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Abstract. In this article we investigate the classical risk process. We derive a formula for 

the ruin probability on a finite time horizon for zero initial capital that is Cramér’s formula 

and for an arbitrary initial capital that is Seal’s formula. Applying these formulas and the 

approximation of a gamma process by compound Poisson processes we obtain a formula 

for the supremum distribution of a gamma process with a linear drift. 
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1. Introduction 

A compound Poisson process is a basic skeleton in the risk theory. This 

model was introduced by Lundberg and Cramér and is called the classical 

Cramér–Lundberg model. Let N(t) be a Poisson process with the intensity , 
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is the so called classical risk process, where c > 0. However 
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is the claim surplus process (see Fig. 1). The process S(t) is a Lévy process. 

 

 

 

 

 

 

 
 

 

 

 

Fig. 1. A sample path of the process S(t) with c = 1 

 

 

 

 

 

 
 

 

 

Fig. 2. A sample path of the process S
*
(t) – reverse to the sample path of Fig. 1 

 

In this article we investigate the ruin probability on a finite time horizon 

that is the probability that the risk process goes down below the level zero 

or equivalently the surplus process crosses over the level u until time T. 

More precisely, we investigate probability 

 ( , ) sup ( )
t T

u T P S t u


 
  

 
. (1) 

Thus we are interested in the claim surplus process on a finite time ho-

rizon. Hence we will consider stochastic processes on the interval [0, T]. 

We will need two properties of the compound Poisson process. The first 

property is the reversibility of a compound Poisson process with respect to 

time and the second one is the exchangeability of the segments for a com-

pound Poisson process.  

Let us define 
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where 0  t  T (see Fig. 2) and for 0  v  T (see Figs. 3 and 4) 
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Fig. 3. A sample path of the process S(t) 

Theorem 1.  

(i) *( ) ( )
d

S t S t , 

(ii) ( )( ) ( )
d

vS t S t  

in the sense of finite dimensional distributions. 

Proof. Check the conditions for a Poisson process. 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. A sample path of the process S
(v)

(t) – to the sample path of Fig. 3 
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2. Cramér’s formula 

Now we find a formula for the ruin probability of the classical risk 

process with the initial reserve equal to zero. This formula is called 

Cramér’s formula (Cramér, 1955; Asmussen, 2000). 

Theorem 2. 
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Proof. First let us assume that c = 1. Let us define 
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where in the second equality we use theorem 1 (i). Thus 
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where in the second equality we used theorem 1 (ii) (P(M(v, T)) does not 

depend on v). Hence we need to investigate           
 

 
   . If S(v)

(T) = 

S(T) > 0 then I{M(v, T)} = 0. Thus let S(T)  0. If M(0, T) is fulfilled then 

M(v, T) = M(0, v). Indeed, if   
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where the last equality is satisfied under the assumption that M(0, T) is 

fulfilled since S(v)  0 if M(0, v) is satisfied thus on M(0, T) the assumption 

{S(T)  S(t) − S(v), v  t  T} is fulfilled. 

Hence if M(0, T) is fulfilled then 
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I M v T dv  on M(0, T) because on the set 

S(T)  0 we exchange the segments (the first segment to the minimum of 

S(t)) and we again get M(0, T). More precisely, let us define the process  
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where τ is the epoch when the process S(t) attains its minimum on [0, T].  

Then 
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where in the fourth equality we use the fact that ( ) .S T T   The formula for 

any 0c  we get in the following way 
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3. Seal’s formula 

We generalize the previous formula for any value of the initial capital 

u > 0. The next theorem is called Seal’s formula (Seal, 1974) and was origi-

nated by Prabhu (1961); see also (Asmussen, 2000). 

Theorem 3. Let T > 0, c > 0 and u > 0 then 
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where f(x, s) is the density function of the random variable     
    
     pro-

vided that it exists and (0, )T s  is given in Th. 2. 

Proof. Let c = 1. The event {S(T)  u} can happen in two ways: until 

the moment T the ruin does not occur and this event happens with probabili-

ty 1 −ψ (u, T), or the ruin occurs and we are able to define the last epoch 

 when the process S(s) is going down below the level u (see Fig. 5). 
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Fig. 5. The last epoch  when the process S(t) is going down below the level u 

In this case   [s, s + ds] if and only if S(s)  [u, u + ds] and we do 

not have another upcrossing of the level u after time s which occurs with 

probability 1 −ψ (0, T − s). Thus we get  
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which gives the assertion for c = 1. In order to get the formula for an arbitrary  

c > 0 it is enough to notice that 
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and use the formula for c = 1. 

4. Formula for the ruin probability for gamma process 

Gamma process is a Lévy process with one dimensional distribution be-

ing gamma. 

Definition 4.1. A stochastic process Z = {Z(t), 0  t < ∞} is gamma 

process with the shape parameter a and scale parameter b if 

1. Z(0) = 0 a.s.; 

2. Z has independent increments; 

3. Z has stationary increments; 

4. Z(1) has gamma distribution with the shape parameter a > 0 and 

scale parameter b > 0 that is distribution with the density function 

t T 

u 

 
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 (2) 

where Γ is the gamma function. 

The gamma process can be obtained as a limit of certain compound 

Poisson processes (classical cumulated claims processes). 

Let    
   

 
   

 

 be a sequence of the size of successive claims indepen-

dent of each other with a common cumulative distribution function F
(p)

 

dependent on the parameter p > 0. More precisely 
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Moreover, let us assume that N
(p)

(t) is a Poisson process with the inten-

sity Q(p) and independent of    
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Proposition. If  p ↓ 0 then 

S
(p)

(t) ⇒ Z(t) − ct 

weakly in the Skorokhod topology where Z is a gamma process. 

Proof. Since S
(p)

(1) ⇒ Z(1) − c (Dufresne, Gerber, Shiu (1991)) and the 

stochastic processes S
(p)

(t) and Z(t) − ct are Lévy processes thus by Th. V. 19 

(Pollard, 1984) we get the assertion. 

Using Cramér’s and Seal’s formulas and the approximation of the 

gamma process by compound Poisson processes we can obtain a formula for 

the distribution of the supremum of gamma process with a linear drift. 



Ruin probability on a finite time horizon 

 
73 

Theorem 4. Let c > 0 and T > 0. Then  
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Proof. Let us notice that the functional sup ( )
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 is continuous in the 

Skorohkod  J1 topology and the distribution  
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is continuous. Thus we use Prop. 4.1 and get  
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Hence by Th. 2 we obtain 
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Taking  p ↓ 0 we have 
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where in the second equality we use the density function of the random 

variable Z(T) and in the third we integrate by parts. Thus we obtain the 

assertion (i).  

Similarly in order to get the formula (ii) we use Th. 3 and we let  p ↓ 0. 

It is possible to get a formula for the supremum distribution of spectral-

ly positive -stable Lévy process (Michna (2011a)) and more generally for 

any spectrally positive Lévy process (Michna (2011b)). 
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