based on the conditional version on Spearman’s rho. 
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9. Estimation of the measures of dependence 

In the previous section we presented the popular, theoretical version of 

the measures of dependence. Now we will study the empirical version of 

them. The empirical copula is defined by formula [Schmid et al. 2010]: 

,
ˆ{ }

1 1

1
( )ˆ ,

ij n i

n d

n U u
j i

C
n 
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 u 1  

where 1
, , 1

ˆ ˆ ( ) (rank of    in  , , )ij n i n ij ij i inn
U F X X X X    and (Xj)j=1,…,n is the 

random sample of X. Copula C describing the dependence structure of X 

can be estimated by the empirical copula ˆ
nC . Copula ˆ

nC  is treated as the 

empirical distribution function in this case. 

The empirical version of the presented coefficients of correlation can be 

based on the empirical copulas. We will focus more broadly on Spearman’s 

rho. We obtain the empirical counterpart i replacing copula C with its 

empirical version [Schmid, Schmidt 2007]: 
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where Rij,n is a rank of Xij in Xi1, …, Xin. Joe [1990] presented another empi-

rical Spearman’s rho: 
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Let us now consider a two-dimensional case, i.e. d = 2. Then 
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We can see that estimators 1̂  and 2̂  are not equal in this case, because the 

empirical copulas are not continuous. They satisfy the inequality 1 2
ˆ ˆ   

and Joe’s estimator     is equal to the classical empirical Spearman’s rho 

presented for instance in Domański [1990].  

Now, assume that the random variables X1 and X2 are comonotonic. 

Then the ranks are equal, i.e. R1j,n = R2j,n, so  

2

21

6 2
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n

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6 2
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

 
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and ˆ 1J   in this case. The values of estimators 1̂  and 2̂  for selected 

values of n are presented in Table 1. 

Table 1. Values of estimators     and     for comonotonic variables 

n 5 10 20 50 100 500 1000 10000 

    –0,1200 0,4200 0,7050 0,8808 0,9402 0,9880 0,9940 0,9994 

    2,2800 1,6200 1,3050 1,1208 1,0602 1,0120 1,0060 1,0006 

Source: own elaboration.  

We can see that we obtain unrealistic values of these estimators for the 

small sample. Therefore we can use them for the large sample only, but 

estimator 1̂  always takes values smaller than 1 for the comonotonic varia-

bles and estimator 2̂  takes greater values. Joe's estimator is a better estima-

tor of Spearman's rho. 
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10. Conclusion 

The paper is devoted to the multivariate, when dimension is greater than 

two, measures of dependence. The measures are based on copulas. We 

generalize the known coefficients of such correlation as Spearman’s rho, 

Kendall’s tau, Blomquist’s beta and Gini’s gamma. We can see that the case 

of a large number of dimensions is more complicated. We can obtain several 

different versions of such a generalization in this case.  

The problem of the estimation of these measures of dependence is very 

important from the practical point of view. We showed that we could use 

the estimations based on the simple conversion copulas on the empirical 

copulas for the large sample only and that the classical estimator is better for 

Spearman’s rho coefficient. We merely signaled the problem of estimation. 

The estimation issue will be  discussed further in the next paper. 
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