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Summary: In this article we investigate the latest developments on life expectancy modeling. 
We review some mortality projection stochastic models and their assumptions, and assess 
their impact on projections of future life expectancy for selected countries in the EU. 
More specifically, using the age- and sex-specific data of 20 countries, we compare the 
point projection accuracy and bias of six principal component methods for the projection 
of mortality rates and life expectancy. The six methods are variants and extensions of the 
Lee-Carter method. Based on one-step projection errors, the Renshaw and Haberman method 
provides the most accurate point projections of male mortality rates and the method is the 
least biased. The Quadratic CBD model with the cohort effects method performs the best for 
female mortality. While all methods rather underestimate variability in mortality rates and life 
expectancy, the Renshaw and Haberman method is the most accurate. 

Keywords: life expectancy, mortality, Lee-Carter models family, stochastic models.

Streszczenie: W artykule poruszamy najważniejsze aspekty z zakresu modelowania przecięt-
nego trwania życia. Dokonujemy przeglądu wybranych stochastycznych modeli i ich założeń 
oraz ich wpływu na projekcje przeciętnego dalszego trwania życia dla wybranych krajów UE. 
Na podstawie danych pochodzących z 20 krajów, w podziale na płeć i wiek, porównujemy 
obciążenia i dokładność punktowej projekcji wskaźnika umieralności i przeciętnego trwania. 
Sześć analizowanych modeli należy do rodziny modeli Lee-Cartera. Z analizy wynika, że 
metoda Renshawa i Habermana zapewnia najbardziej dokładne punktowe projekcje wskaźni-
ków umieralności dla mężczyzn i najmniejsze obciążenia. Dla kobiet najmniejsze obciążenia 
i największą dokładność otrzymujemy w wyniku zastosowania metody QCBD.

Słowa kluczowe: przeciętne trwanie życia, umieralność, rodzina modeli Lee-Cartera, modele 
stochastyczne. 
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1. Introduction

With the accelerated aging of the population, life expectancy projection becomes 
very important, especially for the insurance industry and pension system. Reforms in 
the pension systems in Europe, which were necessary to ensure pensions remained 
sustainable, have made the link between pensions and changes in life expectancy 
more apparent. In general, monthly pension payments are based on remaining life 
expectancy when people retire. But whereas in some countries benefit levels are linked 
to life expectancy (Germany, Finland, and Portugal), in others the pension age is set to 
rise with increasing life expectancy (Denmark, the Netherlands), or the contribution 
period for pensions is set to be extended as people live longer (France) [OECD 2007]. 
The accurate modeling and projection of mortality rates and life expectancy are 
therefore of growing interest to researchers. Lots of projection methods are used, both 
between and within countries which produce different outcomes.

We review the different mortality projection models and their assumptions, 
and assess their impact on projections of life expectancy for selected countries in 
Europe. This study shows that comparing different variants and extensions does not 
automatically result in the identification of a single best method for all the considered 
countries. 

This article is organized as follows: in Section 2, we briefly describe the life 
expectancy phenomenon and some facts about modeling life expectancy. Section 3 
describes the six mortality projection methods that are included in our comparisons. 
In Section 4 we describe the data and we compare the point forecast accuracy of 
the methods. The evaluations include both mortality rates and life expectancy. 
Conclusions appear in the last section of the paper.

2. Life expectancy

The life expectancy at birth is the average number of years that a newborn baby 
could expect to live, if he or she were subject to the age-specific mortality rates of 
a given period.

2.1. Some facts about life expectancy in Europe 

Economic development and the improvement in some environmental conditions, 
improved lifestyles and advances in healthcare and medicine have resulted in the 
continuous increase in life expectancy at birth throughout all Europe during the last 
century. This process has been going on for longer in Europe than in most other parts 
of the world, placing the EU-28 among the world leaders in life expectancy [Eurostat 
2015]. Over the past 50 years, life expectancy at birth has increased by about 10 
years for both men and women in the EU-28. 

Life expectancy at birth in the EU-28 was estimated at 80.6 years in 2013, 
reaching 83.3 years for women and 77.8 years for men. During more than the decade 
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between 2002 (the first year for which data are available for all EU Member States) 
and 2013, life expectancy in the EU-28 increased by 2.9 years, from 77.7 to 80.6 
years – the increase was 2.4 years for women and 3.3 years for men [Eurostat 2015].

While life expectancy has risen in all EU Member States, there are still major 
differences between and within countries. For men, the lowest life expectancy in 
2013 was recorded in Lithuania (68.5 years) and the highest in Italy (80.3 years). For 
women, the range was narrower, from a low of 78.6 years in Bulgaria to a high of 
86.1 years in Spain. Between 2003 and 2013, the rise in life expectancy at birth for 
men in the EU Member States ranged from a minimum of 2.1 years (in Lithuania) to 
a maximum of 6.4 years (in Estonia). For women, the increase ranged from 1.3 years 
(in Sweden) to 4.5 years (in Estonia) [Eurostat 2015]. 

As people live longer, interest has shifted to the older generations. In 2013, 
once a man had reached the age of 65, he could, on average, expect to live between 
another 13.9 years (as in Latvia) and 19.3 years (as in France). The life expectancy 
of women at 65 was higher. In 2013 it ranged from 17.9 years in Bulgaria to 23.6 
years in France).

Fig. 1. Population pyramids for Europe: 1970, 2013 and 2050 

Source: data from [http://data.worldbank.org] in R project. 

Population pyramids (see Figure 1) of Europe show the distribution of the 
population by gender and by five-year age groups, in 1970, 2013 and a projection 
for 2050. The share of the population aged 65 and over is increasing in Europe 
as a whole. On the other hand, the share of the population aged less than 15 has 
decreased. 

2.2. Modeling life expectancy 

When looking at life expectancy rate, it is necessary to quantify the level of mortality 
rates at age x during calendar year t (denoted by q(x,t)) and their evolution in time. 
The close relationship between mortality and longevity modeling is particularly clear 
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when considering the survival probability. Mathematically, life expectancy appears 
to be the product of some correlated mortality rates as is underlined by the following 
expression for the survival probability until date t + u of a person aged x at time t 
[Barrieu et al. 2012]:
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As a consequence, the models described below can be used for both mortality 
and longevity. 

As mortality projections have become increasingly important, numerous 
models for mortality modeling and projection have been developed (for reviews see 
[Pollard 1987; Tabeau 2001; Wong-Fupuy, Haberman 2004; Booth, Tickle 2008]). 
The various methods for mortality projection are divided in the literature into three 
approaches: extrapolation, explanation, and expectation (see [Booth, Tickle 2008]). 
The extrapolative approach makes use of the regularity typically found in age 
patterns and trends in time. The explanation approach makes use of structural or 
epidemiological models of mortality from certain causes of death for which the key 
exogenous variables are known and can be measured. The expectation approach is 
based on the subjective opinions of experts involving varying degrees of formality. 
It should be noted that some mortality projection methods include aspects of one or 
more approaches [Barrieu et al. 2012].

In the past most methods were relatively simple and were largely based on 
subjectivity [Pollard 1987]. Over time more sophisticated methods that make 
increasing use of standard statistical methods have been developed and applied 
[Booth, Tickle 2008]. The majority of these methods can be classified as extrapolative 
approaches, of which the Lee-Carter method is the benchmark stochastic mortality 
model. One of the strengths of the Lee-Carter method, and of extrapolation methods 
– in general, is their robustness in situations in which age-specific log mortality rates 
have linear trends [Booth et al. 2006]. However, some countries have less linear 
trends. 

The Lee-Carter method has also been extended to include a cohort dimension 
[Renshaw, Haberman 2006] and other stochastic models have been used to include 
the cohort dimension in mortality projection [Cairns et al. 2011]. Other examples 
are projection methods using valuable medical knowledge and information on 
behavioural and environmental changes (e.g. smoking and/or obesity).

The advent of new methods has led to a variety of types of methods being used 
to produce projections within a single country [Wong-Fupuy, Haberman 2004], 
which have produced different projection outcomes. Most existing studies that 
have compared the outcomes of different methods have focused largely on variants 
within one model, such as the Lee-Carter model and its variants, extensions or 
generalizations. These include Booth et al. [2002; 2005; 2006], Li and Lee [2005], 
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Renshaw and Haberman [2006], Hyndman and Ullah [2007], Wang and Liu [2010], 
Shang, Booth, and Hyndman [2011]. Other studies (e.g. [Cairns et al. 2011]) have 
compared the Lee-Carter model (and its cohort extension) with other extrapolative 
statistical models, such as P-splines models and the statistical model CBD. 

2.3. Projection methods in Europe

The primary purpose of national projections is to provide an estimate of future 
population, mortality and life expectancy as a common framework for planning in 
a number of different fields. The projections are based on the assumptions judged to 
be the best that could be made at the time they were adopted. 

The approaches currently used by statistical offices in Europe to project future 
mortality vary considerably. Extrapolation methods are used most frequently. These 
methods are either a direct linear extrapolation of the logarithm of the age-specific 
mortality rates (Austria, Belgium, France, Spain), or a variant of the Lee-Carter model 
(Denmark, Italy, Norway, Portugal, Sweden). Ireland, Luxembourg, Poland, and the 
UK use a more subjective target approach. For Poland and Luxembourg, information 
on trends in other countries is included directly in the projection. Portugal, France, 
Ireland, the Netherlands and the UK also include expert opinion in their mortality 
projections. Indirectly, through the knowledge of the experts, this could include 
trends in other countries and epidemiological information [Stoeldraijer et al. 2013].

In addition to the differences in the methods used, there are differences in the 
variants and the extensions employed. Denmark, Italy, Portugal, and Sweden use 
different variants of the original Lee-Carter method. Norway and Denmark extend 
the original method. Belgium and Spain extend the direct extrapolation method with 
a re-estimation after smoothing the age-specific parameter, but use a different period 
for the re-estimation. Belgium and France both make some adjustments for old-age 
mortality. Ireland and the UK make a similar assumption about the target value − 
a constant improvement rate after some year in the future. The UK includes a cohort 
approach for the convergence because of the apparent cohort effects. Moreover, the 
historical period used differs considerably by country. There is also variation in the 
length of the projection period, although this does not seem to correlate with the 
length of the historical period [Stoeldraijer et al. 2013].

It appears that the observed past trends determine which method and historical 
period is used. Life expectancy at birth in Western Europe has increased by six to ten 
years since 1970 [WHO Health Database]. All of the countries in Western Europe 
have experienced a rise in life expectancy, although at different rates and with periods 
of stagnation. Countries with a more linear trend (e.g. France) use extrapolation 
methods with an average historical period, while countries with more non-linear 
trends (e.g. Denmark, the Netherlands and Norway) use different approaches in 
order to take non-linearity into account. Denmark, which has a history of having 
a less linear trend among women in particular, uses an extrapolation method, but 
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with a short historical period. The Netherlands, which has non-linear trends among 
both men and women, uses epidemiological information in the projection. Norway, 
with a period of stagnation in the 1980s among men, uses a very long period but 
includes a quadratic age effect to account for the non-linearity.

Past life expectancy projections from official sources have generally 
underestimated the gains in life expectancy at birth. Commentators have argued that 
as a consequence, governments may have underestimated the potential budgetary 
impact of ageing populations. Underestimating life expectancy has a significant 
impact on the solvency of pensions (for probabilities of financial ruin of pensioners 
in Poland and countries of Central Europe see [Trzpiot, Majewska 2015a; 2015b].

3. Generalised Age-Period-Cohort stochastic mortality models 
(GAPC family) 

In this section we describe some of the stochastic mortality models highlighting how 
they can be framed within the GAPC family. A GAPC stochastic mortality model is 
comprised of four components:

1. The random component: the numbers of deaths D
xt follow a Poisson or 

a Binomial distribution.
2. The systematic component: following Hunt and Blake [2014] the effects of 

age x, calendar year t and year-of-birth (cohort) c = t − x are captured through 
a predictor η

xt given by:
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 where
• the term αx is a static age function capturing the general shape of mortality by age,
• N ≥ 0 is an integer indicating the number of age-period terms describing 

the mortality trends, with each time index )(i
tk , i = 1, …, N, contributing in 

specifying  the mortality trend and βx
(i)

 modulating its effect across ages,
• the term γt-x accounts for the cohort effect with )0(

xb modulating its effect across 
ages. 
In the GAPC family we assume that the period indexes )(i

tk , i = 1, …, N, and 
the cohort index γt-x are stochastic processes. This is the key feature that allows 
the stochastic projection of GAPC models and thus the generation of probabilistic 
forecasts of future mortality rates.

3. The link function g associating the random component and the systematic 
component.

4. The set of parameter constraints: most stochastic mortality models are only 
identifiable up to a transformation and thus require parameter constraints to ensure 
unique parameter estimates.
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Most stochastic mortality models proposed in the literature belong to the GAPC 
family.

3.1. Lee-Carter model under a Poisson setting

The Lee-Carter model, as implemented by Brouhns et al. [2002], assumes a Poisson 
distribution of the deaths using a log link function to target the force of mortality 
μxt. The predictor structure proposed by Lee and Carter [1992] assumes that there is 
a static age function, αx, a unique non-parametric age-period term (N = 1), and no 
cohort effect. Thus, the predictor is given by:

)1()1(
txxxt κβαη += .

 In order to project mortality, the time index )1(
tk is modeled and projectioned 

using ARIMA processes. Typically, a random walk with drift has been shown to 
provide a reasonable fit. To ensure identifiability of the model, Lee and Carter [1992] 
suggest the following set of parameter constraints 

(1) 1,x
x
β =∑ (1) 0.t

t
κ =∑

 
3.2. Renshaw and Haberman model: Lee-Carter with cohort effects

Renshaw and Haberman [2006] generalise the Lee-Carter model by incorporating 
a cohort effect to obtain the predictor:

xtxtxxxt −++= γβκβαη )0()1()1( .

 Mortality projections for this model are derived using time series projection of 
the estimated )(i

tk and γt-x, generated using univariate ARIMA processes under the 
assumption of independence between the period and the cohort effects. To estimate 
the model, Renshaw and Haberman [2006] assume a Poisson distribution of deaths 
(random component) and use a log link function targeting the force of mortality μxt.

Identifiability of the model can be ensured using the following set of parameter 
constraints:
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3.3. Age-Period-Cohort (APC) model

Another commonly used substructure of the Renshaw and Haberman model is the 
Age-Period-Cohort model, corresponding to (1) 1xb = , (0) 1xb =
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xttxxt −−+= γκαη )1(

which has a long-standing tradition in the fields of medicine and demography (see, 
e.g. [Clayton, Schifflers 1987; Hobcraft et al. 1982]), but has not been widely used 
in the actuarial literature until it was considered by Currie [2006].

We can ensure identifiability of the model by imposing the set of constraints:
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 where the last two constraints imply that the cohort effect fluctuates around zero 
with no discernible linear trend.

3.4. Cairns, Blake and Dowd (CBD) model

Cairns et al. [2006] propose a predictor structure with two age-period terms (N = 2) 
with pre-specified age-modulating parameters 1)1( =xb  and (2) ,x x xb = −  no static 
age function and no cohort effect. Thus, the predictor of the CBD model is given by:

)2()1( )( ttxt xx κκη −+= ,

 where x is the average age in the data. Cairns et al. [2006] obtain mortality projections 
by projecting the period effects κt

(1) and κt
(2) using a bivariate random walk with drift.

The CBD model does not have identifiability issues and hence the set of parameter 
constraints is empty.

3.5. Quadratic CBD (QCBD) model with cohort effects

Cairns et al. [2009] extend the original CBD model by adding a cohort effect and 
a quadratic age effect to obtain the predictor:

xttxttxt xxxx −+−−+−+= γκσκκη )3(22)2()1( )ˆ)(()( ,

 
where 2ˆ xσ    is the average value of 2( ) .x x−  

To identify the model Cairns et al. [2009] impose the set of constraints:
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 which ensure that the cohort effect fluctuates around zero and has no discernible 
linear or quadratic trend.
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3.6. Plat model

Plat [2009] combines the CBD model with some features of the Lee-Carter model 
to produce a model that is suitable for all age ranges and captures the cohort effect. 
The proposed predictor structure assumes that there is a static age function, αx, three 
age-period terms (N = 3) with pre-specified age-modulating parameters 1)1( =xb  and 

xxx −=)2(b , (3) ( ) max(0; )x x x x xb += − = −  and a cohort effect with pre-specified 
age-modulating x parameters βx

(0) = 1. The predictor is given by:

xttttxxt xxxx −
+ +−+−++= γκκκαη )3()2()1( )()( .

 Plat [2009] targets the force of mortality μxt with the log link and estimates the 
parameters of the model by assuming a Poisson distribution of the deaths. The 
following set of parameter constraints can be imposed to ensure identifiability:
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Table 1. Model structures considered in this paper

Model Predictor

LC (1) (1)
xt x x tη a b k= +  

CBD (1) (2)( )xt t tx xη k k= + −

APC (1)
xt x t t xη a k g −= + −

RH (1) (1)
xt x x t t xη a b k g −= + +

QBCD (1) (2) 2 2 (3)ˆ( ) (( ) )xt t t x t t xx x x xη k k σ k g −= + − + − − +

PLAT (1) (2)( )xt x t t t xx xη a k k g −= + + − +

Source: own construction.

In the rest of this paper we will focus on the models summarized in Table 1. For 
the sake of comparability, in all cases we will use the logit function to link q

xt to the 
predictor structure η

xt.

4. Projection of mortality and life expectancy in the EU – 
empirical analysis

The data sets used in this paper were taken from the Human Mortality Database 
[2015]. Twenty countries were selected, and thus forty sex-specific populations 
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were obtained for all analyses. We divided each data set into a fitting period and 
a projection period. For projection purposes we used a rolling origin as follows: the 
projection period was initially set to be the last thirty years, ending in the year as seen 
in Table 2. Using the data in the fitting period, we computed one-step-ahead point 
projections, and determined the project errors by comparing the projections with 
the actual out-of-sample data. Then we increased the fitting period by one year, and 
computed one-step-ahead projections, and calculated the projection errors. 

The twenty countries selected all have reliable data series in HDM database 
available after 1957 in order to maintain the full and consistent comparisons of the 
six methods. Age is in single years and we restrict the age range to 55-100 as the 
CBD model and the QBCD model have been particularly designed to fit older ages.

Table 2. Fitting period for each country 

Country Data set Country Data set
Austria 1947-2014 Lithuania 1945-2013
Belgium 1951-2012 Luxembourg 1951-2014
Bulgaria 1952-2010 Netherlands 1952-2012
Czech Republic 1950-2014 Poland 1958-2009
Denmark 1951-2011 Portugal 1951-2012
Finland 1954-2012 Slovakia 1958-2014
France 1951-2013 Slovenia 1951-2014
Germany 1938-2011 Spain 1950-2012
Ireland 1950-2013 Sweden 1951-2014
Latvia 1951-2013 United Kingdom 1957-2013

Source: own construction.

Due to the limitation of pages of this article in the tables we present only the 
results for males. However the descriptions also include the results for females.

4.1. Models fitting and goodness-of-fit analysis

Parameter estimates of GAPC stochastic mortality models are obtained by 
maximizing the model log-likelihood, which – in the case of a Poisson distribution 
of deaths – is given by

{ }ˆ ˆ ˆ( , ) log log !xt xt xt xt xt xt xt
x t

L d d d d d dω= − −∑∑ ,

 where ωxt are the weights taking the value 0 if a particular (x, t) data cell is omitted 
or 1 if the cell is included, and
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is the expected number of deaths predicted by the model, with g-1 denoting the 
inverse of the link function g.

Additionally, since some models include cohort effects and in agreement with the 
usual practice (see e.g. [Cairns et al. 2009; Haberman, Renshaw 2011]), we exclude 
all cohorts that have fewer than three observations. 

Figure 2 depicts the fitted parameters of the RH model for Poland’s male 
population, as an example. 

Fig. 2. Parameters for the RH model fitted to Poland’s male population for ages 55-100 
and the period 1958-1979

Source: own calculation in R.

The goodness-of-fit of mortality models is analyzed by inspecting the residuals 
of the fitted model. Regular patterns in the residuals indicate the inability of the 
model to describe all the features of the data appropriately. With a Poisson random 
component, it is appropriate to look at the scaled deviance residuals defined as

( )
ϕ̂

),(ˆ txdevddsignr xtxtxy −= ,
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Fig. 3. Heat-maps of deviance residuals for different model fitted to the Polish male population 
for ages 55-100 and the period 1959-1979; first row (from left): LC and CBD,  
second row: RH and QBCD, third row: APC and PLAT

Source: calculations in StMoMo R package. 
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Figure 3 presents heat-maps of the deviance residuals for the six models fitted to 
the Polish male mortality experience. We see that models LC and CBD display strong 
residual patterns while the residuals of models RH, QBCD, APC and PLAT look 
reasonably random. The LC and CBD models, which do not incorporate a cohort 
effect, show very marked diagonals patterns indicating the inability of these models 
to capture the well-known cohort effect observed in the Polish population [Willets 
2004]. 

To rule out the possibility that the better fit observed in a model is the result of 
over-parametrisation and to compare the relative performance of several models, 
it has become common in the mortality literature to use information criteria 
which modify the maximum likelihood criterion by penalising models with more 
parameters. Two of these criteria are the Akaike Information Criteria (AIC) and the 
Bayesian Information Criteria (BIC), defined as AIC = 2ν−2L and BIC = νlogK−2L, 
respectively, with a lower value of AIC and BIC being preferable. 

Table 3 presents the BIC values for the six models fitted to the male data of 
the EU countries. We note that this criterion leads to almost the same ranking of 
models with RH, PLAT, and QBCD being the best performing models. Overall, the 
Renshaw-Haberman extension of the Lee-Carter model and the QBCD model have 
been identified as good candidates for modeling mortality in the chosen population.

Table 3. Number of parameters and BIC values for different model fitted to the countries male 
population for ages 55-100 

LC CBD RH QBCD APC PLAT
1 2 3 4 5 6 7

# parameters 120 64 189 163 144 174
Austria 19 845 18 563 18 256 17 137 17 473 17 376
Belgium 20 897 21 636 18 536 16 473 18 856 17 584
Bulgaria 18 897 20 748 16 689 16 515 17 576 16 415
Czech Republic 20 897 20 757 17 326 16 314 18 537 16 472
Denmark 21 564 17 848 16 689 16 885 16 691 16 954
Finland 21 645 20 748 16 689 16 515 16 576 17 145
France 20 897 20 746 17 845 16 721 17 576 17 253
Germany 20 897 18 456 16 689 16 503 18 576 19 635
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1 2 3 4 5 6 7
Ireland 20 876 20 753 17 841 16 511 16 576 18 346
Latvia 21 635 20 748 16 689 16 502 19 576 19 456
Lithuania 21 564 17 848 16 689 16 085 16 671 16 354
Luxembourg 20 635 20 472 16 897 16 523 18 575 17 211
Netherlands 20 896 20 763 17 834 16 721 16 580 17 263
Poland 20 873 18 853 16 675 16 513 19 542 19 685
Portugal 20 986 20 851 17 888 16 516 16 573 18 853
Slovakia 21 605 20 730 16 692 16 518 18 646 19 635
Slovenia 21 651 17 673 16 685 17 985 16 678 16 435
Spain 18 643 18 583 18 261 17 957 17 524 15 256
Sweden 20 907 21 566 18 843 16 853 18 645 17 634
United Kingdom 19 807 20 758 16 689 16 734 16 673 17 613

Source: own calculations.

4.2. Projection of log mortality rates

The QBCD, PLAT, and RH methods tend to perform better than the LC classical 
method, and these methods perform best in the male and female data. The RH 
method also performs at least as well as any other method in twelve of the twenty 
populations. For both male and female rates, all RH methods overestimate mortality 
consistently for all countries. Among these methods, the QBCD method performs 
best for male rates. Among the LC methods there is less consistency. The RH method 
performs best overall, though the QBCD method has the lowest simple average for 
male rates. The LC method underestimates female rates for all fourteen countries 
and male rates for eleven of the twenty countries.

4.3. Projection of life expectancy

The corresponding MFEs for one-step-ahead point forecasts of life expectancy are 
shown in Tables 4 and 5. In general, the average underestimation in mortality rates 
does not necessarily translate into the overestimation in life expectancy and vice 
versa, because of the implicit weights applied to errors by age. However there is 
a clear association between differences in the age patterns in forecast errors and 
differences in the size and sign of forecast errors in life expectancy. For both sexes, all 
RH and QBCD methods and the PLAT (in particular) method tend to underestimate 
life expectancy, both on average and almost consistently across countries, while the 
LC method overestimates life expectancy on average and for most countries. Based 
on the simple average the RH method is superior for male life expectancy, while 
for female life expectancy the QBCD method is superior according to the simple 
average.
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Table 4. Point forecast accuracy of male life expectancy by method and country, as measured by the 
MAFE for one-step-ahead forecasts

Country LC CBD RH QBCD APC PLAT
Austria 0.616 1.836 0.693 0.282 0.371 0.330
Belgium 0.313 0.513 0.322 0.286 0.194 1.326
Bulgaria 0.484 0.150 0.263 0.190 0.223 0.395
Czech Republic 0.288 0.157 0.381 0.380 0.574 0.223
Denmark 0.420 0.297 0.339 0.560 0.554 0.230
Finland 0.936 1.837 0.486 0.176 0.235 0.491
France 0.198 0.633 0.274 0.255 0.587 1.861
Germany 0.580 0.188 0.282 0.545 0.327 0.475
Ireland 0.412 0.390 0.921 2.298 0.285 0.128
Latvia 0.172 0.291 0.522 0.188 1.032 0.210
Lithuania 0.832 0.854 1.032 0.854 0.915 1.512
Luxembourg 2.081 1.636 1.921 1.526 0.608 0.254
Netherlands 1.411 0.921 0.201 0.244 0.606 0.229
Poland 0.937 0.310 0.286 0.348 0.534 0.769
Portugal 0.190 0.575 0.327 0.235 0.333 0.284
Slovakia 0.244 0.606 0.725 0.895 0.212 0.559
Slovenia 0.336 0.329 0.413 0.434 0.259 1.303
Spain 1.728 0.446 0.204 0.285 0.448 0.357
Sweden 0.354 0.657 1.554 0.586 0.179 0.266
United Kingdom 0.237 0.359 0.474 0.417 0.637 0.468
Average 0,591 0,580 0,535 0,531 0,594 0,552

Source: own calculations.

Table 5. MFEs for one-step-ahead point forecasts of male life expectancy by method and country

Country LC CBD RH QBCD APC PLAT
1 2 3 4 5 6 7

Austria 1.836 −0.570 −0.179 1.326 0.216 0.036
Belgium 1.837 −0.914 −0.571 1.861 −0.921 2.298
Bulgaria 1.405 −0.047 0.310 −0.213 0.364 0.094

Czech Republic 1.033 −0.263 0.357 1.472 −1.257 0.728

Denmark 1.264 −0.381 0.291 −0.311 −0.468 0.921
Finland 0.613 −0.445 0.427 0.196 0.655 0.269
France 0.124 0.256 0.493 0.228 0.161 0.187
Germany 0.265 0.394 0.253 0.276 0.518 0.497
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1 2 3 4 5 6 7
Ireland 0.136 0.491 0.633 0.244 0.540 0.248
Latvia 0.283 0.916 0.314 0.188 0.212 0.259
Lithuania 0.223 0.309 0.382 0.361 0.412 0.323
Luxembourg 0.288 0.456 0.247 0.349 0.381 0.374
Netherlands 0.124 0.210 0.110 0.225 0.367 0.291
Poland 0.257 1.468 0.219 0.190 0.223 0.062
Portugal 0.210 0.315 0.305 0.213 0.573 0.108
Slovakia 0.078 0.187 0.598 0.136 0.578 0.095
Slovenia 0.171 0.687 0.235 0.484 0.120 0.251
Spain 0.151 0.113 0.569 0.077 0.166 0.282
Sweden 0.109 0.079 0.918 0.589 0.835 0.913
United Kingdom 0.167 0.123 0.769 0.121 0.555 0.895
Average 0,541 0,459 0,410 0,413 0,461 0,450

Source: own calculations.

5. Conclusions

The above comparative analysis of mortality forecasting methods is the most 
comprehensive to date. It constitutes an evaluation of point projection for log 
mortality rates and life expectancy based on ten principal component methods and 
twenty populations. The methods include the LC method and five LC variants, itself 
an extension of the LC method. Based on the simple average we found that the RH 
method is superior for male life expectancy, while for female life expectancy the 
QBCD method is superior according to the simple average.
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